

ADDENDUM TO FC02-086

FOR THE

MULTI CARRIER RF POWER AMPLIFIER, G3S-800-140-031

FCC PART 90 AND PART 15 SUBPART B SECTION 15.109 CLASS B COMPLIANCE

DATE OF ISSUE: SEPTEMBER 25, 2002

PREPARED FOR:

Powerwave Technologies
1801 E. St. Andrew Place
Santa Ana, CA 92705
P.O. No.: 60179
W.O. No.: 79565

PREPARED BY:

Mary Ellen Clayton
CKC Laboratories, Inc.
5473A Clouds Rest
Mariposa, CA 95338
Date of test: September 12-16, 2002

Report No.: FC02-086A

This report contains a total of 40 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS
Administrative Information 3
Summary of Results 4
Conditions for Compliance. 4
Approvals 4
Equipment Under Test (EUT) Description 5
Equipment Under Test 5
Peripheral Devices 5
2.1033(c)(3) User's Manual 6
2.1033(c)(4) Type of Emissions 6
2.1033(c)(5) Frequency Range 6
2.1033(c)(6) Operating Power 6
2.1033(c)(7) Maximum Power Rating 6
2.1033(c)(8) DC Voltages 6
2.1033(c)(9) Tune-Up Procedure 6
2.1033(c)(10) Schematics and Circuitry Description 6
2.1033(c)(11) Label and Placement 6
2.1033(c)(12) Submittal Photos 6
2.1033(c)(13) Modulation Information 6
2.1033(c)(14)/2.1046/90.205(j) RF Power Output 7
2.1033(c)(14)/2.1047(b) Modulation Characteristics - Audio Frequency Response 9
2.1033(c)(14)/2.1047(b) Modulation Characteristics - Modulation Limiting Response. 9
2.1033(c)(14)/2.1049(i)/90.210 Occupied Bandwidth 10
2.1033(c)(14)/2.1051/90.210 Spurious Emissions at Antenna Terminal 12
2.1033(c)(14)/2.1053/90.210 Field Strength of Spurious Radiation 23
2.1033(c)(14)/2.1055/90.205(j) \& 90.213 Voltage Variations \& Frequency Stability 29
2.1091 Maximum Permissible Exposure Calculations 32
15.109 Radiated Emissions 33

CKC Laboratories, Inc. has received Certificates of Accreditation from the following agencies: A2LA (USA); BSMI (Taiwan); Nemko (Norway); and GOST (Russia).
 CKC Laboratories, Inc has received test site Registration Acceptance from the following agencies: FCC (USA); VCCI (Japan); and Industry Canada.
 CKC Laboratories, Inc. has received Letters of Acceptance through an MRA for the following agencies:
 ACA/NATA (Australia); SABS (South Africa); SWEDAC (Sweden); Radio Communications Agency (RA); HOKLAS (Hong Kong); Bakom (Swiss); BIPT (Belgium); Denmark Telestyrelsen; RvA (Netherlands); SEE (Luxembourg) SITTEL (Bolivia); and UKAS (UK).

ADMINISTRATIVE INFORMATION

DATE OF TEST:

DATE OF RECEIPT:

PURPOSE OF TEST:

TEST METHOD:

FREQUENCY RANGE TESTED:

MANUFACTURER:

REPRESENTATIVE:

TEST LOCATION:

September 12-16, 2002

September 12, 2002

To demonstrate the compliance of the Multi Carrier RF Power Amplifier, G3S-800-140-031 with the requirements for FCC Part 90 and Part 15 Subpart B Section 15.109 Class B devices. Addendum A is to revise the emissions masks on pages 16-18.

ANSI C63.4 (1992) and Part 90

8 - 9000 MHz

Powerwave Technologies
1801 E. St. Andrew Place
Santa Ana, CA 92705

Jeffrey Dale

CKC Laboratories, Inc.
110 Olinda Place
Brea, CA 92621

SUMMARY OF RESULTS

As received, the Powerwave Technologies Multi Carrier RF Power Amplifier, G3S-800-140-031 was found to be fully compliant with the following standards and specifications:

United States

$>$ FCC Part 90 and Part 15 Subpart B Section 15.109 using:
$>$ ANSI C63.4 (1992) and Part 90 methods

CONDITIONS FOR COMPLIANCE

Conducted emissions for this device falls under the FCC DoC process. Conducted testing is not included in this report. The manufacturer does not plan to sell a power supply with this device. They will provide a statement in their user manual that in order to comply with FCC regulations, only an approved power supply is to be used with their product.

APPROVALS

QUALITY ASSURANCE:

Steve Behm, Director of Engineering Services

TEST PERSONNEL:

Eddie Wong, EMC Engineer

Septimiu Apahidean, EMC/Lab Manager

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The Multi-carrier RF power amplifier tested by CKC Laboratories was a production unit.

EQUIPMENT UNDER TEST

Multi Carrier RF Power Amplifier
Manuf: Powerwave Technologies
Model: G3S-800-140-031
Serial: C00000UM9M
FCC ID: E675JS0056 (pending)

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Signal Generator

Manuf: Agilent
Model: 4433B
Serial: US28440615
FCC ID: DoC

Signal Generator

Manuf: Agilent
Model: 4432B
Serial: US40053285
FCC ID: DoC

RF Combiner
Manuf: Anaren
Model: 44000
Serial: 416
FCC ID: DoC

Signal Generator

Manuf: Agilent
Model: 4433B
Serial: US40051329
FCC ID: DoC

Power Meter

Manuf: Agilent
Model: E4418B
Serial: US39251692
FCC ID: DoC

DC Power Supply
Manuf: Power Ten
Model: NA
Serial: 003973
FCC ID: NA
2.1033(c)(3) USER'S MANUAL

The necessary information is contained in a separate document.

2.1033 (c)(4) TYPE OF EMISSIONS

The necessary information is contained in a separate document.
2.1033(c)(5) FREQUENCY RANGE

The frequency range is $851-869 \mathrm{MHz}$.

2.1033(c)(6) OPERATING POWER

The measured RF power at antenna terminal = 140 watts ERP.

2.1033(c)(7) MAXIMUM POWER RATING

The maximum power limit is 1000 watts.

2.1033(c)(8) DC VOLTAGES

The necessary information is contained in a separate document.

2.1033(c)(9) TUNE-UP PROCEDURE

The necessary information is contained in a separate document.

2.1033(c)(10) SCHEMATICS AND CIRCUITRY DESCRIPTION

The necessary information is contained in a separate document.

2.1033(c)(11) LABEL AND PLACEMENT

The necessary information is contained in a separate document.

