

ADDENDUM TO POWERWAVE TECHNOLOGIES, INC. TEST REPORT FC08-006

FOR THE

WIDEBAND RADIO HEAD, RH800020/101

FCC PART 24 AND RSS-131 ISSUE 2, JULY 2003

TESTING

DATE OF ISSUE: FEBRUARY 4, 2008

PREPARED FOR:

PREPARED BY:

Powerwave Technologies, Inc. 1801 E. St. Andrew Place Santa Ana, CA 92705 Mary Ellen Clayton CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

P.O. No.: 117420 W.O. No.: 87496 Date of test: January 14-21, 2008

Report No.: FC08-006A

This report contains a total of 28 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

Page 1 of 28 Report No.: FC08-006A

TABLE OF CONTENTS

Administrative Information	3
Approvals	3
Summary of Results	4
Conditions During Testing	4
Equipment Under Test (EUT) Description	5
Equipment Under Test	5
Peripheral Devices	5
Temperature and Humidity During Testing	6
FCC 2.1033(c)(3) User's Manual	6
FCC 2.1033(c)(4) Type of Emissions	6
FCC 2.1033(c)(5) Frequency Range	6
FCC 2.1033(c)(6) Operating Power	6
FCC 2.1033(c)(7) Maximum Power Rating	
FCC 2.1033(c)(8) DC Voltages	6
FCC 2.1033(c)(9) Tune-Up Procedure	6
FCC 2.1033(c)(10) Schematics and Circuitry Description	6
FCC 2.1033(c)(11) Label and Placement	6
FCC 2.1033(c)(12) Submittal Photos	6
FCC 2.1033(c)(13) Modulation Information	6
FCC 2.1033(c)(14)/2.1046/24.132(c) - RF Power Output	7
RSS-131 - RF Power Output	9
FCC 2.1033(c)(14)/2.1049(i) – Input and Output Plots	11
FCC 2.1033(c)(14)/2.1051/24.133(a)(2)(ii) - Spurious Emissions at Antenna Termin	nal13
FCC 2.1033(c)(14)/2.1053/24.133(a)(2) - Field Strength of Spurious Radiation	
Band Edge	18
Intermodulation	20
99% Bandwidth	23
RSS-131 Amplifier Gain and Bandwidth	25

Page 2 of 28 Report No.: FC08-006A

ADMINISTRATIVE INFORMATION

DATE OF TEST: January 14-21, 2008 DATE OF	' RECEIPT: January	z 14, 2008
---	---------------------------	------------

REPRESENTATIVE: Charlotte Yu

MANUFACTURER:TEST LOCATION:Powerwave Technologies, Inc.CKC Laboratories, Inc.1801 E. St. Andrew Place110 Olinda PlaceSanta Ana, CA 92705Brea, CA 92823

FREQUENCY RANGE TESTED: 9 kHz-10 GHz

TEST METHOD: FCC Part 90, RSS-131 Issue 2 July 2003 and RSS GEN Issue 2 June 2007

PURPOSE OF TEST:

Original Report: To perform the testing of the Wideband Radio Head, RH800020/101 with the requirements for FCC Part 24 and RSS-131 devices.

Addendum A: To correct the emissions designator on page 6 with no new testing.

APPROVALS

QUALITY ASSURANCE: TEST PERSONNEL:

Steve Behm, Director of Engineering Services

Eddie Wong, EMC Engineer

SUMMARY OF RESULTS

Test	Specification/Method	Results
		_
RF Power Output	FCC Part 24.132(c)	Pass
DED O 4 4	DCC 121 C /: 4.2	D
RF Power Output	RSS-131 Section 4.3	Pass
Input & Output	FCC 2.1049(I)	Pass
Spurious Emissions at	FCC Part 24.133(a)(2)	Pass
Antenna Terminal		
E: 11 Ct	FCC P + 24 122()(2)	D
Field Strength of Spurious	FCC Part 24.133(a)(2)	Pass
Emissions		
Block Edge		Pass
Block Edge		1 433
Intermodulation		Pass
99% Bandwidth	RSS-131	Pass
	7.00	
Amplifier Gain and	RSS-131	Pass
Bandwidth		

CONDITIONS DURING TESTING

No modifications to the EUT were necessary during testing.

