

ADDENDUM TO FC02-057

FOR THE

AMPLIFIER MODULE, G3L-1900-31A (AC) \& G3L-1900-31 (DC)

FCC PART 24 AND PART 15 SUBPART B SECTIONS 15.107 AND 15.109 COMPLIANCE

DATE OF ISSUE: JULY 8, 2002

PREPARED FOR:

Powerwave Technologies, Inc.
1801 E. St. Andrew Place
Santa Ana, CA 92705
P.O. No.: 58080
W.O. No.: 78909

PREPARED BY:

Mary Ellen Clayton
CKC Laboratories, Inc.
5473A Clouds Rest
Mariposa, CA 95338

Date of test: May 17-22, 2002

Report No.: FC02-057A

[^0]TABLE OF CONTENTS
Administrative Information 3
Summary of Results 4
Conditions for Compliance. 4
Approvals 4
Equipment Under Test (EUT) Description 5
Equipment Under Test 5
Peripheral Devices 5
2.1033(c)(3) User's Manual 6
2.1033(c)(4) Type of Emissions 6
2.1033(c)(5) Frequency Range 6
2.1033(c)(6) Operating Power 6
2.1033(c)(7) Maximum Power Rating 6
2.1033(c)(8) DC Voltages 6
2.1033(c)(9) Tune-Up Procedure 6
2.1033(c)(10) Schematics and Circuitry Description 6
2.1033(c)(11) Label and Placement 6
2.1033(c)(12) Submittal Photos 6
2.1033(c)(13) Modulation Information 6
2.1033(c)(14)/2.1046/24.232(a) - RF Power Output 7
2.1033(c)(14)/2.1047(b) - Audio Frequency Response 9
2.1033(c)(14)/2.1047(b) - Modulation Limiting Response 9
2.1033(c)(14)/2.1049(i) - Occupied Bandwidth 9
Input Vs. Output Plot 11
Intermodulation 12
2.1033(c)(14)/2.1051/24.238-Spurious Emissions at Antenna Terminal 17
2.1033(c)(14)/2.1053/24.238- Field Strength of Spurious Radiation 30
2.1033(c)(14)/2.1055 - Frequency Stability 36
15.107 - Conducted Emissions - Digital 36
15.109 - Radiated Emissions - Digital 47

CKC Laboratories, Inc. has received Certificates of Accreditation from the following agencies: A2LA (USA); DATech (Germany); BSMI (Taiwan); Nemko (Norway); and GOST (Russia).
CKC Laboratories, Inc has received test site Registration Acceptance from the following agencies: FCC (USA); VCCI (Japan); and Industry Canada.
CKC Laboratories, Inc. has received Letters of Acceptance through an MRA for the following agencies:
ACA/NATA (Australia); SABS (South Africa); SWEDAC (Sweden); Radio Communications Agency (RA); HOKLAS (Hong Kong); Bakom (Swiss); BIPT (Belgium); Denmark Telestyrelsen; RvA (Netherlands); SEE (Luxembourg) SITTEL (Bolivia); and UKAS (UK).

ADMINISTRATIVE INFORMATION

DATE OF TEST:

DATE OF RECEIPT:

PURPOSE OF TEST:

TEST METHOD:

FREQUENCY RANGE TESTED:

MANUFACTURER:

REPRESENTATIVE:

TEST LOCATION:

May 17-22, 2002

May 17, 2002

To demonstrate the compliance of the Amplifier, G3L-1900-31A (AC) \& G3L-1900-31 (DC) with the requirements for FCC Part 24 and Part 15 Subpart B Sections 15.107 and 15.109 devices. The purpose of Addendum A is to revise the EIRP power to show that three channels were tested.

ANSI C63.4 (1992) and FCC Part 24
$9 \mathrm{kHz}-20 \mathrm{GHz}$

Powerwave Technologies, Inc.
1801 E. St. Andrew Place
Santa Ana, CA 92705

Farokh Etemadieh

CKC Laboratories, Inc.
110 Olinda Place
Brea, CA 92621

SUMMARY OF RESULTS

As received, the Powerwave Technologies, Inc. Amplifier, G3L-1900-31A was found to be fully compliant with the following standards and specifications:

United States

$>$ FCC Part 24 and Part 15 Subpart B Sections 15.107 and 15.109
ANSI C63.4 (1992) method

CONDITIONS FOR COMPLIANCE

No modifications to the EUT were necessary to comply.

APPROVALS

QUALITY ASSURANCE:

Steve Behm, Director of Engineering Services

Joyce Walker, Quality Assurance Administrative Manager

Septimiu Apahidean, EMC/Lab Manager

TEST PERSONNEL:

Eddie Wong, EMC Engineer

EQUIPMENT UNDER TEST (EUT) DESCRIPTION
The 1900 MHz Power Amplifier tested by CKC Laboratories was representative of a production unit. The WPA unit will be used in WCDMA Base Station (BS). Its main functions are to provide linear amplification for single or multi carrier WCDMA signal and communicate with BS and receive control information from BS

EQUIPMENT UNDER TEST

Amplifier Module

Manuf:	Powerwave Technologies, Inc.
Model:	G3L-1900-31A
Serial:	PW021700165 \& PW02170155
FCC ID:	E675J50060 (pending)

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Combiner		Pre Amp	
Manuf:	Anaren	Manuf:	Mini Circuits
Model:	44000	Model:	ZHL-1724HLN-SMA
Serial:	416	Serial:	D0202801-06
FCC ID:	DoC	FCC ID:	DoC
DC Power	Supply	Signal Generator	
Manuf:	Xanrex	Manuf:	Agilent
Model:	XTS30-2X	Model:	E4433B
Serial:	NA	Serial:	
FCC ID:	NA		US39341067
		FCC ID:	DoC
Signal Generator			
Manuf:	Agilent	Manuf:	Agilent
Model:	E4432B	Model:	6674A
Serial:	US40053285	Serial:	US36371542
FCC ID:	DoC	FCC ID:	NA

2.1033(c)(3) USER'S MANUAL

The necessary information is contained in a separate document.

2.1033 (c)(4) TYPE OF EMISSIONS

The necessary information is contained in a separate document.

2.1033(c)(5) FREQUENCY RANGE

The frequency range is $1930-1990 \mathrm{MHz}$.

2.1033(c)(6) OPERATING POWER

The EUT operates at 31 W output nominal.

2.1033(c)(7) MAXIMUM POWER RATING

Per the applicable standard, Base Stations are limited to 1640 Watts.

2.1033(c)(8) DC VOLTAGES

The necessary information is contained in a separate document.

2.1033(c)(9) TUNE-UP PROCEDURE

The necessary information is contained in a separate document.

2.1033(c)(10) SCHEMATICS AND CIRCUITRY DESCRIPTION

The necessary information is contained in a separate document.

2.1033(c)(11) LABEL AND PLACEMENT

The necessary information is contained in a separate document.

2.1033(c)(12) SUBMITTAL PHOTOS

The necessary information is contained in a separate document.

2.1033(c)(13) MODULATION INFORMATION

The necessary information is contained in a separate document.

2.1033(c)(14)/2.1046/24.232(a) - RF POWER OUTPUT

(a) Base Stations are limited to 1640 watts peak equivalent isotropic power.

Rack mount EUT is placed on the test bench. 3 WCDMA signals from 3 different signal generators are combined and fed into the TXin of the EUT. TXout of the EUT is connected to a power meter via a series of an attenuator and a directional coupler. The amplitude of the input signal is adjusted (Approximately 10.3 watts each) such that the output power at the antenna terminal measured with a power meter is 31 watts. The EUT is an amplifier. Antennas will not be a part of the EUT. Since the antenna gain is unknown, only the conducted power at the antenna terminal was measured. The EUT satisfies the above requirement by demonstrating the measured conducted power is below the 1640 Watts EIRP peak power limit. Transmit power at antenna terminal of G3L-1900-31/ G3L-1900-31A was measured with a power meter.

Measured power $=31$ watts for both sets of measurements.
3 channels measured simultaneously with two sets of measurements:
Set 1 1935.76 MHz 1943.40 MHz 1954.24 MHz
Set 2 1965.76 MHz 1973.40 MHz 1984.24 MHz

Test Equipment:

Equipment	Asset \#	Manufacturer	Model \#	Serial \#	Cal Date	Cal Due
Power Meter	NA	Agilent	E4419B	GB40202073	051702	051703
Power Sensor	NA	HP	$8481 A$	US37296672	051702	051703
Directional Coupler	NA	HP	$778 D$	06724	NA	NA

Direct Connect Antenna Test Setup

Direct Connect Antenna Test Setup

Direct Connect Antenna Test Setup

2.1033(c)(14)/2.1047(a) - MODULATION CHARACTERISTICS - AUDIO FREQUENCY RESPONSE

Not applicable to this unit.

2.1033(c)(14)/2.1047(b) MODULATION CHARACTERISTICS - Modulation Limiting Response

Not applicable to this unit.

2.1033(c)(14)/2.1049(i)- OCCUPIED BANDWIDTH

Test Conditions: Antenna port connected to the spectrum analyzer. Since the customer selected 6 frequencies to cover all the blocks, a low, mid and high frequency within block A- F were selected for OBW plots.

Low $=1935.76 \mathrm{MHz}$
Mid $=1954.24 \mathrm{MHz}$
High $=1984.24 \mathrm{MHz}$
OBW is measured at 20 dB points, $\mathrm{RBW}=\mathrm{VBW}=3 \mathrm{kHz}$.
Occupied Bandwidth - 1935 MHz

Occupied Bandwidth - 1954 MHz

Occupied Bandwidth - 1984 MHz

Test Equipment:

Spectrum Analyzer	01865	HP	8566 B	$2532 A 02509$	092801	092802
QP Adapter	01437	HP	85650 A	$3303 A 01884$	092801	092802

Page 10 of 60

Input vs. Output Plot - $1945 \mathbf{~ M H z}$

Test Conditions: Antenna port connected to the spectrum analyzer.

Intermodulation - 1 Tone Block A-F - Low

Test Conditions: Antenna port connected to the spectrum analyzer.

Intermodulation - 1 Tone Block A-F - High

Page 12 of 60

Intermodulation - 2 Tone Block A

Intermodulation-2 Tone Block B

Page 13 of 60

Intermodulation-2 Tone Block C

Test Equipment:

Spectrum Analyzer	01865	HP	8566B	$2532 A 02509$	092801	092802
QP Adapter	01437	HP	85650A	$3303 A 01884$	092801	092802
Spectrum Analyzer	02467	Agilent	E7405A	US40240225	032902	032903

The following photographs represent test setup for all of the previous plots.