2.1033(c)(12) SUBMITTAL PHOTOS

The necessary information is contained in a separate document.
2.1033(c)(13) MODULATION INFORMATION

The necessary information is contained in a separate document.

2.1033(c)(14)/2.1046/90.205(j) - RF POWER OUTPUT

Setup:

The EUT is a rack mount placed on the test bench. Thee signal generators send 64 QAM signal to the RF input of the EUT via a RF Signal combiner. The output of the EUT is connected to RF attenuator and Directional coupler. 140 watts of RF power is maintained.

The Amplified RF signal is measured at the output of the Directional coupler with a RF power meter. A RF attenuation of 52.3 dB is compensated for all measured readings.

Low Channel $=851.03 \mathrm{MHz}$
Mid Channel $=860.00 \mathrm{MHz}$
Hi Channel $=868.97 \mathrm{MHz}$

27 V DC (from a 230 Vac 60 Hz power supply), $27^{\circ} \mathrm{C}, 55 \%$ rh.

The Maximum and minimum power level were measured by adjusting the input RF signal.

Results:

At max power the measured RF power at antenna terminal = 140 watts ERP.

At minimum power the measured RF power at antenna terminal $=0$ watts.

Test Equipment:

Equipment	Asset \#	Manufacturer	Model \#	Serial \#	Cal Date	Cal Due
RF Power Meter	02082	HP	$435 B$	$2445 A 11881$	091202	091203

Direct Connect at Antenna Port Test Setup - Front

Direct Connect at Antenna Port Test Setup - Front

Direct Connect at Antenna Port Test Setup - Back

Not applicable to this unit.
2.1033(c)(14)/2.1047(b) MODULATION CHARACTERISTICS - Modulation Limiting Response

Not applicable to this unit.

2.1033(c)(14)/2.1049(i)/90.210- OCCUPIED BANDWIDTH

Test Conditions:

The EUT is a rack mount placed on the test bench. The signal generators sends a 64 QAM signal to the RF input of the EUT via a RF signal combiner. The output of the EUT is connected to RF attenuator and Directional coupler. 140 watts of RF power is maintained. The Amplified RF signal is measured at the output of the Directional coupler. A RF attenuation of 52.3 dB is compensated for all measured readings. 27 VDC (from a $230 \mathrm{VAC}, 60 \mathrm{~Hz}$ power supply), $27^{\circ} \mathrm{C}$, 55% relative humidity. 20 kHz at 6 dB point per test plan.

Low Channel $=851.03 \mathrm{MHz}$
Mid Channel $=860.00 \mathrm{MHz}$
Hi Channel $=868.97 \mathrm{MHz}$
Test Equipment:

Equipment	Asset \#	Manufacturer	Model \#	Serial \#	Cal Date	Cal Due
$1 / 4 "$ Heliax Coaxial Cable	NA	Andrew	FSJ-50A-4	Cable\#7 $(6 \mathrm{ft})$	071502	071503
Spectrum Analyzer	02467	Agilent	E7405A	US40240225	032902	032903

Occupied Bandwidth - 851 MHz

Occupied Bandwidth - 860 MHz

Occupied Bandwidth - 869 MHz

2.1033(c)(14)/2.1051/90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINAL

Emission Mask for EA based Systems: Rated power output: 140 watt \& authorized band width: 20 kHz

90.691 Emission mask requirements for EA-based systems:

(a) Out-of-band emission requirement shall apply only to the "outer" channels included in an EA license and to spectrum adjacent to interior channels used by incumbent licensees. The emission limits are as follows:
(1) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz , the power of any emission shall be attenuated below the transmitter power (P) in watts by at least $116 \log 10(\mathrm{f} / 6.1)$ decibels or $50+10 \log 10(\mathrm{P})$ decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz .

$$
\begin{aligned}
\text { Attenuation: } & 50+10 \log (\mathrm{P}) \\
= & 50+10 \log (140) \\
= & 71.46 \mathrm{~dB}
\end{aligned}
$$

(87 dBuV regardless of power)
To calculate break point at 71.46 dB (this is the lesser of the required attenuation)

$$
\begin{aligned}
116 \log \left(\mathrm{f}_{\mathrm{d}} / 6.1\right) \mathrm{dB} & =71.46 \mathrm{~dB} \\
\mathrm{f}_{\mathrm{d}} & =(6.1 \mathrm{x} \text { antilog } 71.46 / 116) \\
& =25 \mathrm{kHz}
\end{aligned}
$$

(2) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz , the power of any emission shall be attenuated below the transmitter power (P) in watts by at least $43+10 \log 10(\mathrm{P})$ decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz .

Attenuation: $\quad 43+10 \log 10(\mathrm{P})$
$=43+10 \log (140)$
$=64.46 \mathrm{~dB} \quad$ (this is the lesser of the required attenuation)
(94 dBuV regardless of power)
(b) When an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in this section

Emission Mask Calculations

Frequency band

-12.5 kHz to +12.5 kHz
-25 kHz to -12.5 kHz , +12.5 kHz to +25 kHz
-37 kHz to -25 kHz
+25 kHz to +37 kHz
+8 MHz to -37 kHz , +37 kHz to +9000 MHz

Required attenuation

 0 dB$116 \log \left(f_{d} / 6.1\right) d B$
$71.46 \mathrm{dBc}(87 \mathrm{dBuV})$
$43+10 \log (\mathrm{P})$
$=64.46 \mathrm{dBc} \quad(\mathrm{P}=140$ watt $)(94 \mathrm{dBuV})$

Emission Mask Calculations

Power to voltage level (dBuV) conversion

$$
\begin{aligned}
& \text { Rated power }=140 \text { watts } \\
& \mathrm{R}=50 \mathrm{Ohm} \\
& \text { Power }=\frac{V^{2}}{\mathrm{R}} \\
& \mathrm{~V} \quad=\sqrt{\text { Power x R }} \\
& \mathrm{V}=\sqrt{140 \times 50} \\
& \mathrm{~V} \quad=\sqrt{7000} \\
& \mathrm{~V} \quad=83.66 \mathrm{~V} \\
& \mathrm{~V}(\mathrm{~dB} \mu \mathrm{~V})=20 \log \left(\frac{83.66}{1 \times 10^{-6}}\right) \\
& =158 \mathrm{~dB} \mu \mathrm{~V}
\end{aligned}
$$

