

POWERWAVE TECHNOLOGIES, INC. TEST REPORT

FOR THE

REPEATER, RH308022/03A

FCC PART 24 SUBPART D

TESTING

DATE OF ISSUE: APRIL 1, 2008

PREPARED FOR:

Powerwave Technologies, Inc. 1801 E. St. Andrew Place Santa Ana, CA 92705

P.O. No.: 118433 W.O. No.: 87767

PREPARED BY:

Mary Ellen Clayton CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Date of test: March 25-27, 2008

Report No.: FC08-036

This report contains a total of 17 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS

Administrative Information	.3
Approvals	.3
Summary of Results	.4
Conditions During Testing	.4
Equipment Under Test (EUT) Description	.5
Equipment Under Test	.5
Peripheral Devices	.5
Temperature and Humidity During Testing	.6
FCC 2.1033(c)(3) User's Manual	.6
FCC 2.1033(c)(4) Type of Emissions	.6
FCC 2.1033(c)(5) Frequency Range	.6
FCC 2.1033(c)(6) Operating Power	.6
FCC 2.1033(c)(7) Maximum Power Rating	.6
FCC 2.1033(c)(8) DC Voltages	.6
FCC 2.1033(c)(9) Tune-Up Procedure	.6
FCC 2.1033(c)(10) Schematics and Circuitry Description	.6
FCC 2.1033(c)(11) Label and Placement	.6
FCC 2.1033(c)(12) Submittal Photos	.6
FCC 2.1033(c)(13) Modulation Information	.6
FCC 2.1033(c)(14)/2.1046/24.132(c) - RF Power Output	.7
FCC 2.1033(c)(14)/2.1049(i)/Part 24 - Input and Output Plots	.8
FCC 2.1033(c)(14)/2.1051/24.133(a)(2)(ii) - Spurious Emissions at Antenna Termina	110
FCC 2.1033(c)(14)/2.1053/24.133(a)(2)(ii) - Field Strength of Spurious Radiation	.13
FCC Part 24.133 Block Edge	.16

ADMINISTRATIVE INFORMATION

DATE OF TEST: March 25-27, 2008

REPRESENTATIVE: Sean Doan

MANUFACTURER: Powerwave Technologies, Inc. 1801 E. St. Andrew Place Santa Ana, CA 92705 **DATE OF RECEIPT:** March 25, 2008

TEST LOCATION: CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92823

FREQUENCY RANGE TESTED: 9 kHz-10 GHz

TEST METHOD: FCC Part 24 Subpart D

PURPOSE OF TEST: To perform the testing of the Repeater, RH308022/03A with the requirements for FCC Part 24 Subpart D devices.

APPROVALS

QUALITY ASSURANCE:

TEST PERSONNEL:

Steve Behm, Director of Engineering Services

Eddie Wong, EMC Engineer

Page 3 of 17 Report No.: FC08-036

SUMMARY OF RESULTS

Test	Specification/Method	Results
RF Power Output	FCC 2.1033(c)(14)/2.1046/24.132(c)	Pass
Input and Output Plots	FCC 2.1033(c)(14)/2.1049(i)/Part 24	Pass
Spurious Emissions at	FCC 2.1033(c)(14)/2.1051/24.133(a)(2)(ii)	Pass
Antenna Terminal		
Field Strength of Spurious	FCC 2.1033(c)(14)/2.1051/24.133(a)(2)(ii)	Pass
Radiation		
Block Edge	FCC Part 24.133	Pass

CONDITIONS DURING TESTING

No modifications to the EUT were necessary during testing.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit.

The following device name was used during testing by CKC Laboratories: **Dual Band Transceiver**

Since the time of testing the manufacturer has chosen to use the following device name in its place. Any differences between the names does not affect their EMC characteristics and therefore meets the level of testing equivalent to the tested model name shown on the data sheets: **Repeater**

Power Meter

EQUIPMENT UNDER TEST

<u>Repeater</u>

Manuf:	Powerwave Technologies
Model:	RH308022/03A
Serial:	NA
FCC ID:	pending

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Spectrum Analyzer

			I UWCI MICICI	
M	lanuf:	HP	Manuf:	Agilent
M	lodel:	8563E	Model:	E4419B
S	erial:	3337A01565	Serial:	MY0510694

ESG

Manuf:	Aeroflex
Model:	IFR3417
Serial:	341005/018

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

FCC 2.1033(c)(3) USER'S MANUAL

The necessary information is contained in a separate document.