Direct Connect Antenna Test Setup

Direct Connect Antenna Test Setup

Direct Connect Antenna Test Setup

$\underline{\text { 2.1033(c)(14)/2.1051/24.238- SPURIOUS EMISSIONS AT ANTENNA TERMINAL }}$

"On any frequency outside a licensee's frequency block the power of any emission shall be attenuated below the transmitter power (p) by at least $43+10 \log (\mathrm{P}) \mathrm{dB}$ "

Limit line for Spurious Emission

Required Attenuation $=\mathbf{4 3 + 1 0} \log P$

Limit line $(\mathrm{dBuV}) \quad=\quad \mathrm{V}_{\mathrm{dBuv}}$ - Attenuation

$$
\begin{array}{rlr}
\mathrm{V}_{\mathrm{dBuV}} & =\quad 20 \log \frac{\mathrm{~V}}{1 \times 10^{-6}} \\
& =20\left(\log \mathrm{~V}-\log 1 \times 10^{-6}\right) \\
& = & 20 \log \mathrm{~V}-20 \log 1 \times 10^{-6} \\
& = & 20 \log \mathrm{~V}-20(-6) \\
& =\quad 20 \log \mathrm{~V}+120
\end{array}
$$

$$
\begin{aligned}
\text { Attenuation } & =43+10 \log \mathrm{P} \\
& =43+10 \log \frac{\mathrm{~V}^{2}}{\mathrm{R}} \\
& =43+10\left(\log \mathrm{~V}^{2}-\log \mathrm{R}\right) \\
& =43+10(2 \log \mathrm{~V}-\log \mathrm{R}) \\
& =43+20 \log \mathrm{~V}-10 \log \mathrm{R}
\end{aligned}
$$

Limit line $\quad=\quad \mathrm{V}_{\mathrm{dBuv}}$ - Attenuation

$$
=\quad 20 \log \mathrm{~V}+120-(43+20 \log \mathrm{~V}-10 \log \mathrm{R})
$$

$$
=\quad 20 \log \mathrm{~V}+120-43-20 \log \mathrm{~V}+10 \log \mathrm{R}
$$

$$
=20 \log \mathrm{~V}+120-43-20 \log \mathrm{~V}+10 \log \mathrm{R}
$$

$$
=\quad 120-43+10 \log 50 \quad \text { Note }: R=50 \Omega
$$

$$
=\quad 120-43+16.897
$$

$$
=\quad 94 \mathrm{dBuV} \quad \text { at any power level }
$$

Test Location: CKC Laboratories, Inc. •110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112

Customer:	Powerwave Technologies		
Specification:	FCC 24.238 Spur Ant term		Date:
Work Order \#:	78909	Time:	$20: 41: 57$
Test Type:	Conducted Emissions	Sequence\#:	2
Equipment:	Amplifier	Tested By:	Eddie Wong
Manufacturer:	Powerwave Technologies		230 V 60 Hz
Model:	G3L-1900-31A		
S/N:	PW021700165		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Amplifier*	Powerwave Technologies	G3L-1900-31A	PW021700165

Support Devices:

Function	Manufacturer	Model \#	S/N
Combiner	Anaren	44000	416
Pre Amp	Mini Circuits	ZHL-1724HLN-SMA	D0202801-06
DC power Supply	Xanrex	XTS30-2X	NA
Signal Generator	Agilent	E4433B	US40051593
Signal Generator	Agilent	E4433B	US39341067
Signal Generator	Agilent	E4432B	US40053285

Test Conditions / Notes:

Rack mount EUT is placed on the test bench. 3 WCDMA signal from 3 different signal generator are combined and fed into the TX in of the EUT. TX out of the EUT is connected to a power meter via a series of attenuator and a directional coupler. The amplitude of the input signal is adjusted (Approximately 10.3 watts each) such that the measured output power of the EUT is 31 watts. Range of measurement: $9 \mathrm{kHz}-20 \mathrm{GHz}$. Measurement BW: RBW=VBW=1 MHz. Channel High: $1965.76 \mathrm{MHz}, 1973.40 \mathrm{MHz}, 1984.24 \mathrm{MHz} .230 \mathrm{Vac}, 60 \mathrm{~Hz}, 20^{\circ} \mathrm{C}, 54 \%$ relative humidity.

Transducer Legend:

Measurement Data: \quad Reading listed by margin.
Test Lead: Antenna Port
$\left.\begin{array}{|ccccccccccc|}\hline \# & \begin{array}{c}\text { Freq } \\ \mathrm{MHz}\end{array} & \begin{array}{c}\text { Rdng } \\ \mathrm{dB} \mu \mathrm{V}\end{array} & \mathrm{dB} & \mathrm{dB} & \mathrm{dB} & \mathrm{dB} & \begin{array}{c}\text { Dist } \\ \text { Table }\end{array} & \begin{array}{c}\text { Corr } \\ \mathrm{dB} \mu \mathrm{V}\end{array} & \begin{array}{c}\text { Spec } \\ \mathrm{dB} \mu \mathrm{V}\end{array} & \begin{array}{c}\text { Margin } \\ \mathrm{dB}\end{array} \\ \hline 1 & 164.500 \mathrm{M} & 90.0 & & & +0.0 & 90.0 & 94.0 & -4.0 & \text { Anten } \\ \hline 2 & 158.700 \mathrm{M} & 88.9 & & & & & & & & \\ \text { Ant }\end{array}\right]$

8 3968.900M	82.3	+0.0	82.3	94.0	-11.7	Anten
9 3951.000M	81.6	+0.0	81.6	94.0	-12.4	Anten
$\begin{aligned} & 10 \quad 1146.900 \mathrm{M} \\ & \text { Ave } \end{aligned}$	80.3	+0.0	80.3	94.0	-13.7	Anten
^ 1146.900M	105.5	+0.0	105.5	94.0	+11.5	Anten
$\begin{aligned} & 121160.100 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	77.2	+0.0	77.2	94.0	-16.8	Anten
^ 1160.100M	101.4	+0.0	101.4	94.0	+7.4	Anten
$\begin{aligned} & 14169.000 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	77.0	+0.0	77.0	94.0	-17.0	Anten
^ 169.000M	91.4	+0.0	91.4	94.0	-2.6	Anten
$\begin{aligned} & \hline 16 \begin{array}{l} 174.000 \mathrm{M} \\ \text { Ave } \end{array} \\ & \hline \end{aligned}$	74.4	+0.0	74.4	94.0	-19.6	Anten
^ 174.000M	93.6	+0.0	93.6	94.0	-0.4	Anten
$\begin{aligned} & \hline 18 \quad 1165.800 \mathrm{M} \\ & \text { Ave } \end{aligned}$	73.8	$+0.0$	73.8	94.0	-20.2	Anten
^ 1165.800M	105.2	+0.0	105.2	94.0	+11.2	Anten

Test Location: CKC Laboratories, Inc. •110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112

Customer:	Powerwave Technologies		
Specification:	FCC 24.238 Spur Ant term		Date:
Work Order \#:	78909	Time:	23:29:00
Test Type:	Conducted Emissions	Sequence\#:	3
Equipment:	Amplifier	Tested By:	Eddie Wong
Manufacturer:	Powerwave Technologies		48Vdc
Model:	G3L-1900-31A		
S/N:	PW021700165		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Amplifier*	Powerwave Technologies	G3L-1900-31A	PW021700165

Support Devices:

Function	Manufacturer	Model \#	S/N
Combiner	Anaren	44000	416
Pre Amp	Mini Circuits	ZHL-1724HLN-SMA	D0202801-06
DC power Supply	Xanrex	XTS30-2X	NA
Signal Generator	Agilent	E4433B	US40051593
Signal Generator	Agilent	E4433B	US39341067
Signal Generator	Agilent	E4432B	US40053285

Test Conditions / Notes:

Rack mount EUT is placed on the test bench. 3 WCDMA signal from 3 different signal generator are combined and fed into the TX in of the EUT. TX out of the EUT is connected to a power meter via a series of attenuator and a directional coupler. The amplitude of the input signal is adjusted (Approximately 10.3 watts each) such that the measured output power of the EUT is 31 watts. Range of measurement: $9 \mathrm{kHz}-20 \mathrm{GHz}$. Measurement BW : RBW=VBW=1 MHz. Channel High: $1965.76 \mathrm{MHz}, 1973.40 \mathrm{MHz}, 1984.24 \mathrm{MHz} .48 \mathrm{Vdc}(230 \mathrm{Vac}), 60 \mathrm{~Hz}, 20^{\circ} \mathrm{C}$, 54% relative humidity.

Transducer Legend:

Measurement Data: \quad Reading listed by margin. Test Lead: Antenna Port

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	Margin dB	Polar Ant
1	164.038 M	89.1					+0.0	89.1	94.0	-4.9	Anten
2	873.000M	88.6					+0.0	88.6	94.0	-5.4	Anten
3	3957.000M	87.4					+0.0	87.4	94.0	-6.6	Anten
4	2150.500 M	84.2					+0.0	84.2	94.0	-9.8	Anten
5	29.980 M	76.5					+0.0	76.5	94.0	-17.5	Anten
	$\begin{aligned} & 1145.038 \mathrm{M} \\ & \text { Ave } \end{aligned}$	75.5					+0.0	75.5	94.0	-18.5	Anten
\wedge	1145.038M	105.3					+0.0	105.3	94.0	+11.3	Anten

Test Location: CKC Laboratories, Inc. •110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112

Customer:	Powerwave Technologies		
Specification:	FCC 24.238 Spur Ant term		Date:
Work Order \#:	78909	Time:	$23: 47: 28$
Test Type:	Conducted Emissions	Sequence\#:	1
Equipment:	Amplifier	Tested By:	Eddie Wong
Manufacturer:	Powerwave Technologies		230 V 60 Hz
Model:	G3L-1900-31A		
S/N:	PW021700165		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Amplifier*	Powerwave Technologies	G3L-1900-31A	PW021700165

Support Devices:

Function	Manufacturer	Model \#	S/N
Combiner	Anaren	44000	416
Pre Amp	Mini Circuits	ZHL-1724HLN-SMA	D0202801-06
DC power Supply	Xanrex	XTS30-2X	NA
Signal Generator	Agilent	E4433B	US40051593
Signal Generator	Agilent	E4433B	US39341067
Signal Generator	Agilent	E4432B	US40053285

Test Conditions / Notes:

Rack mount EUT is placed on the test bench. 3 WCDMA signal from 3 different signal generator are combined and fed into the TX in of the EUT. TX out of the EUT is connected to a power meter via a series of attenuator and a directional coupler. The amplitude of the input signal is adjusted (Approximately 10.3 watts each) such that the measured output power of the EUT is 31 watts. Range of measurement: $9 \mathrm{kHz}-20 \mathrm{GHz}$. Measurement BW: RBW=VBW=1 MHz. Channel Low: $1935.76 \mathrm{MHz}, 1943.40 \mathrm{MHz}, 1954.24 \mathrm{MHz}$. $230 \mathrm{Vac}, 60 \mathrm{~Hz}, 20^{\circ} \mathrm{C}, 54 \%$ relative humidity.