Page 4 of 28 Report No.: FC08-006A

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit. Wideband Radio Heads (WRH) work as on-frequency amplifiers used to fill out uncovered areas in wireless mobile systems such as base station fringe areas, tunnels, business, convention centers, airports and industrial buildings. It receives, amplifies and transmits signals to/from a base station to/from mobile stations. The standard WRH is used for analog or digital systems, such as iDEN. It has a fiber optic donor port and a RF port for a service antenna (or RF cable) and is designed to be connected to a BTS via a BMU or OCM.

The following model has been tested by CKC Laboratories: RH800020/101

The manufacturer states that the following additional models are identical electrically to the one which was tested, or any differences between them do not affect their EMC characteristics, and therefore they meet the level of testing equivalent to the tested models. RH800020/102, RH800020/211, RH008002/000, RH008002/011, RH800020/212, RH008002/002, and RH008002/012

EQUIPMENT UNDER TEST

Wideband Radio Head

Manuf: Powerwave Technologies, Inc.

Model: RH800020/101

Serial: NA

FCC ID: E675JS0099 (pending)

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Power MeterPre AmpManuf:AgilentManuf:Manuf:

Manuf: Agilent Manuf: Mini Circuit
Model: E4419B Model: ZHL-4240
Serial: GB402019/12 Serial: D040405

Optical Converter ESG

Manuf: Powerwave Manuf: Aeroflex Model: NA Model: IFR 3413 Serial: NA Serial: 341005/078

Page 5 of 28 Report No.: FC08-006A

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

FCC 2.1033(c)(3) USER'S MANUAL

The necessary information is contained in a separate document.

FCC 2.1033 (c)(4) TYPE OF EMISSIONS D7W

FCC 2.1033 (c)(5) FREQUENCY RANGE 940-941 MHz

FCC 2.1033 (c)(6) OPERATING POWER 20 Watts

FCC 2.1033 (c)(7) MAXIMUM POWER RATING See CFR 47

FCC 2.1033 (c)(8) DC VOLTAGES

The necessary information is contained in a separate document.

FCC 2.1033 (c)(9) TUNE-UP PROCEDURE

The necessary information is contained in a separate document.

FCC 2.1033(c)(10) SCHEMATICS AND CIRCUITRY DESCRIPTION

The necessary information is contained in a separate document.

FCC 2.1033(c)(11) LABEL AND PLACEMENT

The necessary information is contained in a separate document.

FCC 2.1033(c)(12) SUBMITTAL PHOTOS

The necessary information is contained in a separate document.

FCC 2.1033 (c)(13) MODULATION INFORMATION iDEN

Page 6 of 28 Report No.: FC08-006A

FCC 2.1033(c)(14)/2.1046/24.132(c) - RF POWER OUTPUT

Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due	
RF Power meter	eter 02778 HP		EPM-441A	GB37170458	012706	012708	
Power Sensor	or 02777 HP		E4412A	MY41499662	012706	012708	

Test Setup Photos

24.132(c) RF Output Power

(c) Base stations transmitting in the 930–931 MHz and 940–941 MHz bands are limited to 3500 watts e.r.p. per authorized channel and are unlimited in antenna height except as provided in paragraph (d) of this section.

The EUT is a RF amplifier. The manufacturer does not provide an antenna for sale with the product, hence EIRP is not measured nor calculated. The end user of this product is to exercise proper engineering judgement to select the appropriate antenna to comply with the EIRP limitation set forth by FCC 24.132(c).

Page 7 of 28 Report No.: FC08-006A

Test Conditions

The EUT is placed on the wooden table. The RF Output port is connected to a load string . Optical in port is connected to a support Optical converter. Support optical converter receives RF signal converts the signal to optic and sends to the EUT. The EUT decode the optical signal, and generates a RF signal. Emission profile evaluated at the RF antenna port. Modulation: iDEN.