Limit line for Spurious Conducted Emission :

$$
\begin{array}{rll}
\text { Required Attenuation } & = & 43+10 \log \mathrm{P} \mathrm{~dB} \\
\text { Limit line }(\mathrm{dBuV}) & & \\
& & \mathrm{V}_{\mathrm{dBuv}}-\text { Attenuation } \\
\mathrm{V}_{\mathrm{dBuv}} & =20 \log \frac{\mathrm{~V}}{1 \times 10^{-6}} \\
& = & 20\left(\log \mathrm{~V}-\log 1 \times 10^{-6}\right) \\
& = & 20 \log \mathrm{~V}-20 \log 1 \times 10^{-6} \\
& = & 20 \log \mathrm{~V}-20(-6) \\
& = & 20 \log \mathrm{~V}+120
\end{array}
$$

Attenuation	$=$
	$=43+10 \log \mathrm{P}$
	$=43+10 \log \frac{\mathrm{~V}^{2}}{\mathrm{R}}$
	$=43+10\left(\log \mathrm{~V}^{2}-\log \mathrm{R}\right)$
	$=43+10(2 \log \mathrm{~V}-\log \mathrm{R})$
	$43+20 \log \mathrm{~V}-10 \log \mathrm{R}$

Limit line	$=\quad \mathrm{V}_{\mathrm{dBuv}}-$ Attenuation	
	$=$	$20 \log \mathrm{~V}+120-(43+20 \log \mathrm{~V}-10 \log \mathrm{R})$
	$=\quad 20 \log \mathrm{~V}+120-43-20 \log \mathrm{~V}+10 \log \mathrm{R}$	
	$=\quad 20 \log \mathrm{~V}+120-43-20 \log \mathrm{~V}+10 \log \mathrm{R}$	
	$=\quad 120-43+10 \log 50 \quad$ Note $: \mathrm{R}=50 \Omega$	
	$=$	$120-43+16.897$
	$=$	94 dBuV at any power level

Emission Mask - 851 MHz

Page 16 of 40

Emission Mask - 860 MHz

Emission Mask - 868 MHz

Test Location:	CKC Laboratories Inc. 180 N Olinda Place • Brea CA, 92823 • 714-993-6112		
Customer:	Powerwave Technologies		
Specification:	FCC 90.210 Spurious Emission at Antenna Terminal		
Work Order \#:	79565	Date:	$9 / 12 / 02$
Test Type:	Conducted Emissions	Time:	16:36:51
Equipment:	Multi Carrier RF Power Amplifier	Sequence\#:	1
Manufacturer:	Powerwave Technologies	Tested By: Eddie Wong	
Model:	G3S-800-140-031		27 V dc
S/N:	C00000UM9M		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Multi Carrier RF Power Amplifier*	Powerwave Technologies	G3S-800-140-031	C00000UM9M

Support Devices:

Function	Manufacturer	Model \#	S/N
Signal Generator	Agilent	4433 B	US28440615
Signal Generator	Agilent	$4433 B$	US40051329
Signal Generator	Agilent	$4432 B$	US40053285
Power Meter	Agilent	E4418B	US39251692
RF Combiner	Anaren	44000	416
DC Power Supply	Power Ten	NA	003973

Test Conditions / Notes:

Rack mount EUT placed on the test bench. Three signal generators send 64 QAM signal to the RF input of the EUT via a RF signal combiner. The output of the EUT is connected to RF attenuator and Directional coupler. A RF attenuation of 52.3 dB is compensated for all measured readings. 140 watts of RF power is maintained at time load. The Amplified RF signal is measured at the output of the Directional coupler. Low Channel $=851.03 \mathrm{MHz}$, Mid Channel $=860.00 \mathrm{MHz}$, Hi Channel $=868.97 \mathrm{MHz}$. Range of measurement: $8 \mathrm{MHz}-9 \mathrm{GHz}$. Required Attenuation $=-43+10 \log (P)=-43+10 \log (140)=64.46 \mathrm{~dB}$ (Emission limit $=94 \mathrm{~dB}$ at antenna terminal). 8-30 $\mathrm{MHz}:$ RBW=VBW= $9 \mathrm{kHz} .30-1000 \mathrm{MHz}: R B W=V B W=120 \mathrm{kHz} .1000-9000 \mathrm{MHz}: \mathrm{RBW}=\mathrm{VBW}=1 \mathrm{MHz} .27$ VDC (from a $230 \mathrm{VAC}, 60 \mathrm{~Hz}$ power supply), $27^{\circ} \mathrm{C}, 55 \%$ relative humidity.

Transducer Legend:

T1=Brea Cable: 6' 1/4" Heliax - Brea \# 7.
T2 $=1.5 \mathrm{GHz}$ High Pass Filter, A/N 01415

$\begin{aligned} & 6 \text { 1710.958M } \\ & \text { Ave } \end{aligned}$	89.1	+0.6	+0.5	+0.0	90.2	94.0	-3.8	Anten
1710.958M	110.0	+0.6	+0.5	+0.0	111.1	94.0	+17.1	Anten
$8 \quad 761.350 \mathrm{M}$	84.9	+0.0	+0.0	+0.0	84.9	94.0	-9.1	Anten
$\begin{aligned} & 9 \text { 1702.318M } \\ & \text { Ave } \end{aligned}$	83.3	+0.6	+0.5	+0.0	84.4	94.0	-9.6	Anten
$\wedge 1702.318 \mathrm{M}$	106.0	+0.6	+0.5	+0.0	107.1	94.0	+13.1	Anten
11 758.450M	81.7	+0.0	+0.0	+0.0	81.7	94.0	-12.3	Anten
12 113.100M	76.4	+0.0	+0.0	+0.0	76.4	94.0	-17.6	Anten
$\begin{aligned} & \hline 13 \text { 1693.198M } \\ & \text { Ave } \\ & \hline \end{aligned}$	74.9	+0.6	+0.5	+0.0	76.0	94.0	-18.0	Anten
^ 1693.198M	94.5	+0.6	+0.5	+0.0	95.6	94.0	+1.6	Anten
$\begin{aligned} & 15 \text { 1684.198M } \\ & \text { Ave } \\ & \hline \end{aligned}$	73.3	+0.6	+0.5	+0.0	74.4	94.0	-19.6	Anten
^ 1684.198M	92.0	+0.6	+0.5	+0.0	93.1	94.0	-0.9	Anten
$\begin{aligned} & 172580.070 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	68.6	+1.1	+0.6	$+0.0$	70.3	94.0	-23.7	Anten
^ 2580.070M	84.8	+1.1	+0.6	+0.0	86.5	94.0	-7.5	Anten

Page 20 of 40

Direct Connect at Antenna Port Test Setup - Front

Direct Connect at Antenna Port Test Setup - Front

Test Equipment:

Equipment	Asset \#	Manufacturer	Model \#	Serial \#	Cal Date	Cal Due
Spectrum Analyzer (Site D)	02554	HP	8566 B	2746 A06369	052102	052103
QP Adapter (Site D)	00311	HP	85650 A	2430 A 00532	061402	061403
$1 / 4 "$ Heliax Coaxial Cable	NA	Andrew	FSJ-50A-4	Cable\#7 $(6 \mathrm{ft})$	071502	071503
1.5 GHz, HPF	01415	HP	$84300-$ 80037	3643 A 00026	030502	030503

2.1033(c)(14)/2.1053/90.210 - FIELD STRENGTH OF SPURIOUS RADIATION

Operating Frequency: $851-869 \mathrm{MHz}$
Channels: Low, middle, high
Highest Measured Output Power: $\quad 51.46$ ERP(dBm)= 140 ERP(Watts)
Distance: \qquad
Limit: $43+10 \log (P) \quad 64.46 \mathrm{dBc}$

Freq. (MHz)	Reference Level (dBm)	Antenna Polarity (H/V)	dBc
43.97	-32.3	Vert	83.76
878.02	-32.70	Vert	84.16
842.16	-32.70	Vert	84.16
3,458.04	-37.10	Horiz	88.56
3,449.25	-38.70	Vert	90.16
3,458.52	-39.80	Vert	91.26
54.51	-41.20	Vert	92.66
842.14	-41.70	Horiz	93.16
887.00	-41.80	Vert	93.26
3,413.18	-42.20	Vert	93.66
3,431.24	-42.40	Vert	93.86
44.18	-43.40	Horiz	94.86
3,440.21	-44.00	Vert	95.46
833.19	-44.80	Vert	96.26
3,421.85	-45.40	Vert	96.86
886.97	-45.70	Horiz	97.16
878.04	-46.50	Horiz	97.96
4,308.94	-46.60	Horiz	98.06
4,308.94	-46.60	Horiz	98.06
58.05	-47.80	Horiz	99.26
1,737.91	-48.60	Vert	100.06
1,729.01	-49.60	Vert	101.06
1,030.54	-49.70	Horiz	101.16
1,702.04	-49.90	Vert	101.36
1,728.84	-50.00	Horiz	101.46
266.76	-51.60	Horiz	103.06
46.44	-51.90	Horiz	103.36
83.39	-52.80	Horiz	104.26
183.39	-52.90	Horiz	104.36
116.71	-54.00	Vert	105.46
56.22	-54.60	Horiz	106.06
64.27	-55.20	Vert	106.66
1,212.85	-55.90	Vert	107.36
2,307.94	-56.30	Horiz	107.76

Limit line for Spurious Radiated Emission:

Required Attenuation $=43+10 \log P(d B)$
For radiated spurious emission measured at 3 meter test distance:
Required attenuation $=43+10 \log \mathrm{P}_{\mathrm{t} \text { at } 3 \text { meter }} \mathrm{dB}$
Limit line (dBuV) $\quad=\mathrm{E}_{\mathrm{dBuv}}$ - Attenuation
$\mathrm{E}_{\mathrm{dBuv}}=$ Measured field strength at 3 meter in $\mathrm{dBuV} / \mathrm{m}$

Power Density (Isotropic):

$$
P_{D}=\frac{P_{t}}{4 \pi r^{2}}
$$

$\mathrm{P}_{\mathrm{D}}=$ Power Density in Watts $/ \mathrm{m}^{2}$
$\mathrm{Pt}=$ Average Transmit Power
r = Test distance

Field Intensity E (V/m):
$\mathrm{E}=\sqrt{\mathrm{PD}_{\mathrm{D}} 377}$
$\mathrm{E}=\frac{\sqrt{\mathrm{P}_{\mathrm{t}} \times 377}}{4 \pi \mathrm{r}^{2}}$
$\mathrm{E}=\sqrt{\frac{\mathrm{P} \times 30}{\mathrm{r}^{2}}}$
$P_{t}=\left(\frac{E^{2} \times r^{2}}{30}\right)$
$10 \log P_{t}=10 \log E^{2}(V / m)+10 \log r^{2}-10 \log 30$
$10 \log \mathrm{P}_{\mathrm{t}}=20 \log \mathrm{E}(\mathrm{V} / \mathrm{m})+20 \log \mathrm{r}-10 \log 30$

At 3 meter, $r=3 m$
$10 \log P_{t}=20 \log E(V / m)+20 \log 3-10 \log 30$
$10 \log \mathrm{P}_{\mathrm{t}}=20 \log \mathrm{E}(\mathrm{V} / \mathrm{m})+9.54-14.77$
$10 \log \mathrm{P}_{\mathrm{t}}=20 \log \mathrm{E}(\mathrm{V} / \mathrm{m})-5.23$

Since $20 \log E(V / m)=20 \log E(u V / m)-120$
$10 \log \mathrm{P}_{\mathrm{t}}=20 \log \mathrm{E}(\mathrm{uV} / \mathrm{m})-120-5.23$
$10 \log \mathrm{P}_{\mathrm{t}}=20 \log \mathrm{E}(\mathrm{uV} / \mathrm{m})-125.23$

Limit line (dBuV) at 3 meter $\quad=\quad \mathrm{E}_{\mathrm{dBuv}}-$ Attenuation

$$
=E_{d B u v}-\left(43+10 \log P_{t a t} 3 \text { meter }\right)
$$

$$
=E_{d B u v}-43-10 \log P_{t a t} 3 \text { meter }
$$

$$
=\quad \mathrm{E}_{\mathrm{dBuv}}-43-(20 \log \mathrm{E}(\mathrm{uV} / \mathrm{m})-125.23)
$$

$$
=\quad \mathrm{E}_{\mathrm{dBuv}}-43-20 \log \mathrm{E}(\mathrm{uV} / \mathrm{m})+125.23
$$

$$
=\quad E_{\text {dBuv }}-20 \log E(u V / m)+82.23
$$

Since $20 \log \mathrm{E}(\mathrm{uV} / \mathrm{m})=\mathrm{E}$ in $\mathrm{dBuV} / \mathrm{m}$

$$
=\quad E_{\mathrm{dBuv}}-\mathrm{E}_{\mathrm{dBuv}}+82.23
$$

Radiated emission limit 3 meter $=82.23 \mathrm{dBuV}$ at any power level measured in dBuV

Test Conditions:

Rack mount EUT placed on the test bench. Three remotely located signal generators send 64 QAM signal to the RF input of the EUT via a RF signal combiner. The output of the EUT is connected to RF load and directional coupler. 140 watts of RF power is maintained at the RF load. Low Channel $=851.03 \mathrm{MHz}$, Mid Channel $=860.00 \mathrm{MHz}$, Hi Channel $=868.97 \mathrm{MHz}$. Range of measurement: $8 \mathrm{MHz}-9 \mathrm{GHz}$. Required attenuation $=-43+10 \log (\mathrm{P})=-43+10 \log$ $(140)=64.46 \mathrm{~dB}$ (Emission limit $=82.23 \mathrm{dBuV} / \mathrm{m}$ at 3 meter). $8 \mathrm{MHz}-30 \mathrm{MHz}:$ RBW=VBW= $9 \mathrm{kHz} .30 \mathrm{MHz}-1000 \mathrm{MHz}: \mathrm{RBW}=\mathrm{VBW}=120 \mathrm{kHz} .1000 \mathrm{MHz}-9000 \mathrm{MHz}: \mathrm{RBW}=\mathrm{VBW}=1$ MHz .27 VDC (from a $230 \mathrm{VAC}, 60 \mathrm{~Hz}$ power supply), $22^{\circ} \mathrm{C}, 48 \%$ relative humidity.

