



#### **ADDENDUM TO FC02-086**

#### FOR THE

# MULTI CARRIER RF POWER AMPLIFIER, G3S-800-140-031 FCC PART 90 AND PART 15 SUBPART B SECTION 15.109 CLASS B COMPLIANCE

DATE OF ISSUE: SEPTEMBER 25, 2002

#### **PREPARED FOR:**

Powerwave Technologies 1801 E. St. Andrew Place Santa Ana, CA 92705

P.O. No.: 60179 W.O. No.: 79565

#### PREPARED BY:

Mary Ellen Clayton CKC Laboratories, Inc. 5473A Clouds Rest Mariposa, CA 95338

Date of test: September 12-16, 2002

Report No.: FC02-086A

This report contains a total of 40 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

Page 1 of 40 Report No.: FC02-086A



# TABLE OF CONTENTS

| Administrative Information                                                        | 3   |
|-----------------------------------------------------------------------------------|-----|
| Summary of Results                                                                | 4   |
| Conditions for Compliance                                                         | 4   |
| Approvals                                                                         |     |
| Equipment Under Test (EUT) Description                                            | 5   |
| Equipment Under Test                                                              | 5   |
| Peripheral Devices                                                                | 5   |
| 2.1033(c)(3) User's Manual                                                        | 6   |
| 2.1033(c)(4) Type of Emissions                                                    | 6   |
| 2.1033(c)(5) Frequency Range                                                      | 6   |
| 2.1033(c)(6) Operating Power                                                      | 6   |
| 2.1033(c)(7) Maximum Power Rating                                                 | 6   |
| 2.1033(c)(8) DC Voltages                                                          | 6   |
| 2.1033(c)(9) Tune-Up Procedure                                                    | 6   |
| 2.1033(c)(10) Schematics and Circuitry Description                                | 6   |
| 2.1033(c)(11) Label and Placement                                                 | 6   |
| 2.1033(c)(12) Submittal Photos                                                    | 6   |
| 2.1033(c)(13) Modulation Information                                              | 6   |
| 2.1033(c)(14)/2.1046/90.205(j) RF Power Output                                    | 7   |
| 2.1033(c)(14)/2.1047(b) Modulation Characteristics - Audio Frequency Response     | 9   |
| 2.1033(c)(14)/2.1047(b) Modulation Characteristics - Modulation Limiting Response | 2.9 |
| 2.1033(c)(14)/2.1049(i)/90.210 Occupied Bandwidth                                 | 10  |
| 2.1033(c)(14)/2.1051/90.210 Spurious Emissions at Antenna Terminal                | 12  |
| 2.1033(c)(14)/2.1053/90.210 Field Strength of Spurious Radiation                  | 23  |
| 2.1033(c)(14)/2.1055/90.205(j) & 90.213 Voltage Variations & Frequency Stability  | 29  |
| 2.1091 Maximum Permissible Exposure Calculations                                  | 32  |
| 15.109 Radiated Emissions                                                         | 33  |

Page 2 of 40 Report No.: FC02-086A



CKC Laboratories, Inc. has received Certificates of Accreditation from the following agencies:

A2LA (USA); BSMI (Taiwan); Nemko (Norway); and GOST (Russia).

CKC Laboratories, Inc has received test site Registration Acceptance from the following agencies:

FCC (USA); VCCI (Japan); and Industry Canada.

CKC Laboratories, Inc. has received Letters of Acceptance through an MRA for the following agencies:

ACA/NATA (Australia); SABS (South Africa); SWEDAC (Sweden); Radio Communications Agency (RA); HOKLAS (Hong Kong); Bakom (Swiss); BIPT (Belgium); Denmark Telestyrelsen; RvA (Netherlands); SEE (Luxembourg) SITTEL (Bolivia); and UKAS (UK).

#### ADMINISTRATIVE INFORMATION

**DATE OF TEST:** September 12-16, 2002

September 12, 2002 **DATE OF RECEIPT:** 

**PURPOSE OF TEST:** To demonstrate the compliance of the Multi Carrier

> RF Power Amplifier, G3S-800-140-031 with the requirements for FCC Part 90 and Part 15 Subpart B Section 15.109 Class B devices. Addendum A is to revise the emissions masks on pages 16-18.

**TEST METHOD:** ANSI C63.4 (1992) and Part 90

8 - 9000 MHz FREQUENCY RANGE TESTED:

**MANUFACTURER:** Powerwave Technologies

> 1801 E. St. Andrew Place Santa Ana, CA 92705

**REPRESENTATIVE:** Jeffrey Dale

**TEST LOCATION:** CKC Laboratories, Inc.

> 110 Olinda Place Brea, CA 92621

> > Page 3 of 40 Report No.: FC02-086A



#### **SUMMARY OF RESULTS**

As received, the Powerwave Technologies Multi Carrier RF Power Amplifier, G3S-800-140-031 was found to be fully compliant with the following standards and specifications:

# **United States**

- FCC Part 90 and Part 15 Subpart B Section 15.109 using:
- > ANSI C63.4 (1992) and Part 90 methods

#### CONDITIONS FOR COMPLIANCE

Conducted emissions for this device falls under the FCC DoC process. Conducted testing is not included in this report. The manufacturer does not plan to sell a power supply with this device. They will provide a statement in their user manual that in order to comply with FCC regulations, only an approved power supply is to be used with their product.

#### **APPROVALS**

Eddie Wong, EMC Engineer

QUALITY ASSURANCE: TEST PERSONNEL:

Steve Behm, Director of Engineering Services

Joyce Walker, Quality Assurance Administrative

Manager

Septimiu Apahidean, EMC/Lab Manager

Page 4 of 40 Report No.: FC02-086A



#### **EQUIPMENT UNDER TEST (EUT) DESCRIPTION**

The Multi-carrier RF power amplifier tested by CKC Laboratories was a production unit.

# **EQUIPMENT UNDER TEST**

#### **Multi Carrier RF Power Amplifier**

Manuf: Powerwave Technologies

Model: G3S-800-140-031 Serial: C00000UM9M

FCC ID: E675JS0056 (pending)

#### PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Signal GeneratorSignal GeneratorManuf: AgilentManuf: AgilentModel: 4433BModel: 4433B

Serial: US28440615 Serial: US40051329

FCC ID: DoC FCC ID: DoC

Signal Generator Power Meter

Manuf:AgilentManuf:AgilentModel:4432BModel:E4418BSerial:US40053285Serial:US39251692

FCC ID: DoC FCC ID: DoC

RF Combiner DC Power Supply

Manuf: Anaren Manuf: Power Ten Model: 44000 Model: NA Serial: 416 Serial: 003973 FCC ID: DoC FCC ID: NA

Page 5 of 40 Report No.: FC02-086A



#### 2.1033(c)(3) USER'S MANUAL

The necessary information is contained in a separate document.

#### **2.1033** (c)(4) **TYPE OF EMISSIONS**

The necessary information is contained in a separate document.

#### 2.1033(c)(5) FREQUENCY RANGE

The frequency range is 851 - 869 MHz.

#### 2.1033(c)(6) OPERATING POWER

The measured RF power at antenna terminal = 140 watts ERP.

# 2.1033(c)(7) MAXIMUM POWER RATING

The maximum power limit is 1000 watts.

#### **2.1033(c)(8) DC VOLTAGES**

The necessary information is contained in a separate document.

#### **2.1033(c)(9) TUNE-UP PROCEDURE**

The necessary information is contained in a separate document.

# 2.1033(c)(10) SCHEMATICS AND CIRCUITRY DESCRIPTION

The necessary information is contained in a separate document.

#### 2.1033(c)(11) LABEL AND PLACEMENT

The necessary information is contained in a separate document.

# **2.1033(c)(12) SUBMITTAL PHOTOS**

The necessary information is contained in a separate document.

# 2.1033(c)(13) MODULATION INFORMATION

The necessary information is contained in a separate document.

Page 6 of 40 Report No.: FC02-086A



#### 2.1033(c)(14)/2.1046/90.205(j) - RF POWER OUTPUT

#### **Setup:**

The EUT is a rack mount placed on the test bench. Thee signal generators send 64 QAM signal to the RF input of the EUT via a RF Signal combiner. The output of the EUT is connected to RF attenuator and Directional coupler. 140 watts of RF power is maintained.

The Amplified RF signal is measured at the output of the Directional coupler with a RF power meter. A RF attenuation of 52.3 dB is compensated for all measured readings.

