

ADDENDUM TO FC02-048

FOR THE

POWER AMPLIFIER, G3S-1900-80

FCC PART 24 AND PART 15 SUBPART B SECTION 15.109

COMPLIANCE

DATE OF ISSUE: JUNE 19, 2002

PREPARED FOR:

PREPARED BY:

Powerwave Technologies Inc. 1801 E. St. Andrew Place Santa Ana, CA 92705

P.O. No.: 57439 W.O. No.: 78784 Mary Ellen Clayton CKC Laboratories, Inc. 5473A Clouds Rest Mariposa, CA 95338

Date of test: April 17-19, 2002

Report No.: FC02-048A

This report contains a total of 57 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS

Administrative Information	i
Summary of Results	-
Conditions for Compliance	÷
Approvals4	
Equipment Under Test (EUT) Description	i
Equipment Under Test	,
Peripheral Devices	i
Temperature and Humidity During Testing5	,
2.1033(c)(3) User's Manual	
2.1033(c)(4) Type of Emissions	,
2.1033(c)(5) Frequency Range)
2.1033(c)(6) Operating Power)
2.1033(c)(7) Maximum Power Rating)
2.1033(c)(8) DC Voltages	
2.1033(c)(9) Tune-Up Procedure	,
2.1033(c)(10) Schematics and Circuitry Description	,
2.1033(c)(11) Label and Placement)
2.1033(c)(12) Submittal Photos	
2.1033(c)(13) Modulation Information	,)
2.1033(c)(14)/2.1046(a)/24.232(a) - RF Power Output7	'
2.1033(c)(14)/2.1047(b) - Modulation - Audio Frequency Response	,
2.1033(c)(14)/2.1047(b) - Modulation Limiting Response	,
2.1033(c)(14)/2.1049(i) - Occupied Bandwidth	,
Intermodulation	2
2.1033(c)(14)/2.1051/24.238 - Spurious Emissions at Antenna Terminal	3
2.1033(c)(14)/2.1053/24.238 - Field Strength of Spurious Radiation	4
15.109 – Radiated Emissions – Receiver/Digital	3

CKC Laboratories, Inc. has received Certificates of Accreditation from the following agencies:
A2LA (USA); BSMI (Taiwan); Nemko (Norway); and GOST (Russia).
CKC Laboratories, Inc has received test site Registration Acceptance from the following agencies:
FCC (USA); VCCI (Japan); and Industry Canada.
CKC Laboratories, Inc. has received Letters of Acceptance through an MRA for the following agencies:
ACA/NATA (Australia); SABS (South Africa); SWEDAC (Sweden); Radio Communications Agency (RA); HOKLAS (Hong Kong); Bakom (Swiss); BIPT (Belgium); Denmark Telestyrelsen; RvA (Netherlands); SEE (Luxembourg) SITTEL (Bolivia); and UKAS (UK).

ADMINISTRATIVE INFORMATION

DATE OF TEST:	April 17-19, 2002
DATE OF RECEIPT:	April 17, 2002
PURPOSE OF TEST:	To demonstrate the compliance of the Power Amplifier, G3S-1900-80 with the requirements for FCC Part 24 and Part 15 Subpart B Section 15.109 devices. The purpose of this addendum is to revise the RF Power Output table.
TEST METHOD:	ANSI C63.4 (1992) and Part 24
FREQUENCY RANGE TESTED:	10 MHz – 20 GHz
MANUFACTURER:	Powerwave Technologies Inc. 1801 E. St. Andrew Place Santa Ana, CA 92705
REPRESENTATIVE:	Jeffrey Dale
TEST LOCATION:	CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92621

SUMMARY OF RESULTS

As received, the Powerwave Technologies Inc. Power Amplifier, G3S-1900-80 was found to be fully compliant with the following standards and specifications:

United States

- FCC Part 24 and Part 15 Subpart B Section 15.109 using:
- > Part 24 and ANSI C63.4 (1992) methods

CONDITIONS FOR COMPLIANCE

Ferrites were installed at the power supply. Conducted emissions not required for this device.

APPROVALS

QUALITY ASSURANCE:

TEST PERSONNEL:

Steve -7 Be

Steve Behm, Manager of Engineering Services

Jourse Ant

Joyce Walker, Quality Assurance Administrative Manager

9A

Septimiu Apahidean, EMC/Lab Manager

Randy Clark, EMC Engineer

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The EUT tested by CKC Laboratories was a production unit. 1900 MHz RF Power Amplifier.

EQUIPMENT UNDER TEST

Power Amplifier

Manuf: Powerwave Technologies Inc. G3S-1900-80 Model: Serial: C00000P252 FCC ID: E675JS0045

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Input Signal Generator (3)

<u>Input Signa</u>	l Generator (3)	High Power Attenuator			
Manuf:	Agilent	Manuf:	Weinschel Corp		
Model:	E4433B	Model:	53-20-34		
Serial:	US40051593, US40051146 &	Serial:	LF243		
	US40052095	FCC ID:	DoC		
FCC ID:	DoC				

<u>Combiner/Splitter</u>		Power Supply			
Manuf:	Anaren	Manuf:	Sorensen		
Model:	4-4000	Model:	DCS40-75		
Serial:	9641	Serial:	9741098		
FCC ID:	DoC	FCC ID:	DoC		

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

2.1033(c)(3) USER'S MANUAL

The necessary information is contained in a separate document.

2.1033 (c)(4) TYPE OF EMISSIONS

AMPS-F1D – 27K0F1D AMPS-F8W – 37K5F8W CDMA – 1M35F9W GSM – 280KGXW TDMA – 35K0DXW EDGE – 282KG7W

2.1033(c)(5) FREQUENCY RANGE 1930-1990 MHz.

2.1033(c)(6) OPERATING POWER

125 Watts. EUT input frequencies are chosen such that the lowest, middle and highest blocks are used. Three input signals are combined and fed to the EUT such that the output of the amplifier is set to 125 watts.

2.1033(c)(7) MAXIMUM POWER RATING

125 Watts.

2.1033(c)(8) DC VOLTAGES

The necessary information is contained in a separate document.

2.1033(c)(9) TUNE-UP PROCEDURE

The necessary information is contained in a separate document.

2.1033(c)(10) SCHEMATICS AND CIRCUITRY DESCRIPTION

The necessary information is contained in a separate document.

2.1033(c)(11) LABEL AND PLACEMENT

The necessary information is contained in a separate document.

2.1033(c)(12) SUBMITTAL PHOTOS

The necessary information is contained in a separate document.

2.1033(c)(13) MODULATION INFORMATION

The necessary information is contained in a separate document.

2.1033(c)(14)/2.1046(a)/24.232(a)- RF POWER OUTPUT

Test Conditions: The antenna port of the EUT is connected to a power meter through suitable attenuation. Attenuators' insertion losses have been included in the final calculation.

Channel Block	Power (Watts)
А	125
В	125
С	125

Power output reported as measured with a power meter.

Input signal is tuned such that the power output of the EUT is set to 125W.

The input frequencies chosen are as follows:

(Low) Block A: 1931.875, 1934.375 and 1943.125

(Mid) Block B: 1951.875, 1954.375 and 1963.125

(High) Block C: 1976.875, 1979.375 and 1988.125

Test Equipment

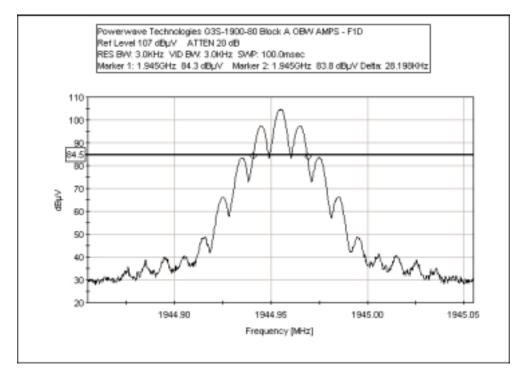
Test Equipment								
Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due		
Directional Coupler		HP	86205A	3140A03083	041702	041703		
Power Meter		HP	E4418B	US39251104	041702	041703		

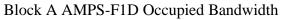
Direct Connect Test Setup

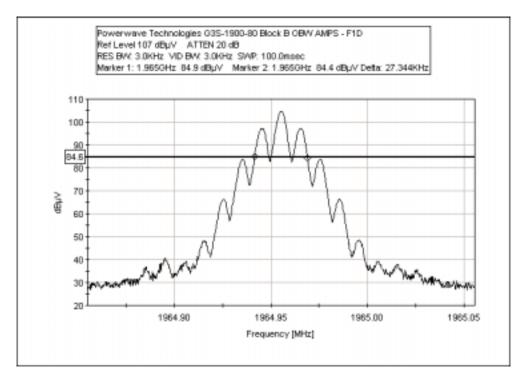
2.1033(c)(14)/2.1047(a) - MODULATION CHARACTERISTICS - AUDIO FREQUENCY RESPONSE

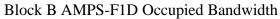
Not applicable to this unit.