FCC 2.1033 (c)(4) TYPE OF EMISSIONS D7W

FCC 2.1033 (c)(5) FREQUENCY RANGE 935MHz – 940MHz

FCC 2.1033 (c)(6) OPERATING POWER 20 watts

FCC 2.1033 (c)(7) MAXIMUM POWER RATING 3500 watts

FCC 2.1033 (c)(8) DC VOLTAGES

The necessary information is contained in a separate document.

FCC 2.1033 (c)(9) TUNE-UP PROCEDURE

The necessary information is contained in a separate document.

FCC 2.1033(c)(10) SCHEMATICS AND CIRCUITRY DESCRIPTION

The necessary information is contained in a separate document.

FCC 2.1033(c)(11) LABEL AND PLACEMENT

The necessary information is contained in a separate document.

FCC 2.1033(c)(12) SUBMITTAL PHOTOS

The necessary information is contained in a separate document.

FCC 2.1033 (c)(13) MODULATION INFORMATION iDEN

Page 6 of 17 Report No.: FC08-036

FCC 2.1033(c)(14)/2.1046/24.132(c) - RF POWER OUTPUT

Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
RF Power meter	02778	HP	EPM-441A	GB37170458	020508	021510
Power Sensor	02777	HP	E4412A	MY41499662	020508	021510

Test Conditions

The EUT was a RF amplifier. The manufacturer does not provide an antenna for sale with the product, hence EIRP was not measured nor calculated. The dual band EUT was placed on the wooden table. Service port Local 1 and Local 2 were left unpopulated, WLI communication (non ethernet, proprietary handshake protocol) port 1 and 2 were connected in loop back manner via UTP. Antenna port Service 1 was terminated to 50 ohm load. Donor 2 out, Donor 1 In and Donor 1 out were connected to 50 ohm loads. Donor 2 In was connected to a remote RF signal source, antenna port Service 2 was connected to a power meter. The input RF level was adjusted to maintain a constant output power. Emission profile of the output signal was evaluated at the antenna port, Service 2. The RF output power of the EUT was measured at the antenna port, the measured conducted output power met the rated output power of the product.

Test Setup Photos

Test Data

Modulation: iDEN	Power (dBm)	Power (Watts)
935.5MHz	43	20
937.5MHz	43	20
939.5 MHz	43	20

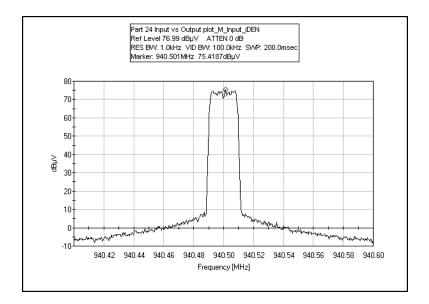
FCC 2.1033(c)(14)/2.1049(i)/PART 24 - INPUT AND OUTPUT PLOTS

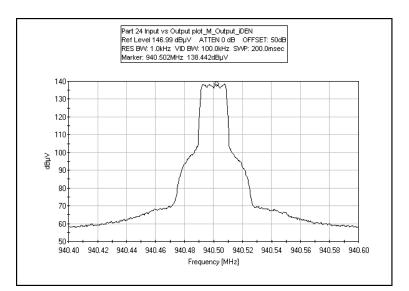
Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	02672	Agilent	E4446A	US44300438	010307	010309

Test Conditions

The dual band EUT was placed on the wooden table. Service port Local 1 and Local 2 were left unpopulated, WLI communication (non ethernet, proprietary handshake protocol) port 1 and 2 were connected in loop back manner via UTP. Antenna port Service 1 was terminated to 50 ohm load. Donor 2 out, Donor 1 In and Donor 1 out were connected to 50 ohm loads. Donor 2 In was connected to a remote RF signal source, antenna port Service 2 was connected to a remote power meter. The input RF level was adjusted to maintain a constant output power. Emission profile of the output signal was evaluated at the antenna port, service 2 /Service 1. Input signal profile was evaluated at Donor in 1/ Donor in 2.