Test Equipment:

Equipment	Asset \#	Manufacturer	Model \#	Serial \#	Cal Date	Cal Due
Spectrum Analyzer	01865	HP	8566B	2532A02509	092801	092802
QP Adapter	01437	HP	85650A	3303A01884	092801	092802
8MHz-30MHz						
Loop Antenna	00314	EMCO	6502	2014	72302	72303
Antenna cable	NA	NA	RG214	Cable\#15	122001	122002
$30 \mathrm{MHz}-1000 \mathrm{MHz}$						
Bicon Antenna	306	AH	SAS200/540	220	092401	092402
Log Periodic Antenna	331	AH	SAS 00/516	330	092401	092402
Pre-amp	00309	HP	8447D	1937A02548	082302	082303
Antenna cable	NA	NA	RG214	Cable\#15	122001	122002
Pre-amp to SA cable	NA	Harbour	RG223/U	Cable\#10	070802	070803
1000-9000MHz						
Horn Antenna	0849	EMCO	3115	6246	091002	091003
Microwave Pre-amp	00786	HP	83017A	3123A00281	091102	091103
1/4" Heliax Coaxial Cable	NA	Andrew	FSJ-50A-4	Cable\#7 $(6 \mathrm{ft})$	071502	071503
Antenna (25ft)	NA	Andrew	FSJ1-50A	Cable\#13	07/15/02	071503
$1.5 \mathrm{GHz}, \mathrm{HPF}$	01415	HP	$\begin{aligned} & \hline 84300- \\ & 80037 \end{aligned}$	3643A00026	030502	030503
12' SMA Cable	1337	W. L. Gore	NA	244922	121201	121202

Radiated Emissions - Front View

Radiated Emissions - Back View

Radiated Emissions - with Loop Antenna

2.1033(c)(14)/2.1055/90.205(i) \& 90.213- VOLTAGE VARIATIONS \& FREQUENCY STABILITY

Note: FCC 90.213, Frequency Stability does not apply to this device because the EUT does not contain any frequency stability determining components.

FCC 90.205(j) Voltage Variation on Power Output:

FCC 90.213 Frequency Stability limit: 851-866 MHz: $1.5 \mathrm{ppm} \& 866-869 \mathrm{MHz}: 1.0 \mathrm{ppm}$

Setup:

Rack mount EUT placed on the test bench. Three signal generators send 64 QAM signal to the RF input of the EUT via a RF signal combiner. The output of the EUT is connected to RF attenuator and Directional coupler. 140 watts of RF power is maintained. The Amplified RF signal is measured at the output of the Directional coupler with a RF power meter and Spectrum analyzer. A RF attenuation of 52.3 dB is compensated for all measured readings.

Low Channel $=851.03 \mathrm{MHz}$
Mid Channel $=860.00 \mathrm{MHz}$
Hi Channel $=868.97 \mathrm{MHz}$
27 VDC (from a $230 \mathrm{VAC}, 60 \mathrm{~Hz}$ power supply), $27^{\circ} \mathrm{C}, 55 \%$ relative humidity.

Results:

DC Voltage	Variation in $\boldsymbol{\%}$	Measured RF Power	Difference (ppm)
23 VDC	85%	140 Watts	0
27 VDC (Nominal)	100%	140 Watts	0
31 VDC	115%	140 Watts	0

DC Voltage	Variation in $\boldsymbol{\%}$	Measured Freq $(\mathbf{M H z})$	Difference (ppm)
23 VDC	85%	$851.03,860,868.07$	0
27 VDC (Nominal)	100%	$851.03,860,868.07$	0
31 VDC	115%	$851.03,860,868.07$	0

The EUT fulfilled the requirement by demonstrating power and frequency deviation of 0 ppm when the DC voltage was varied from 85% to 115% of the nominal DC voltage.

Test Equipment:

Equipment	Asset \#	Manufacturer	Model \#	Serial \#	Cal Date	Cal Due
RF Power Meter	02082	HP	$435 B$	$2445 A 11881$	091202	091203

Direct Connect at Antenna Port Test Setup - Back

Direct Connect at Antenna Port Test Setup - Front

Direct Connect at Antenna Port Test Setup - Front

2.1091 - MAXIMUM PERMISSIBLE EXPOSURE CALCULATIONS

Date of Report: Aug 28, 2002

Calculations prepared for:
Powerwave Technologies
1801 E. St. Andrew Place
Santa Ana, CA 92705

Calculations prepared by:
Eddie Wong
110 N. Olinda Place
Brea, CA 9283

Model Number: G3S-800-140-31
FCC Identification: Pending
Fundamental Operating Frequency: $\quad 851-869 \mathrm{MHz}$
Maximum Rated Output Power: 140.00 Watts
Measured Output Power: 140.00 Watts

MPE Limit in accordance with 1.1310(b): Limits for general population/uncontrolled exposure

> MPE Limit for $851 \mathrm{MHz}=851 / 1500=\mathbf{0 . 5 6 7 3} \mathrm{mW} / \mathrm{cm}^{2}\left(5.673 \mathrm{~W} / \mathrm{M}^{2}\right)$
> MPE Limit for $869 \mathrm{MHz}=869 / 1500=\mathbf{0 . 5 7 9 3} \mathrm{mW} / \mathrm{cm}^{2}\left(5.793 \mathrm{~W} / \mathrm{M}^{2}\right)$

Power Output (Watts)	Power Density Limit $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Minimum Distance $($ Meters $)$
$\mathbf{1 4 0}$	$\mathbf{0 . 5 7 9 3}$	$\mathbf{4 . 3 8 5}$

Power Density $\left(\mathrm{W} / \mathrm{M}^{2}\right)=\left(30 * \mathrm{P}_{\mathrm{t}} * \mathrm{G}\right) /\left(\mathrm{d}^{2} * \mathrm{Zo}\right)$

$\mathrm{P}_{\mathrm{t}}=$ Power Delivered to the Antenna	$\mathrm{G}=$ Antenna Gain
$\mathrm{d}=$ Distance in meters	$\mathrm{Zo}=$ Impedance of Free Space

The typical antennas to be used with the EUT are structure mount antennas which under normal operation have an antenna height of at least 5 meters. As can be seen from the MPE result, this device passes the limit specified in 1.1310 at a distance of 4.385 meter.

