MEASUREMENT AND TECHNICAL REPORT

POWERWAVE TECHNOLOGIES 2026 McGaw Avenue Irvine, CA 92614

DATE: 04 December 2000

This Report Concerns: Original Grant: X	Class II Change:
Equipment Type: Seahawk 900, Model G3L-900-5	0-005
Deferred grant requested per 47 CFR 0.457(d)(1)(ii)?	Yes: No: X Defer until:
Company Name agrees to notify the Commission by: of the intended date of announcement of the product so	N/A that the grant can be issued on that date.
Transition Rules Request per 15.37? Yes:	*No:
(*) FCC Part 2, Paragraphs, 2.1046, 2.1051, 2. 1053	und Part 90, Paragraph 90.210
Report Prepared by: TÜ	V PRODUCT SERVICE
10 Sa)40 Mesa Rim Road n Diego, CA 92121-2912
Ph	one: 858 546 3999
Fa	x: 858 546 0364

TABLE OF CONTENTS

		Pages
1	GENERAL INFORMATION	3
1.1	Product Description	3
1.2	Related Submittal Grant	5
1.3	Tested System Details	5
1.4	Test Methodology	5
1.5	Test Facility	6
1.6	Part 2 Requirements	7
	_	
2	SYSTEM TEST CONFIGURATION	8
	2.1 Justification	8
	2.2 EUT Exercise Software	8
	2.3 Special Accessories	8
	2.4 Equipment Modifications	8
	2.5 Configuration of Tested System	8
3	RADIATED EMISSION EQUIPMENT/DATA	9
	Field Strength Calculation	13
4	CONDUCTED EMISSION EQUIPMENT/DATA	14
5	Signature page	31

1 GENERAL INFORMATION

Product Description 1.1

EUT Description	Multi-chan	Multi-channel power Amplifier					
EUT Name	Seahawk S	900					
Model No.:	G3L-900-	50-005 Serial No.:					
Product Options:		N/A					
Configurations to	be tested:	50 Watt output					
Power Requirer	nents						
Voltage:	27 VDC	(If battery powered, make sure battery life is sufficient to complete testing.)					
# of Phases:	N/A	_					
Current		Current					
(Amps/phase(ma	x)): 27 A	(Amps/phase(nominal)): N/A					
Typical Installation and/or Operating Environment							
TELCOM							

EUT Power Cable									
Permane Shielded Not App	ent C I C licable	DR DR		Removable Unshielded	Length (in meters):				
EUT Interfac	e Ports	and	Cables	5					
Interface			Shield	ling			-		
Туре	Analog Digital	Qty	Yes Na	Туре	Termination	Connector Type	Port Termination	Length (In meters)	Romovable Pormanont
RF IN/OUT / DC POWER		0				METALIZED D-SUB	RF CONNECTIONS / DC POWER		

1.1 Product Description (continued)

EUT Operating Modes to be Tested

1. Rf applied to reach 50 Watt output

EUT System Compone	nts					
Description		Model #		Seria	1 #	FCC ID #
Power amplifier modul	е	G3L-900-	50			
Support Equipment						
Description	M	odel #		Serial #	F	FCC ID #
HP SIGNAL GENERA	TOR	E4436B		US3926010	3	
HP POWER METER		E4419B		GB4020192	26	
RF CABLES AND CONNECTORS						
Oscillator Frequencies	5		_			
Derived Frequency Frequen	icy C	omponent # / Lo	ocatio	n	Desci	ription of Use
15 MHz 15 MH	Iz N	1 MULTIFUNC	CTION	BRD	CL	ОСК
Power Line Filters						
Manufacturer	Model	Model #		Location in EUT		
Spectrum Control	52-97	8-107-FA3		Multifunc	tion Brd.	
Panasonic	ELK-	E103FA		Multifunction Brd.		
Critical EMI Componer	nts (Capac	itors, ferrites	, etc.)			
Description	Manufa	cturer	Part	# or Value	Qty	Component # / Location
Ferrite	Ferrite Fair-Rite 27430		3021447	10	FB1-FB10 / Multifunction brd	
Bandpass Filter	Panaso	onic	ELK	-E103FA	1	FL17 / Multifunction Brd.
EMC Critical Detail						

Inductive filters, capacitive filters, noise filters

1 GENERAL INFORMATION (continued)

1.2 Related Submittal/Grant

None

1.3 Tested System Details

The FCC IDs for all equipment, plus descriptions of all cables used in the tested system are:

None

1.4 Test Methodology

Purpose of Test: To demonstrate compliance with the ANSI C63.4 setup.