Low Channel = 851.03 MHz Mid Channel = 860.00 MHz Hi Channel = 868.97 MHz

27 V DC (from a 230Vac60Hz power supply), 27°C, 55%rh.

The Maximum and minimum power level were measured by adjusting the input RF signal.

#### **Results:**

At max power the measured RF power at antenna terminal = 140 watts ERP.

At minimum power the measured RF power at antenna terminal = 0 watts.

#### **Test Equipment:**

| Equipment      | Asset # | Manufacturer | Model # | Serial #   | Cal Date | Cal Due |
|----------------|---------|--------------|---------|------------|----------|---------|
| RF Power Meter | 02082   | HP           | 435B    | 2445A11881 | 091202   | 091203  |

Page 7 of 40 Report No.: FC02-086A






Direct Connect at Antenna Port Test Setup – Front



Direct Connect at Antenna Port Test Setup - Front





Direct Connect at Antenna Port Test Setup - Back

# $\underline{2.1033(c)(14)/2.1047(a)} - \underline{MODULATION\ CHARACTERISTICS\ -\ AUDIO\ FREQUENCY}$ $\underline{RESPONSE}$

Not applicable to this unit.

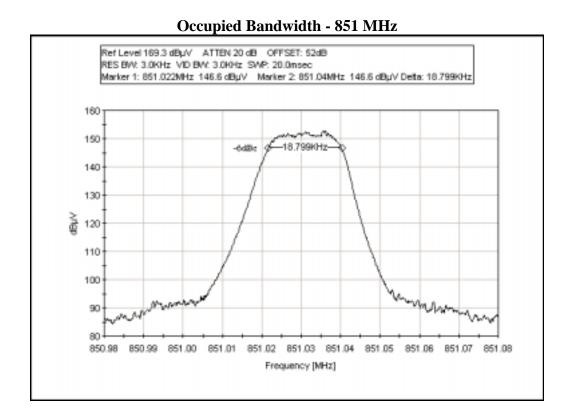
# $\underline{2.1033(c)(14)/2.1047(b)\ MODULATION\ CHARACTERISTICS-Modulation\ Limiting} \\ \underline{Response}$

Not applicable to this unit.

Page 9 of 40 Report No.: FC02-086A



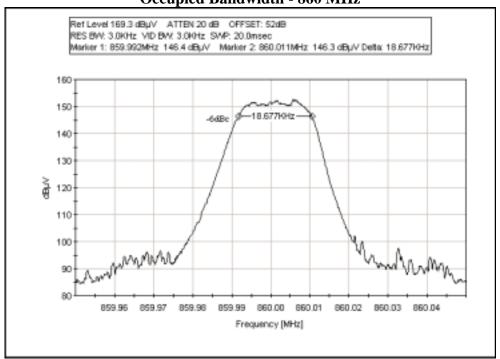
#### 2.1033(c)(14)/2.1049(i)/90.210- OCCUPIED BANDWIDTH


#### **Test Conditions:**

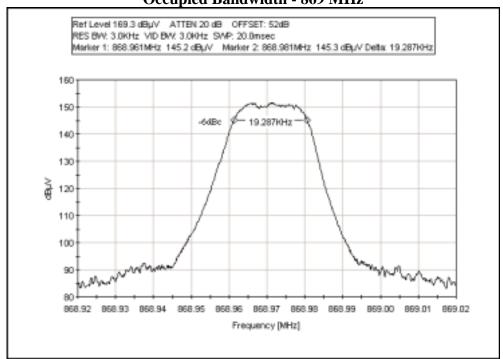
The EUT is a rack mount placed on the test bench. The signal generators sends a 64 QAM signal to the RF input of the EUT via a RF signal combiner. The output of the EUT is connected to RF attenuator and Directional coupler. 140 watts of RF power is maintained. The Amplified RF signal is measured at the output of the Directional coupler. A RF attenuation of 52.3 dB is compensated for all measured readings. 27 VDC (from a 230VAC, 60Hz power supply), 27°C, 55% relative humidity. 20 kHz at 6 dB point per test plan.

Low Channel = 851.03 MHz Mid Channel = 860.00 MHz Hi Channel = 868.97 MHz

**Test Equipment:** 


| Equipment           | Asset # | Manufacturer | Model #   | Serial #   | Cal Date | Cal Due |
|---------------------|---------|--------------|-----------|------------|----------|---------|
| 1/4" Heliax Coaxial | NA      | Andrew       | FSJ-50A-4 | Cable#7    | 071502   | 071503  |
| Cable               |         |              |           | (6 ft)     |          |         |
| Spectrum Analyzer   | 02467   | Agilent      | E7405A    | US40240225 | 032902   | 032903  |




Page 10 of 40 Report No.: FC02-086A



Occupied Bandwidth - 860 MHz



Occupied Bandwidth - 869 MHz





#### 2.1033(c)(14)/2.1051/90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINAL

**Emission Mask for EA based Systems:** Rated power output: 140 watt & authorized band width: 20 kHz

# 90.691 Emission mask requirements for EA-based systems:

- (a) Out-of-band emission requirement shall apply only to the "outer" channels included in an EA license and to spectrum adjacent to interior channels used by incumbent licensees. The emission limits are as follows:
- (1) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log10(f/6.1) decibels or 50 + 10 Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz.

```
Attenuation: 50 + 10 Log (P)
= 50 + 10 Log (140)
= 71.46 dB
(87 dBuV regardless of power)
```

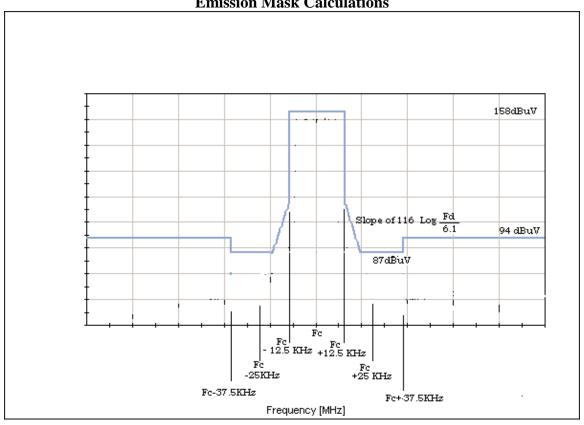
To calculate break point at 71.46 dB (this is the lesser of the required attenuation)

```
116 log (f_d /6.1 ) dB = 71.46 dB

f_d = (6.1 x antilog 71.46/116 )

= 25 kHz
```

(2) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.


```
Attenuation: 43 + 10Log10(P)
= 43 + 10 Log (140)
= 64.46 dB (this is the lesser of the required attenuation)
(94 dBuV regardless of power)
```

(b) When an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in this section

Page 12 of 40 Report No.: FC02-086A







| Frequency band            | Required attenuation |
|---------------------------|----------------------|
| -12.5  kHz to  +12.5  kHz | 0 dB                 |

-25 kHz to - 12.5 kHz, $116 \log (f_d/6.1) dB$ +12.5 kHz to +25 kHz

71.46 dBc (87 dBuV) -37 kHz to - 25 kHz

+25 kHz to +37 kHz

+8 MHz to -37 kHz, 43+10 Log (P)

= 64.46 dBc ( P = 140 watt) (94 dBuV) +37 kHz to +9000 MHz



# **Emission Mask Calculations**

# Power to voltage level (dBuV) conversion

Rated power = 
$$140$$
 watts  $R = 50$  Ohm

Power = 
$$\frac{V^2}{R}$$

$$V = \sqrt{\text{Power x R}}$$

$$V = \sqrt{140 \times 50}$$

$$V = \sqrt{7000}$$

$$V = 83.66 V$$

$$V (dB\mu V) = 20 Log \left( \frac{83.66}{1 \times 10^{-6}} \right)$$
$$= 158 dB\mu V$$