Transducer Legend:

Measurement Data: \quad Reading listed by margin.
Test Lead: Antenna Port

$\begin{aligned} & 81111.434 \mathrm{M} \\ & \text { Ave } \end{aligned}$	78.9	+0.0	78.9	94.0	-15.1	Anten
$\wedge 1111.434 \mathrm{M}$	111.0	+0.0	111.0	94.0	+17.0	Anten
$\begin{aligned} & 10 \quad 134.200 \mathrm{M} \\ & \text { Ave } \end{aligned}$	78.3	+0.0	78.3	94.0	-15.7	Anten
$\wedge 134.200 \mathrm{M}$	91.6	+0.0	91.6	94.0	-2.4	Anten
$\begin{aligned} & 121106.348 \mathrm{M} \\ & \text { Ave } \end{aligned}$	78.0	+0.0	78.0	94.0	-16.0	Anten
$\wedge 1106.348 \mathrm{M}$	94.1	+0.0	94.1	94.0	+0.1	Anten
$\begin{aligned} & 14 \begin{array}{l} 138.120 \mathrm{M} \\ \text { Ave } \end{array} \end{aligned}$	77.4	+0.0	77.4	94.0	-16.6	Anten
$\wedge 138.180 \mathrm{M}$	90.9	+0.0	90.9	94.0	-3.1	Anten
$16 \quad 828.850 \mathrm{M}$	77.2	+0.0	77.2	94.0	-16.8	Anten
$\begin{aligned} & 17 \begin{array}{l} 143.640 \mathrm{M} \\ \text { Ave } \end{array} \end{aligned}$	76.6	+0.0	76.6	94.0	-17.4	Anten
$\wedge 143.620 \mathrm{M}$	94.5	+0.0	94.5	94.0	+0.5	Anten

Test Location: CKC Laboratories, Inc. •110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112

Customer:	Powerwave Technologies		
Specification:	FCC 24.238 Spur Ant term		Date: 05/20/2002
Work Order \#:	78909	Time: 23:16:58	
Test Type:	Conducted Emissions	Sequence\#:	2
Equipment:	Amplifier	Tested By:	Eddie Wong
Manufacturer:	Powerwave Technologies		48Vdc
Model:	G3L-1900-31A		
S/N:	PW021700165		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Amplifier*	Powerwave Technologies	G3L-1900-31A	PW021700165

Support Devices:

Function	Manufacturer	Model \#	S/N
Combiner	Anaren	44000	416
Pre Amp	Mini Circuits	ZHL-1724HLN-SMA	D0202801-06
DC power Supply	Xanrex	XTS30-2X	NA
Signal Generator	Agilent	E4433B	US40051593
Signal Generator	Agilent	E4433B	US39341067
Signal Generator	Agilent	E4432B	US40053285

Test Conditions / Notes:

Rack mount EUT is placed on the test bench. 3 WCDMA signal from 3 different signal generator are combined and fed into the TX in of the EUT. TX out of the EUT is connected to a power meter via a series of attenuator and a directional coupler. The amplitude of the input signal is adjusted (Approximately 10.3 watts each) such that the measured output power of the EUT is 31 watts. Range of measurement: $9 \mathrm{kHz}-20 \mathrm{GHz}$. Measurement BW: RBW=VBW=1 MHz. Channel Low: $1935.76 \mathrm{MHz}, 1943.40 \mathrm{MHz}, 1954.24 \mathrm{MHz} .48 \mathrm{Vdc}(230 \mathrm{Vac}), 60 \mathrm{~Hz}, 20^{\circ} \mathrm{C}$, 54% relative humidity.

Transducer Legend:

Measurement Data: \quad Reading listed by margin.
Test Lead: Antenna Port

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	Margin dB	Polar Ant
1	826.310M	89.0					+0.0	89.0	94.0	-5.0	Anten
2	3896.700 M	88.0					+0.0	88.0	94.0	-6.0	Anten
3	2150.700 M	82.4					+0.0	82.4	94.0	-11.6	Anten
4	$\begin{aligned} & 1103.600 \mathrm{M} \\ & \text { Ave } \end{aligned}$	78.2					+0.0	78.2	94.0	-15.8	Anten
\wedge	1103.600 M	106.5					+0.0	106.5	94.0	+12.5	Anten

Antenna Terminal - 9kHz - 1930MHz - Low

Antenna Terminal - 9kHz - 1930MHz - High

Page 24 of 60
Report No.: FC02-057A

Antenna Terminal -9kHz - 1930MHz - Low - DC

Antenna Terminal - 9kHz-1930MHz - High - DC

Page 25 of 60
Report No.: FC02-057A

Antenna Terminal - 1990MHz-20 GHz - Low

Antenna Terminal - 1990MHz-20 GHz - High

Antenna Terminal - 1990MHz-20 GHz - Low - DC

Antenna Terminal - 1990MHz - 20 GHz - High - DC

Test Equipment:

Spectrum Analyzer	01865	HP	8566 B	2532 A02509	092801	092802
QP Adapter	01437	HP	85650 A	$3303 A 01884$	092801	092802

Direct Connect Antenna Test Setup

Direct Connect Antenna Test Setup

Direct Connect Antenna Test Setup

2.1033(c)(14)/2.1053/24.238- FIELD STRENGTH OF SPURIOUS RADIATION

Operating Frequency: 1935.76 MHz, 1954.24 MHz \& 1984.24 MHz
Channel: Low, middle, high

Limit: $\overline{43+10 \log (P)} \quad 57.91 \mathrm{dBc}$

Freq. (MHz)	Reference Level (dBm)	Antenna Polarity (H/V)	dBc
$1,135.80$	-44.4	Vert	
$2,179.30$	-45.90	Vert	90.81
$1,111.60$	-46.10	Horiz	91.01
38.20	-47.60	Vert	92.51
$3,968.70$	-51.80	Horiz	9.71
$5,865.00$	-52.10	Vert	97.01
$4,324.40$	-54.50	Vert	99.41
$2,343.60$	-54.50	Horiz	99.41
$2,333.70$	-55.20	Horiz	100.11
$3,328.20$	-57.50	Vert	102.41
$2,322.60$	-57.80	Vert	102.71
848.80	-59.60	Vert	104.51
$1,539.20$	-59.60	Horiz	104.51
24.94	-60.30		105.21
$1,413.20$	-60.60	Horiz	105.51
543.80	-65.80	Horiz	110.71

Note: Radiated Spurious Emissions Measured by Substitution Method According to ANSI/TIA/EIA-603-A-2001, August 15, 2001.

Operating Frequency: $1935.76 \mathrm{MHz}, 1954.24 \mathrm{MHz} \& 1984.24 \mathrm{MHz}$
Channel: Low, middle, high
Highest Measured Output Power: \qquad
\qquad 31 ERP(Watts)
Distance: \qquad
Limit: $\overline{43+10 \log (P)} \quad 57.91 \mathrm{dBc}$

Freq. (MHz)	Reference Level (dBm)	Antenna Polarity (H/V)	dBc
$1,135.90$	-45.2	Vert	90.11
$2,034.80$	-46.60	Horiz	91.51
$5,874.90$	-46.70	Horiz	91.61
$1,905.70$	-47.20	Horiz	92.11
$5,903.67$	-49.50	Vert	94.41
$2,179.30$	-50.80	Horiz	95.71
$2,002.80$	-50.80	Horiz	95.71
$2,061.10$	-50.90	Horiz	95.81
$6,858.40$	-51.50	Horiz	96.41
$6,850.87$	-51.50	Vert	96.41
350.50	-54.10	Horiz	99.01
$2,334.20$	-54.70	Horiz	99.61
413.30	-55.30	Horiz	100.21
$3,170.80$	-55.70	Horiz	100.61
$2,709.00$	-55.80	Horiz	100.71
$3,366.20$	-55.90	Horiz	100.81
$2,344.20$	-56.50	Horiz	101.41
411.50	-57.10	Vert	102.01
530.50	-57.80	Vert	102.71
$2,322.60$	-57.80	Horiz	102.71
243.00	-59.30	Vert	104.21
112.40	-60.50	Horiz	105.41
19.32	-60.60	Horiz	105.51
$2,344.65$	-64.10	Vert	109.01

Note: Radiated Spurious Emissions Measured by Substitution Method According to ANSI/TIA/EIA-603-A-2001, August 15, 2001.

Test Equipment:

Spectrum Analyzer	01865	HP	8566B	2532A02509	092801	092802
QP Adapter	01437	HP	85650A	3303A01884	092801	092802
$\mathbf{9 K H z - 3 0 M H z}$						
Loop Antenna	00314	EMCO	6502	2014	73101	73102
Antenna cable	NA	NA	RG214	Cable\#15	122001	122002
30-1000MHz						
Bicon Antenna	306	AH	SAS200/540	220	092401	092402
Log Periodic Antenna	331	AH	SAS 00/516	330	092401	092402
Pre-amp	00309	HP	8447D	1937A02548	090501	090502
Antenna cable	NA	NA	RG214	Cable\#15	122001	122002
Pre-amp to SA cable	NA	Harbour	RG223/U	Cable\#10	071601	071602
1-18GHz						
Horn Antenna	0849	EMCO	3115	6246	091201	091202
Microwave Pre-amp	00786	HP	83017A	3123A00281	091201	091202
1/4" Heliax Coaxial Cable	NA	Andrew	LDF1-50	Cable\#18 (70 ft)	091101	091102
High Pass Filter	02117	HP	$\begin{aligned} & 84300- \\ & 80038 \\ & \hline \end{aligned}$	3643A000027	060801	060802
18-20 GHz						
Horn Antenna	2112	HP	$\begin{aligned} & \hline 84125- \\ & 80008 \\ & \hline \end{aligned}$	961178-006	070901	070902
Microwave Pre-amp	00786	HP	83017A	3123A00281	091201	091202

OATS Test Setup - Front View - AC

OATS Test Setup - Back View - AC

OATS Test Setup - Back View - AC 18-20GHz

OATS Test Setup - Front View - DC

OATS Test Setup - Back View - DC

OATS Test Setup - Back View - DC 18-20 GHz

$\underline{2.1033(c)(14) / 2.1055-F R E Q U E N C Y ~ S T A B I L I T Y}$

Not applicable to this unit. Responsibility falls on the input transmitter.

15.107 - CONDUCTED EMISSIONS - DIGITAL

Test Location: CKC Laboratories, Inc. •110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112

Customer: Powerwave Technologies
Specification: \quad FCC 15.107 Class B
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
S/N:

78909
Conducted Emissions
Amplifier
Powerwave Technologies
G3L-1900-31A
PW021700165

Date:	$05 / 22 / 2002$
Time:	$4: 06: 57 \mathrm{AM}$
Sequence\#:	6
Tested By:	Eddie Wong
	230 V 60 Hz

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Amplifier*	Powerwave Technologies	G3L-1900-31A	PW021700165

Support Devices:

Function	Manufacturer	Model \#	S/N
Combiner	Anaren	44000	416
Pre Amp	Mini Circuits	ZHL-1724HLN-SMA	D0202801-06
DC power Supply	Xanrex	XTS30-2X	NA
Signal Generator	Agilent	E4433B	US40051593
Signal Generator	Agilent	E4433B	US39341067
Signal Generator	Agilent	E4432B	US40053285

Test Conditions / Notes:

Rack mount EUT is placed on the test bench. 3 WCDMA signal from 3 different signal generator are combined and fed into the TX in of the EUT. TX out of the EUT is connected to a power meter via a series of attenuator and a directional coupler. The amplitude of the input signal is adjusted (Approximately 10.3 watts each) such that the measured output power of the EUT is 31 watts. Range of measurement: $450 \mathrm{kHz}-30 \mathrm{MHz}$ Measurement BW $:$ RBW=VBW=9KHz Channels 1935.76 MHz 1954.24 MHz 1984.24 MHz . $230 \mathrm{Vac}, 60 \mathrm{~Hz}, 20^{\circ} \mathrm{C}, 54 \%$ relative humidity.