Test Data

Part24

Modulation: iDEN Power (dBm) Power (Watt)

940.5 MHz 43 20

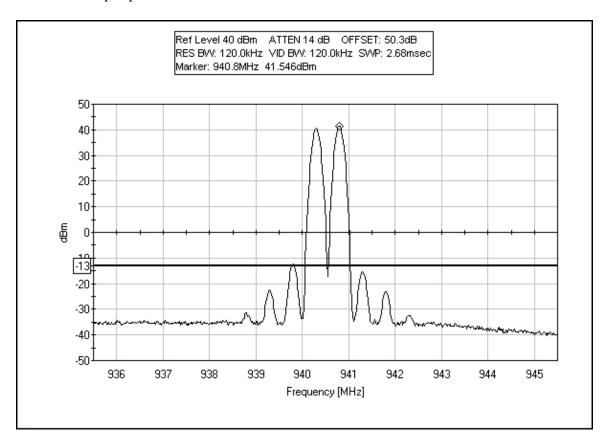
Page 8 of 28 Report No.: FC08-006A

RSS-131 - RF POWER OUTPUT

Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	02672	Agilent	E4446A	US44300438	010307	010309

Test Setup Photos



Page 9 of 28 Report No.: FC08-006A

Test Data

4.3 Mean Output power.

Test Conditions: The EUT is a RF amplifier. The manufacturer does not provide an antenna for sale with the product, hence EIRP is not measured nor calculated. The RF power of the EUT was measured at the antenna port in accordance with RSS 131, 4.3.1 requirement.

Measured Po1 =+ 41.5 dBm

P mean = Po1 + 3 dB = 41.5 + 3 dBm = 44.5 dBm = 28W

Page 10 of 28 Report No.: FC08-006A

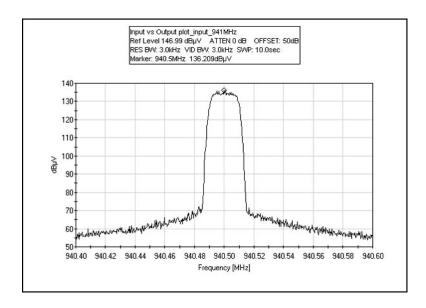
FCC 2.1033(c)(14)/2.1049(i)- INPUT AND OUTPUT PLOTS

Test Equipment

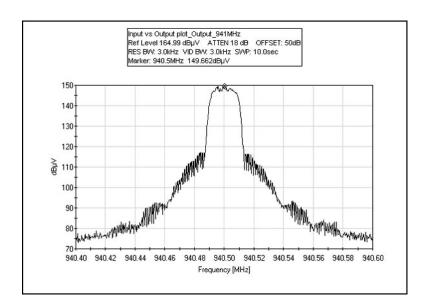
Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	02672	Agilent	E4446A	US44300438	010307	010309

Test Conditions: The EUT is placed on the wooden table. The RF Output port is connected to a load string. Optical in port is connected to a support Optical converter. Support optical converter receives RF signal, converts the signal to optic and sends it to the EUT. The EUT decodes the optical signal, and generates a RF signal. Output Emission profile evaluated at the RF antenna port. Modulation: iDEN.