# **Limit line for Spurious Conducted Emission:**

Required Attenuation = 
$$43+10 \text{ Log } P dB$$

Limit line (dBuV) = 
$$V_{dBuv}$$
 - Attenuation

$$V_{\text{dBuV}} = 20 \operatorname{Log} \frac{V}{1 \times 10^{-6}}$$

$$= 20 \left( \text{Log V} - \text{Log 1 x } 10^{-6} \right)$$

$$= 20 \text{ Log V} - 20 \text{ Log1 x } 10^{-6}$$

$$=$$
 20 Log V  $-$  20  $(-6)$ 

$$=$$
 20 Log V + 120

Attenuation = 
$$43 + 10 \text{ Log P}$$

$$= 43 + 10 \operatorname{Log} \frac{V^2}{R}$$

$$= 43 + 10 \left( \text{Log V}^2 - \text{Log R} \right)$$

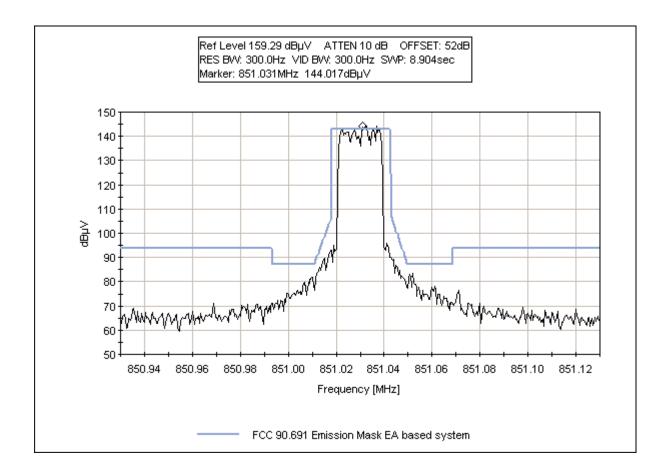
$$=$$
 43+10 (2 Log V - Log R)

$$=$$
 43 + 20 Log V - 10 Log R

Limit line = 
$$V_{dBuv}$$
 - Attenuation

$$= 20 \text{ Log V} + 120 - (43 + 20 \text{ Log V} - 10 \text{Log R})$$

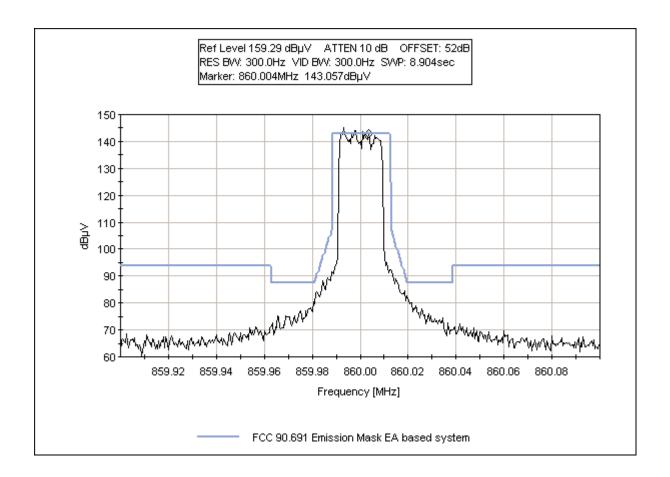
$$= 20 \log V + 120 - 43 - 20 \log V + 10 \log R$$


$$= 20 \text{ Log V} + 120 - 43 - 20 \text{ Log V} + 10 \text{Log R}$$

= 
$$120 - 43 + 10 \text{ Log } 50$$
 Note :  $R = 50 \Omega$ 

$$=$$
 120  $-43 + 16.897$ 

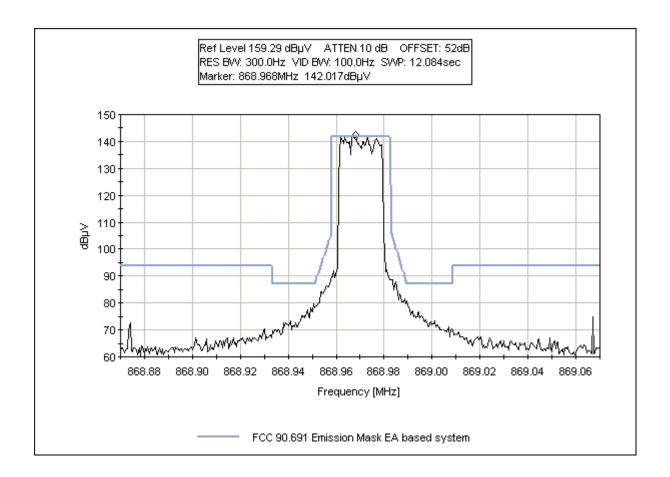



#### Emission Mask - 851 MHz



Page 16 of 40 Report No.: FC02-086A




# Emission Mask - 860 MHz



Page 17 of 40 Report No.: FC02-086A



# Emission Mask - 868 MHz



Page 18 of 40 Report No.: FC02-086A



Test Location: CKC Laboratories Inc. •180 N Olinda Place • Brea CA, 92823 • 714-993-6112

Customer: **Powerwave Technologies** 

Specification: FCC 90.210 Spurious Emission at Antenna Terminal

Work Order #: **79565** Date: 9/12/02 Test Type: **Conducted Emissions** Time: 16:36:51

Equipment: Multi Carrier RF Power Amplifier Sequence#: 1

Manufacturer: Powerwave Technologies Tested By: Eddie Wong Model: G3S-800-140-031 27 V dc

S/N: C00000UM9M

# Equipment Under Test (\* = EUT): Function Manufacturer Model # S/N Multi Carrier RF Power Amplifier\* Powerwave Technologies G3S-800-140-031 C00000UM9M

#### Support Devices:

| T I              |              |         |            |
|------------------|--------------|---------|------------|
| Function         | Manufacturer | Model # | S/N        |
| Signal Generator | Agilent      | 4433B   | US28440615 |
| Signal Generator | Agilent      | 4433B   | US40051329 |
| Signal Generator | Agilent      | 4432B   | US40053285 |
| Power Meter      | Agilent      | E4418B  | US39251692 |
| RF Combiner      | Anaren       | 44000   | 416        |
| DC Power Supply  | Power Ten    | NA      | 003973     |

#### Test Conditions / Notes:

Rack mount EUT placed on the test bench. Three signal generators send 64 QAM signal to the RF input of the EUT via a RF signal combiner. The output of the EUT is connected to RF attenuator and Directional coupler. A RF attenuation of 52.3 dB is compensated for all measured readings. 140 watts of RF power is maintained at time load. The Amplified RF signal is measured at the output of the Directional coupler. Low Channel = 851.03 MHz, Mid Channel = 860.00 MHz, Hi Channel = 868.97 MHz. Range of measurement: 8 MHz - 9 GHz. Required Attenuation = -43+10Log(P) = -43+10 Log(140) = 64.46 dB (Emission limit = 94 dB at antenna terminal). 8-30 MHz: RBW=VBW= 9 kHz. 30-1000 MHz: RBW=VBW= 120 kHz. 1000-9000 MHz:RBW=VBW= 1 MHz. 27 VDC (from a 230VAC, 60Hz power supply), 27°C, 55% relative humidity.

#### Transducer Legend:

| T1=Brea Cable: 6' 1/4" Heliax - Brea # 7. |         |       |           |           |       | T2=1.50 | Hz High | h Pass Filte | er, A/N 014 | -15      |       |
|-------------------------------------------|---------|-------|-----------|-----------|-------|---------|---------|--------------|-------------|----------|-------|
| Measuremen                                | t Data: | Read  | ing liste | ed by mai | rgin. |         |         | Test Lead    | l: Antenna' | Terminal |       |
| # Fı                                      | req Rd  | lng 7 | Γ1        | T2        |       |         | Dist    | Corr         | Spec        | Margin   | Polar |
| M                                         | Hz dB   | μV c  | iΒ        | dB        | dB    | dB      | Table   | $dB\mu V/m$  | $dB\mu V/m$ | dB       | Ant   |
| 1 860.                                    | .053M 1 | 59.0  | +0.0      | +0.0      |       |         | +0.0    | 159.0        | 94.0        | +65.0    | Anten |
|                                           |         |       |           |           |       |         |         |              | Fundament   | al       |       |
| 2 868.                                    | .998M 1 | 58.9  | +0.0      | +0.0      |       |         | +0.0    | 158.9        | 94.0        | +64.9    | Anten |
|                                           |         |       |           |           |       |         |         |              | Fundament   | al       |       |
| 3 851.                                    | .095M 1 | 58.8  | +0.0      | +0.0      |       |         | +0.0    | 158.8        | 94.0        | +64.8    | Anten |
|                                           |         |       |           |           |       |         |         |              | Fundament   | al       |       |
| 4 1728                                    | .958M   | 89.5  | +0.6      | +0.4      |       |         | +0.0    | 90.5         | 94.0        | -3.5     | Anten |
| Ave                                       |         |       |           |           |       |         |         |              |             |          |       |
| ^ 1728                                    | .958M 1 | 10.5  | +0.6      | +0.4      |       |         | +0.0    | 111.5        | 94.0        | +17.5    | Anten |
|                                           |         |       |           |           |       |         |         |              |             |          |       |