15.109 - RADIATED EMISSIONS

Test Location: CKC Laboratories Inc. •180 N Olinda Place • Brea CA, 92823 • 714-993-6112
Customer: Powerwave Technologies
Specification: \quad FCC 15.109 Class B

Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
S/N:

79565

Maximized emission
Multi Carrier RF Power Amplifier
Powerwave Technologies
G3S-800-140-031
C00000UM9M

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Multi Carrier RF Power Amplifier*	Powerwave Technologies	G3S-800-140-031	C00000UM9M

Support Devices:

Function	Manufacturer	Model \#	S/N
Signal Generator	Agilent	$4433 B$	US28440615
Signal Generator	Agilent	$4433 B$	US40051329
Signal Generator	Agilent	$4432 B$	US40053285
Power Meter	Agilent	E4418B	US39251692
RF Combiner	Anaren	44000	416
DC Power Supply	Power Ten	NA	003973

Test Conditions / Notes:

Rack mount EUT placed on the test bench. Three remotely located signal generators are connected to a RF signal combiner which is connected to the RF input port of the EUT. The output of the EUT is connected to RF load and Directional coupler. Mode: Standby mode (No RF signal sent from the signal generators). Low Channel = 851.03 MHz , Mid Channel $=860.00 \mathrm{MHz}$, Hi Channel $=868.97 \mathrm{MHz}$. Range of measurement: $30 \mathrm{MHz}-1000 \mathrm{MHz}$. $30 \mathrm{MHz}-1000 \mathrm{MHz}: \mathrm{RBW}=\mathrm{VBW}=120 \mathrm{kHz} .27 \mathrm{VDC}$ (from a $230 \mathrm{VAC}, 60 \mathrm{~Hz}$ power supply), $22^{\circ} \mathrm{C}, 48 \%$ relative humidity.

Transducer Legend:

T1 = Bicon 092401	T2=Log 331 092401
T3=Cable \#10 070803	T4=Cable \#15 120602
T5=Preamp 8447D 082302	

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

	$59.466 \mathrm{M}$ QP	54.8	$\begin{array}{r} +8.2 \\ -28.4 \end{array}$	+0.0	+0.1	+1.3	+0.0	36.0	40.0	-4.0	Horiz
\wedge	59.466 M	60.5	$\begin{array}{r} +8.2 \\ -28.4 \end{array}$	+0.0	+0.1	+1.3	+0.0	41.7	40.0	+1.7	Horiz
7	50.159 M	51.4	$\begin{array}{r} +10.9 \\ -28.4 \end{array}$	+0.0	+0.1	+1.2	+0.0	35.2	40.0	-4.8	Vert
8	64.151M	53.8	$\begin{array}{r} +7.6 \\ -28.4 \end{array}$	+0.0	+0.1	+1.4	+0.0	34.5	40.0	-5.5	Vert
	$37.500 \mathrm{M}$	46.2	$\begin{array}{r} +15.4 \\ -28.5 \end{array}$	+0.0	+0.1	+1.1	+0.0	34.3	40.0	-5.7	Vert
\wedge	37.500 M	50.5	$\begin{array}{r} \hline+15.4 \\ -28.5 \end{array}$	+0.0	+0.1	+1.1	+0.0	38.6	40.0	-1.4	Vert
11	60.994M	51.3	$\begin{gathered} +8.0 \\ -28.4 \end{gathered}$	+0.0	+0.1	+1.3	+0.0	32.3	40.0	-7.7	Horiz
12	44.581 M	46.8	$\begin{array}{r} \hline+12.8 \\ -28.5 \end{array}$	+0.0	+0.1	+1.1	+0.0	32.3	40.0	-7.7	Vert
13	65.638 M	51.6	$\begin{array}{r} +7.4 \\ -28.5 \\ \hline \end{array}$	+0.0	+0.1	+1.4	+0.0	32.0	40.0	-8.0	Vert
14	224.008 M	45.9	$\begin{array}{r} \hline+17.3 \\ -28.3 \\ \hline \end{array}$	+0.0	+0.2	+2.7	+0.0	37.8	46.0	-8.2	Horiz
15	200.517 M	43.7	$\begin{array}{r} \hline+16.8 \\ -28.4 \end{array}$	+0.0	+0.2	+2.6	+0.0	34.9	43.5	-8.6	Vert
16	879.973M	35.1	$\begin{gathered} +0.0 \\ -27.5 \end{gathered}$	+22.7	+0.5	+5.9	+0.0	36.7	46.0	-9.3	Horiz
17	223.993M	43.1	$\begin{array}{r} \hline+17.3 \\ -28.3 \end{array}$	+0.0	+0.2	+2.7	+0.0	35.0	46.0	-11.0	Vert
18	61.306 M	48.0	$\begin{array}{r} +7.9 \\ -28.4 \\ \hline \end{array}$	+0.0	+0.1	+1.3	+0.0	28.9	40.0	-11.1	Horiz
19	256.022M	41.5	$\begin{array}{r} \hline+18.4 \\ -28.3 \end{array}$	+0.0	+0.3	+2.9	$+0.0$	34.8	46.0	-11.2	Horiz
20	256.000 M	41.4	$\begin{array}{r} \hline+18.4 \\ -28.3 \\ \hline \end{array}$	+0.0	+0.3	+2.9	$+0.0$	34.7	46.0	-11.3	Vert
21	416.070M	42.7	$\begin{gathered} +0.0 \\ -28.2 \end{gathered}$	+15.7	+0.3	+3.9	+0.0	34.4	46.0	-11.6	Horiz
22	111.987 M	43.4	$\begin{array}{r} \hline+13.9 \\ -28.3 \\ \hline \end{array}$	+0.0	+0.2	+1.9	+0.0	31.1	43.5	-12.4	Horiz
23	45.594M	42.2	$\begin{array}{r} \hline+12.4 \\ -28.4 \end{array}$	+0.0	+0.1	+1.2	+0.0	27.5	40.0	-12.5	Horiz
24	83.305M	46.2	$\begin{array}{r} +7.6 \\ -28.5 \\ \hline \end{array}$	+0.0	+0.1	+1.6	+0.0	27.0	40.0	-13.0	Vert
25	415.998M	40.6	$\begin{gathered} +0.0 \\ -28.2 \end{gathered}$	+15.7	+0.3	+3.9	+0.0	32.3	46.0	-13.7	Vert
26	233.908M	39.4	$\begin{array}{r} \hline+17.5 \\ -28.3 \end{array}$	+0.0	+0.2	+2.8	+0.0	31.6	46.0	-14.4	Vert
27	72.101 M	45.6	$\begin{array}{r} +6.9 \\ -28.5 \end{array}$	+0.0	+0.1	+1.5	+0.0	25.6	40.0	-14.4	Vert
28	79.230 M	45.6	$\begin{array}{r} \hline+6.8 \\ -28.5 \end{array}$	+0.0	+0.1	+1.6	+0.0	25.6	40.0	-14.4	Vert