Transducer Legend:

Measu	ment Data	Reading listed by margin.					Test Lead: Black				
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \\ \hline \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
1	561.294 k	34.7					+0.0	34.7	48.0	-13.3	Black
2	697.320k	32.3					+0.0	32.3	48.0	-15.7	Black

3	654.726 k	32.2	+0.0	32.2	48.0	-15.8	Black
4	12.903 M	32.0	+0.0	32.0	48.0	-16.0	Black
5	12.353 M	31.9	+0.0	31.9	48.0	-16.1	Black
6	13.038 M	31.8	+0.0	31.8	48.0	-16.2	Black
7	13.173 M	31.6	+0.0	31.6	48.0	-16.4	Black
8	13.317 M	31.4	+0.0	31.4	48.0	-16.6	Black
9	12.623 M	31.2	+0.0	31.2	48.0	-16.8	Black
10	12.758 M	31.2	+0.0	31.2	48.0	-16.8	Black
11	12.209 M	31.1	+0.0	31.1	48.0	-16.9	Black
12	12.074 M	30.7	+0.0	30.6	48.0	-17.4	Black
13	13.452 M	30.6	+0.0	30.2	48.0	-17.8	Black
14	9.470 M	30.2	+0.0	30.1	48.0	-17.9	Black
15	$13.587 M$	30.1					

CKC Laboratories, Inc. Date: 05/22/2002 Time: 4:06:57 AM Powerwave Technologies WO\#: 78909 FCC 15.107 Class B Test Lead: Black 230V60Hz Sequence\#: 6

Test Location: CKC Laboratories, Inc. •110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112

Customer:	Powerwave Technologies		
Specification:	FCC 15.107 Class B		Date: $05 / 22 / 2002$
Work Order \#:	78909	Time:	$4: 10: 05 \mathrm{AM}$
Test Type:	Conducted Emissions	Sequence\#:	7
Equipment:	Amplifier	Tested By:	Eddie Wong
Manufacturer:	Powerwave Technologies		$230 \mathrm{~V} \mathrm{60Hz}$
Model:	G3L-1900-31A		
S/N:	PW021700165		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Amplifier*	Powerwave Technologies	G3L-1900-31A	PW021700165

Support Devices:

Function	Manufacturer	Model \#	S/N
Combiner	Anaren	44000	416
Pre Amp	Mini Circuits	ZHL-1724HLN-SMA	D0202801-06
DC power Supply	Xanrex	XTS30-2X	NA
Signal Generator	Agilent	E4433B	US40051593
Signal Generator	Agilent	E4433B	US39341067
Signal Generator	Agilent	E4432B	US40053285

Test Conditions / Notes:

Rack mount EUT is placed on the test bench. 3 WCDMA signal from 3 different signal generator are combined and fed into the TX in of the EUT. TX out of the EUT is connected to a power meter via a series of attenuator and a directional coupler. The amplitude of the input signal is adjusted (Approximately 10.3 watts each) such that the measured output power of the EUT is 31 watts. Range of measurement: $450 \mathrm{kHz}-30 \mathrm{MHz}$. Measurement BW: RBW=VBW=9kHz. Channels $1935.76 \mathrm{MHz}, 1954.24 \mathrm{MHz}, 1984.24 \mathrm{MHz} .230 \mathrm{Vac}, 60 \mathrm{~Hz}, 20^{\circ} \mathrm{C}, 54 \%$ relative humidity.

Transducer Legend:

Measu	ment Data	Reading listed by margin.					Test Lead: White				
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \end{gathered}$	Polar Ant
1	564.042 k	36.3					+0.0	36.3	48.0	-11.7	White
2	698.694k	33.7					+0.0	33.7	48.0	-14.3	White
3	22.614 M	33.0					+0.0	33.0	48.0	-15.0	White
4	973.494k	32.8					+0.0	32.8	48.0	-15.2	White
5	12.344 M	32.2					+0.0	32.2	48.0	-15.8	White
6	13.038 M	31.8					+0.0	31.8	48.0	-16.2	White
7	837.468k	31.7					+0.0	31.7	48.0	-16.3	White

8	12.758 M	31.7	+0.0	31.7	48.0	-16.3	White
9	12.209 M	31.6	+0.0	31.6	48.0	-16.4	White
10	13.173 M	31.4	+0.0	31.4	48.0	-16.6	White
11	23.029 M	31.3	+0.0	31.3	48.0	-16.7	White
12	12.488 M	31.2	+0.0	31.2	48.0	-16.8	White
13	12.903 M	31.2	+0.0	31.2	48.0	-16.8	White
14	22.335 M	31.2	+0.0	31.2	48.0	-16.8	White
15	452.000 k	24.2	+0.0	24.2	48.0	-23.8	White

CKC Laboratories, Inc. Date: 05/22/2002 Time: 4:10:05 AM Powerwave Technologies WO\#: 78909 FCC 15.107 Class 日 Test Lead: White 230V 60Hz Sequence\#t: 7

Test Location: CKC Laboratories, Inc. •110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112

Customer:	Powerwave Technologies		
Specification:	FCC 15.107 Class B		Date:
Work Order \#:	78909	Time:	6:25:57 AM
Test Type:	Conducted Emissions	Sequence\#:	7
Equipment:	Amplifier	Tested By:	Eddie Wong
Manufacturer:	Powerwave Technologies		DC 48V
Model:	G3L-1900-31		
S/N:	PW021700155		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Amplifier*	Powerwave Technologies	G3L-1900-31	PW021700155

Support Devices:

Function	Manufacturer	Model \#	S/N
Combiner	Anaren	44000	416
Pre Amp	Mini Circuits	ZHL-1724HLN-SMA	D0202801-06
DC power Supply	Xanrex	XTS30-2X	NA
Signal Generator	Agilent	E4433B	US40051593
Signal Generator	Agilent	E4433B	US39341067
Signal Generator	Agilent	E4432B	US40053285
DC Power Supply	Agilent	6674A	US36371542

Test Conditions / Notes:

Rack mount EUT is placed on the test bench. 3 WCDMA signal from 3 different signal generator are combined and fed into the TX in of the EUT. TX out of the EUT is connected to a power meter via a series of attenuator and a directional coupler. The amplitude of the input signal is adjusted (Approximately 10.3 watts each) such that the measured output power of the EUT is 31 watts. Range of measurement: $450 \mathrm{kHz}-30 \mathrm{MHz}$. Measurement BW $:$ RBW $=\mathrm{VBW}=9 \mathrm{KHz}$ Channels $1935.76 \mathrm{MHz}, 1954.24 \mathrm{MHz}, 1984.24 \mathrm{MHz}$. Measurement taken at the AC main of the 48 Vdc Power Supply. $48 \mathrm{Vdc}(230 \mathrm{Vac}, 60 \mathrm{~Hz}), 20^{\circ} \mathrm{C}, 54 \%$ relative humidity.

Transducer Legend:

Measu	ment Data	Reading listed by margin.					Test Lead: Black				
\#	Freq MHz	$\begin{aligned} & \hline \text { Rdng } \\ & \mathrm{dB} \mu \mathrm{~V} \end{aligned}$	dB	dB	dB	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
1	656.100k	33.6					+0.0	33.6	48.0	-14.4	Black
2	513.204 k	33.5					+0.0	33.5	48.0	-14.5	Black
3	471.984k	32.6					+0.0	32.6	48.0	-15.4	Black
4	555.798 k	32.2					+0.0	32.2	48.0	-15.8	Black
5	847.086k	31.5					+0.0	31.5	48.0	-16.5	Black
6	452.748k	31.1					+0.0	31.1	48.0	-16.9	Black
7	720.678k	30.8					+0.0	30.8	48.0	-17.2	Black

8	804.492 k	29.8	+0.0	29.8	48.0	-18.2	Black
9	599.766 k	29.3	+0.0	29.3	48.0	-18.7	Black
10	532.440 k	29.0	+0.0	29.0	48.0	-19.0	Black
11	9.578 M	28.6	+0.0	28.6	48.0	-19.4	Black
12	1.015 M	28.3	+0.0	28.3	48.0	-19.7	Black
13	933.648 k	28.2	+0.0	28.2	48.0	-19.8	Black
14	701.442 k	28.0	+0.0	28.0	48.0	-20.0	Black
15	888.306 k	28.0	+0.0	28.0	48.0	-20.0	Black

CKC Laboratories, Inc. Date: 05/22/2002 Time: 6:25:57 AM Powerwave Technologies VNO: 78909 FCC 15.107 Class B Test Lead: Black DC 48V Sequence\#: 7

—— Sweep Data ——— 1-FCC 15.107 Class B

Page 42 of 60

Test Location: CKC Laboratories, Inc. •110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112

Customer:	Powerwave Technologies		
Specification:	FCC 15.107 Class B		Date:
Work Order \#:	78909	Time:	6:33:46 AM
Test Type:	Conducted Emissions	Sequence\#:	8
Equipment:	Amplifier	Tested By:	Eddie Wong
Manufacturer:	Powerwave Technologies		DC 48V
Model:	G3L-1900-31		
S/N:	PW021700155		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Amplifier*	Powerwave Technologies	G3L-1900-31	PW021700155

Support Devices:

Function	Manufacturer	Model \#	S/N
Combiner	Anaren	44000	416
Pre Amp	Mini Circuits	ZHL-1724HLN-SMA	D0202801-06
DC power Supply	Xanrex	XTS30-2X	NA
Signal Generator	Agilent	E4433B	US40051593
Signal Generator	Agilent	E4433B	US39341067
Signal Generator	Agilent	E4432B	US40053285
DC Power Supply	Agilent	6674A	US36371542

Test Conditions / Notes:

Rack mount EUT is placed on the test bench. 3 WCDMA signal from 3 different signal generator are combined and fed into the TX in of the EUT. TX out of the EUT is connected to a power meter via a series of attenuator and a directional coupler. The amplitude of the input signal is adjusted (Approximately 10.3 watts each) such that the measured output power of the EUT is 31 watts. Range of measurement: $450 \mathrm{kHz}-30 \mathrm{MHz}$. Measurement BW $:$ RBW $=\mathrm{VBW}=9 \mathrm{KHz}$ Channels $1935.76 \mathrm{MHz}, 1954.24 \mathrm{MHz}, 1984.24 \mathrm{MHz}$. Measurement taken at the AC main of the 48 Vdc Power Supply. $48 \mathrm{Vdc}(230 \mathrm{Vac}, 60 \mathrm{~Hz}), 20^{\circ} \mathrm{C}, 54 \%$ relative humidity.