Page 19 of 40 Report No.: FC02-086A



| 6 1'<br>Av  | 710.958M<br>ve | 89.1  | +0.6 | +0.5 | +0.0 | 90.2  | 94.0 | -3.8  | Anten |
|-------------|----------------|-------|------|------|------|-------|------|-------|-------|
| ^ 1         | 710.958M       | 110.0 | +0.6 | +0.5 | +0.0 | 111.1 | 94.0 | +17.1 | Anten |
| 8 7         | 761.350M       | 84.9  | +0.0 | +0.0 | +0.0 | 84.9  | 94.0 | -9.1  | Anten |
| 9 1'<br>Av  | 702.318M<br>ve | 83.3  | +0.6 | +0.5 | +0.0 | 84.4  | 94.0 | -9.6  | Anten |
| ^ 1         | 702.318M       | 106.0 | +0.6 | +0.5 | +0.0 | 107.1 | 94.0 | +13.1 | Anten |
| 11 7        | 758.450M       | 81.7  | +0.0 | +0.0 | +0.0 | 81.7  | 94.0 | -12.3 | Anten |
| 12          | 113.100M       | 76.4  | +0.0 | +0.0 | +0.0 | 76.4  | 94.0 | -17.6 | Anten |
| 13 10<br>Av | 693.198M<br>ve | 74.9  | +0.6 | +0.5 | +0.0 | 76.0  | 94.0 | -18.0 | Anten |
| ^ 10        | 693.198M       | 94.5  | +0.6 | +0.5 | +0.0 | 95.6  | 94.0 | +1.6  | Anten |
| 15 10<br>Av | 684.198M<br>ve | 73.3  | +0.6 | +0.5 | +0.0 | 74.4  | 94.0 | -19.6 | Anten |
| ^ 10        | 684.198M       | 92.0  | +0.6 | +0.5 | +0.0 | 93.1  | 94.0 | -0.9  | Anten |
| 17 2:<br>Av | 580.070M<br>ve | 68.6  | +1.1 | +0.6 | +0.0 | 70.3  | 94.0 | -23.7 | Anten |
| ^ 2:        | 580.070M       | 84.8  | +1.1 | +0.6 | +0.0 | 86.5  | 94.0 | -7.5  | Anten |

Page 20 of 40 Report No.: FC02-086A





Direct Connect at Antenna Port Test Setup – Front



Direct Connect at Antenna Port Test Setup - Front





Direct Connect at Antenna Port Test Setup - Back

# **Test Equipment:**

| Equipment           | Asset # | Manufacturer | Model #   | Serial #   | Cal Date | Cal Due |
|---------------------|---------|--------------|-----------|------------|----------|---------|
| Spectrum Analyzer   | 02554   | HP           | 8566B     | 2746A06369 | 052102   | 052103  |
| (Site D)            |         |              |           |            |          |         |
| QP Adapter          | 00311   | HP           | 85650A    | 2430A00532 | 061402   | 061403  |
| (Site D)            |         |              |           |            |          |         |
| 1/4" Heliax Coaxial | NA      | Andrew       | FSJ-50A-4 | Cable#7    | 071502   | 071503  |
| Cable               |         |              |           | (6 ft)     |          |         |
| 1.5 GHz, HPF        | 01415   | HP           | 84300-    | 3643A00026 | 030502   | 030503  |
|                     |         |              | 80037     |            |          |         |

Page 22 of 40 Report No.: FC02-086A



# 2.1033(c)(14)/2.1053/90.210 - FIELD STRENGTH OF SPURIOUS RADIATION

Operating Frequency: 851 – 869 MHz

Channels: Low, middle, high

Highest Measured Output Power: 51.46 ERP(dBm)= 140 ERP(Watts)

Distance: 3 meters

Limit: 43+10Log(P) 64.46 dBc

| Freq. (MHz) | Reference Level (dBm) | Antenna Polarity (H/V) | dBc    |
|-------------|-----------------------|------------------------|--------|
| 43.97       | -32.3                 | Vert                   | 83.76  |
| 878.02      | -32.70                | Vert                   | 84.16  |
| 842.16      | -32.70                | Vert                   | 84.16  |
| 3,458.04    | -37.10                | Horiz                  | 88.56  |
| 3,449.25    | -38.70                | Vert                   | 90.16  |
| 3,458.52    | -39.80                | Vert                   | 91.26  |
| 54.51       | -41.20                | Vert                   | 92.66  |
| 842.14      | -41.70                | Horiz                  | 93.16  |
| 887.00      | -41.80                | Vert                   | 93.26  |
| 3,413.18    | -42.20                | Vert                   | 93.66  |
| 3,431.24    | -42.40                | Vert                   | 93.86  |
| 44.18       | -43.40                | Horiz                  | 94.86  |
| 3,440.21    | -44.00                | Vert                   | 95.46  |
| 833.19      | -44.80                | Vert                   | 96.26  |
| 3,421.85    | -45.40                | Vert                   | 96.86  |
| 886.97      | -45.70                | Horiz                  | 97.16  |
| 878.04      | -46.50                | Horiz                  | 97.96  |
| 4,308.94    | -46.60                | Horiz                  | 98.06  |
| 4,308.94    | -46.60                | Horiz                  | 98.06  |
| 58.05       | -47.80                | Horiz                  | 99.26  |
| 1,737.91    | -48.60                | Vert                   | 100.06 |
| 1,729.01    | -49.60                | Vert                   | 101.06 |
| 1,030.54    | -49.70                | Horiz                  | 101.16 |
| 1,702.04    | -49.90                | Vert                   | 101.36 |
| 1,728.84    | -50.00                | Horiz                  | 101.46 |
| 266.76      | -51.60                | Horiz                  | 103.06 |
| 46.44       | -51.90                | Horiz                  | 103.36 |
| 83.39       | -52.80                | Horiz                  | 104.26 |
| 183.39      | -52.90                | Horiz                  | 104.36 |
| 116.71      | -54.00                | Vert                   | 105.46 |
| 56.22       | -54.60                | Horiz                  | 106.06 |
| 64.27       | -55.20                | Vert                   | 106.66 |
| 1,212.85    | -55.90                | Vert                   | 107.36 |
| 2,307.94    | -56.30                | Horiz                  | 107.76 |

Page 23 of 40 Report No.: FC02-086A



#### **Limit line for Spurious Radiated Emission:**

Required Attenuation = 43+10 Log P (dB)

For radiated spurious emission measured at 3 meter test distance:

Required attenuation =  $43+10 \text{ Log } P_{\text{t at 3 meter}} dB$ 

Limit line (dBuV) =  $E_{dBuv}$  - Attenuation

 $E_{dBuv}$  = Measured field strength at 3 meter in dBuV/m

#### **Power Density (Isotropic):**

$$P_D = \frac{P_t}{4\pi r^2}$$

 $P_D = Power Density in Watts /m^2$ 

Pt = Average Transmit Power

r = Test distance

#### Field Intensity E (V/m):

$$E = \sqrt{P_D \times 377}$$

$$E = \frac{\sqrt{P_t \times 377}}{4\pi r^2}$$

$$E = \sqrt{\frac{P_t \times 30}{r^2}}$$

$$P_t = \left(\frac{E^2 \times r^2}{30}\right)$$

$$10 \text{ Log P}_t = 10 \text{ Log E}^2 (V/m) + 10 \text{ Log r}^2 - 10 \text{ Log } 30$$

$$10 \text{ Log } P_t = 20 \text{ Log } E(V/m) + 20 \text{ Log } r - 10 \text{ Log } 30$$



At 3 meter, r = 3 m

$$10 \text{ Log } P_t = 20 \text{ Log } E \text{ (V/m)} + 20 \text{ Log } 3 - 10 \text{ Log } 30$$

$$10 \text{ Log P}_t = 20 \text{ Log E (V/m)} + 9.54 - 14.77$$

$$10 \text{ Log P}_t = 20 \text{ Log E } (V/m) - 5.23$$

# Since 20 Log E (V/m) = 20 Log E (uV/m) - 120

$$10 \text{ Log P}_t = 20 \text{ Log E } (uV/m) - 120 - 5.23$$

$$10 \text{ Log P}_t = 20 \text{ Log E } (uV/m) - 125.23$$

Limit line (dBuV) at 3 meter = 
$$E_{dBuv}$$
 - Attenuation

$$= E_{dBuv} - (43+10 Log P_{t at 3 meter})$$

$$= \qquad \quad E_{dBuv} \quad \text{- 43 - 10 Log} \;\; P_{t \; \text{at 3 meter}}$$

= 
$$E_{dBuv}$$
 - 43 - (20 Log E (uV/m) - 125.23)