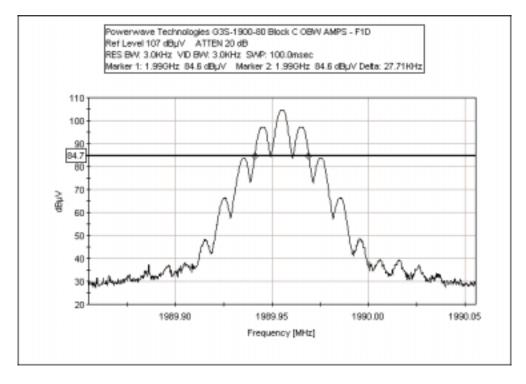
2.1033(c)(14)/2.1047(b) MODULATION CHARACTERISTICS – Modulation Limiting Response

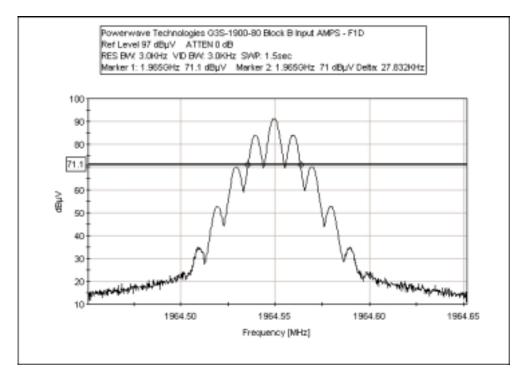

Not applicable to this unit.

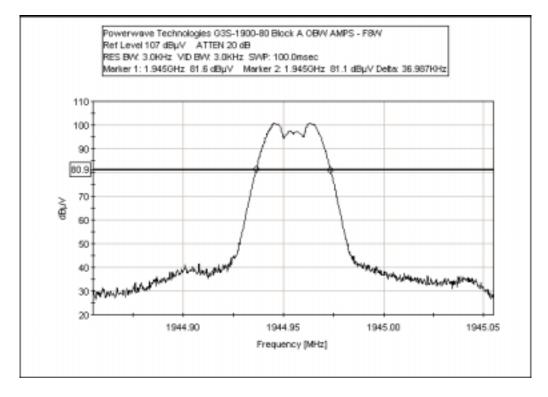

2.1033(c)(14)/2.1049(i)- OCCUPIED BANDWIDTH

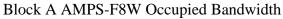

Test Conditions: EUT is connected directly to the spectrum analyzer through a high power attenuator and directional coupler. The emissions bandwidth is measured as the 20dB points. Data is taken in a 3kHz bandwidth.

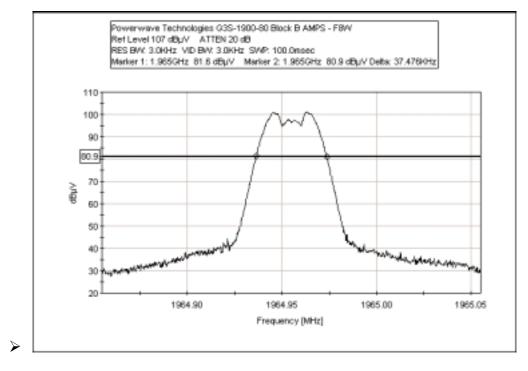

Summary of Occupied Bandwidth Plots								
Mode	Block	Occupied Bandwidth						
AMPS-F1D	A (Low)	26.198 kHz						
AMPS-F1D	B (Mid)	27.344 kHz						
AMPS-F1D	C (High)	27.71 kHz						
AMPS-F8W	A (Low)	36.967 kHz						
AMPS-F8W	B (Mid)	37.476 kHz						
AMPS-F8W	C (High)	37.476 kHz						
CDMA	A (Low)	1.36 MHz						
CDMA	B (Mid)	1.355 MHz						
CDMA	C (High)	1.35 MHz						
GSM	A (Low)	267.964 kHz						
GSM	B (Mid)	273.926 kHz						
GSM	C (High)	281.006 kHz						
TDMA	A (Low)	35.034 kHz						
TDMA	B (Mid)	35.156 kHz						
TDMA	C (High)	34.424 kHz						
EDGE	A (Low)	281.982 kHz						
EDGE	B (Mid)	281.982 kHz						
EDGE	C (High)	276.001 kHz						