Transducer Legend:

Measu	ement Data:	Reading listed by margin.					Test Lead: White				
\#	Freq MHz	$\begin{aligned} & \hline \text { Rdng } \\ & \mathrm{dB} \mu \mathrm{~V} \end{aligned}$	dB	dB	dB	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \end{gathered}$	Polar Ant
1	513.204k	33.8					+0.0	33.8	48.0	-14.2	White
2	477.480k	33.5					+0.0	33.5	48.0	-14.5	White
3	559.920k	32.4					+0.0	32.4	48.0	-15.6	White
4	452.000k	32.3					+0.0	32.3	48.0	-15.7	White
5	640.986k	31.9					+0.0	31.9	48.0	-16.1	White
6	656.100k	31.8					+0.0	31.8	48.0	-16.2	White
7	722.052k	31.3					+0.0	31.3	48.0	-16.7	White

8	533.814 k	30.6	+0.0	30.6	48.0	-17.4	White
9	847.086 k	30.3	+0.0	30.3	48.0	-17.7	White
10	804.492 k	30.0	+0.0	30.0	48.0	-18.0	White
11	595.644 k	29.5	+0.0	29.5	48.0	-18.5	White
12	932.274 k	28.5	+0.0	28.5	48.0	-19.5	White
13	621.750 k	28.4	+0.0	28.4	48.0	-19.6	White
14	1.015 M	28.4	+0.0	28.4	48.0	-19.6	White
15	26.292 M	28.3	+0.0	28.3	48.0	-19.7	White

CKC Laboratories, Inc. Date: 05/22/2002 Time: 6:33:46 AM Powerwave Technologies VO\#: 78909 FCC 15.107 Class B Test Lead: White DC 48 V Sequencet: 8

—— Sweep Data ——— 1 FCC 15.107 Class B

Page 44 of 60

Test Equipment:

Equipment	Asset \#	Manufacturer	Model \#	Serial \#	Cal Date	Cal Due
Spectrum Analyzer	01865	HP	8566 B	2532 A 02509	092801	092802
QP Adapter	01437	HP	85650A	3303 A 01884	092801	092802
LISN	02128	EMCO	$3816 / 2 \mathrm{NM}$	$9809-1090$	032002	032003
LISN	00847	EMCO	$3816 / 2 \mathrm{NM}$	1104	101501	101502
LISN	0278	Solar	$8028-50-T S-$ $24 _B N C$	B2	100201	100202

Mains Conducted Emissions - Front View - AC

Mains Conducted Emissions - Side View - AC

Mains Conducted Emissions - Front View - DC

15.109 - RADIATED EMISSIONS - DIGITAL

Test Location: CKC Laboratories, Inc. •110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112
Customer:
Specification:
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:

Powerwave Technologies
FCC 15.109 Class B
78909
Maximized Emission
Amplifier
Powerwave Technologies
G3L-1900-31A
Date: 05/20/2002
Time: 04:13:14
Sequence\#: 3
Tested By: Eddie Wong
S/N: PW021700165

Support Devices:

Function	Manufacturer	Model \#	S/N
Combiner	Anaren	44000	416
Pre Amp	Mini Circuits	ZHL-1724HLN-SMA	D0202801-06
DC power Supply	Xanrex	XTS30-2X	NA
Signal Generator	Agilent	E4433B	US40051593
Signal Generator	Agilent	E4433B	US39341067
Signal Generator	Agilent	E4432B	US40053285

Test Conditions / Notes:

Rack mount EUT is placed on the test bench. 3 WCDMA signal from 3 different signal generator are combined and fed into the TX in of the EUT. TX out of the EUT is connected to a power meter via a series of attenuators and a directional coupler. The amplitude of the input signal is adjusted (Approximately 10.3 watts each) such that the measured output power of the EUT is 31 watts. Range of measurement: $30 \mathrm{MHz}-20 \mathrm{GHz}$. Measurement BW $30 \mathrm{MHz}-1000 \mathrm{MHz}$: RBW=VBW=120 kHz. $1 \mathrm{GHz}-20$ GHz: RBW=VBW=1 MHz. Channels $1935.76 \mathrm{MHz}, 1954.24 \mathrm{MHz}, 1984.24 \mathrm{MHz} .230 \mathrm{Vac}, 60 \mathrm{~Hz}, 20^{\circ} \mathrm{C}, 54 \%$ relative humidity.

Transducer Legend:

T1=Bicon 092401	T2=Log 331 092401
T3=Cable \#10 071601	T4=Cable \#15 120602
T5=Preamp 8447D 090501	T6=Horn Antenna sn6246
T7=Heliax \#18 70' 11Sept2001	T8=HP3017A sn3123A00281 11-Sept-01
T9=3.5 GHz High-Pass	

6	127.600M	45.9	$\begin{array}{r} \hline+16.0 \\ -28.4 \end{array}$	+0.0	+0.2	+2.0	+0.0	35.7	43.5	-7.8	Horiz
7	136.097M	42.9	$\begin{array}{r} \hline+16.8 \\ -28.4 \\ \hline \end{array}$	+0.0	+0.2	+2.1	+0.0	33.6	43.5	-9.9	Vert
8	136.097M	42.9	$\begin{array}{r} \hline+16.8 \\ -28.4 \end{array}$	+0.0	+0.2	+2.1	+0.0	33.6	43.5	-9.9	Vert
9	3968.700M	42.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +31.9 \end{array}$	$\begin{aligned} & +0.0 \\ & +6.1 \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -37.6 \end{array}$	+0.0	43.4	54.0	-10.6	Horiz
10	5865.000M	39.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.1 \\ & +0.1 \end{aligned}$	$\begin{array}{r} +0.0 \\ +33.6 \end{array}$	$\begin{aligned} & +0.0 \\ & +7.4 \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -37.0 \end{array}$	+0.0	43.1	54.0	-10.9	Vert
11	140.130M	41.2	$\begin{array}{r} \hline+17.1 \\ -28.4 \end{array}$	+0.0	+0.2	+2.1	+0.0	32.2	43.5	-11.3	Vert
12	140.130M	41.2	$\begin{array}{r} +17.1 \\ \hline-28.4 \end{array}$	+0.0	+0.2	+2.1	+0.0	32.2	43.5	-11.3	Vert
13	675.331M	35.0	$\begin{array}{r} +0.0 \\ -27.9 \end{array}$	+21.8	+0.5	+5.2	+0.0	34.6	46.0	-11.4	Vert
14	130.130M	41.3	$\begin{array}{r} +16.2 \\ -28.4 \end{array}$	+0.0	+0.2	+2.0	+0.0	31.3	43.5	-12.2	Vert
15	127.578M	41.3	$\begin{array}{r} \hline+16.0 \\ -28.4 \end{array}$	+0.0	+0.2	+2.0	+0.0	31.1	43.5	-12.4	Vert
16	360.099M	39.5	$\begin{gathered} \hline+0.0 \\ -28.2 \end{gathered}$	+18.1	+0.3	+3.6	+0.0	33.3	46.0	-12.7	Vert
17	4324.400M	39.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +32.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +6.1 \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -37.3 \end{array}$	+0.0	40.7	54.0	-13.3	Vert
18	2343.600M	47.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +27.4 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +4.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.4 \\ \hline \end{array}$	+0.0	40.7	54.0	-13.3	Horiz
19	147.710M	38.8	$\begin{array}{r} +17.3 \\ -28.4 \end{array}$	+0.0	+0.2	+2.2	+0.0	30.1	43.5	-13.4	Vert
20	147.710M	38.8	$\begin{gathered} +17.3 \\ \hline-28.4 \end{gathered}$	+0.0	+0.2	+2.2	+0.0	30.1	43.5	-13.4	Vert
21	135.051M	39.2	$\begin{array}{r} \hline+16.7 \\ -28.4 \end{array}$	+0.0	+0.2	+2.1	+0.0	29.8	43.5	-13.7	Horiz
22	283.380M	36.1	$\begin{array}{r} \hline+20.8 \\ -28.3 \end{array}$	+0.0	+0.3	+3.2	+0.0	32.1	46.0	-13.9	Vert
23	2333.700M	46.8	$\begin{aligned} & \quad 0.0 \\ & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +27.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +4.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ \hline-38.4 \end{array}$	+0.0	40.0	54.0	-14.0	Horiz
24	139.324M	37.6	$\begin{array}{r} \hline+17.0 \\ -28.4 \end{array}$	+0.0	+0.2	+2.1	+0.0	28.5	43.5	-15.0	Horiz
25	250.097M	37.7	$\begin{array}{r} +17.8 \\ -28.2 \end{array}$	+0.0	+0.3	+2.9	+0.0	30.5	46.0	-15.5	Vert
26	186.136M	36.1	$\begin{gathered} +17.1 \\ -28.3 \end{gathered}$	+0.0	+0.3	+2.5	+0.0	27.7	43.5	-15.8	Vert
27	851.080M	29.2	$\begin{array}{r} \hline+0.0 \\ -27.7 \end{array}$	+22.3	+0.6	+5.8	+0.0	30.2	46.0	-15.8	Vert
28	3328.200M	38.8	$\begin{array}{r} +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +30.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +5.7 \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.5 \end{array}$	+0.0	37.7	54.0	-16.3	Vert
29	214.938M	35.3	$\begin{gathered} +17.1 \\ \hline-28.3 \end{gathered}$	+0.0	+0.3	+2.7	+0.0	27.1	43.5	-16.4	Vert

30	70.145 M	43.6	$\begin{gathered} +6.9 \\ -28.6 \end{gathered}$	+0.0	+0.1	+1.5	+0.0	23.5	40.0	-16.5	Vert
31	2322.600 M	44.3	+0.0	+0.0	+0.0	+0.0	+0.0	37.4	54.0	-16.6	Vert
			+0.0	+27.3	+4.2	-38.4					
32	266.719M	34.5	+19.4	+0.0	+0.3	+3.0	$+0.0$	28.9	46.0	-17.1	Vert
			-28.3								
33	115.156M	38.1	+14.4	+0.0	$+0.2$	+1.9	+0.0	26.2	43.5	-17.3	Vert
			-28.4								
34	315.090 M	31.7	+0.0	+21.3	+0.3	+3.4	+0.0	28.4	46.0	-17.6	Vert
			-28.3								
35	216.726M	36.3	+17.2	+0.0	+0.3	+2.7	+0.0	28.2	46.0	-17.8	Vert
			-28.3								
36	1539.200M	46.3	+0.0	+0.0	+0.0	+0.0	+0.0	35.6	54.0	-18.4	Horiz
			+0.0	+24.7	+3.4	-38.8					
37	330.068M	31.7	+0.0	+20.2	+0.3	+3.4	+0.0	27.4	46.0	-18.6	Vert
			-28.2								
38	350.058M	32.6	+0.0	+18.7	$+0.3$	+3.5	$+0.0$	26.9	46.0	-19.1	Vert
			-28.2								
39	233.410M	34.6	+17.5	+0.0	+0.3	+2.8	+0.0	26.9	46.0	-19.1	Vert
			-28.3								
40	1413.200M	46.0	+0.0	+0.0	+0.0	+0.0	+0.0	34.6	54.0	-19.4	Horiz
			+0.0	+24.4	+3.2	-39.0					
41	264.104M	32.4	+19.1	+0.0	+0.3	+3.0	+0.0	26.5	46.0	-19.5	Horiz
			-28.3								
42	432.144M	34.6	+0.0	+16.0	$+0.4$	+3.9	$+0.0$	26.3	46.0	-19.7	Vert
			-28.6								
43	589.799M	30.5	+0.0	+18.7	+0.4	+4.8	+0.0	26.2	46.0	-19.8	Horiz
			-28.2								
44	258.402M	32.3	+18.6	+0.0	+0.3	+3.0	+0.0	26.0	46.0	-20.0	Vert
			-28.2								
45	282.066 M	29.1	+20.7	+0.0	+0.3	+3.2	$+0.0$	25.0	46.0	-21.0	Horiz
			-28.3								
46	240.075M	32.4	+17.6	+0.0	+0.3	+2.8	$+0.0$	24.9	46.0	-21.1	Horiz
			-28.2								
47	228.100 M	32.6	+17.4	+0.0	+0.3	+2.7	+0.0	24.7	46.0	-21.3	Horiz
			-28.3								
48	220.060 M	32.7	+17.2	+0.0	+0.3	+2.7	+0.0	24.6	46.0	-21.4	Horiz
			-28.3								
49	420.094M	32.4	+0.0	+15.8	+0.4	+3.9	+0.0	24.0	46.0	-22.0	Vert
			-28.5								
50	397.594M	31.0	+0.0	+15.6	+0.4	+3.8	+0.0	22.5	46.0	-23.5	Vert
			-28.3								
51	429.072M	30.3	+0.0	+15.9	+0.4	+3.9	+0.0	22.0	46.0	-24.0	Vert
			-28.5								
52	446.826M	29.6	+0.0	+16.2	+0.4	+4.0	+0.0	21.5	46.0	-24.5	Horiz
			-28.7								
53	390.077M	29.2	+0.0	+16.1	+0.4	+3.7	+0.0	21.1	46.0	-24.9	Vert
			-28.3								