= 
$$E_{dBuv}$$
 43 - 20 Log E (uV/m) + 125.23

= 
$$E_{dBuv}$$
 - 20 Log E (uV/m) + 82.23

Since 20 Log E (uV/m) = E in dBuV/m

$$=$$
  $E_{dBuv} - E_{dBuv} + 82.23$ 

Radiated emission limit 3 meter = 82.23 dBuV at any power level measured in dBuV



#### **Test Conditions:**

Rack mount EUT placed on the test bench. Three remotely located signal generators send 64 QAM signal to the RF input of the EUT via a RF signal combiner. The output of the EUT is connected to RF load and directional coupler. 140 watts of RF power is maintained at the RF load. Low Channel = 851.03 MHz, Mid Channel = 860.00 MHz, Hi Channel = 868.97 MHz. Range of measurement: 8 MHz- 9 GHz. Required attenuation = -43+10 Log(P) = -43+10 Log (140) = 64.46 dB (Emission limit = 82.23 dBuV/m at 3 meter). 8 MHz- 30 MHz: RBW=VBW= 9 kHz. 30 MHz - 1000 MHz: RBW=VBW= 120 kHz. 1000 MHz - 9000 MHz:RBW=VBW= 1 MHz. 27 VDC (from a 230VAC, 60Hz power supply), 22°C, 48% relative humidity.

**Test Equipment:** 

| Test Equipment:     |         | •            |            |            |          |         |
|---------------------|---------|--------------|------------|------------|----------|---------|
| Equipment           | Asset # | Manufacturer | Model #    | Serial #   | Cal Date | Cal Due |
| Spectrum Analyzer   | 01865   | HP           | 8566B      | 2532A02509 | 092801   | 092802  |
| QP Adapter          | 01437   | HP           | 85650A     | 3303A01884 | 092801   | 092802  |
| 8MHz-30MHz          |         |              |            |            |          |         |
| Loop Antenna        | 00314   | EMCO         | 6502       | 2014       | 72302    | 72303   |
| Antenna cable       | NA      | NA           | RG214      | Cable#15   | 122001   | 122002  |
| 30 MHz-1000MHz      |         |              |            |            |          |         |
| Bicon Antenna       | 306     | AH           | SAS200/540 | 220        | 092401   | 092402  |
| Log Periodic        | 331     | AH           | SAS 00/516 | 330        | 092401   | 092402  |
| Antenna             |         |              |            |            |          |         |
| Pre-amp             | 00309   | HP           | 8447D      | 1937A02548 | 082302   | 082303  |
| Antenna cable       | NA      | NA           | RG214      | Cable#15   | 122001   | 122002  |
| Pre-amp to SA cable | NA      | Harbour      | RG223/U    | Cable#10   | 070802   | 070803  |
| 1000-9000MHz        |         |              |            |            |          |         |
| Horn Antenna        | 0849    | EMCO         | 3115       | 6246       | 091002   | 091003  |
| Microwave Pre-amp   | 00786   | HP           | 83017A     | 3123A00281 | 091102   | 091103  |
| 1/4" Heliax Coaxial | NA      | Andrew       | FSJ-50A-4  | Cable#7    | 071502   | 071503  |
| Cable               |         |              |            | (6 ft)     |          |         |
| Antenna (25ft)      | NA      | Andrew       | FSJ1-50A   | Cable#13   | 07/15/02 | 071503  |
| 1.5 GHz, HPF        | 01415   | HP           | 84300-     | 3643A00026 | 030502   | 030503  |
|                     |         |              | 80037      |            |          |         |
| 12' SMA Cable       | 1337    | W. L. Gore   | NA         | 244922     | 121201   | 121202  |

Page 26 of 40 Report No.: FC02-086A





Radiated Emissions - Front View



Radiated Emissions - Back View





Radiated Emissions - with Loop Antenna

Page 28 of 40 Report No.: FC02-086A



# 2.1033(c)(14)/2.1055/90.205(j) & 90.213- VOLTAGE VARIATIONS & FREQUENCY STABILITY

**Note:** FCC 90.213, Frequency Stability does not apply to this device because the EUT does not contain any frequency stability determining components.

# FCC 90.205(j) Voltage Variation on Power Output:

FCC 90.213 Frequency Stability limit: 851-866 MHz: 1.5 ppm & 866-869 MHz: 1.0 ppm

#### **Setup:**

Rack mount EUT placed on the test bench. Three signal generators send 64 QAM signal to the RF input of the EUT via a RF signal combiner. The output of the EUT is connected to RF attenuator and Directional coupler. 140 watts of RF power is maintained. The Amplified RF signal is measured at the output of the Directional coupler with a RF power meter and Spectrum analyzer. A RF attenuation of 52.3 dB is compensated for all measured readings.

Low Channel = 851.03 MHz Mid Channel = 860.00 MHz Hi Channel = 868.97 MHz

27 VDC (from a 230 VAC, 60Hz power supply), 27°C, 55% relative humidity.

#### **Results:**

| DC Voltage       | Variation in % | Measured RF Power | Difference (ppm) |
|------------------|----------------|-------------------|------------------|
| 23 VDC           | 85%            | 140 Watts         | 0                |
| 27 VDC (Nominal) | 100%           | 140 Watts         | 0                |
| 31 VDC           | 115%           | 140 Watts         | 0                |

| DC Voltage       | Variation in % | Measured Freq<br>(MHz) | Difference (ppm) |
|------------------|----------------|------------------------|------------------|
| 23 VDC           | 85%            | 851.03, 860, 868.07    | 0                |
| 27 VDC (Nominal) | 100%           | 851.03, 860, 868.07    | 0                |
| 31 VDC           | 115%           | 851.03, 860, 868.07    | 0                |

The EUT fulfilled the requirement by demonstrating power and frequency deviation of 0 ppm when the DC voltage was varied from 85% to 115 % of the nominal DC voltage.

Page 29 of 40 Report No.: FC02-086A



**Test Equipment:** 

| Equipment      | Asset # | Manufacturer | Model # | Serial #   | Cal Date | Cal Due |
|----------------|---------|--------------|---------|------------|----------|---------|
| RF Power Meter | 02082   | HP           | 435B    | 2445A11881 | 091202   | 091203  |



Direct Connect at Antenna Port Test Setup - Back

Page 30 of 40 Report No.: FC02-086A





Direct Connect at Antenna Port Test Setup – Front



Direct Connect at Antenna Port Test Setup - Front



#### 2.1091 – MAXIMUM PERMISSIBLE EXPOSURE CALCULATIONS

Date of Report: Aug 28, 2002

Calculations prepared for: Calculations prepared by:

Powerwave Technologies Eddie Wong

1801 E. St. Andrew Place
Santa Ana, CA 92705

110 N. Olinda Place
Brea, CA 9283

Model Number: G3S-800-140-31

FCC Identification: Pending

Fundamental Operating Frequency: 851-869 MHz

Maximum Rated Output Power: 140.00 Watts Measured Output Power: 140.00 Watts

MPE Limit in accordance with 1.1310(b): Limits for general population/uncontrolled exposure

MPE Limit for 851 MHz = 851/1500 = 0.5673 mW/cm<sup>2</sup> (5.673W/M<sup>2</sup>) MPE Limit for 869 MHz = 869/1500 = 0.5793 mW/ cm<sup>2</sup> (5.793W/M<sup>2</sup>)

| Power Output | Power Density | Minimum  |
|--------------|---------------|----------|
| (Watts)      | Limit         | Distance |
|              | $(mW/cm^2)$   | (Meters) |
| 140          | 0.5793        | 4.385    |

Power Density  $(W/M^2) = (30 * P_t * G) / (d^2 * Z_0)$ 

 $P_t$  = Power Delivered to the Antenna G = Antenna G

d = Distance in meters Zo = Impedance of Free Space

The typical antennas to be used with the EUT are structure mount antennas which under normal operation have an antenna height of at least 5 meters. As can be seen from the MPE result, this device passes the limit specified in 1.1310 at a distance of 4.385 meter.