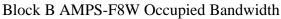


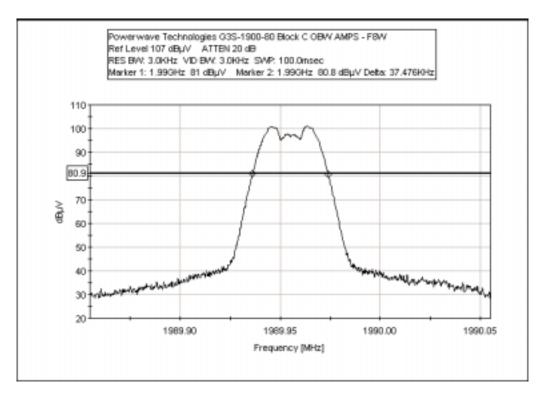


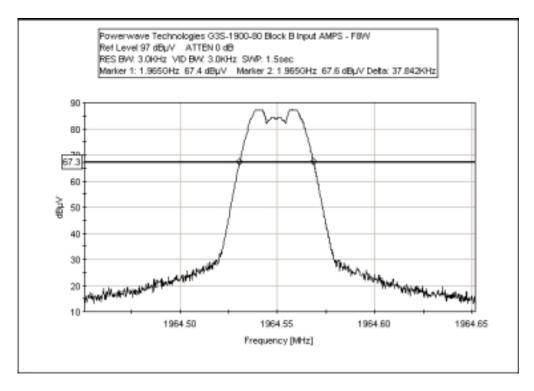


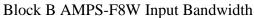


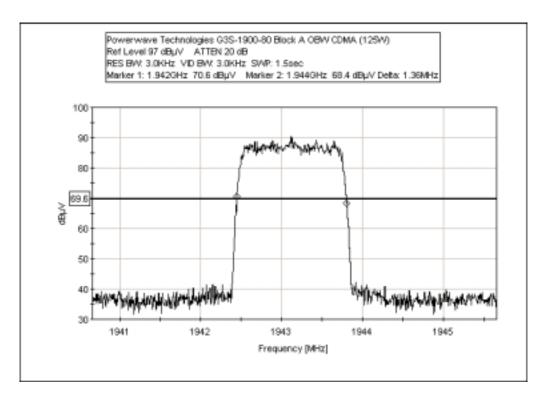


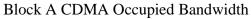


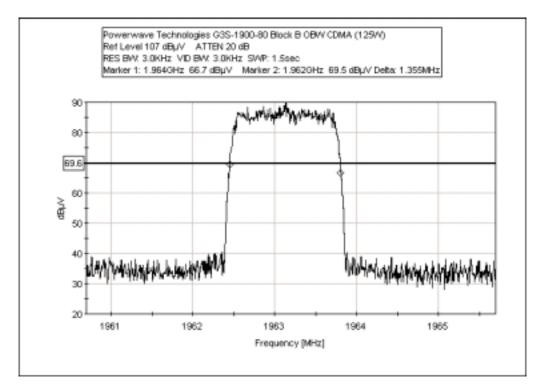


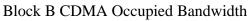


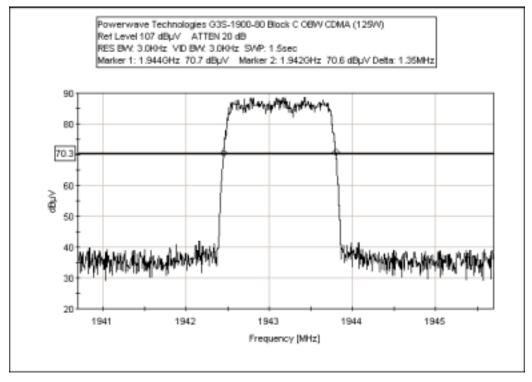

Page 11 of 57 Report No.: FC02-048A

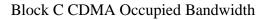


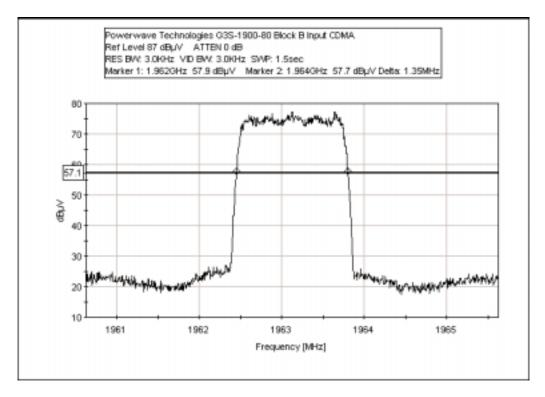


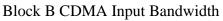


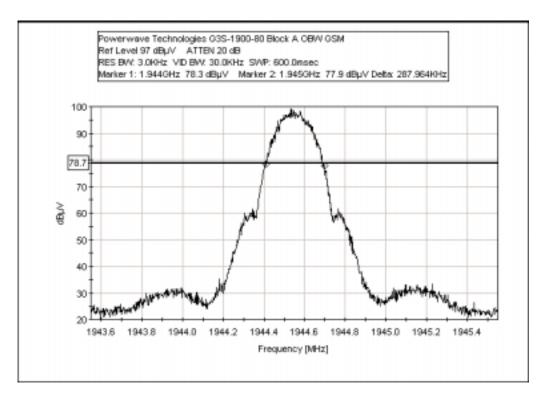


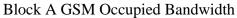


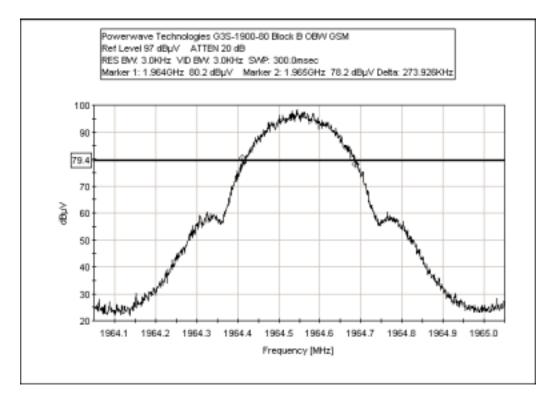


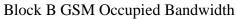


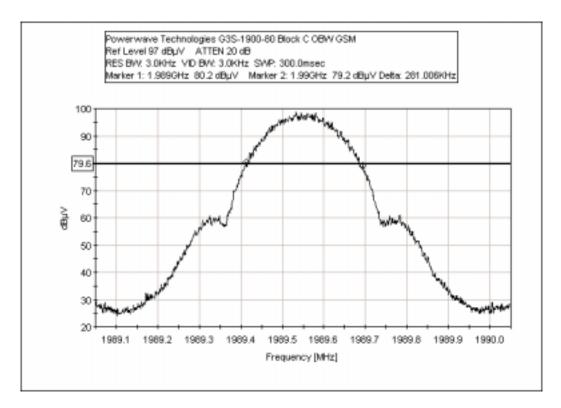


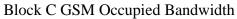


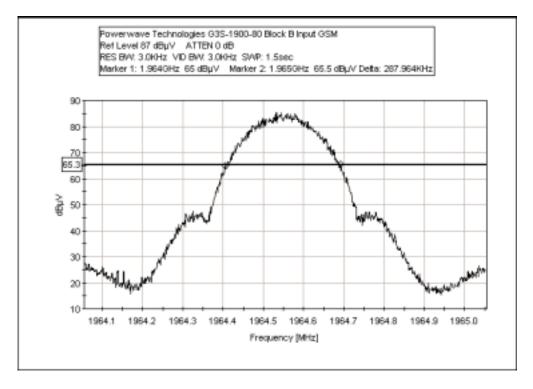


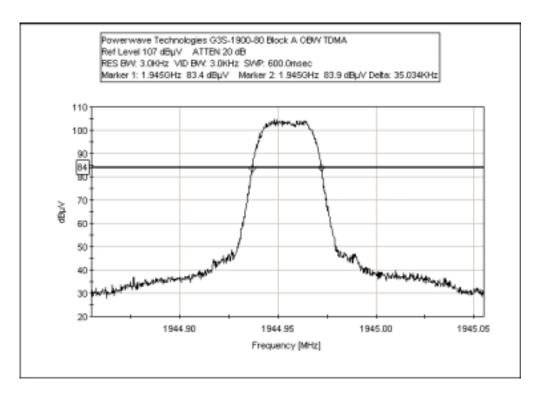


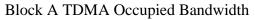


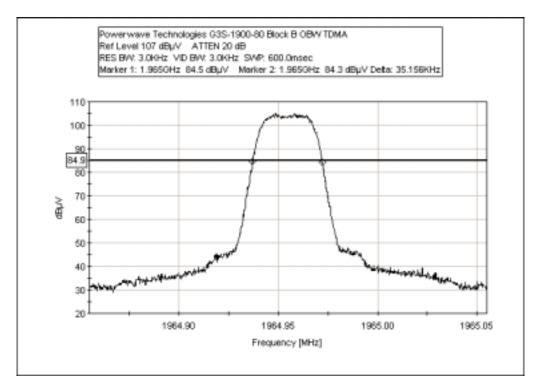


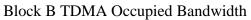


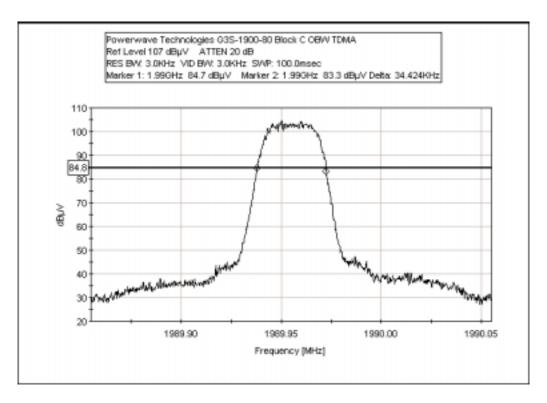


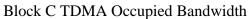


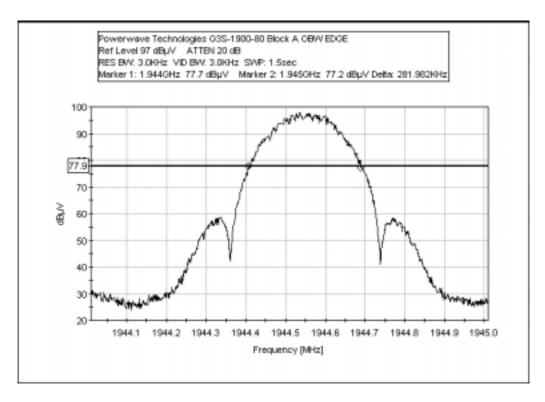


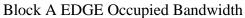