Test Location: CKC Laboratories, Inc. •110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112

Customer:	Powerwave TechnologiesFCC 15.109 Class B			
Specification:				
Work Order \#:	78909		Date: 05/20/2002	
Test Type:	Maximized Emission		Time: 03:5	
Equipment:	Amplifier		Sequence\#: 4	
Manufacturer:	Powerwave Technologies		Tested By: Edd	
Model:	G3L-1900-31			
S/N:	PW021700155			
Test Equipment:				
Function	S/N	Calibration Date	Cal Due Date	Asset \#
spectrum analyzer	hp	12/28/2001	12/28/2001	5566

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Amplifier*	Powerwave Technologies	G3L-1900-31	PW021700155

Support Devices:

Function	Manufacturer	Model \#	S/N
Combiner	Anaren	44000	416
Pre Amp	Mini Circuits	ZHL-1724HLN-SMA	D0202801-06
DC power Supply	Xanrex	XTS30-2X	NA
Signal Generator	Agilent	E4433B	US40051593
Signal Generator	Agilent	E4433B	US39341067
Signal Generator	Agilent	E4432B	US40053285
DC Power Supply	Agilent	6674A	US36371542

Test Conditions / Notes:

Rack mount EUT is placed on the test bench. 3 WCDMA signal from 3 different signal generator are combined and fed into the TX in of the EUT. TX out of the EUT is connected to a power meter via a series of attenuators and a directional coupler. The amplitude of the input signal is adjusted (Approximately 10.3 watts each) such that the measured output power of the EUT is 31 watts. Range of measurement: $30 \mathrm{MHz}-20 \mathrm{GHz}$. Measurement BW $30 \mathrm{MHz}-1000 \mathrm{MHz}:$ RBW=VBW=120 kHz. $1 \mathrm{GHz}-20 \mathrm{GHz}:$ RBW=VBW=1 MHz. Channels 1935.76 MHz , 1954.24 MHz, 1984.24 MHz. $48 \mathrm{Vdc}\left(230 \mathrm{Vac}, 60 \mathrm{~Hz}\right.$), $20^{\circ} \mathrm{C}, 54 \%$ relative humidity.

Transducer Legend:

T1=Bicon 092401	T2=Log 331 092401
T3=Cable \#10 071601	T4=Cable \#15 120602
T5=Preamp 8447D 090501	T6=Horn Antenna sn6246
T7=Heliax \#18 70' 11Sept2001	T8=HP3017A sn3123A00281 11-Sept-01
T9=3.5 GHz High-Pass	T10=18-26 HP Horn Antenna \#2112

Measurement Data:

$\#$	Freq	Rdng	T1	T2	T3	Test Distance: 3 Meters						
			T5	T6	T7	T8	Dist	Corr	Spec	Margin	Polar	
			T9	T10								
	MHz	$\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	dB	Ant	
1	1135.800 M	77.4	+0.0	+0.0	+0.0		+0.0	+0.0	64.3	54.0	+10.3	Horiz
			+0.0	+24.1	+2.8	-40.0						
			+0.0	+0.0								

	$\begin{aligned} & 1135.900 \mathrm{M} \\ & \text { Ave } \end{aligned}$	63.1	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +24.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +2.8 \end{aligned}$	$\begin{gathered} +0.0 \\ -40.0 \end{gathered}$	+0.0	50.0	54.0	-4.0	Vert
\wedge	1135.900M	75.6	+0.0	+0.0	+0.0	+0.0	+0.0	62.5	54.0	+8.5	Vert
			+0.0	+24.1	+2.8	-40.0					
4	2034.800M	56.6	+0.0	+0.0	+0.0	+0.0	+0.0	48.6	54.0	-5.4	Horiz
			+0.0	+26.5	+3.9	-38.4					
			+0.0	+0.0							
5	5874.900M	44.5	+0.0	+0.0	+0.0	+0.0	+0.0	48.5	54.0	-5.5	Horiz
			+0.0	+33.6	+7.4	-37.1					
			+0.1	+0.0							
6	1905.700M	56.6	+0.0	+0.0	+0.0	+0.0	+0.0	48.0	54.0	-6.0	Horiz
			+0.0	+26.1	+3.6	-38.3					
			+0.0	+0.0							
7	210.116 M	45.5	+17.0	+0.0	+0.3	+2.6	+0.0	37.0	43.5	-6.5	Horiz
			-28.4								
8	134.098 M	45.8	+16.6	+0.0	+0.2	+2.1	+0.0	36.3	43.5	-7.2	Horiz
			-28.4								
9	5903.670M	41.7	+0.0	+0.0	+0.0	+0.0	+0.0	45.7	54.0	-8.3	Vert
			+0.0	+33.6	+7.4	-37.1					
			+0.1								
10	140.152M	43.7	+17.1	+0.0	+0.2	+2.1	+0.0	34.7	43.5	-8.8	Horiz
			-28.4								
11	162.144 M	42.7	+17.6	+0.0	+0.3	+2.3	+0.0	34.6	43.5	-8.9	Horiz
			-28.3								
12	342.187 M	42.0	+0.0	+19.3	+0.3	+3.5	+0.0	36.9	46.0	-9.1	Vert
			-28.2								
13	142.091 M	43.3	+17.2	+0.0	+0.2	+2.1	+0.0	34.4	43.5	-9.1	Horiz
			-28.4								
14	2179.300M	51.7	+0.0	+0.0	+0.0	+0.0	+0.0	44.4	54.0	-9.6	Horiz
			+0.0	+26.9	+4.1	-38.3					
			+0.0	+0.0							
15	2002.800M	52.5	+0.0	+0.0	+0.0	+0.0	+0.0	44.4	54.0	-9.6	Horiz
			+0.0	+26.4	+3.9	-38.4					
			+0.0	+0.0							
16	2061.100M	52.1	+0.0	+0.0	+0.0	+0.0	+0.0	44.3	54.0	-9.7	Horiz
			+0.0	+26.6	+4.0	-38.4					
			+0.0	+0.0							
17	136.097 M	42.9	+16.8	+0.0	+0.2	+2.1	+0.0	33.6	43.5	-9.9	Vert
			-28.4								
18	6858.400M	38.0	+0.0	+0.0	+0.0	+0.0	+0.0	43.7	54.0	-10.3	Horiz
			+0.0	+35.1	+8.0	-37.8					
			+0.4	+0.0							
19	6850.870M	38.0	+0.0	+0.0	+0.0	+0.0	+0.0	43.7	54.0	-10.3	Vert
			+0.0	+35.1	+8.0	-37.8					
			+0.4								
20	152.102M	41.5	+17.4	+0.0	+0.2	+2.2	+0.0	32.9	43.5	-10.6	Horiz
			-28.4								
21	327.823 M	39.1	+0.0	+20.3	+0.3	+3.4	+0.0	34.9	46.0	-11.1	Vert
			-28.2								
22	145.171M	41.2	+17.2	+0.0	+0.2	+2.2	+0.0	32.4	43.5	-11.1	Horiz
			-28.4								

23	210.147M	40.9	$\begin{array}{r} +17.0 \\ -28.4 \\ \hline \end{array}$	+0.0	+0.3	+2.6	+0.0	32.4	43.5	-11.1	Vert
24	336.171M	39.5	$\begin{array}{r} \hline+0.0 \\ -28.2 \end{array}$	+19.7	+0.3	+3.4	+0.0	34.7	46.0	-11.3	Horiz
25	140.130M	41.2	$\begin{array}{r} \hline+17.1 \\ -28.4 \end{array}$	+0.0	+0.2	+2.1	+0.0	32.2	43.5	-11.3	Vert
26	130.130M	41.8	$\begin{array}{r} +16.2 \\ -28.4 \end{array}$	+0.0	+0.2	+2.0	+0.0	31.8	43.5	-11.7	Vert
27	420.095M	42.5	$\begin{array}{r} \hline+0.0 \\ -28.5 \end{array}$	+15.8	+0.4	+3.9	+0.0	34.1	46.0	-11.9	Vert
28	270.141M	39.2	$\begin{array}{r} \hline+19.7 \\ -28.3 \end{array}$	+0.0	+0.3	+3.1	+0.0	34.0	46.0	-12.0	Horiz
29	186.120M	39.9	$\begin{array}{r} +17.1 \\ -28.3 \\ \hline \end{array}$	+0.0	+0.3	+2.5	+0.0	31.5	43.5	-12.0	Horiz
30	156.106M	39.7	$\begin{array}{r} +17.5 \\ -28.3 \end{array}$	+0.0	$+0.2$	+2.3	+0.0	31.4	43.5	-12.1	Horiz
31	195.135M	39.8	$\begin{array}{r} +16.9 \\ \hline-28.4 \end{array}$	+0.0	+0.3	+2.6	+0.0	31.2	43.5	-12.3	Horiz
32	325.304M	37.6	$\begin{array}{r} +0.0 \\ \hline-28.2 \\ \hline \end{array}$	+20.5	+0.3	+3.4	+0.0	33.6	46.0	-12.4	Vert
33	355.319M	39.5	$\begin{array}{r} +0.0 \\ \hline-28.2 \end{array}$	+18.4	+0.3	+3.5	+0.0	33.5	46.0	-12.5	Horiz
34	357.855M	39.2	$\begin{array}{r} +0.0 \\ -28.2 \\ \hline \end{array}$	+18.2	+0.3	+3.5	+0.0	33.0	46.0	-13.0	Vert
35	835.724M	32.0	$\begin{array}{r} +0.0 \\ \hline+27.7 \end{array}$	+22.1	+0.6	+5.8	+0.0	32.8	46.0	-13.2	Horiz
36	460.436M	40.5	$\begin{array}{r} +0.0 \\ \hline-28.7 \end{array}$	+16.4	+0.4	+4.1	+0.0	32.7	46.0	-13.3	Vert
37	114.132M	42.2	$\begin{array}{r} \hline+14.3 \\ \hline-28.4 \end{array}$	+0.0	+0.2	+1.9	+0.0	30.2	43.5	-13.3	Horiz
38	594.050M	36.7	$\begin{array}{r} 2.7 .7 \\ \hline+28.0 \\ -28.2 \end{array}$	+18.8	+0.4	+4.9	+0.0	32.6	46.0	-13.4	Horiz
39	330.186M	36.9	$\begin{array}{r} \hline+0.0 \\ -28.2 \end{array}$	+20.2	+0.3	+3.4	+0.0	32.6	46.0	-13.4	Vert
40	147.710M	38.8	$\begin{array}{r} \\ \hline+17.3 \\ -28.4 \end{array}$	+0.0	+0.2	+2.2	+0.0	30.1	43.5	-13.4	Vert
41	2334.200M	47.3	$\begin{aligned} & -20.7 \\ & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +27.4 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +4.2 \end{aligned}$	$\begin{gathered} +0.0 \\ -38.4 \end{gathered}$	+0.0	40.5	54.0	-13.5	Horiz
42	325.318M	36.5	$\begin{array}{r} +0.0 \\ \hline-28.2 \end{array}$	+20.5	+0.3	+3.4	+0.0	32.5	46.0	-13.5	Horiz
43	390.092M	40.4	$\begin{array}{r} 28.0 \\ \hline+0.0 \\ -28.3 \end{array}$	+16.1	+0.4	+3.7	+0.0	32.3	46.0	-13.7	Horiz
44	345.365M	37.6	$\begin{array}{r} +0.0 \\ -28.2 \end{array}$	+19.1	+0.3	+3.5	+0.0	32.3	46.0	-13.7	Vert
45	282.147M	36.4	$\begin{array}{r} 20.2 \\ \hline+20.7 \\ -28.3 \end{array}$	+0.0	+0.3	+3.2	+0.0	32.3	46.0	-13.7	Horiz
46	110.152M	42.6	$\begin{array}{r} +13.5 \\ \hline-28.4 \end{array}$	+0.0	+0.2	+1.9	$+0.0$	29.8	43.5	-13.7	Horiz