Test Performed:

- Conducted Emissions, FCC Part 2, Paragraphs 2.1051 and Part 90, Paragraph 90.210
 Radiated Emissions EN55022: 1992 Class B limit, 30 1,000 MHz, 10 meters
- X 3. Radiated Emission per FCC Part 2, Paragraph 2.153
 - 4. Engineering evaluations
 - 5. Frequency Stability, Part 2, Paragraph 2.995, and Part 87, Paragraph 87.133
- X RF Output Power, Part 2, Paragraph 1.1046, Part 90, Paragraph 90.210

Both Conducted and radiated testing were performed according to the procedures in FCC/ANSI C63.4 and CSA 108.8 - M1983. Radiated testing was performed at an antenna-to-EUT distance of 3 meters (1 - 10 GHz).

1.5 Test Facility

The open area test site and conducted measurement data were tested by:

TÜV PRODUCT SERVICE 10040 Mesa Rim Road San Diego, CA 92121-2912 Phone: 619 546 3999 Fax: 619 546 0364

The Test Site Data and performance comply with ANSI 63.4 and are registered with the FCC, 7435 Oakland Mills Rd, Columbia Maryland 21046. All Measurement Data is acquired according to the content of FCC Measurement Procedure and ANSI C63.4, unless supplemented with additional requirements as noted in the test report.

1.6 Part 2 Requirements

Equipment Specifications

Frequency range in MHz	Rated RF power output in watts	Frequency tolerance %, Hz, ppm	Emission designator (see 47 CFR §2.201 and §2.202)	Microprocesso r model number
935 - 940	50 W		GXW	

DC voltages applied to and **dc currents** into the several elements of the final radio frequency amplifying device for normal operation over the power range.

27 Vdc / 27 A

For equipment employing digital modulation techniques... N/A

If equipment is an AM broadcast stereophonic exciter-generator: N/A

2. SYSTEM TEST CONFIGURATION

2.1 Justification

The Seahawk was initially tested for FCC emission in the following configuration:

See Block Diagram.

2.2 EUT Exercise Software

None

2.3 Special Accessories

None

2.4	Modification

None

2.5 Configuration of Tested System

See Block Diagram.

3 RADIATED EMISSION EQUIPMENT/DATA

The following data lists the significant emission frequencies, measured levels, correction factor (which includes cable and antenna corrections), the corrected reading, and the limit.

See following page(s).

See test setup photos for radiated emissions test setup.