Test Setup Photos



Page 11 of 28 Report No.: FC08-006A



Test Plots

INPUT PLOT 941MHz

OUTPUT PLOT 941MHz

Page 12 of 28 Report No.: FC08-006A

$\frac{FCC\ 2.1033(c)(14)/2.1051/24.133(a)(2)(ii)\ -\ SPURIOUS\ EMISSIONS\ AT\ ANTENNA}{TERMINAL}$

Test Data

Limit line for Spurious Conducted Emission

Required Attenuation	=	43+10 Log P dB
Limit line (dBuV)	=	V_{dBuv} - Attenuation
$ m V_{dBuV}$	=	$20 \log \frac{V}{1 \times 10^{-6}}$
	=	$20 \left(\text{Log V} - \text{Log 1 x } 10^{-6} \right)$
	=	$20 \log V - 20 \log 1 \times 10^{-6}$
	=	$20 \log V - 20 (-6)$
	=	$20 \operatorname{Log} V + 120$
Attenuation	=	43+10 Log P
	=	$43+10 \operatorname{Log} \frac{\operatorname{V}^2}{\operatorname{R}}$
	=	$43+10\left(\operatorname{Log} V^{2}-\operatorname{Log} R\right)$
	=	$43+10\left(2\operatorname{Log} V-\operatorname{Log} R\right)$
	=	43 + 20 Log V - 10 Log R
T : 11	_	V
Limit line	=	V_{dBuv} - Attenuation 20 Log V + 120 – (43 + 20 Log V – 10Log R)
	=	20 Log V + 120 (43 + 20 Log V + 10Log R) 20 Log V + 120 – 43 – 20 Log V + 10Log R
	=	20 Log V + 120 - 43 - 20 Log V + 10 Log R
	=	$120 - 43 + 10 \text{ Log } 50$ Note: $R = 50 \Omega$
	=	120-43 + 16.897
	=	94 dBuV at any power level

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: **Powerwave Technologies, Inc.**

Specification: 24.133(a)(2)(ii) Conducted Spurious Emission

Work Order #: 87496 Date: 1/21/2008
Test Type: Conducted Emissions Time: 13:23:13
Equipment: Wideband Radio Head Sequence#: 14
Manufacturer: Powerwave Technologies, Inc. Tested By: E. Wong
Model: RH800020/101 110V 60Hz

S/N: NA

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	01/03/2007	01/03/2009	02672
1.0 GHz HPF	1	03/07/2006	03/07/2008	02749
3'-40GHz cable	NA	09/18/2007	09/18/2009	P02945

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wideband Radio Head*	Powerwave Technologies,	RH800020/101	NA
	Inc.		

Support Devices:

Function	Manufacturer	Model #	S/N
Power Meter	Agilent	E4419B	GB402019/12
Pre Amp	Mini Circuit	ZHL-4240	D040405
Optical Converter	Powerwave	NA	NA
ESG	Aeroflex	IFR 3413	341005/078

Test Conditions / Notes:

The EUT is placed on the wooden table. The RF Output port is connected to a load string . Optical in port is connected to a support Optical converter. Support optical converter receives RF signal converts the signal to optic and sends to the EUT. The EUT decode the optical signal, and generates a RF signal. RF profile evaluated at the RF antenna port. Operating range: 940-941MHz. Power = 20 watts. Frequency = 940.5MHz. Modulation: iDEN. 21°C, 20% relative humidity. Frequency range of measurement = 9 kHz - 10 GHz. Frequency 9 kHz - 150 kHz RBW=200 Hz, VBW=200 Hz; 150 kHz - 30 MHz RBW=9 kHz, VBW=9 kHz; 30 MHz - 1000 MHz RBW=120 kHz, VBW=120 kHz; 1000 MHz - 10,000 MHz RBW=1 MHz, VBW=1 MHz.

Transducer Legend:

1. unsuite : Eegenu.		
T1=Hi Freq 40GHz 3ft CAB-ANP02945-091809	T2=Filter 1GHz HP AN02749	

M	leasurement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Antenna	Terminal	
	# Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1 1880.900M	77.0	+0.5	+0.3			+0.0	77.8	94.0	-16.2	Anten
	Ave										
	^ 1880.900M	89.5	+0.5	+0.3			+0.0	90.3	94.0	-3.7	Anten
	3 2821.567M	71.9	+0.6	+0.4			+0.0	72.9	94.0	-21.1	Anten
	Ave										
	^ 2821.567M	88.8	+0.6	+0.4			+0.0	89.8	94.0	-4.2	Anten