Page 34 of 40

29	320.092 M	35.1	+0.0	+20.9	+0.3	+3.4	+0.0	31.4	46.0	-14.6	Horiz		
30	112.062 M	41.2	+13.9	+0.0	+0.2	+1.9	+0.0	28.9	43.5	-14.6	Vert		
			-28.3										
31	336.074 M	36.1	+0.0	+19.7	+0.3	+3.4	+0.0	31.2	46.0	-14.8	Horiz		
32	80.087 M	45.1	+6.8	+0.0	+0.1	+1.6	+0.0	25.1	40.0	-14.9	Vert		
33	52.617 M	41.9	+10.1	+0.0	+0.1	+1.2	+0.0	24.9	40.0	-15.1	Horiz		

Page 35 of 40

54	160.041 M	34.7	$\begin{array}{r} \hline+17.6 \\ -28.4 \end{array}$	+0.0	+0.2	+2.3	+0.0	26.4	43.5	-17.1	Horiz
55	399.994M	37.4	$\begin{gathered} +0.0 \\ -28.2 \end{gathered}$	+15.5	+0.3	+3.8	+0.0	28.8	46.0	-17.2	Vert
56	320.013 M	32.4	$\begin{gathered} +0.0 \\ -28.3 \end{gathered}$	+20.9	+0.3	+3.4	+0.0	28.7	46.0	-17.3	Vert
57	131.260 M	35.9	$\begin{array}{r} \hline+16.3 \\ -28.3 \end{array}$	+0.0	+0.2	+2.1	+0.0	26.2	43.5	-17.3	Vert
58	288.002 M	32.2	$\begin{array}{r} \hline+21.2 \\ -28.3 \end{array}$	+0.0	+0.3	+3.2	+0.0	28.6	46.0	-17.4	Vert
59	464.034M	35.5	$\begin{gathered} +0.0 \\ -28.2 \end{gathered}$	+16.4	+0.4	+4.1	+0.0	28.2	46.0	-17.8	Horiz
60	152.007 M	34.3	$\begin{array}{r} \hline+17.4 \\ -28.4 \end{array}$	+0.0	+0.2	+2.2	+0.0	25.7	43.5	-17.8	Horiz
61	192.067 M	34.4	$\begin{array}{r} \hline+17.0 \\ -28.4 \end{array}$	+0.0	+0.2	+2.5	+0.0	25.7	43.5	-17.8	Vert
62	132.760 M	35.2	$\begin{array}{r} +16.5 \\ -28.3 \\ \hline \end{array}$	+0.0	+0.2	+2.1	+0.0	25.7	43.5	-17.8	Vert
63	848.031 M	27.2	$\begin{gathered} +0.0 \\ -27.6 \end{gathered}$	+22.2	$+0.5$	+5.8	+0.0	28.1	46.0	-17.9	Horiz
64	384.068M	35.8	$\begin{gathered} +0.0 \\ -28.2 \end{gathered}$	+16.5	+0.3	+3.7	+0.0	28.1	46.0	-17.9	Horiz
65	800.116M	27.8	$\begin{gathered} +0.0 \\ -27.5 \end{gathered}$	+21.5	+0.5	+5.7	+0.0	28.0	46.0	-18.0	Horiz
66	324.070 M	32.0	$\begin{gathered} +0.0 \\ -28.3 \end{gathered}$	+20.6	+0.3	+3.4	+0.0	28.0	46.0	-18.0	Horiz
67	480.022 M	35.0	$\begin{gathered} +0.0 \\ -28.2 \end{gathered}$	+16.6	+0.4	+4.2	+0.0	28.0	46.0	-18.0	Vert
68	139.276M	34.6	$\begin{array}{r} \hline+17.0 \\ -28.4 \end{array}$	+0.0	+0.2	+2.1	+0.0	25.5	43.5	-18.0	Horiz
69	240.032M	35.6	$\begin{array}{r} \hline+17.6 \\ -28.3 \end{array}$	+0.0	+0.3	+2.8	+0.0	28.0	46.0	-18.0	Vert
70	448.035M	35.6	$\begin{gathered} +0.0 \\ -28.3 \end{gathered}$	+16.2	+0.4	+4.0	+0.0	27.9	46.0	-18.1	Horiz
71	444.556M	35.6	$\begin{gathered} +0.0 \\ -28.3 \end{gathered}$	+16.2	+0.4	+4.0	+0.0	27.9	46.0	-18.1	Horiz
72	120.069M	36.2	$\begin{array}{r} \hline+15.3 \\ -28.3 \\ \hline \end{array}$	+0.0	+0.2	+2.0	+0.0	25.4	43.5	-18.1	Vert
73	143.989M	34.1	$\begin{array}{r} +17.2 \\ -28.4 \end{array}$	+0.0	+0.2	+2.2	+0.0	25.3	43.5	-18.2	Horiz
74	312.060 M	30.7	$\begin{gathered} +0.0 \\ -28.3 \end{gathered}$	+21.5	+0.3	+3.4	+0.0	27.6	46.0	-18.4	Horiz
75	800.000M	27.1	$\begin{gathered} +0.0 \\ -27.5 \end{gathered}$	+21.5	$+0.5$	+5.7	+0.0	27.3	46.0	-18.7	Vert
76	114.782M	36.6	$\begin{array}{r} \hline+14.4 \\ -28.3 \end{array}$	+0.0	+0.2	+1.9	+0.0	24.8	43.5	-18.7	Vert
77	324.024M	31.1	$\begin{array}{r} +0.0 \\ -28.3 \\ \hline \end{array}$	+20.6	+0.3	+3.4	+0.0	27.1	46.0	-18.9	Vert
78	230.490 M	35.0	$\begin{array}{r} \hline+17.4 \\ -28.3 \end{array}$	+0.0	+0.2	+2.7	+0.0	27.0	46.0	-19.0	Horiz