Page 32 of 40 Report No.: FC02-086A



#### 15.109 – RADIATED EMISSIONS

Test Location: CKC Laboratories Inc. •180 N Olinda Place • Brea CA, 92823 • 714-993-6112

Customer: Powerwave Technologies
Specification: FCC 15.109 Class B

Work Order #: 79565 Date: 9/13/02
Test Type: Maximized emission Time: 16:00:58
Equipment: Multi Carrier RF Power Amplifier Sequence#: 3

Equipment: **Multi Carrier RF Power Amplifier** Sequence#: 3
Manufacturer: Powerwave Technologies Tested By: Eddie Wong

Model: G3S-800-140-031 S/N: C00000UM9M

Equipment Under Test (\* = EUT):

| Function                          | Manufacturer           | Model #         | S/N        |
|-----------------------------------|------------------------|-----------------|------------|
| Multi Carrier RF Power Amplifier* | Powerwave Technologies | G3S-800-140-031 | C00000UM9M |

Support Devices:

| Function         | Manufacturer | Model # | S/N        |
|------------------|--------------|---------|------------|
| Signal Generator | Agilent      | 4433B   | US28440615 |
| Signal Generator | Agilent      | 4433B   | US40051329 |
| Signal Generator | Agilent      | 4432B   | US40053285 |
| Power Meter      | Agilent      | E4418B  | US39251692 |
| RF Combiner      | Anaren       | 44000   | 416        |
| DC Power Supply  | Power Ten    | NA      | 003973     |

#### Test Conditions / Notes:

Rack mount EUT placed on the test bench. Three remotely located signal generators are connected to a RF signal combiner which is connected to the RF input port of the EUT. The output of the EUT is connected to RF load and Directional coupler. Mode: Standby mode (No RF signal sent from the signal generators). Low Channel = 851.03 MHz, Mid Channel = 860.00 MHz, Hi Channel = 868.97 MHz. Range of measurement: 30 MHz - 1000MHz. 30 MHz - 1000 MHz: RBW=VBW= 120 kHz. 27 VDC (from a 230VAC, 60Hz power supply), 22°C, 48% relative humidity.

Transducer Legend:

| Transancer Ecgena.     |                     |  |
|------------------------|---------------------|--|
| T1=Bicon 092401        | T2=Log 331 092401   |  |
| T3=Cable #10 070803    | T4=Cable #15 120602 |  |
| T5=Preamp 8447D 082302 |                     |  |

| Meas | urement Data: | Re   | eading lis | ted by ma | argin. | Test Distance: 3 Meters |       |             |             |        |       |
|------|---------------|------|------------|-----------|--------|-------------------------|-------|-------------|-------------|--------|-------|
| #    | Freq          | Rdng | T1         | T2        | T3     | T4                      | Dist  | Corr        | Spec        | Margin | Polar |
|      |               |      | T5         |           |        |                         |       |             |             |        |       |
|      | MHz           | dΒμV | dB         | dB        | dB     | dB                      | Table | $dB\mu V/m$ | $dB\mu V/m$ | dB     | Ant   |
|      | 1 60.000M     | 58.5 | +8.1       | +0.0      | +0.1   | +1.3                    | +0.0  | 39.6        | 40.0        | -0.4   | Vert  |
|      | QP            |      | -28.4      |           |        |                         |       |             |             |        |       |
|      | ^ 60.000M     | 62.2 | +8.1       | +0.0      | +0.1   | +1.3                    | +0.0  | 43.3        | 40.0        | +3.3   | Vert  |
|      |               |      | -28.4      |           |        |                         |       |             |             |        |       |
| (    | 3 59.477M     | 58.2 | +8.2       | +0.0      | +0.1   | +1.3                    | +0.0  | 39.4        | 40.0        | -0.6   | Vert  |
|      | QP            |      | -28.4      |           |        |                         |       |             |             |        |       |
| ,    | ^ 59.477M     | 62.1 | +8.2       | +0.0      | +0.1   | +1.3                    | +0.0  | 43.3        | 40.0        | +3.3   | Vert  |
|      |               |      | -28.4      |           |        |                         |       |             |             |        |       |

Page 33 of 40 Report No.: FC02-086A



| 5  | 59.466M<br>QP | 54.8 | +8.2<br>-28.4  | +0.0  | +0.1 | +1.3 | +0.0 | 36.0 | 40.0 | -4.0  | Horiz |
|----|---------------|------|----------------|-------|------|------|------|------|------|-------|-------|
| ٨  | 59.466M       | 60.5 | +8.2<br>-28.4  | +0.0  | +0.1 | +1.3 | +0.0 | 41.7 | 40.0 | +1.7  | Horiz |
| 7  | 50.159M       | 51.4 | +10.9<br>-28.4 | +0.0  | +0.1 | +1.2 | +0.0 | 35.2 | 40.0 | -4.8  | Vert  |
| 8  | 64.151M       | 53.8 | +7.6<br>-28.4  | +0.0  | +0.1 | +1.4 | +0.0 | 34.5 | 40.0 | -5.5  | Vert  |
| 9  | 37.500M<br>QP | 46.2 | +15.4<br>-28.5 | +0.0  | +0.1 | +1.1 | +0.0 | 34.3 | 40.0 | -5.7  | Vert  |
| ٨  | 37.500M       | 50.5 | +15.4<br>-28.5 | +0.0  | +0.1 | +1.1 | +0.0 | 38.6 | 40.0 | -1.4  | Vert  |
| 11 | 60.994M       | 51.3 | +8.0<br>-28.4  | +0.0  | +0.1 | +1.3 | +0.0 | 32.3 | 40.0 | -7.7  | Horiz |
| 12 | 44.581M       | 46.8 | +12.8<br>-28.5 | +0.0  | +0.1 | +1.1 | +0.0 | 32.3 | 40.0 | -7.7  | Vert  |
| 13 | 65.638M       | 51.6 | +7.4<br>-28.5  | +0.0  | +0.1 | +1.4 | +0.0 | 32.0 | 40.0 | -8.0  | Vert  |
| 14 | 224.008M      | 45.9 | +17.3<br>-28.3 | +0.0  | +0.2 | +2.7 | +0.0 | 37.8 | 46.0 | -8.2  | Horiz |
| 15 | 200.517M      | 43.7 | +16.8<br>-28.4 | +0.0  | +0.2 | +2.6 | +0.0 | 34.9 | 43.5 | -8.6  | Vert  |
| 16 | 879.973M      | 35.1 | +0.0<br>-27.5  | +22.7 | +0.5 | +5.9 | +0.0 | 36.7 | 46.0 | -9.3  | Horiz |
| 17 | 223.993M      | 43.1 | +17.3<br>-28.3 | +0.0  | +0.2 | +2.7 | +0.0 | 35.0 | 46.0 | -11.0 | Vert  |
| 18 | 61.306M       | 48.0 | +7.9<br>-28.4  | +0.0  | +0.1 | +1.3 | +0.0 | 28.9 | 40.0 | -11.1 | Horiz |
| 19 | 256.022M      | 41.5 | +18.4<br>-28.3 | +0.0  | +0.3 | +2.9 | +0.0 | 34.8 | 46.0 | -11.2 | Horiz |
| 20 | 256.000M      | 41.4 | +18.4<br>-28.3 | +0.0  | +0.3 | +2.9 | +0.0 | 34.7 | 46.0 | -11.3 | Vert  |
| 21 | 416.070M      | 42.7 | +0.0<br>-28.2  | +15.7 | +0.3 | +3.9 | +0.0 | 34.4 | 46.0 | -11.6 | Horiz |
| 22 | 111.987M      | 43.4 | +13.9<br>-28.3 | +0.0  | +0.2 | +1.9 | +0.0 | 31.1 | 43.5 | -12.4 | Horiz |
| 23 | 45.594M       | 42.2 | +12.4<br>-28.4 | +0.0  | +0.1 | +1.2 | +0.0 | 27.5 | 40.0 | -12.5 | Horiz |
| 24 | 83.305M       | 46.2 | +7.6<br>-28.5  | +0.0  | +0.1 | +1.6 | +0.0 | 27.0 | 40.0 | -13.0 | Vert  |
| 25 | 415.998M      | 40.6 | +0.0           | +15.7 | +0.3 | +3.9 | +0.0 | 32.3 | 46.0 | -13.7 | Vert  |
| 26 | 233.908M      | 39.4 | +17.5<br>-28.3 | +0.0  | +0.2 | +2.8 | +0.0 | 31.6 | 46.0 | -14.4 | Vert  |
| 27 | 72.101M       | 45.6 | +6.9<br>-28.5  | +0.0  | +0.1 | +1.5 | +0.0 | 25.6 | 40.0 | -14.4 | Vert  |
| 28 | 79.230M       | 45.6 | +6.8<br>-28.5  | +0.0  | +0.1 | +1.6 | +0.0 | 25.6 | 40.0 | -14.4 | Vert  |
|    |               |      |                |       |      |      |      |      |      |       |       |