Page 14 of 28 Report No.: FC08-006A

$\underline{FCC\ 2.1033(c)(14)/2.1053/24.133(a)(2)} - \underline{FIELD\ STRENGTH\ OF\ SPURIOUS\ RADIATION}$

Test Setup Photos

Page 15 of 28 Report No.: FC08-006A

DC

DC

Test Data

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: **Powerwave Technologies, Inc.**

Specification: 24.133(a)(2)(ii) Radiated Spurious Emission

Work Order #: 87496 Date: 1/18/2008
Test Type: Radiated Scan Time: 11:28:36
Equipment: Wideband Radio Head Sequence#: 4
Manufacturer: Powerwave Technologies, Inc. Tested By: E. Wong

Model: RH800020/101

S/N: NA

Test Equipment:

1 cst Equipment.				
Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	01/03/2007	01/03/2009	02672
Bilog Antenna	431	07/11/2007	07/11/2009	565
Log Antenna	331	07/17/2007	07/17/2009	300
Pre amp to SA Cable	Cable #10	05/16/2007	05/16/2009	P05050
Cable	Cable15	01/05/2007	01/05/2009	P05198
Pre Amp	1937A02548	06/01/2006	06/01/2008	00309
Horn Antenna	6246	06/29/2006	06/29/2008	00849
Microwave Pre-amp	3123A00281	07/19/2006	07/19/2008	00786
2'-40GHz cable	NA	09/18/2007	09/18/2009	P2948
Heliax Antenna Cable	P5565	09/18/2006	09/18/2008	P05565
1.0 GHz HPF	1	03/07/2006	03/07/2008	02749
Loop Antenna	2014	06/14/2006	06/14/2008	00314

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wideband Radio Head*	Powerwave Technologies,	RH800020/101	NA
	Inc.		

Support Devices:

Support Devices.				
Function	Manufacturer	Model #	S/N	
Power Meter	Agilent	E4419B	GB402019/12	
Pre Amp	Mini Circuit	ZHL-4240	D040405	
Optical Converter	Powerwave	NA	NA	
ESG	Aeroflex	IFR 3413	341005/078	

Test Conditions / Notes:

The EUT is placed on the wooden table. The RF Output port is connected to a load string . Optical in port is connected to a support Optical converter. Support optical converter receives RF signal converts the signal to optic and sends to the EUT. The EUT decode the optical signal, and generates a RF signal. Operating range: 940-941MHz. Power = 20 watts. Frequency = 940.5 MHz. Modulation: iDEN. 20°C, 20% relative humidity. Frequency range of measurement = 9 kHz - 10 GHz. Frequency 9 kHz - 150 kHz RBW=200 Hz, VBW=200 Hz; 150 kHz - 30 MHz RBW=9 kHz, VBW=9 kHz; 30 MHz - 1000 MHz RBW=120 kHz, VBW=120 kHz; 1000 MHz - 10,000 MHz RBW=1 MHz, VBW=1 MHz. No emissions detected.

Page 17 of 28 Report No.: FC08-006A

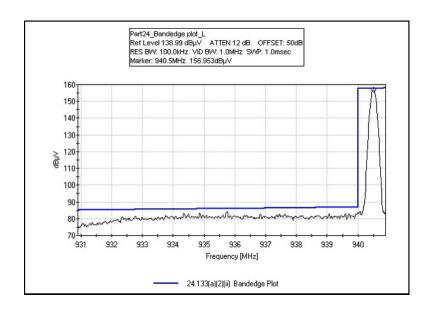
BAND EDGE

Test Equipment

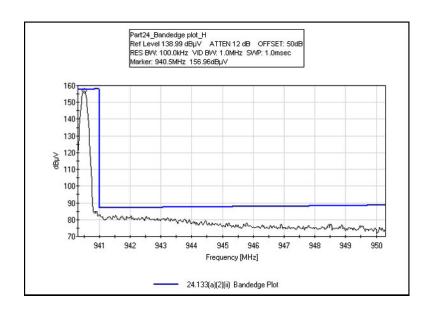
Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	02672	Agilent	E4446A	US44300438	010307	010309

Test Conditions: The EUT is placed on the wooden table. The RF Output port is connected to a load string. Optical in port is connected to a support Optical converter. Support optical converter receives RF signal, converts the signal to optic and sends it to the EUT. The EUT decodes the optical signal, and generates a RF signal. Emission profile evaluated at the RF antenna port. Modulation: iDEN.