Page 52 of 60

47	315.299M	35.5	$\begin{gathered} +0.0 \\ -28.3 \end{gathered}$	+21.3	+0.3	+3.4	$+0.0$	32.2	46.0	-13.8	Vert
48	155.145M	38.1	$\begin{array}{r} \hline+17.5 \\ -28.4 \end{array}$	+0.0	+0.2	+2.2	+0.0	29.6	43.5	-13.9	Horiz
49	120.139 M	40.5	$\begin{array}{r} \hline+15.3 \\ -28.4 \end{array}$	+0.0	+0.2	+2.0	$+0.0$	29.6	43.5	-13.9	Horiz
50	294.186M	35.1	$\begin{array}{r} \hline+21.7 \\ -28.3 \end{array}$	+0.0	+0.3	+3.3	+0.0	32.1	46.0	-13.9	Vert
51	660.561 M	32.9	$\begin{gathered} +0.0 \\ -27.8 \end{gathered}$	+21.3	+0.4	+5.1	+0.0	31.9	46.0	-14.1	Horiz
52	324.129M	35.7	$\begin{gathered} +0.0 \\ -28.2 \end{gathered}$	+20.6	+0.3	+3.4	+0.0	31.8	46.0	-14.2	Vert
53	305.279M	34.4	$\begin{gathered} +0.0 \\ -28.3 \end{gathered}$	$+22.1$	+0.3	+3.3	$+0.0$	31.8	46.0	-14.2	Vert
54	342.160M	36.8	$\begin{gathered} +0.0 \\ -28.2 \end{gathered}$	+19.3	+0.3	+3.5	$+0.0$	31.7	46.0	-14.3	Horiz
55	444.179M	39.8	$\begin{gathered} +0.0 \\ -28.7 \end{gathered}$	+16.2	+0.4	+4.0	+0.0	31.7	46.0	-14.3	Vert
56	317.819 M	35.2	$\begin{gathered} +0.0 \\ -28.3 \end{gathered}$	+21.1	+0.3	+3.4	$+0.0$	31.7	46.0	-14.3	Vert
57	330.353 M	35.9	$\begin{gathered} +0.0 \\ -28.2 \end{gathered}$	+20.2	+0.3	+3.4	+0.0	31.6	46.0	-14.4	Horiz
58	408.414M	40.2	$\begin{gathered} +0.0 \\ -28.4 \end{gathered}$	+15.6	+0.4	+3.8	+0.0	31.6	46.0	-14.4	Vert
59	312.799 M	34.7	$\begin{gathered} +0.0 \\ -28.3 \end{gathered}$	+21.5	+0.3	+3.4	+0.0	31.6	46.0	-14.4	Vert
60	3170.800 M	41.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +30.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +5.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.5 \end{array}$	$+0.0$	39.5	54.0	-14.5	Horiz
61	600.516M	35.4	$\begin{gathered} +0.0 \\ -28.1 \end{gathered}$	+18.9	+0.4	+4.9	$+0.0$	31.5	46.0	-14.5	Vert
62	2709.000M	44.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +28.7 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +4.4 \end{aligned}$	$\begin{gathered} +0.0 \\ -38.3 \end{gathered}$	+0.0	39.4	54.0	-14.6	Horiz
63	314.165M	34.6	$\begin{gathered} +0.0 \\ -28.3 \end{gathered}$	+21.4	+0.3	+3.4	+0.0	31.4	46.0	-14.6	Vert
64	3366.200M	40.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +30.8 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.5 \end{array}$	$+0.0$	39.3	54.0	-14.7	Horiz
65	136.070M	38.1	$\begin{array}{r} \hline+16.8 \\ -28.4 \end{array}$	+0.0	+0.2	+2.1	$+0.0$	28.8	43.5	-14.7	Horiz
66	335.302M	35.9	$\begin{array}{r} +0.0 \\ -28.2 \end{array}$	+19.8	+0.3	+3.4	$+0.0$	31.2	46.0	-14.8	Horiz
67	429.099M	39.5	$\begin{array}{r} +0.0 \\ -28.5 \\ \hline \end{array}$	+15.9	+0.4	+3.9	$+0.0$	31.2	46.0	-14.8	Vert
68	350.315M	36.7	$\begin{gathered} +0.0 \\ -28.2 \end{gathered}$	+18.7	+0.3	+3.5	$+0.0$	31.0	46.0	-15.0	Vert
69	415.364 M	39.3	$\begin{array}{r} +0.0 \\ -28.4 \end{array}$	+15.7	+0.4	+3.9	+0.0	30.9	46.0	-15.1	Horiz
70	385.379 M	38.7	$\begin{gathered} +0.0 \\ -28.3 \end{gathered}$	+16.4	+0.4	+3.7	$+0.0$	30.9	46.0	-15.1	Vert

71	320.162M	34.5	$\begin{gathered} +0.0 \\ -28.3 \end{gathered}$	+20.9	+0.3	+3.4	$+0.0$	30.8	46.0	-15.2	Vert
72	2344.200M	45.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +27.4 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +4.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.4 \end{array}$	+0.0	38.7	54.0	-15.3	Horiz
73	310.140M	33.6	$\begin{gathered} +0.0 \\ -28.3 \end{gathered}$	+21.7	+0.3	+3.3	+0.0	30.6	46.0	-15.4	Vert
74	190.108M	36.6	$\begin{array}{r} \hline+17.0 \\ -28.3 \end{array}$	+0.0	+0.3	+2.5	$+0.0$	28.1	43.5	-15.4	Horiz
75	335.332M	35.2	$\begin{gathered} +0.0 \\ -28.2 \end{gathered}$	+19.8	+0.3	+3.4	+0.0	30.5	46.0	-15.5	Vert
76	295.317M	33.3	$\begin{array}{r} \hline+21.8 \\ -28.3 \end{array}$	+0.0	+0.3	+3.3	+0.0	30.4	46.0	-15.6	Horiz
77	240.096M	37.9	$\begin{array}{r} \hline+17.6 \\ -28.2 \end{array}$	+0.0	+0.3	+2.8	+0.0	30.4	46.0	-15.6	Horiz
78	178.910M	36.1	$\begin{array}{r} \hline+17.3 \\ -28.2 \end{array}$	+0.0	+0.3	+2.4	+0.0	27.9	43.5	-15.6	Horiz
79	344.178 M	35.5	$\begin{array}{r} +0.0 \\ -28.2 \end{array}$	+19.2	+0.3	+3.5	+0.0	30.3	46.0	-15.7	Vert
80	202.901 M	36.4	$\begin{array}{r} \hline+16.9 \\ -28.4 \end{array}$	+0.0	+0.3	+2.6	+0.0	27.8	43.5	-15.7	Horiz
81	835.693M	29.4	$\begin{array}{r} +0.0 \\ -27.7 \end{array}$	+22.1	+0.6	+5.8	+0.0	30.2	46.0	-15.8	Vert
82	412.872 M	38.6	$\begin{gathered} +0.0 \\ -28.4 \end{gathered}$	+15.7	+0.4	+3.9	+0.0	30.2	46.0	-15.8	Vert
83	215.270M	35.9	$\begin{array}{r} \hline+17.1 \\ -28.3 \\ \hline \end{array}$	+0.0	+0.3	+2.7	+0.0	27.7	43.5	-15.8	Horiz
84	296.147M	33.0	$\begin{array}{r} \hline+21.9 \\ -28.3 \end{array}$	+0.0	+0.3	+3.3	+0.0	30.2	46.0	-15.8	Vert
85	186.136M	36.1	$\begin{array}{r} \hline+17.1 \\ -28.3 \end{array}$	+0.0	+0.3	+2.5	+0.0	27.7	43.5	-15.8	Vert
86	620.572M	33.0	$\begin{array}{r} +0.0 \\ -28.0 \end{array}$	+19.7	+0.4	+5.0	+0.0	30.1	46.0	-15.9	Horiz
87	320.328 M	33.8	$\begin{gathered} +0.0 \\ -28.3 \end{gathered}$	+20.9	+0.3	+3.4	+0.0	30.1	46.0	-15.9	Horiz
88	208.122M	36.1	$\begin{array}{r} \hline+17.0 \\ -28.4 \end{array}$	+0.0	+0.3	+2.6	+0.0	27.6	43.5	-15.9	Vert
89	420.080M	38.4	$\begin{gathered} +0.0 \\ -28.5 \end{gathered}$	+15.8	+0.4	+3.9	+0.0	30.0	46.0	-16.0	Horiz
90	340.326M	35.0	$\begin{gathered} +0.0 \\ -28.2 \end{gathered}$	+19.4	+0.3	+3.5	+0.0	30.0	46.0	-16.0	Horiz
91	302.806M	32.4	$\begin{gathered} +0.0 \\ -28.3 \end{gathered}$	+22.3	+0.3	+3.3	+0.0	30.0	46.0	-16.0	Vert
92	285.289M	33.7	$\begin{gathered} \hline+21.0 \\ -28.3 \end{gathered}$	+0.0	+0.3	+3.2	+0.0	29.9	46.0	-16.1	Vert
93	490.438M	36.8	$\begin{array}{r} +0.0 \\ -28.5 \\ \hline \end{array}$	+16.8	+0.4	+4.3	$+0.0$	29.8	46.0	-16.2	Vert
94	347.843M	35.2	$\begin{array}{r} +0.0 \\ -28.2 \\ \hline \end{array}$	+18.9	+0.3	+3.5	+0.0	29.7	46.0	-16.3	Vert