Page 36 of 40

79	432.078 M	34.8	$\begin{gathered} +0.0 \\ -28.3 \end{gathered}$	+16.0	+0.4	+3.9	$+0.0$	26.8	46.0	-19.2	Horiz
80	228.517 M	34.8	$\begin{array}{r} \hline+17.4 \\ -28.3 \end{array}$	+0.0	+0.2	+2.7	+0.0	26.8	46.0	-19.2	Horiz
81	282.672 M	30.7	$\begin{array}{r} \hline+20.8 \\ -28.2 \end{array}$	+0.0	+0.3	+3.2	$+0.0$	26.8	46.0	-19.2	Vert
82	383.995M	34.4	$\begin{gathered} +0.0 \\ -28.2 \end{gathered}$	+16.5	+0.3	+3.7	+0.0	26.7	46.0	-19.3	Vert
83	136.086M	33.4	$\begin{array}{r} \hline+16.8 \\ -28.3 \end{array}$	+0.0	+0.2	+2.1	+0.0	24.2	43.5	-19.3	Vert
84	192.002M	32.8	$\begin{array}{r} \hline+17.0 \\ -28.4 \end{array}$	+0.0	+0.2	+2.5	+0.0	24.1	43.5	-19.4	Horiz
85	109.559M	37.1	$\begin{array}{r} \hline+13.4 \\ -28.4 \end{array}$	+0.0	+0.1	+1.9	+0.0	24.1	43.5	-19.4	Vert
86	272.024 M	31.5	$\begin{array}{r} \hline+19.8 \\ -28.2 \end{array}$	+0.0	+0.3	+3.1	+0.0	26.5	46.0	-19.5	Horiz
87	184.416M	32.5	$\begin{array}{r} \hline+17.2 \\ -28.4 \end{array}$	+0.0	+0.2	+2.5	+0.0	24.0	43.5	-19.5	Vert
88	144.071M	32.8	$\begin{array}{r} \hline+17.2 \\ -28.4 \end{array}$	+0.0	+0.2	+2.2	+0.0	24.0	43.5	-19.5	Vert
89	615.341 M	29.1	$\begin{array}{r} +0.0 \\ -27.6 \end{array}$	+19.5	+0.4	+5.0	+0.0	26.4	46.0	-19.6	Horiz
90	360.094M	32.6	$\begin{array}{r} +0.0 \\ -28.3 \end{array}$	+18.1	+0.3	+3.6	+0.0	26.3	46.0	-19.7	Horiz
91	464.004 M	33.6	$\begin{gathered} +0.0 \\ -28.2 \end{gathered}$	+16.4	+0.4	+4.1	+0.0	26.3	46.0	-19.7	Vert
92	207.995M	32.0	$\begin{array}{r} \hline+17.0 \\ -28.4 \end{array}$	+0.0	+0.2	+2.6	+0.0	23.4	43.5	-20.1	Vert
93	600.050M	29.3	$\begin{array}{r} +0.0 \\ -27.7 \\ \hline \end{array}$	+18.9	+0.4	+4.9	+0.0	25.8	46.0	-20.2	Vert
94	272.007 M	30.4	$\begin{array}{r} \hline+19.8 \\ -28.2 \end{array}$	+0.0	+0.3	+3.1	+0.0	25.4	46.0	-20.6	Vert
95	406.424M	33.8	$\begin{gathered} +0.0 \\ -28.2 \end{gathered}$	+15.6	+0.3	+3.8	+0.0	25.3	46.0	-20.7	Vert
96	280.074M	29.6	$\begin{array}{r} \hline+20.5 \\ -28.2 \end{array}$	+0.0	+0.3	+3.1	+0.0	25.3	46.0	-20.7	Vert
97	360.020 M	31.2	$\begin{gathered} +0.0 \\ -28.3 \end{gathered}$	+18.1	+0.3	+3.6	+0.0	24.9	46.0	-21.1	Vert
98	447.947 M	32.3	$\begin{gathered} +0.0 \\ -28.3 \end{gathered}$	+16.2	+0.4	+4.0	+0.0	24.6	46.0	-21.4	Vert
99	460.862 M	31.8	$\begin{array}{r} +0.0 \\ -28.3 \\ \hline \end{array}$	+16.4	+0.4	+4.1	+0.0	24.4	46.0	-21.6	Horiz
100	376.066M	31.5	$\begin{array}{r} +0.0 \\ -28.2 \end{array}$	+17.0	+0.3	+3.7	+0.0	24.3	46.0	-21.7	Horiz
101	216.020 M	32.1	$\begin{array}{r} \hline+17.1 \\ -28.3 \end{array}$	+0.0	+0.2	+2.7	+0.0	23.8	46.0	-22.2	Horiz
102	126.047 M	31.5	$\begin{array}{r} \hline+15.9 \\ -28.3 \end{array}$	+0.0	+0.2	+2.0	+0.0	21.3	43.5	-22.2	Horiz
103	527.986M	29.3	$\begin{gathered} +0.0 \\ -28.0 \end{gathered}$	+17.5	+0.4	+4.5	+0.0	23.7	46.0	-22.3	Vert

Page 37 of 40

104	229.488 M	31.4	+17.4	+0.0	+0.2	+2.7	+0.0	23.4	46.0	-22.6	Vert
		-28.3									
105	511.974 M	27.3	+0.0 -28.1	+17.2	+0.4	+4.4	+0.0	21.2	46.0	-24.8	Vert
106	1002.690 M	26.5	+0.0	+0.0	+0.0	+0.0	+0.0	26.5	54.0	-27.5	Vert

Test Equipment:

Equipment	Asset \#	Manufacturer	Model \#	Serial \#	Cal Date	Cal Due
Spectrum Analyzer	01865	HP	8566 B	2532 A02509	092801	092802
QP Adapter	01437	HP	85650 A	$3303 A 01884$	092801	092802
$\mathbf{3 0 ~ M H z - 1 0 0 0 M H z ~}$						
Bicon Antenna	306	AH	SAS200/540	220	092401	092402
Log Periodic Antenna	331	AH	SAS 00/516	330	092401	092402
Pre-amp	00309	HP	$8447 D$	$1937 A 02548$	082302	082303
Antenna cable	NA	NA	RG214	Cable\#15	122001	122002
Pre-amp to SA cable	NA	Harbour	RG223/U	Cable\#10	070802	070803

Radiated Emissions - Front View

Radiated Emissions - Back View