Radiated Electromagnetic Emissions

Test Report #:	S0303 Run 01	Test Area:	Site 3 Roof	Temperature:	27	°C
Test Method:	Spurious Emissions	2.1053 Test Date:	14-Sep-2088	Relative Humidity:	45	%
EUT Model #:	G31-900-50-005	EUT Power:	27 Vdc	Air Pressure:	100.1	kPa
EUT Serial #:	C0000058N9			Page: 1 of 3		_
Manufacturer:	Powerwave			Leve	el Key	۰
EUT Description:	GSM800 Amplifier			Pk – Peak	Nb – Na	rrow Band
Notes:				Qp – QuasiPeak	Bb – Bro	oad Band
	· · •		·	Av - Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL/HGT/AZ	DELTA1 (dB)	DELTA2 (dB)			
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)	FCC Part 24	N/A			
Fundamental Measurements									
935.00	55.1 Pk	2.5 / 23.7 / 0.0	81.3	V / 1.0 / 0.0	-0.9	N/A			
935.00	54.9 Pk	2.5 / 23.7 / 0.0	81.1	H / 1.0 / 0.0	-1.1	N/A			
937.50	56.1 Pk	2.5 / 23.8 / 0.0	82.4	H / 1.0 / 0.0	0.2 *	N/A			
937.50	56.9 Pk	2.5 / 23.8 / 0.0	83.2	V / 1.0 / 0.0	1.0 *	N/A			
940.00	56.6 Pk	2.5 / 23.8 / 0.0	82.9	V/1.0/0.0	0.7 *	N/A			
940.00	50.0 Pk	2.5 / 23.8 / 0.0	76.3	H / 1.0 / 0.0	-5.9	N/A			
High Channe				• • • • • • • • • • • • • • • • • • •					
1880.00	79.0 Pk	4.2 / 28.5 / 40.5	71.1	V / 1.0 / 0.0	-11.1	N/A			
2820.00	62.0 Pk	5.5 / 31.0 / 40.3	58.2	V / 1,0 / 0.0	-24.0	N/A			
3760.00	56.1 Pk	6.9 / 33.6 / 41.0	55.6	V / 1.0 / 0.0	-26.6	N/A			
4700.00	59.4 Pk	7.3 / 34.3 / 41.7	59.3	V / 1.0 / 0.0	-22.9	N/A			
ambient mea	surement belo	w		· · · · · ·	· · ·				
5640.00	44.8 Pk	7.5 / 36.3 / 39.2	49.5	V / 1.0 / 0.0	-32.7	N/A			
6580.00	47.7 Pk	8.1 / 36.7 / 38.4	54.0	V / 1.0 / 0.0	-28.2	N/A			
7520.00	46.8 Pk	8.7 / 38.0 / 38.1	55.4	V/1.0/0.0	-26.8	N/A			
8460.00	47.3 Pk	9.8 / 38.3 / 38.6	56.8	V / 1.0 / 0.0	-25.4	N/A			
9400.00	47.3 Pk	10.3 / 39.4 / 39.1	57.9	V / 1.0 / 0.0	-24.3	N/A			
Polarity Chan	ge					· · · · · · · · · · · · · · · · · · ·			
1880.00	77.6 Pk	4.2 / 28.5 / 40.5	69.7	H / 1.0 / 0.0	-12.5	N/A			
2820.00	63.1 Pk	5.5 / 31.0 / 40.3	59.3	H / 1.0 / 0.0	-22.9	N/A			
3760.00	55.6 Pk	6.9 / 33.6 / 41.0	55.1	H / 1.0 / 0.0	-27.1	N/A			
4700.00	55.7 Pk	7.3 / 34.3 / 41.7	55.6	H / 1.0 / 0.0	-26.6	N/A			
ambient meas	surements belo	ow							
5640.00	44.3 Pk	7.5 / 36.3 / 39.2	49.0	H / 1.0 / 0.0	-33.2	N/A			
6580.00	47.6 Pk	8.1 / 36.7 / 38.4	53.9	H / 1.0 / 0.0	-28.3	N/A			
7520.00	46.3 Pk	8.7 / 38.0 / 38.1	54.9	H / 1.0 / 0.0	-27.3	N/A			
8460.00	46.9 Pk	9.8 / 38.3 / 38.6	56.4	H / 1.0 / 0.0	-25.8	N/A			
9400.00	47.4 Pk	10.3 / 39.4 / 39.1	58.0	H / 1.0 / 0.0	-24.2	N/A			

Tested by:

:

Jim Owen Printed

im (Signature

10

Radiated Electromagnetic Emissions

Test Report #:	S0303 Run 01	Test Area:	Site 3 Roof	Temperature:	27	°C
Test Method:	Spurious Emissions 2.105	3 Test Date:	14-Sep-2088	Relative Humidity:	45	%
EUT Model #:	G31-900-50-005	EUT Power:	27 Vdc	Air Pressure:	100.1	- kPa
EUT Serial #:	C0000058N9			Page: 2 of 3		-
Manufacturer:	Powerwave		Level Key			
EUT Description:	GSM800 Amplifier			Pk – Peak	Nb – Na	rrow Band
Notes:				 Qp – QuasiPeak	Bb – Bro	ad Band
				Av - Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)			
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)	FCC Part 24	N/A			
Mid Channel									
1875.00	76.0 Pk	4.2 / 28.4 / 40.5	68.1	H / 1.0 / 0.0	-14.1	N/A			
2812.50	64.0 Pk	5.5 / 31.0 / 40.3	60.2	H / 1.0 / 0.0	-22.0	N/A			
3750.00	56.0 Pk	6.9 / 33.5 / 41.0	55.5	H / 1.0 / 0.0	-26.7	N/A			
4687.50	61.8 Pk	7.3 / 34.2 / 41.7	61.7	H / 1.0 / 0.0	-20.5	N/A			
no emissions	detected abov	e 5th harmonic		• • • • • • • • • • • • • • • • • • • •					
1875.00	77.3 Pk	4.2 / 28.4 / 40.5	69.4	V / 1.0 / 0.0	-12.8	N/A			
2812.50	62.7 Pk	5.5 / 31.0 / 40.3	58.9	V / 1.0 / 0.0	-23.3	N/A			
3750.00	56.9 Pk	6.9 / 33.5 / 41.0	56.4	V / 1.0 / 0.0	-25.8	N/A			
4687.50	60.3 Pk	7.3 / 34.2 / 41.7	60.2	V / 1.0 / 0.0	-22.0	N/A			
no emissions	detected abov	e 5th harmonic				• · · · · · · · · · · · · · · · · · · ·			
Low Channel									
1870.00	78.2 Pk	4.1 / 28.4 / 40.5	70.3	V / 1.0 / 0.0	-11.9	N/A			
2805.00	62.5 Pk	5.5 / 31 0 / 40.3	58.7	V / 1.0 / 0.0	-23.5	N/A			
3740.00	58.5 Pk	6.9 / 33.5 / 40.9	58.0	V / 1.0 / 0.0	-24.2	N/A			
4675.00	59.8 Pk	7.3 / 34.2 / 41.7	59.6	V / 1.0 / 0.0	-22.6	N/A			
no emissions	detected abov	e 5th harmonic			······				
1870.00	76.3 Pk	4.1 / 28.4 / 40.5	68.4	H / 1.0 / 0.0	-13.8	N/A			
2805.00	63.3 Pk	5.5 / 31.0 / 40.3	59.5	H / 1.0 / 0.0	-22.7	N/A			
3740.00	55.1 Pk	6.9 / 33.5 / 40.9	54.6	H / 1.0 / 0.0	-27.6	N/A			
4675.00	62.5 Pk	7.3 / 34.2 / 41.7	62.3	H / 1.0 / 0.0	-19.9	N/A			

Tested by: Jim Owen Find Signature

Emissions Test Conditions: RADIATED EMISSIONS, FCC Part 2, Paragraph 2.1053

The RADIATED EMISSIONS measurements were performed at the following test location :

□ - Test not applicable

Roof (Small Open Area Test Site), San Diego

Testing was performed at a test distance of:

- □ 1 meters
- 3 meters
- □ 10 meters

Test Equipment Used :

Model No.	Prop. No.	Description	Manufacturer	Serial No.	Cal Date
3115	453	Antenna, Double Ridge Guide	EMCO	9412-4363	10/01
AMF-5D-	719	Pre-amplifier (38 dB gaine, 1 -	EMCO	2495	*
010180-35-		18 GHz			
10P					
8566B	720	Spectrum Analyzer	Hewlett Packard	211500842	03/01
8566B	721	Spectrum Analyzer Display	Hewlett Packard	2112A02185	03/01
Remarks:	(*) Verified				

Field Strength Calculation

If a preamplifier was used during the Radiated Emission Testing, it is required that the amplifier gain must be subtracted from the Spectrum Analyzer (Meter) Reading. In addition, a correction factor for the antenna, cable used and a distance factor, if any, must be applied to the Meter Reading before a true field strength reading can be obtained. In the automatic measurement, these considerations are automatically presented as a part of the print out. In the case of manual measurements and for greater efficiency and convenience, instead of using these correlation factors for each meter reading, the specification limit was modified to reflect these correlation factors at each frequency value so that the meter readings can be compared directly to the modified specification limit. This modified specification limit is referred to as the "Corrected Meter Reading Limit" or simply the CMRL, which is the actual field strength present at the antenna. The quantity can be derived in the following manner:

Corrected Meter Reading Limit (CMRL) = SAR + AF + CL - AG - DC

Where, SAR = Spectrum Analyzer Reading

- AF = Antenna Factor
- CL = Cable Loss
- AG = Amplifier Gain (if any)
- DC = Distance Correction (if any)

Assume the following situation: A meter reading of 29.4 dBuV was obtained from a Class A computing device measured at 83 MHz. Assume an antenna factor of 9.2 dB, a cable loss of 1.4 dB and amplifier gain of 20.0 dB at 83 MHz. The final field strength would be determined as follows:

CMRL = 29.4 dBuV + 9.2dB = 1.4 dB - 20 dB/M - 0.0 dB

CMRL = 20.0 dBuV/M

This result is well below the FCC and CSA Class A limit of 29.5 dbuV/m at 83 MHz.

For the manual mode of measurement, a table of corrected meter reading limit was used to permit immediate comparison of the meter reading to determine if the measure emission amplitude exceeded the specification limit at that specific frequency.

Report No. 0303-08 (FCC ID:E675JS0048)

4 CONDUCTED EMISSION EQUIPMENT/DATA

See following page(s).

Emissions Test Conditions: CONDUCTED EMISSIONS, FCC Part 2, 2.1046 and 2.1051 and Part 90, Paragraph 90.210

The RADIATED EMISSIONS measurements were performed at the following test location :

- Test not applicable

SR-3, Shielded Room, 12' x 20' x 8', Metal Chamber

Test Equipment Used :

Signal Generator, Agilent, Model E4433B, Cal: 04/13/01 (1) Signal Generator, Agilent, Model E4433B, Cal: 08/02(2) Signal Generator, Agilent, Model E4433B, Cal: 08/02(3) Circulator, Model, 1-3DF-2354, S/N 00177, verified internally (1) Circulator, Model, 1-3DF-2354, S/N 00222, verified internally (2) Circulator, Model, 1-3DF-2354, S/N 00260, verified internally (3) Attenuator (variable), Arra, Model 2-8354-20D, verified internally Spectrum Analyzer, Model HP8594E, P/N 430, Cal: ?? Power Meter, HPE4419B, Cal: 12/11/00 Power Sensor, HP8481A; Cal: 07/28/01 Directional Coupler, Narda, 3022, verified internally 30 dB Attenuator, JFW, 50FH-030-100, verified internally 20 dB Attenuator, BPF, FSY 80212, DC0030, S/N 0003, verified

Remarks:

Powerwave Project Nr. S0303

Channel	Frequency (MHz)	Peak Power Level			
Low	935.0	49.35	48,4172		
Mid	937.5	48.71	47.4240		
High	940.0	49.35	47,6432		

Equipment Used:

Model Nr.	Property Nr.	Cal. Due		
HP 8900D	PN: 802	03/31/01		
HP 84811A	PN: 801	03/31/01		
HP 8594E	PN: 430	05/10/01		

16a

16 c

TEST: Peak Output Power

TEST: Intermodulation

Ø9: 37: 22 SEP 12, 2ØØØ

18

TEST: Intermodulation

Ø9: 34: 3Ø SEP 12, 2ØØØ

· · · ·

	55.	ØdBm	ΑΤΤ	EN 1Ø	dB			MK	(R 1.8 -18.1	76 GHz Ø dBm
, 10 dB/										
POS PK						<u> </u>				
OFFSET 65.Ø dB										
DL -13.Ø dBm										
	<u>-</u>									
CORR.D	al marring	Musicenser	Anthe Antres	-Uni-play-apl	-	mulumplet	-	**	for the section of th	-
START 1		7			L					
	RES B	- W 30 k	:Hz (i)	VBW	100	kHz		SWP	11.3	SEC

TEST: Conducted Spurious

7 SIGNATURE PAGE

GENERAL REMARKS:

SUMMARY:

All tests according to the standards sited on page 1 of this report.

- Performed
- I Not Performed
- The Equipment Under Test
- - Fulfills the general approval requirements cited on page 1.
- □ **Does not** fulfill the general approval requirements cited on page 1.

- TÜV PRODUCT SERVICE, INC. -

Responsible Engineer:

Jein Deelen

Jim Owen (EMC Engineer)