Page 34 of 40 Report No.: FC02-086A



| 29 | 320.092M | 35.1 | +0.0<br>-28.3  | +20.9 | +0.3 | +3.4 | +0.0 | 31.4 | 46.0 | -14.6 | Horiz |
|----|----------|------|----------------|-------|------|------|------|------|------|-------|-------|
| 30 | 112.062M | 41.2 | +13.9<br>-28.3 | +0.0  | +0.2 | +1.9 | +0.0 | 28.9 | 43.5 | -14.6 | Vert  |
| 31 | 336.074M | 36.1 | +0.0<br>-28.3  | +19.7 | +0.3 | +3.4 | +0.0 | 31.2 | 46.0 | -14.8 | Horiz |
| 32 | 80.087M  | 45.1 | +6.8<br>-28.5  | +0.0  | +0.1 | +1.6 | +0.0 | 25.1 | 40.0 | -14.9 | Vert  |
| 33 | 52.617M  | 41.9 | +10.1<br>-28.4 | +0.0  | +0.1 | +1.2 | +0.0 | 24.9 | 40.0 | -15.1 | Horiz |
| 34 | 352.064M | 36.7 | +0.0<br>-28.3  | +18.6 | +0.3 | +3.5 | +0.0 | 30.8 | 46.0 | -15.2 | Horiz |
| 35 | 128.087M | 38.1 | +16.1<br>-28.3 | +0.0  | +0.2 | +2.0 | +0.0 | 28.1 | 43.5 | -15.4 | Vert  |
| 36 | 70.123M  | 44.6 | +6.9<br>-28.5  | +0.0  | +0.1 | +1.5 | +0.0 | 24.6 | 40.0 | -15.4 | Vert  |
| 37 | 480.062M | 37.4 | +0.0<br>-28.2  | +16.6 | +0.4 | +4.2 | +0.0 | 30.4 | 46.0 | -15.6 | Horiz |
| 38 | 288.013M | 34.0 | +21.2<br>-28.3 | +0.0  | +0.3 | +3.2 | +0.0 | 30.4 | 46.0 | -15.6 | Horiz |
| 39 | 80.016M  | 44.4 | +6.8<br>-28.5  | +0.0  | +0.1 | +1.6 | +0.0 | 24.4 | 40.0 | -15.6 | Horiz |
| 40 | 240.030M | 37.9 | +17.6<br>-28.3 | +0.0  | +0.3 | +2.8 | +0.0 | 30.3 | 46.0 | -15.7 | Horiz |
| 41 | 367.976M | 37.0 | +0.0<br>-28.3  | +17.5 | +0.3 | +3.6 | +0.0 | 30.1 | 46.0 | -15.9 | Vert  |
| 42 | 207.983M | 36.2 | +17.0<br>-28.4 | +0.0  | +0.2 | +2.6 | +0.0 | 27.6 | 43.5 | -15.9 | Horiz |
| 43 | 56.716M  | 42.1 | +9.0<br>-28.4  | +0.0  | +0.1 | +1.3 | +0.0 | 24.1 | 40.0 | -15.9 | Horiz |
| 44 | 368.042M | 36.7 | +0.0<br>-28.3  | +17.5 | +0.3 | +3.6 | +0.0 | 29.8 | 46.0 | -16.2 | Horiz |
| 45 | 600.111M | 32.9 | +0.0<br>-27.7  | +18.9 | +0.4 | +4.9 | +0.0 | 29.4 | 46.0 | -16.6 | Horiz |
| 46 | 400.094M | 38.0 | +0.0<br>-28.2  | +15.5 | +0.3 | +3.8 | +0.0 | 29.4 | 46.0 | -16.6 | Horiz |
| 47 | 199.955M | 35.7 | +16.8<br>-28.4 | +0.0  | +0.2 | +2.6 | +0.0 | 26.9 | 43.5 | -16.6 | Horiz |
| 48 | 199.955M | 35.7 | +16.8          | +0.0  | +0.2 | +2.6 | +0.0 | 26.9 | 43.5 | -16.6 | Horiz |
| 49 | 160.066M | 35.1 | +17.6<br>-28.4 | +0.0  | +0.2 | +2.3 | +0.0 | 26.8 | 43.5 | -16.7 | Vert  |
| 50 | 351.997M | 35.1 | +0.0           | +18.6 | +0.3 | +3.5 | +0.0 | 29.2 | 46.0 | -16.8 | Vert  |
| 51 | 175.993M | 35.0 | +17.4          | +0.0  | +0.2 | +2.4 | +0.0 | 26.6 | 43.5 | -16.9 | Horiz |
| 52 | 127.975M | 36.6 | +16.1          | +0.0  | +0.2 | +2.0 | +0.0 | 26.6 | 43.5 | -16.9 | Horiz |
| 53 | 817.291M | 28.4 | +0.0<br>-27.5  | +21.8 | +0.5 | +5.7 | +0.0 | 28.9 | 46.0 | -17.1 | Horiz |

Page 35 of 40 Report No.: FC02-086A



| 54 | 160.041M | 34.7 | +17.6<br>-28.4 | +0.0  | +0.2 | +2.3 | +0.0 | 26.4 | 43.5 | -17.1 | Horiz |
|----|----------|------|----------------|-------|------|------|------|------|------|-------|-------|
| 55 | 399.994M | 37.4 | +0.0           | +15.5 | +0.3 | +3.8 | +0.0 | 28.8 | 46.0 | -17.2 | Vert  |
| 56 | 320.013M | 32.4 | +0.0<br>-28.3  | +20.9 | +0.3 | +3.4 | +0.0 | 28.7 | 46.0 | -17.3 | Vert  |
| 57 | 131.260M | 35.9 | +16.3<br>-28.3 | +0.0  | +0.2 | +2.1 | +0.0 | 26.2 | 43.5 | -17.3 | Vert  |
| 58 | 288.002M | 32.2 | +21.2<br>-28.3 | +0.0  | +0.3 | +3.2 | +0.0 | 28.6 | 46.0 | -17.4 | Vert  |
| 59 | 464.034M | 35.5 | +0.0<br>-28.2  | +16.4 | +0.4 | +4.1 | +0.0 | 28.2 | 46.0 | -17.8 | Horiz |
| 60 | 152.007M | 34.3 | +17.4<br>-28.4 | +0.0  | +0.2 | +2.2 | +0.0 | 25.7 | 43.5 | -17.8 | Horiz |
| 61 | 192.067M | 34.4 | +17.0<br>-28.4 | +0.0  | +0.2 | +2.5 | +0.0 | 25.7 | 43.5 | -17.8 | Vert  |
| 62 | 132.760M | 35.2 | +16.5          | +0.0  | +0.2 | +2.1 | +0.0 | 25.7 | 43.5 | -17.8 | Vert  |
| 63 | 848.031M | 27.2 | +0.0<br>-27.6  | +22.2 | +0.5 | +5.8 | +0.0 | 28.1 | 46.0 | -17.9 | Horiz |
| 64 | 384.068M | 35.8 | +0.0<br>-28.2  | +16.5 | +0.3 | +3.7 | +0.0 | 28.1 | 46.0 | -17.9 | Horiz |
| 65 | 800.116M | 27.8 | +0.0<br>-27.5  | +21.5 | +0.5 | +5.7 | +0.0 | 28.0 | 46.0 | -18.0 | Horiz |
| 66 | 324.070M | 32.0 | +0.0<br>-28.3  | +20.6 | +0.3 | +3.4 | +0.0 | 28.0 | 46.0 | -18.0 | Horiz |
| 67 | 480.022M | 35.0 | +0.0<br>-28.2  | +16.6 | +0.4 | +4.2 | +0.0 | 28.0 | 46.0 | -18.0 | Vert  |
| 68 | 139.276M | 34.6 | +17.0<br>-28.4 | +0.0  | +0.2 | +2.1 | +0.0 | 25.5 | 43.5 | -18.0 | Horiz |
| 69 | 240.032M | 35.6 | +17.6<br>-28.3 | +0.0  | +0.3 | +2.8 | +0.0 | 28.0 | 46.0 | -18.0 | Vert  |
| 70 | 448.035M | 35.6 | +0.0<br>-28.3  | +16.2 | +0.4 | +4.0 | +0.0 | 27.9 | 46.0 | -18.1 | Horiz |
| 71 | 444.556M | 35.6 | +0.0<br>-28.3  | +16.2 | +0.4 | +4.0 | +0.0 | 27.9 | 46.0 | -18.1 | Horiz |
| 72 | 120.069M | 36.2 | +15.3<br>-28.3 | +0.0  | +0.2 | +2.0 | +0.0 | 25.4 | 43.5 | -18.1 | Vert  |
| 73 | 143.989M | 34.1 | +17.2<br>-28.4 | +0.0  | +0.2 | +2.2 | +0.0 | 25.3 | 43.5 | -18.2 | Horiz |
| 74 | 312.060M | 30.7 | +0.0<br>-28.3  | +21.5 | +0.3 | +3.4 | +0.0 | 27.6 | 46.0 | -18.4 | Horiz |
| 75 | 800.000M | 27.1 | +0.0<br>-27.5  | +21.5 | +0.5 | +5.7 | +0.0 | 27.3 | 46.0 | -18.7 | Vert  |
| 76 | 114.782M | 36.6 | +14.4<br>-28.3 | +0.0  | +0.2 | +1.9 | +0.0 | 24.8 | 43.5 | -18.7 | Vert  |
| 77 | 324.024M | 31.1 | +0.0<br>-28.3  | +20.6 | +0.3 | +3.4 | +0.0 | 27.1 | 46.0 | -18.9 | Vert  |
| 78 | 230.490M | 35.0 | +17.4<br>-28.3 | +0.0  | +0.2 | +2.7 | +0.0 | 27.0 | 46.0 | -19.0 | Horiz |
|    |          |      |                |       |      |      |      |      |      |       |       |