Test Setup Photos



Page 18 of 28 Report No.: FC08-006A



Test Plots

BANDEDGE PLOT L

BANDEDGE PLOT H

Page 19 of 28 Report No.: FC08-006A

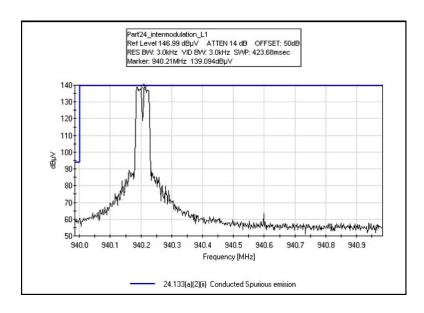
INTERMODULATION

Test Equipment

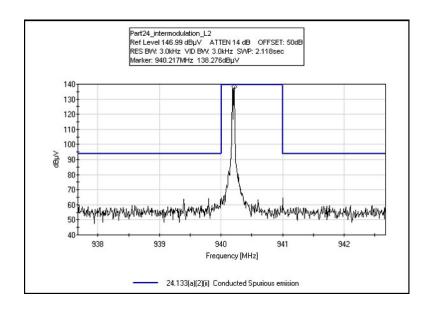
Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	02672	Agilent	E4446A	US44300438	010307	010309

Test Conditions: The EUT is placed on the wooden table. The RF Output port is connected to a load string. Optical in port is connected to a support Optical converter. Support optical converter receives RF signal, converts the signal to optic and sends it to the EUT. The EUT decodes the optical signal, and generates a RF signal. Two RF signals spaced a channel apart were injected to the EUT. Emission profile evaluated at the RF antenna port. Modulation: iDEN.

Test Setup Photos

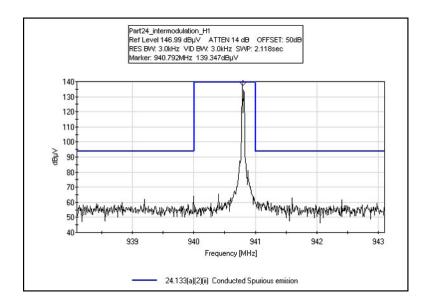


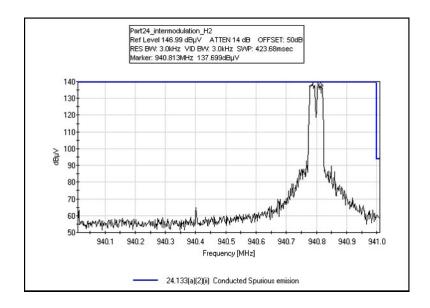
Page 20 of 28 Report No.: FC08-006A



Test Plots

INTERMODULATION L1


INTERMODULATION L2


Page 21 of 28 Report No.: FC08-006A

INTERMODULATION H1

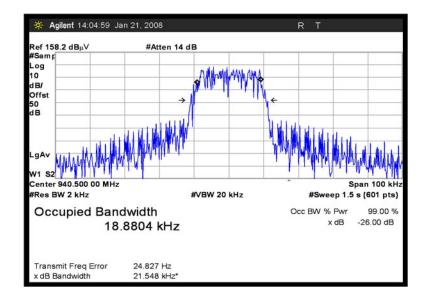
INTERMODULATION H2

99% BANDWIDTH

Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	02672	Agilent	E4446A	US44300438	010307	010309

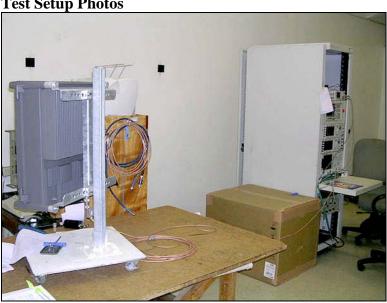
Test Conditions: The EUT is placed on the wooden table. The RF Output port is connected to a load string. Optical in port is connected to a support Optical converter. Support optical converter receives RF signal, converts the signal to optic and sends it to the EUT. The EUT decodes the optical signal, and generates a RF signal. Emission profile evaluated at the RF antenna port. Modulation: iDEN.