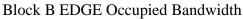


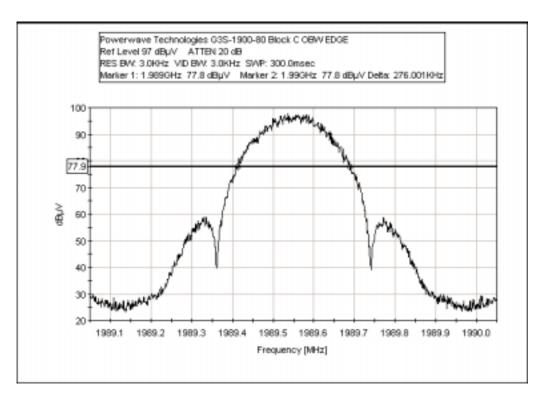


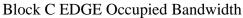


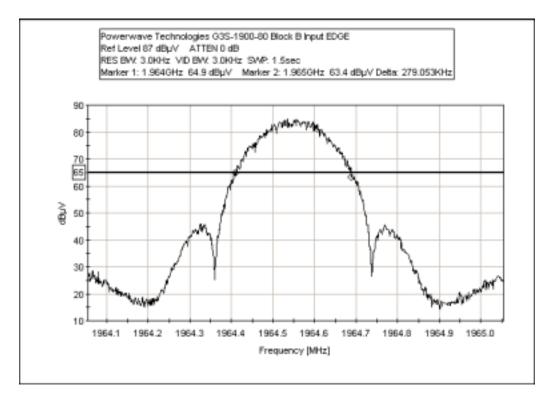


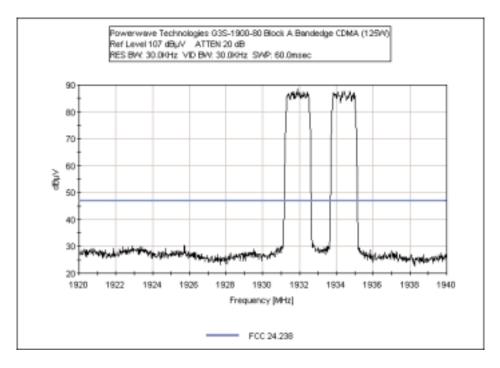


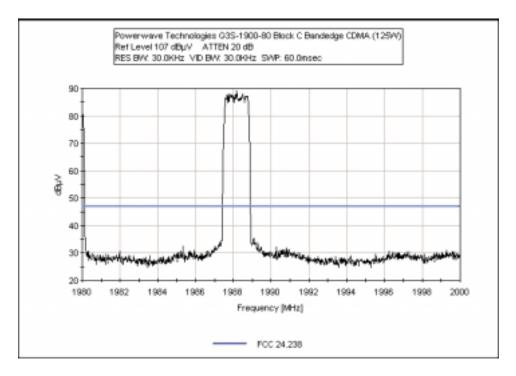


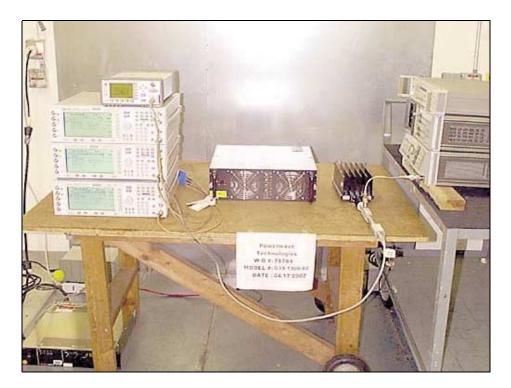




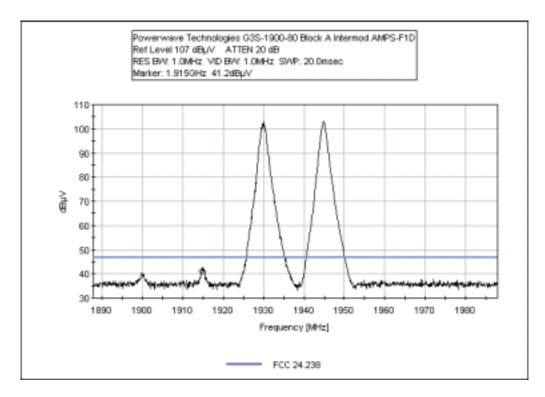


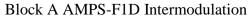


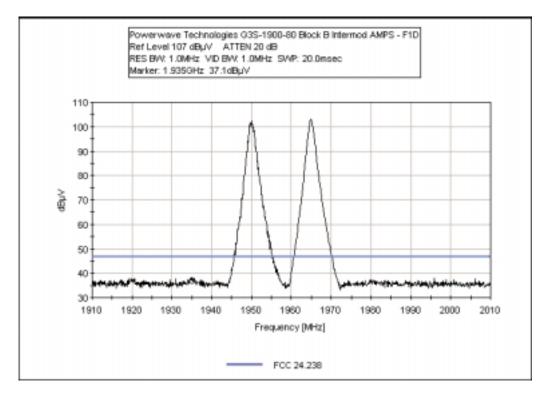



Block A CDMA Bandedge

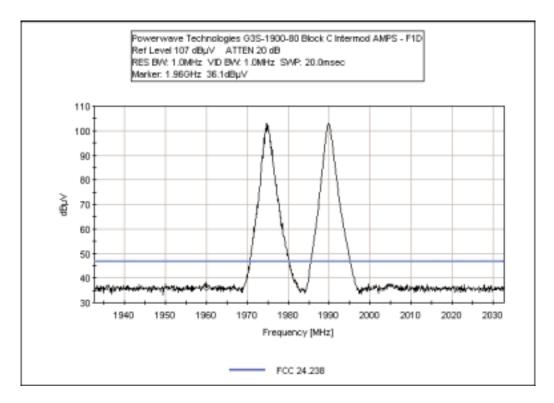
Note: It was determined during testing that CDMA was worst case; therefore all spurious emissions testing was done using this mode.

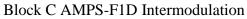


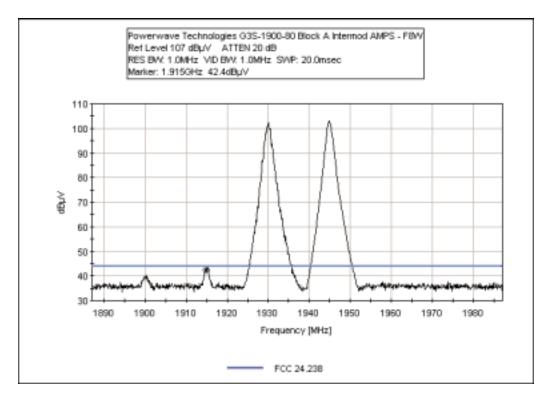

Direct Connect Test Setup

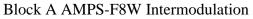

INTERMODULATION

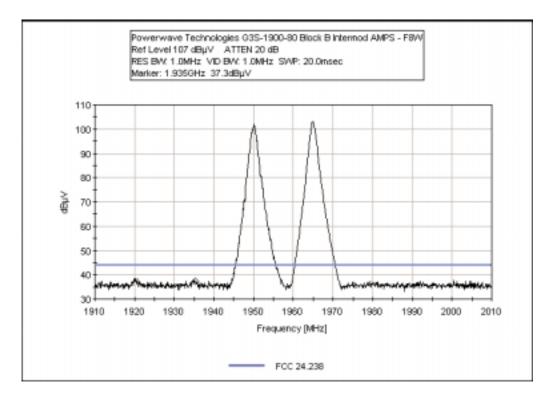
Test Conditions: Test performed using the three signal generator method. Data is taken in a 1MHz RBW using sample averaging with 100 samples. The display line is reverse mapped incorporating the correction factors of the high power attenuator and the directional coupler. All plots are taken in a 100MHz span. There are no intermodulation products outside of this range.