Page 36 of 40 Report No.: FC02-086A



| 79  | 432.078M | 34.8 | +0.0<br>-28.3  | +16.0 | +0.4 | +3.9 | +0.0 | 26.8 | 46.0 | -19.2 | Horiz |
|-----|----------|------|----------------|-------|------|------|------|------|------|-------|-------|
| 80  | 228.517M | 34.8 | +17.4<br>-28.3 | +0.0  | +0.2 | +2.7 | +0.0 | 26.8 | 46.0 | -19.2 | Horiz |
| 81  | 282.672M | 30.7 | +20.8<br>-28.2 | +0.0  | +0.3 | +3.2 | +0.0 | 26.8 | 46.0 | -19.2 | Vert  |
| 82  | 383.995M | 34.4 | +0.0<br>-28.2  | +16.5 | +0.3 | +3.7 | +0.0 | 26.7 | 46.0 | -19.3 | Vert  |
| 83  | 136.086M | 33.4 | +16.8<br>-28.3 | +0.0  | +0.2 | +2.1 | +0.0 | 24.2 | 43.5 | -19.3 | Vert  |
| 84  | 192.002M | 32.8 | +17.0<br>-28.4 | +0.0  | +0.2 | +2.5 | +0.0 | 24.1 | 43.5 | -19.4 | Horiz |
| 85  | 109.559M | 37.1 | +13.4<br>-28.4 | +0.0  | +0.1 | +1.9 | +0.0 | 24.1 | 43.5 | -19.4 | Vert  |
| 86  | 272.024M | 31.5 | +19.8<br>-28.2 | +0.0  | +0.3 | +3.1 | +0.0 | 26.5 | 46.0 | -19.5 | Horiz |
| 87  | 184.416M | 32.5 | +17.2          | +0.0  | +0.2 | +2.5 | +0.0 | 24.0 | 43.5 | -19.5 | Vert  |
| 88  | 144.071M | 32.8 | +17.2<br>-28.4 | +0.0  | +0.2 | +2.2 | +0.0 | 24.0 | 43.5 | -19.5 | Vert  |
| 89  | 615.341M | 29.1 | +0.0<br>-27.6  | +19.5 | +0.4 | +5.0 | +0.0 | 26.4 | 46.0 | -19.6 | Horiz |
| 90  | 360.094M | 32.6 | +0.0<br>-28.3  | +18.1 | +0.3 | +3.6 | +0.0 | 26.3 | 46.0 | -19.7 | Horiz |
| 91  | 464.004M | 33.6 | +0.0<br>-28.2  | +16.4 | +0.4 | +4.1 | +0.0 | 26.3 | 46.0 | -19.7 | Vert  |
| 92  | 207.995M | 32.0 | +17.0<br>-28.4 | +0.0  | +0.2 | +2.6 | +0.0 | 23.4 | 43.5 | -20.1 | Vert  |
| 93  | 600.050M | 29.3 | +0.0<br>-27.7  | +18.9 | +0.4 | +4.9 | +0.0 | 25.8 | 46.0 | -20.2 | Vert  |
| 94  | 272.007M | 30.4 | +19.8<br>-28.2 | +0.0  | +0.3 | +3.1 | +0.0 | 25.4 | 46.0 | -20.6 | Vert  |
| 95  | 406.424M | 33.8 | +0.0<br>-28.2  | +15.6 | +0.3 | +3.8 | +0.0 | 25.3 | 46.0 | -20.7 | Vert  |
| 96  | 280.074M | 29.6 | +20.5<br>-28.2 | +0.0  | +0.3 | +3.1 | +0.0 | 25.3 | 46.0 | -20.7 | Vert  |
| 97  | 360.020M | 31.2 | +0.0<br>-28.3  | +18.1 | +0.3 | +3.6 | +0.0 | 24.9 | 46.0 | -21.1 | Vert  |
| 98  | 447.947M | 32.3 | +0.0<br>-28.3  | +16.2 | +0.4 | +4.0 | +0.0 | 24.6 | 46.0 | -21.4 | Vert  |
| 99  | 460.862M | 31.8 | +0.0<br>-28.3  | +16.4 | +0.4 | +4.1 | +0.0 | 24.4 | 46.0 | -21.6 | Horiz |
| 100 | 376.066M | 31.5 | +0.0<br>-28.2  | +17.0 | +0.3 | +3.7 | +0.0 | 24.3 | 46.0 | -21.7 | Horiz |
| 101 | 216.020M | 32.1 | +17.1<br>-28.3 | +0.0  | +0.2 | +2.7 | +0.0 | 23.8 | 46.0 | -22.2 | Horiz |
| 102 | 126.047M | 31.5 | +15.9<br>-28.3 | +0.0  | +0.2 | +2.0 | +0.0 | 21.3 | 43.5 | -22.2 | Horiz |
| 103 | 527.986M | 29.3 | +0.0<br>-28.0  | +17.5 | +0.4 | +4.5 | +0.0 | 23.7 | 46.0 | -22.3 | Vert  |
|     |          |      |                |       |      |      |      |      |      |       |       |

Page 37 of 40 Report No.: FC02-086A




| 104 | 229.488M  | 31.4 | +17.4 | +0.0  | +0.2 | +2.7 | +0.0 | 23.4 | 46.0 | -22.6 | Vert |
|-----|-----------|------|-------|-------|------|------|------|------|------|-------|------|
|     |           |      | -28.3 |       |      |      |      |      |      |       |      |
| 105 | 511.974M  | 27.3 | +0.0  | +17.2 | +0.4 | +4.4 | +0.0 | 21.2 | 46.0 | -24.8 | Vert |
|     |           |      | -28.1 |       |      |      |      |      |      |       |      |
| 106 | 1002.690M | 26.5 | +0.0  | +0.0  | +0.0 | +0.0 | +0.0 | 26.5 | 54.0 | -27.5 | Vert |
|     |           |      | +0.0  |       |      |      |      |      |      |       |      |

# **Test Equipment:**

| _ tot =quipint      |         |              |            |            |          |         |
|---------------------|---------|--------------|------------|------------|----------|---------|
| Equipment           | Asset # | Manufacturer | Model #    | Serial #   | Cal Date | Cal Due |
| Spectrum Analyzer   | 01865   | HP           | 8566B      | 2532A02509 | 092801   | 092802  |
| QP Adapter          | 01437   | HP           | 85650A     | 3303A01884 | 092801   | 092802  |
| 30 MHz-1000MHz      |         |              |            |            |          |         |
| Bicon Antenna       | 306     | AH           | SAS200/540 | 220        | 092401   | 092402  |
| Log Periodic        | 331     | AH           | SAS 00/516 | 330        | 092401   | 092402  |
| Antenna             |         |              |            |            |          |         |
| Pre-amp             | 00309   | HP           | 8447D      | 1937A02548 | 082302   | 082303  |
| Antenna cable       | NA      | NA           | RG214      | Cable#15   | 122001   | 122002  |
| Pre-amp to SA cable | NA      | Harbour      | RG223/U    | Cable#10   | 070802   | 070803  |

Page 38 of 40 Report No.: FC02-086A





Radiated Emissions - Front View

Page 39 of 40 Report No.: FC02-086A





Radiated Emissions - Back View

Page 40 of 40 Report No.: FC02-086A