Test Setup Photos



Test Plots

FCC PART 24 INPUT PLOT - MIDDLE CHANNEL IDEN

FCC PART 24 OUTPUT PLOT - MIDDLE CHANNEL IDEN

FCC 2.1033(c)(14)/2.1051/24.133(a)(2)(ii) - SPURIOUS EMISSIONS AT ANTENNA TERMINAL

Test Setup Photos

Test Data

Limit line for Spurious Conducted Emission

Required Attenuation	=	43+10 Log P dB
Limit line (dBuV)	=	V_{dBuv} - Attenuation
V_{dBuV}	$V_{dBuV} = 20 \operatorname{Log} \frac{V}{1 \times 10^{-6}}$	
	=	$20 \left(\text{Log V} - \text{Log 1 x 10}^{-6} \right)$
	=	$20 \text{ Log V} - 20 \text{ Log1 x } 10^{-6}$
	=	20 Log V - 20 (-6)
	=	20 Log V +120
Attenuation	=	43 + 10 Log P
	=	$43+10\log\frac{V^2}{R}$
	=	$43 + 10 \left(\text{Log V}^2 - \text{Log R} \right)$
	=	$43 + 10(2 \log V - \log R)$
	=	43 + 20 Log V - 10 Log R
Limit line	=	V _{dBuy} - Attenuation
	=	20 Log V + 120 - (43 + 20 Log V - 10 Log R)
	=	20 Log V + 120 – 43 – 20 Log V + 10Log R
	=	$20 \text{ Log V} + 120 - 43 - 20 \text{ Log V} + 10 \text{ Log R} \\ 120 - 43 + 10 \text{ Log 50} \qquad \text{Note : R} = 50 \Omega$
	=	$120 - 43 + 10 \log 50$ Note: $R = 50.22$ 120 - 43 + 16.897
	=	94 dBuV at any power level

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: Specification:	Powerwave Technologies, Inc. 24.133(a)(2)(ii) Conducted Spurious Emissions				
Work Order #:	87767 Date: 3/26/2008				
Test Type:	Conducted Emissions	Time:	11:40:30		
Equipment:	Dual Band Transceiver	Sequence#:	5		
Manufacturer:	Powerwave Technologies	Tested By:	E. Wong		
Model:	RH308022/03A		110V 60Hz		
S/N:	NA				

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	01/03/2007	01/03/2009	02672
3'-40GHz cable	NA	09/18/2007	09/18/2009	P02945

Equipment Under Test (* = EUT):						
Function	Manufacturer	Model #	S/N			
Dual Band Transceiver*	Powerwave Technologies	RH308022/03A	NA			

Support Devices:				
Function	Manufacturer	Model #	S/N	
Spectrum Analyzer	HP	8563E	3337A01565	
Power Meter	Agilent	E4419B	MY0510694	
ESG	Aeroflex	IFR3417	341005/018	

Test Conditions / Notes:

The dual band EUT is placed on the wooden table. Service port Local 1 and Local 2 are left unpopulated, WLI communication (non ethernet, proprietary handshake protocol) port 1 and 2 are connected in loop back manner via UTP. Antenna port Service 1 is terminated to 50 ohm load. Donor 2 out, Donor 1 In and Donor 1 out are connected to 50 ohm loads. Donor 2 In is connected to a remote RF signal source, antenna port Service 2 is connected to a remote power meter. The input RF level is adjusted to maintain a constant output power. Emission profile is evaluated at the antenna port, service 2. Range = 940 - 941MHz, Power = 20W. Modulation: iDEN, Frequency: 940.5MHz. Frequency range of measurement = 9 kHz - 10 GHz. Frequency 9 kHz - 150 kHz RBW=200 Hz, VBW=200 Hz; 150 kHz - 30 MHz RBW=9 kHz, VBW=9 kHz; 30 MHz - 1000 MHz RBW=120 kHz, VBW=120 kHz; 1000 MHz RBW=1 MHz, VBW=1 MHz.

Transducer Legend:

T1=Hi Freq_40GHz_3ft_CAB-ANP02945-091809

Measu	irement Data:	Re	eading lis	ted by 1	nargin.			Test Lead	d: Antenna	Terminal	
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBµV/m	dB	Ant
1	1881.000M	80.1	+0.5				+0.0	80.6	94.0	-13.4	Anten
	Ave										
^	1881.000M	94.5	+0.5				+0.0	95.0	94.0	+1.0	Anten
3	3761.983M	77.1	+0.7				+0.0	77.8	94.0	-16.2	Anten
4	2821.483M	72.5	+0.6				+0.0	73.1	94.0	-20.9	Anten
	Ave										
^	2821.483M	89.9	+0.6				+0.0	90.5	94.0	-3.5	Anten