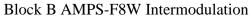


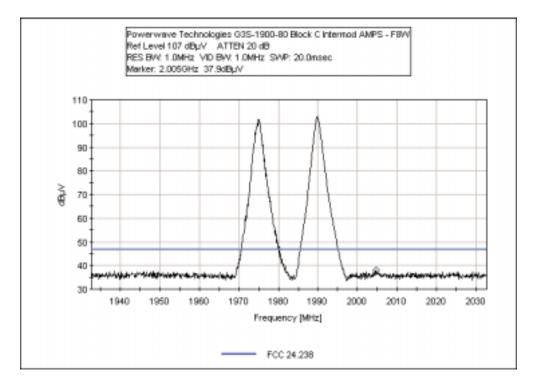


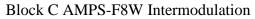


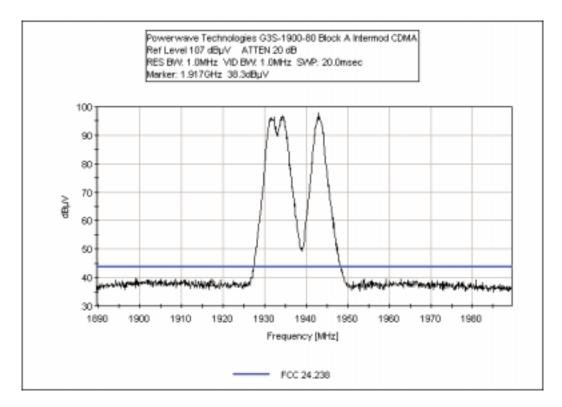


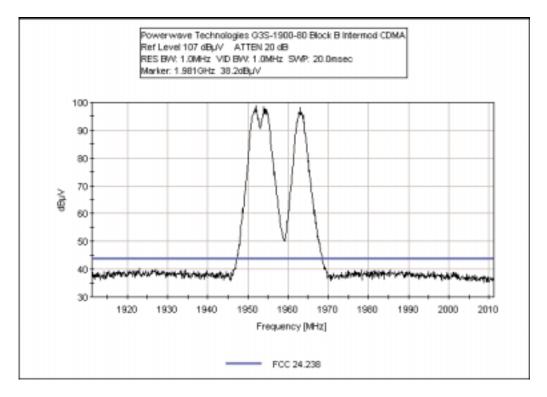


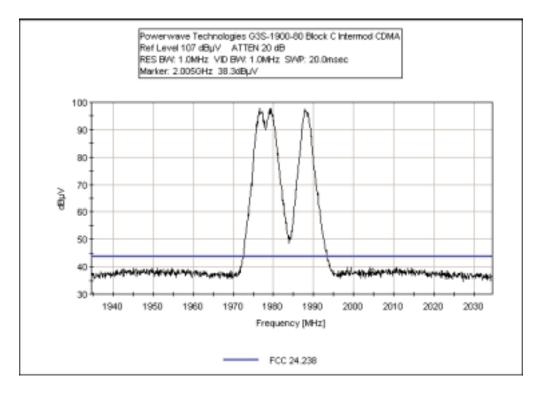


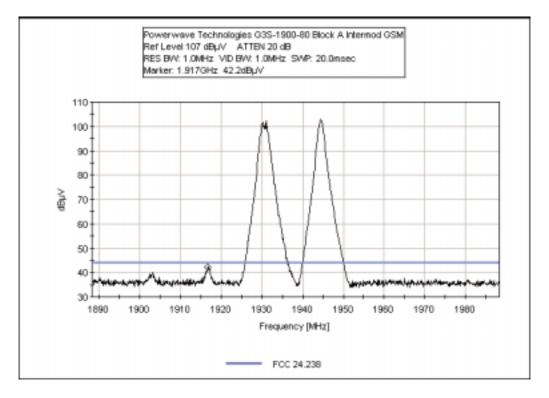


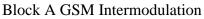


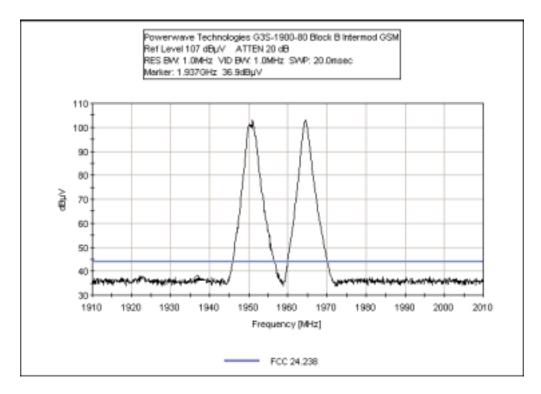


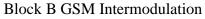


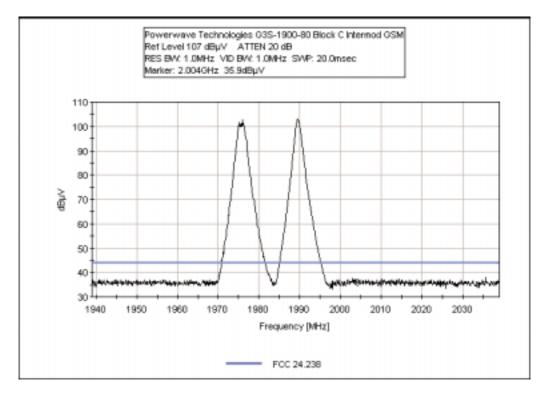


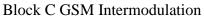


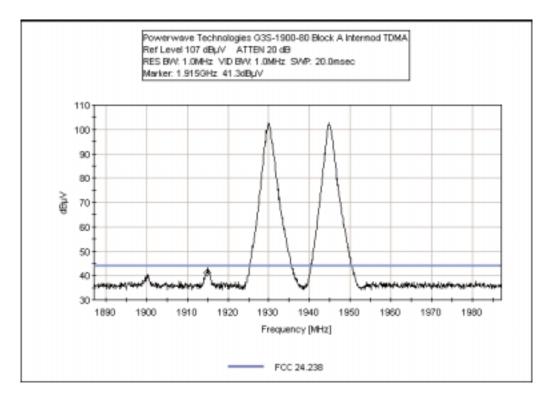


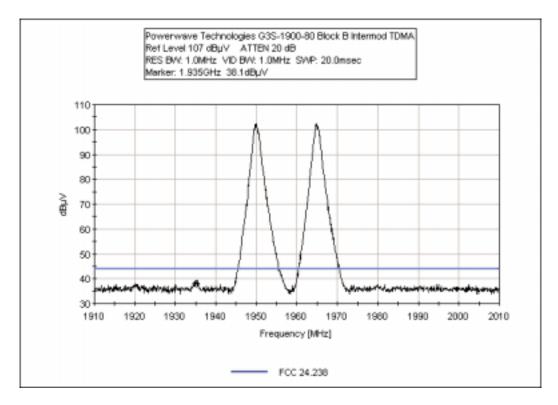


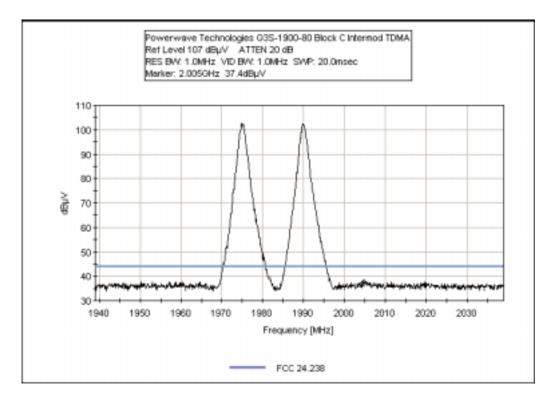


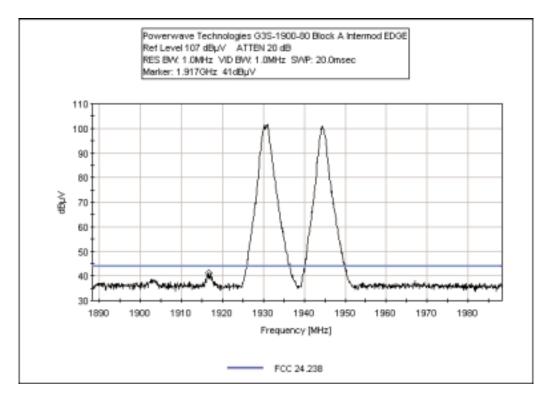


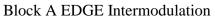


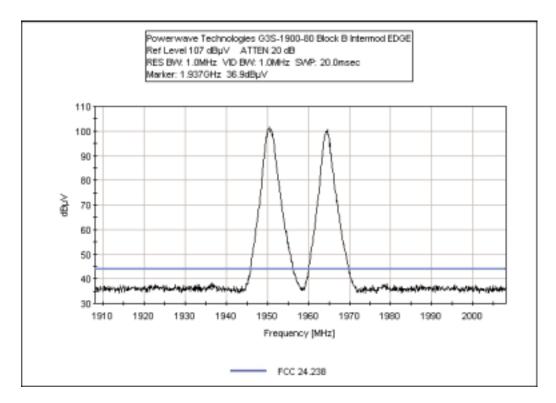


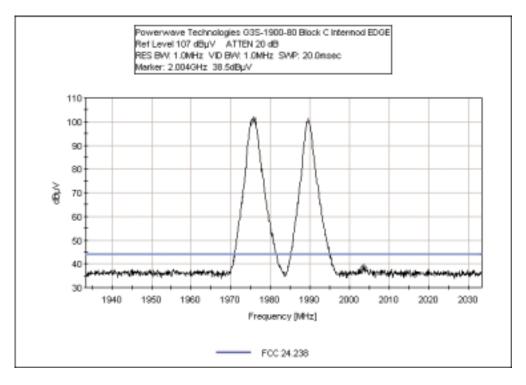


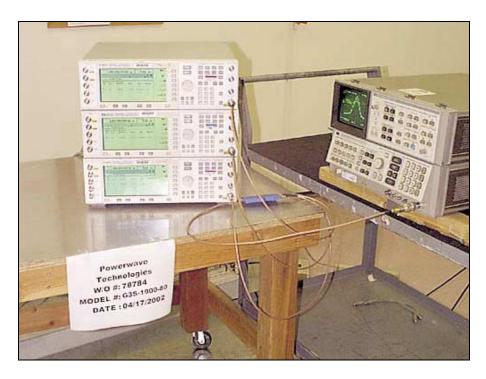












Test Equipment						
Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	01865	HP	8566B	2532A02509	092801	092802
QP Adapter	01437	HP	85650A	3303A01884	092801	092802
Directional Coupler		HP	86205A	3140A03083	NA	NA
Power Sensor		HP	8481A	US37298441	81501	81502
Power Meter		HP	E4418B	US39251104	41702	51702
Power Meter	00613	HP	435B	2702A16632	81001	81002
Power Sensor	00774	HP	8481A	2349A41124	81001	81002

Signal Generator Input Test Setup

2.1033(c)(14)/2.1051/24.238 - SPURIOUS EMISSIONS AT ANTENNA TERMINAL

Frequency	Channel	Power	Limit (dBm)
	Block	(dBm)	
2016.8	С	-15.6	-13
18648.4	C	-15.8	-13
104.5	В	-15.9	-13
18638.4	А	-16.1	-13
949.3	C	-16.1	-13
1000	C	-16.1	-13
1138.2	В	-16.1	-13
18775.5	В	-16.1	-13
70.8	A	-16.1	-13

The input frequencies chosen are as follows:

(Low) Block A: 1931.875, 1934.375 and 1943.125

(Mid) Block B: 1951.875, 1954.375 and 1963.125

(High) Block C: 1976.875, 1979.375 and 1988.125

Test Location:	CKC LABORATORIES INC	• 110 N. OLINDA PL. • BRE	A, CA 92823 • 714-993-6112
Customer:	Powerwave Technologies		
Specification:	FCC 24.238		
Work Order #:	78784	Date:	04/19/2002
Test Type:	Radiated Scan	Time:	11:29:36 AM
Equipment:	Power amplifier	Sequence#:	16
Manufacturer:	Powerwave Technologies	Tested By:	Randal Clark
Model:	G3S-1900-80		
S/N:	C00000P252		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Power amplifier*	Powerwave Technologies	G3S-1900-80	C00000P252
Support Devices:			
Function	Manufacturer	Model #	S/N
Input Signal Generator	Agilent	E4433B	US40051593
Input Signal Generator	Agilent	E4433B	US40051146
Input Signal Generator	Agilent	E4433B	US40052095
High Power Attenuator	Weinschel Corp	53-20-34	LF243
Combiner/Splitter	Anaren	4-4000	9641
Power Supply	Sorensen	DCS40-75	9741098

Test Conditions / Notes:

EUT is a power amplifier located on an 80cm table. The support equipment is located adjacent to the EUT. EUT input frequencies are chosen such that the lowest, middle and highest blocks are used. Three input signals are combined and fed to the EUT such that the output of the amplifier is set to 125W. EUT output is terminated through a high power attenuator to a power meter. The input signals are CDMA, which represents the worst case for spurious emissions. The input frequencies chosen are as follows: (Low) Block A: 1931.875, 1934.375 and 1943.125. (Mid) Block B: 1951.875, 1954.375 and 1963.125. (High) Block C: 1976.875, 1979.375 and 1988.125. Frequency Range investigated: 10MHz - 1GHz. Input frequencies are in Block A (Low Channel). For measurements within 1MHz of the block edge a 30kHz RBW was used. For all other measurements, 1MHz RBW was used. An extra 10dB of internal attenuation used between 10MHz and 1.5GHz to avoid compression and overload conditions.

Transducer Legend:

T1=DC&ATT Assembly

Measu	rement Data:	Re	eading lis	ted by	margin.	Test Distance: None					
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	70.802M	43.7	+47.2				+0.0	90.9	94.0	-3.1	None
2	1000.000M	43.7	+47.2				+0.0	90.9	94.0	-3.1	None
3	11.340M	43.6	+47.2				+0.0	90.8	94.0	-3.2	None
4	378.417M	43.3	+47.2				+0.0	90.5	94.0	-3.5	None
5	277.068M	43.2	+47.2				+0.0	90.4	94.0	-3.6	None

Test Location: CKC LABORATORIES INC • 110 N. OLINDA PL. • BREA, CA 92823 • 714-993-6112

Customer:	Powerwave Technologies		
Specification:	FCC 24.238		
Work Order #:	78784	Date:	04/19/2002
Test Type:	Radiated Scan	Time:	11:08:16 AM
Equipment:	Power amplifier	Sequence#:	17
Manufacturer:	Powerwave Technologies	Tested By:	Randal Clark
Model:	G3S-1900-80		
S/N:	C00000P252		

Equipment Under Test (* = EUT):

Anaren

Sorensen

Function	Manufacturer	Model #	S/N
Power amplifier*	Powerwave Technologies	G3S-1900-80	C00000P252
Support Devices:			
Function	Manufacturer	Model #	S/N
Input Signal Generator	Agilent	E4433B	US40051593
Input Signal Generator	Agilent	E4433B	US40051146
Input Signal Generator	Agilent	E4433B	US40052095
High Power Attenuator	Weinschel Corp	53-20-34	LF243

DCS40-75

9641

9741098

4-4000

Test Conditions / Notes:

Combiner/Splitter

Power Supply

EUT is a power amplifier located on an 80cm table. The support equipment is located adjacent to the EUT. EUT input frequencies are chosen such that the lowest, middle and highest blocks are used. Three input signals are combined and fed to the EUT such that the output of the amplifier is set to 125W. EUT output is terminated through a high power attenuator to a power meter. The input signals are CDMA, which represents the worst case for spurious emissions. The input frequencies chosen are as follows: (Low) Block A: 1931.875, 1934.375 and 1943.125. (Mid) Block B: 1951.875, 1954.375 and 1963.125. (High) Block C: 1976.875, 1979.375 and 1988.125. Frequency Range investigated: 1 - 20GHz. Input frequencies are in Block A (Low Channel). For measurements within 1MHz of the block edge a 30kHz RBW was used. For all other measurements, 1MHz RBW was used. An extra 10dB of internal attenuation used between 10MHz and 1.5GHz to avoid compression and overload conditions.