95	459.215M	37.3	$\begin{gathered} +0.0 \\ -28.7 \end{gathered}$	+16.4	+0.4	+4.1	$+0.0$	29.5	46.0	-16.5	Vert
96	2322.600M	44.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +27.3 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +4.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.4 \end{array}$	+0.0	37.4	54.0	-16.6	Horiz
97	480.226M	36.8	$\begin{array}{r} +0.0 \\ -28.6 \end{array}$	+16.6	+0.4	+4.2	+0.0	29.4	46.0	-16.6	Vert
98	367.611M	36.1	$\begin{gathered} +0.0 \\ -28.2 \end{gathered}$	+17.6	+0.3	+3.6	+0.0	29.4	46.0	-16.6	Vert
99	292.141 M	32.6	$\begin{array}{r} \hline+21.6 \\ -28.3 \end{array}$	+0.0	+0.3	+3.2	+0.0	29.4	46.0	-16.6	Vert
100	470.464M	36.8	$\begin{gathered} +0.0 \\ -28.6 \end{gathered}$	+16.5	+0.4	+4.2	+0.0	29.3	46.0	-16.7	Vert
101	423.818M	37.6	$\begin{gathered} +0.0 \\ -28.5 \end{gathered}$	+15.9	+0.4	+3.9	+0.0	29.3	46.0	-16.7	Vert
102	363.853 M	35.8	$\begin{gathered} +0.0 \\ -28.2 \end{gathered}$	+17.8	+0.3	+3.6	+0.0	29.3	46.0	-16.7	Vert
103	137.688M	36.0	$\begin{array}{r} \hline+16.9 \\ -28.4 \end{array}$	+0.0	+0.2	+2.1	+0.0	26.8	43.5	-16.7	Horiz
104	422.874M	37.6	$\begin{array}{r} +0.0 \\ -28.5 \end{array}$	+15.8	+0.4	+3.9	+0.0	29.2	46.0	-16.8	Vert
105	416.368M	37.4	$\begin{gathered} +0.0 \\ -28.4 \end{gathered}$	+15.8	$+0.4$	+3.9	$+0.0$	29.1	46.0	-16.9	Vert
106	219.137M	37.2	$\begin{array}{r} \hline+17.2 \\ -28.3 \end{array}$	+0.0	+0.3	+2.7	+0.0	29.1	46.0	-16.9	Horiz
107	410.343 M	37.4	$\begin{array}{r} +0.0 \\ -28.4 \\ \hline \end{array}$	+15.7	+0.4	+3.8	+0.0	28.9	46.0	-17.1	Vert
108	365.381M	35.5	$\begin{array}{r} +0.0 \\ -28.2 \\ \hline \end{array}$	+17.7	$+0.3$	+3.6	$+0.0$	28.9	46.0	-17.1	Vert
109	324.076M	32.6	$\begin{gathered} +0.0 \\ -28.2 \end{gathered}$	+20.6	+0.3	+3.4	$+0.0$	28.7	46.0	-17.3	Horiz
110	360.354M	34.9	$\begin{array}{r} +0.0 \\ -28.2 \end{array}$	+18.0	$+0.3$	+3.6	+0.0	28.6	46.0	-17.4	Horiz
111	181.306M	34.3	$\begin{array}{r} \hline+17.3 \\ -28.3 \end{array}$	+0.0	+0.3	+2.5	+0.0	26.1	43.5	-17.4	Horiz
112	222.109 M	36.4	$\begin{array}{r} \hline+17.3 \\ -28.3 \end{array}$	+0.0	$+0.3$	+2.7	+0.0	28.4	46.0	-17.6	Horiz
113	444.165M	36.4	$\begin{array}{r} +0.0 \\ -28.7 \\ \hline \end{array}$	+16.2	+0.4	+4.0	+0.0	28.3	46.0	-17.7	Horiz
114	171.942M	33.9	$\begin{array}{r} \hline+17.4 \\ -28.2 \\ \hline \end{array}$	+0.0	+0.3	+2.4	+0.0	25.8	43.5	-17.7	Horiz
115	400.372M	36.8	$\begin{gathered} +0.0 \\ -28.3 \end{gathered}$	+15.5	$+0.4$	+3.8	+0.0	28.2	46.0	-17.8	Horiz
116	340.299M	33.2	$\begin{gathered} +0.0 \\ -28.2 \end{gathered}$	+19.4	+0.3	+3.5	+0.0	28.2	46.0	-17.8	Vert
117	194.107M	34.3	$\begin{array}{r} \hline+16.9 \\ -28.4 \end{array}$	+0.0	+0.3	+2.6	+0.0	25.7	43.5	-17.8	Vert
118	435.366M	36.4	$\begin{array}{r} +0.0 \\ -28.6 \\ \hline \end{array}$	+16.0	+0.4	+3.9	+0.0	28.1	46.0	-17.9	Horiz

119	278.125M	32.6	$\begin{gathered} \hline+20.4 \\ -28.3 \\ \hline \end{gathered}$	+0.0	+0.3	+3.1	+0.0	28.1	46.0	-17.9	Horiz
120	456.210M	35.9	$\begin{gathered} +0.0 \\ \hline-28.7 \end{gathered}$	+16.3	+0.4	+4.1	+0.0	28.0	46.0	-18.0	Horiz
121	427.569 M	36.2	$\begin{gathered} +0.0 \\ -28.5 \end{gathered}$	+15.9	+0.4	+3.9	+0.0	27.9	46.0	-18.1	Vert
122	531.316M	33.9	$\begin{array}{r} \hline+0.0 \\ -28.6 \end{array}$	+17.6	+0.4	+4.5	+0.0	27.8	46.0	-18.2	Vert
123	615.306M	30.8	$\begin{array}{r} +0.0 \\ \hline-28.0 \end{array}$	+19.5	+0.4	+5.0	+0.0	27.7	46.0	-18.3	Vert
124	446.190M	35.7	$\begin{array}{r} \hline+0.0 \\ -28.7 \end{array}$	+16.2	+0.4	+4.0	+0.0	27.6	46.0	-18.4	Horiz
125	382.573M	34.9	$\begin{array}{r} +0.0 \\ -28.3 \\ \hline \end{array}$	+16.6	+0.4	+3.7	+0.0	27.3	46.0	-18.7	Horiz
126	430.399M	35.5	$\begin{array}{r} 20.9 \\ \hline-28.0 \\ \hline \end{array}$	+16.0	+0.4	+3.9	$+0.0$	27.3	46.0	-18.7	Vert
127	418.687M	35.7	$\begin{array}{r} +0.0 \\ \hline-28.5 \end{array}$	+15.8	+0.4	+3.9	+0.0	27.3	46.0	-18.7	Vert
128	260.107M	33.4	$\begin{array}{r} \hline+18.8 \\ \hline-28.2 \end{array}$	+0.0	+0.3	+3.0	+0.0	27.3	46.0	-18.7	Horiz
129	290.147M	30.7	$\begin{array}{r} -20.2 \\ \hline+28.4 \\ -28.3 \end{array}$	+0.0	+0.3	+3.2	+0.0	27.3	46.0	-18.7	Vert
130	547.801M	32.9	$\begin{array}{r} +0.0 \\ \hline-28.6 \end{array}$	+17.9	+0.4	+4.6	+0.0	27.2	46.0	-18.8	Horiz
131	417.851M	35.4	$\begin{array}{r} +0.0 \\ \hline-28.4 \end{array}$	+15.8	+0.4	+3.9	+0.0	27.1	46.0	-18.9	Vert
132	380.367M	34.6	$\begin{array}{r} +0.0 \\ -28.3 \end{array}$	+16.7	+0.4	+3.7	+0.0	27.1	46.0	-18.9	Vert
133	122.094M	35.1	$\begin{gathered} +15.5 \\ \hline-28.4 \end{gathered}$	+0.0	+0.2	+2.0	+0.0	24.4	43.5	-19.1	Horiz
134	540.465M	32.5	$\begin{array}{r} 20.0 \\ \hline+28.6 \end{array}$	+17.8	+0.4	+4.6	+0.0	26.7	46.0	-19.3	Horiz
135	262.140M	32.6	$\begin{array}{r} +18.9 \\ \hline-28.2 \end{array}$	+0.0	+0.3	+3.0	+0.0	26.6	46.0	-19.4	Horiz
136	395.345M	34.7	$\begin{array}{r} +0.0 \\ -28.3 \end{array}$	+15.8	+0.4	+3.8	+0.0	26.4	46.0	-19.6	Vert
137	421.837M	34.7	$\begin{array}{r} +0.0 \\ \hline-28.5 \\ \hline \end{array}$	+15.8	+0.4	+3.9	$+0.0$	26.3	46.0	-19.7	Vert
138	516.241M	32.0	$\begin{array}{r} +0.0 \\ \hline-28.5 \\ \hline \end{array}$	+17.3	+0.4	+4.5	+0.0	25.7	46.0	-20.3	Vert
139	492.175M	32.0	$\begin{array}{r} +0.0 \\ \hline-28.5 \\ \hline \end{array}$	+16.8	+0.4	+4.3	+0.0	25.0	46.0	-21.0	Vert
140	397.557M	33.3	$\begin{array}{r} 20.0 \\ \hline+28.0 \\ -28.3 \end{array}$	+15.6	+0.4	+3.8	+0.0	24.8	46.0	-21.2	Horiz
141	230.096M	32.5	$\begin{gathered} 20.4 \\ \hline+28.3 \end{gathered}$	$+0.0$	+0.3	+2.7	$+0.0$	24.6	46.0	-21.4	Vert

142	429.094M	32.8	$\begin{array}{r} \hline+0.0 \\ -28.5 \end{array}$	+15.9	+0.4	+3.9	+0.0	24.5	46.0	-21.5	Horiz
143	440.429 M	31.9	$\begin{array}{r} \hline+0.0 \\ \hline-28.6 \end{array}$	+16.1	+0.4	+4.0	+0.0	23.8	46.0	-22.2	Vert
144	2344.650M	37.9	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +27.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +4.2 \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -38.4 \end{array}$	+0.0	31.1	54.0	-22.9	Vert

Test Equipment:

Equipment	Asset \#	Manufacturer	Model \#	Serial \#	Cal Date	Cal Due
Spectrum Analyzer	01865	HP	8566B	2532A02509	092801	092802
QP Adapter	01437	HP	85650A	3303A01884	092801	092802
Spectrum Analyzer	02467	Agilent	E7405A	US40240225	032902	032903
Bicon Antenna	306	AH	SAS200/540	220	092401	092402
Log Periodic Antenna	331	AH	SAS 00/516	330	092401	092402
Pre-amp	00309	HP	8447D	1937A02548	090501	090502
Antenna cable	NA	NA	RG214	Cable\#15	122001	122002
Pre-amp to SA cable	NA	Harbour	RG223/U	Cable\#10	071601	071602
Horn Antenna	0849	EMCO	3115	6246	091201	091202
Microwave Pre-amp	00786	HP	83017A	3123A00281	091201	091202
1/4" Heliax Coaxial Cable	NA	Andrew	FSJ-50A-4	Cable\#7 (6 ft)	071701	071702
1/4" Heliax Coaxial Cable	NA	Andrew	LDF1-50	Cable\#18 (70 ft)	091101	091102
Antenna cable (from bulkhead to antenna, high frequency hardline) (25ft)	NA	Andrew	FSJ1-50A	Cable\#13	07/17/01	07/17/02
SMA Cable	2212	Beldon	9273	NA	101701	101702
Dipole Antenna	NA	CKC	CKC	Set 4	110901	110902
Loop Antenna	00314	EMCO	6502	2014	73101	73102

OATS Test Setup - Front View - AC

OATS Test Setup - Back View - AC

OATS Test Setup - Back View - AC $18-20 \mathrm{GHz}$

OATS Test Setup - Front View - DC

OATS Test Setup - Back View - DC

OATS Test Setup - Back View - DC 18-20 GHz

[^0]: This report contains a total of 60 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