FCC 2.1033(c)(14)/2.1053/24.133(a)(2)(ii) - FIELD STRENGTH OF SPURIOUS RADIATION

Test Setup Photos

Page 13 of 17 Report No.: FC08-036

Test Data

Test Location:CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer:	Powerwave Technologies, Inc.		
Specification:	24.133(a)(2)(ii) Radiated Spurious Emission	ı	
Work Order #:	87767	Date:	3/25/2008
Test Type:	Radiated Scan	Time:	15:59:36
Equipment:	Dual Band Transceiver	Sequence#:	2
Manufacturer:	Powerwave Technologies	Tested By:	E. Wong
Model:	RH308022/03A		
S/N:	NA		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	01/03/2007	01/03/2009	02672
Bilog Antenna	2451	01/21/2008	01/21/2010	01995
Pre amp to SA Cable	Cable #10	05/16/2007	05/16/2009	P05050
Cable	Cable15	01/05/2007	01/05/2009	P05198
Pre Amp	1937A02548	06/01/2006	06/01/2008	00309
Horn Antenna	6246	06/29/2006	06/29/2008	00849
Microwave Pre-amp	3123A00281	07/19/2006	07/19/2008	00786
2'-40GHz cable	NA	09/18/2007	09/18/2009	P2948
Heliax Antenna Cable	P5565	09/18/2006	09/18/2008	P05565
Loop Antenna	2014	06/14/2006	06/14/2008	00314

Equipment Under Test (* = EUT):

urer Model # ve Technologies RH308022/03A	S/N A NA
ve Technologies RH308022/03A	A NA
urer Model #	S/N
8563E	3337A01565
E4419B	MY0510694
IFR3417	341005/018
	8563E E4419B

Test Conditions / Notes:

The dual band EUT is placed on the wooden table. Service port Local 1 and Local 2 are left unpopulated, WLI communication (non ethernet, proprietary handshake protocol) port 1 and 2 are connected in loop back manner via UTP. Antenna port Service 1 is terminated to 50 ohm load. Donor 2 out, Donor 1 In and Donor 1 out are connected to 50 ohm loads via a section of shielded RF cable. Donor 2 In is connected to a remote RF signal source, antenna port Service 2 is connected to a remote power meter. The input RF level is adjusted to maintain a constant output power. Range = 940 - 941MHz, Power = 20W. Modulation: iDEN, Frequency: 940.5MHz. Frequency range of measurement = 9 kHz - 10 GHz. Frequency 9 kHz - 150 kHz RBW=200 Hz, VBW=200 Hz; 150 kHz - 30 MHz RBW=9 kHz, VBW=9 kHz; 30 MHz - 1000 MHz RBW=120 kHz, VBW=120 kHz; 1000 MHz - 10,000 MHz RBW=1 MHz, VBW=1 MHz.

Operating Frequency: <u>935 MHz - 94</u>0 MHz Channels: Low, Mid and High Highest Measured Output Power: <u>43.01</u> ERP(dBm)= <u>20</u> ERP(Watts) Distance: <u>3</u> meters Limit: 43+10Log(P) <u>56.01</u> dBc

Freq. (MHz)	Reference Level (dBm)	Antenna Polarity (H/V)	dBc
2,821.55	-41	Horiz	84.01
2,821.55	-43.9	Vert	86.91
3,762.03	-47	Horiz	90.01
3,762.12	-55.5	Vert	98.51
4,702.60	-57.8	Horiz	100.81
1,881.13	-61.7	Vert	104.71

FCC PART 24.133 BLOCK EDGE

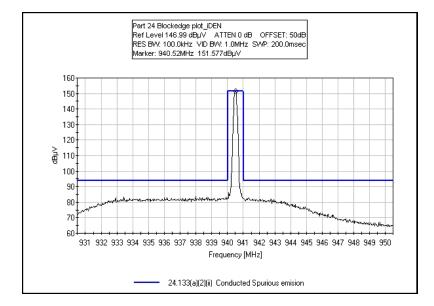
Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	02672	Agilent	E4446A	US44300438	010307	010309

Test Conditions

The dual band EUT was placed on the wooden table. Service port Local 1 and Local 2 were left unpopulated, WLI communication (non ethernet, proprietary handshake protocol) port 1 and 2 were connected in loop back manner via UTP. Antenna port Service 1 was terminated to 50 ohm load. Donor 2 out, Donor 1 In and Donor 1 out were connected to 50 ohm loads. Donor 2 In was connected to a remote RF signal source, antenna port Service 2 was connected to a remote power meter. The input RF level was adjusted to maintain a constant output power. Emission profile of the output signal was evaluated at the antenna port, service 2 /Service 1. Input signal profile was evaluated at Donor in 1/ Donor in 2.

For Bandedge plots, when applicable, a bandwidth correction was applied to compensate for employing resolution bandwidth other than 1 MHz. The signal amplitude was first measured at RBW=1MHz, any loss in amplitude measured with reduced RBW was noted and compensated for.


Test Setup Photos

Test Plots

FCC PART 24 BLOCK EDGE PLOT - iDEN