Transducer Legend:

T1=DC&ATT Assembly

Measu	irement Data:	Reading listed by margin.			Test Distance: None							
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar	
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant	
1	1932.732M	103.5	+47.2				+0.0	150.7	94.0	+56.7	None	
									In Band Emissions			
2	1943.743M	103.4	+47.2				+0.0	150.6	94.0	+56.6	None	
									In Band Emissions			
3	1934.734M	103.0	+47.2				+0.0	150.2	94.0	+56.2	None	
									In Band Emissions			
4	1954.754M	62.2	+47.2				+0.0	109.4	94.0	+15.4	None	
									In Band Emissions			
5	1961.761M	49.5	+47.2				+0.0	96.7	94.0	+2.7	None	
						In Band Emissions						

6	18638.420M	43.7	+47.2	+0.0	90.9	94.0	-3.1	None
7	1060.200M	43.3	+47.2	+0.0	90.5	94.0	-3.5	None
8	19386.130M	42.8	+47.2	+0.0	90.0	94.0	-4.0	None
9	15196.980M	40.6	+47.2	+0.0	87.8	94.0	-6.2	None
10	17703.490M	40.2	+47.2	+0.0	87.4	94.0	-6.6	None
11	14197.990M	40.0	+47.2	+0.0	87.2	94.0	-6.8	None
12	13187.980M	39.9	+47.2	+0.0	87.1	94.0	-6.9	None
13	15470.260M	39.9	+47.2	+0.0	87.1	94.0	-6.9	None
14	16820.610M	39.9	+47.2	+0.0	87.1	94.0	-6.9	None
15	6519.314M	37.3	+47.2	+0.0	84.5	94.0	-9.5	None
16	7703.497M	37.2	+47.2	+0.0	84.4	94.0	-9.6	None
17	10959.750M	37.1	+47.2	+0.0	84.3	94.0	-9.7	None
18	8735.528M	37.0	+47.2	+0.0	84.2	94.0	-9.8	None
19	12142.930M	37.0	+47.2	+0.0	84.2	94.0	-9.8	None
20	6023.819M	36.9	+47.2	+0.0	84.1	94.0	-9.9	None
21	9518.311M	36.8	+47.2	+0.0	84.0	94.0	-10.0	None
22	3876.674M	36.6	+47.2	+0.0	83.8	94.0	-10.2	None
23	3868.666M	36.3	+47.2	+0.0	83.5	94.0	-10.5	None
24	3887.685M	36.0	+47.2	+0.0	83.2	94.0	-10.8	None
25	2367.166M	35.0	+47.2	+0.0	82.2	94.0	-11.8	None
26	4657.454M	34.0	+47.2	+0.0	81.2	94.0	-12.8	None
<u>ا</u>								

Customer:	Powerwave Technologies		
Specification:	FCC 24.238		
Work Order #:	78784	Date:	04/19/2002
Test Type:	Radiated Scan	Time:	11:20:33 AM
Equipment:	Power amplifier	Sequence#:	18
Manufacturer:	Powerwave Technologies	Tested By:	Randal Clark
Model:	G3S-1900-80		
S/N:	C00000P252		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Power amplifier*	Powerwave Technologies	G3S-1900-80	C00000P252
Support Devices:			
Function	Manufacturer	Model #	S/N

1 unetion	1/1analaetarei	1010001 //	0/11	
Input Signal Generator	Agilent	E4433B	US40051593	
Input Signal Generator	Agilent	E4433B	US40051146	
Input Signal Generator	Agilent	E4433B	US40052095	
High Power Attenuator	Weinschel Corp	53-20-34	LF243	
Combiner/Splitter	Anaren	4-4000	9641	
Power Supply	Sorensen	DCS40-75	9741098	

Test Conditions / Notes:

EUT is a power amplifier located on an 80cm table. The support equipment is located adjacent to the EUT. EUT input frequencies are chosen such that the lowest, middle and highest blocks are used. Three input signals are combined and fed to the EUT such that the output of the amplifier is set to 125W. EUT output is terminated through a high power attenuator to a power meter. The input signals are CDMA, which represents the worst case for spurious emissions. The input frequencies chosen are as follows: (Low) Block A: 1931.875, 1934.375 and 1943.125. (Mid) Block B: 1951.875, 1954.375 and 1963.125. (High) Block C: 1976.875, 1979.375 and 1988.125. Frequency Range investigated: 10 - 1000 MHz. Input frequencies are in Block B (Mid Channel). For measurements within 1MHz of the block edge a 30kHz RBW was used. For all other measurements, 1MHz RBW was used. An extra 10dB of internal attenuation used between 10MHz and 1.5GHz to avoid compression and overload conditions.

Transducer Legend:

Measu	<i>Measurement Data:</i> Reading listed by margin.				margin.	Test Distance: None					
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	104.540M	43.9	+47.2				+0.0	91.1	94.0	-2.9	None
2	333.293M	43.2	+47.2				+0.0	90.4	94.0	-3.6	None
3	18.540M	43.0	+47.2				+0.0	90.2	94.0	-3.8	None
4	83.520M	43.0	+47.2				+0.0	90.2	94.0	-3.8	None
5	1000.000M	42.8	+47.2				+0.0	90.0	94.0	-4.0	None

Customer:	Powerwave Technologies		
Specification:	FCC 24.238		
Work Order #:	78784	Date:	04/19/2002
Test Type:	Radiated Scan	Time:	11:34:45 AM
Equipment:	Power amplifier	Sequence#:	19
Manufacturer:	Powerwave Technologies	Tested By:	Randal Clark
Model:	G3S-1900-80		
S/N:	C00000P252		

Weinschel Corp

Anaren

Sorensen

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Power amplifier*	Powerwave Technologies	G3S-1900-80	C00000P252
Support Devices:			
Function	Manufacturer	Model #	S/N
Input Signal Generator	Agilent	E4433B	US40051593
Input Signal Generator	Agilent	E4433B	US40051146
Input Signal Generator	Agilent	E4433B	US40052095

53-20-34

DCS40-75

4-4000

LF243

9741098

9641

Test Conditions / Notes:

High Power Attenuator

Combiner/Splitter

Power Supply

EUT is a power amplifier located on an 80cm table. The support equipment is located adjacent to the EUT. EUT input frequencies are chosen such that the lowest, middle and highest blocks are used. Three input signals are combined and fed to the EUT such that the output of the amplifier is set to 125W. EUT output is terminated through a high power attenuator to a power meter. The input signals are CDMA, which represents the worst case for spurious emissions. The input frequencies chosen are as follows: (Low) Block A: 1931.875, 1934.375 and 1943.125. (Mid) Block B: 1951.875, 1954.375 and 1963.125. (High) Block C: 1976.875, 1979.375 and 1988.125. Frequency Range investigated: 1 - 20 GHz. Input frequencies are in Block B (Mid Channel). For measurements within 1MHz of the block edge a 30kHz RBW was used. For all other measurements, 1MHz RBW was used. An extra 10dB of internal attenuation used between 10MHz and 1.5GHz to avoid compression and overload conditions.

Transducer Legend:

Measi	urement Data:	Re	eading lis	ted by 1	margin.	Test Distance: None					
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	1954.754M	103.2	+47.2				+0.0	150.4	94.0	+56.4	None
									Inband En	nissions	
2	1963.763M	103.0	+47.2				+0.0	150.2	94.0	+56.2	None
									Inband En	nissions	
3	1943.743M	69.4	+47.2				+0.0	116.6	94.0	+22.6	None
									Inband En	nissions	
4	1974.774M	66.1	+47.2				+0.0	113.3	94.0	+19.3	None
									Inband En	nissions	
5	1971.771M	65.1	+47.2				+0.0	112.3	94.0	+18.3	None
									Inband En	nissions	

6	1932.732M	52.0	+47.2	+0.0	99.2	94.0 Inband Emi		None
7	1982.782M	51.7	+47.2	+0.0	98.9		+4.9	None
8	1183.200M	43.7	+47.2	+0.0	90.9	94.0	-3.1	None
9	18775.560M	43.7	+47.2	+0.0	90.9	94.0	-3.1	None
10	19452.600M	43.0	+47.2	+0.0	90.2	94.0	-3.8	None
11	17532.320M	40.6	+47.2	+0.0	87.8	94.0	-6.2	None
12	16703.490M	40.4	+47.2	+0.0	87.6	94.0	-6.4	None
13	15451.240M	40.2	+47.2	+0.0	87.4	94.0	-6.6	None
14	14174.960M	40.0	+47.2	+0.0	87.2	94.0	-6.8	None
15	14933.720M	40.0	+47.2	+0.0	87.2	94.0	-6.8	None
16	13111.900M	39.8	+47.2	+0.0	87.0	94.0	-7.0	None
17	7266.060M	37.6	+47.2	+0.0	84.8	94.0	-9.2	None
18	3915.713M	37.5	+47.2	+0.0	84.7	94.0	-9.3	None
19	3904.702M	37.3	+47.2	+0.0	84.5	94.0	-9.5	None
20	6047.843M	37.2	+47.2	+0.0	84.4	94.0	-9.6	None
21	6336.131M	37.2	+47.2	+0.0	84.4	94.0	-9.6	None
22	10648.440M	37.2	+47.2	+0.0	84.4	94.0	-9.6	None
23	11725.510M	37.1	+47.2	+0.0	84.3	94.0	-9.7	None
24	9868.660M	37.0	+47.2	+0.0	84.2	94.0	-9.8	None
25	8559.353M	36.9	+47.2	+0.0	84.1	94.0	-9.9	None
26	2391.190M	34.7	+47.2	+0.0	81.9	94.0	-12.1	None
27	4277.074M	34.5	+47.2	+0.0	81.7	94.0	-12.3	None