Test Setup Photos

Page 23 of 28 Report No.: FC08-006A

Test Plots

Page 24 of 28 Report No.: FC08-006A

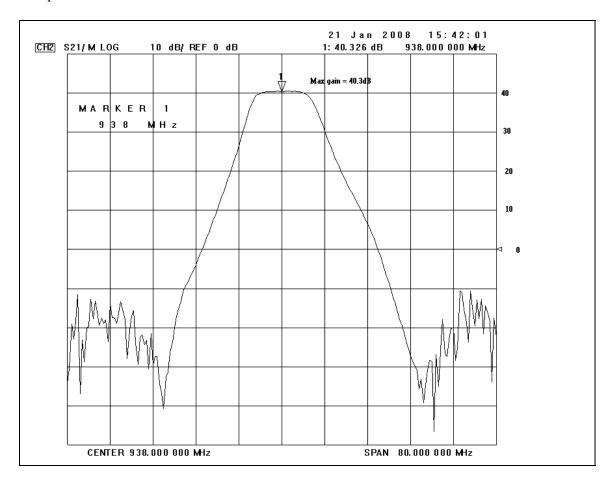


RSS-131 AMPLIFIER GAIN AND BANDWIDTH

Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Network analyzer	C00012	HP	8753E	Us38432770	052006	052008

Test Setup Photos


Page 25 of 28 Report No.: FC08-006A

Test Plots

RSS 131 Amplifier gain and Bandwidth:

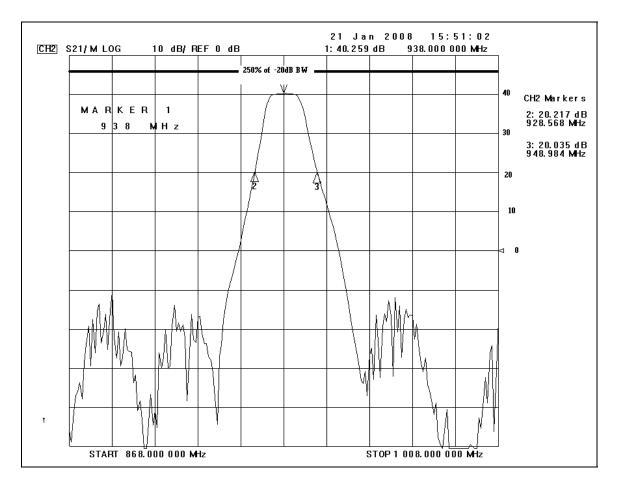
Setup

Measured gain = Output - Reference (dB)

The nominal bandwidth and nominal pass band gain (dB) of the RF enhancer or translator shall be stated by the manufacturer or equipment certification applicant and indicated in the test report.

Manufacturer stated gain = 45-70 dB

The internal control is adjusted to the nominal gain for which equipment certification is sought. Maximum measured gain = 40.3dB


Page 26 of 28 Report No.: FC08-006A

With the aid of a Vector Network analyzer, the 20 dB Bandwidth is measured.

The gain-versus-frequency response of the amplifier from the mid band Fo of the pass band up to at least fo $\pm 200\%$ of the 20dB Bandwidth.

Minimum standard:

The pass band gain response shall not exceed the nominal gain by more than 1 dB. The 20 dB bandwidth shall not exceed the nominal bandwidth that is stated by the manufacturer.

Outside of the 20dB bandwidth the gain shall not exceed that at the 20dB point.