Customer:	Powerwave Technologies		
Specification:	FCC 24.238		
Work Order #:	78784	Date:	04/19/2002
Test Type:	Radiated Scan	Time:	11:45:35 AM
Equipment:	Power amplifier	Sequence#:	20
Manufacturer:	Powerwave Technologies	Tested By:	Randal Clark
Model:	G3S-1900-80		
S/N:	C00000P252		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Power amplifier*	Powerwave Technologies	G3S-1900-80	C00000P252
Support Devices:			
E	Man Cast man	M . 1.1.4	CAL

Function	Manufacturer	Model #	S/N	
Input Signal Generator	Agilent	E4433B	US40051593	
Input Signal Generator	Agilent	E4433B	US40051146	
Input Signal Generator	Agilent	E4433B	US40052095	
High Power Attenuator	Weinschel Corp	53-20-34	LF243	
Combiner/Splitter	Anaren	4-4000	9641	
Power Supply	Sorensen	DCS40-75	9741098	

Test Conditions / Notes:

EUT is a power amplifier located on an 80cm table. The support equipment is located adjacent to the EUT. EUT input frequencies are chosen such that the lowest, middle and highest blocks are used. Three input signals are combined and fed to the EUT such that the output of the amplifier is set to 125W. EUT output is terminated through a high power attenuator to a power meter. The input signals are CDMA, which represents the worst case for spurious emissions. The input frequencies chosen are as follows: (Low) Block A: 1931.875, 1934.375 and 1943.125. (Mid) Block B: 1951.875, 1954.375 and 1963.125. (High) Block C: 1976.875, 1979.375 and 1988.125. Frequency Range investigated: 10 - 1000 MHz. Input frequencies are in Block C (High Channel). For measurements within 1MHz of the block edge a 30kHz RBW was used. For all other measurements, 1MHz RBW was used. An extra 10dB of internal attenuation used between 10MHz and 1.5GHz to avoid compression and overload conditions.

Transducer Legend:

Measu	rement Data:	Example 2 Reading listed by margin.				Test Distance: None					
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	949.306M	43.7	+47.2				+0.0	90.9	94.0	-3.1	None
2	1000.000M	43.7	+47.2				+0.0	90.9	94.0	-3.1	None
3	112.972M	43.5	+47.2				+0.0	90.7	94.0	-3.3	None
4	30.020M	43.4	+47.2				+0.0	90.6	94.0	-3.4	None
5	80.375M	43.4	+47.2				+0.0	90.6	94.0	-3.4	None

Customer:	Powerwave Technologies		
Specification:	FCC 24.238		
Work Order #:	78784	Date:	04/19/2002
Test Type:	Radiated Scan	Time:	11:49:25 AM
Equipment:	Power amplifier	Sequence#:	21
Manufacturer:	Powerwave Technologies	Tested By:	Randal Clark
Model:	G3S-1900-80		
S/N:	C00000P252		

Equipment Under Test (* = EUT):

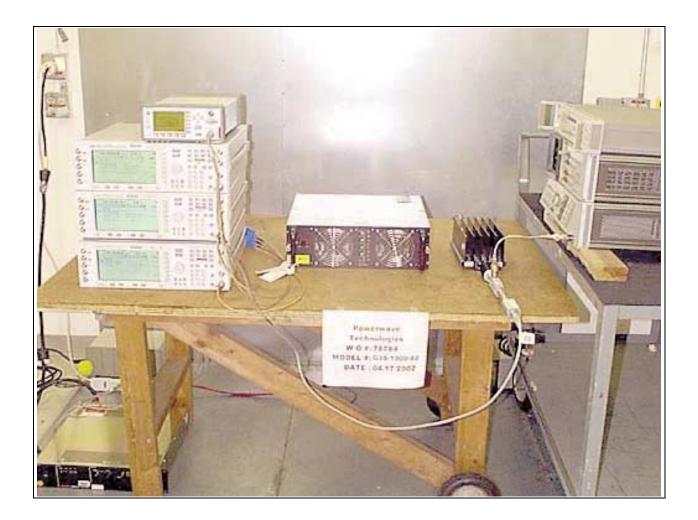
Function	Manufacturer	Model #	S/N	
Power amplifier*	Powerwave Technologies	G3S-1900-80	C00000P252	
Support Devices:	ž			

1 unotion	manaracturer	1110401 //	D/11
Input Signal Generator	Agilent	E4433B	US40051593
Input Signal Generator	Agilent	E4433B	US40051146
Input Signal Generator	Agilent	E4433B	US40052095
High Power Attenuator	Weinschel Corp	53-20-34	LF243
Combiner/Splitter	Anaren	4-4000	9641
Power Supply	Sorensen	DCS40-75	9741098

Test Conditions / Notes:

EUT is a power amplifier located on an 80cm table. The support equipment is located adjacent to the EUT. EUT input frequencies are chosen such that the lowest, middle and highest blocks are used. Three input signals are combined and fed to the EUT such that the output of the amplifier is set to 125W. EUT output is terminated through a high power attenuator to a power meter. The input signals are CDMA, which represents the worst case for spurious emissions. The input frequencies chosen are as follows: (Low) Block A: 1931.875, 1934.375 and 1943.125. (Mid) Block B: 1951.875, 1954.375 and 1963.12.5 (High) Block C: 1976.875, 1979.375 and 1988.125. Frequency Range investigated: 1 - 20 GHz. Input frequencies are in Block C (High Channel). For measurements within 1MHz of the block edge a 30kHz RBW was used. For all other measurements, 1MHz RBW was used. An extra 10dB of internal attenuation used between 10MHz and 1.5GHz to avoid compression and overload conditions.

Transducer Legend:


Measu	rement Data:	Re	Reading listed by margin. Test Distance: None								
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	1977.777M	104.1	+47.2				+0.0	151.3	94.0	+57.3	None
								Inband En	nissions		
2	1987.787M	103.5	+47.2				+0.0	150.7	94.0	+56.7	None
									Inband En	nissions	
3	1968.768M	66.7	+47.2				+0.0	113.9	94.0	+19.9	None
									Inband En	nissions	
4	1946.746M	45.7	+47.2				+0.0	92.9	94.0	-1.1	None
									Inband Emissions		
5	2016.816M	44.2	+47.2				+0.0	91.4	94.0	-2.6	None

71029.600M43.5 $+47.2$ $+0.0$ 90.794.0 -3.3 None819910.850M43.5 $+47.2$ $+0.0$ 90.794.0 -3.3 None917720.500M40.6 $+47.2$ $+0.0$ 87.894.0 -6.2 None1012921.710M40.3 $+47.2$ $+0.0$ 87.594.0 -6.7 None1114213.000M40.1 $+47.2$ $+0.0$ 87.394.0 -6.7 None1214522.310M40.1 $+47.2$ $+0.0$ 87.394.0 -6.7 None1314975.760M40.1 $+47.2$ $+0.0$ 87.394.0 -6.7 None1416242.030M40.1 $+47.2$ $+0.0$ 87.394.0 -6.7 None1515707.490M40.0 $+47.2$ $+0.0$ 87.294.0 -6.7 None1613890.680M39.9 $+47.2$ $+0.0$ 87.194.0 -6.9 None175980.776M37.8 $+47.2$ $+0.0$ 84.894.0 -9.2 None181742.542M37.6 $+47.2$ $+0.0$ 84.694.0 -9.4 None206440.235M37.4 $+47.2$ $+0.0$ 84.494.0 -9.6 None2111350.140M37.2 $+47.2$ $+0.0$ 84.3 94.0 -9.6 None228997.791M37.1 $+47.2$ $+0.0$ 84.2 94.0 -9.8	6 18648.430M	44.0	+47.2	+0.0	91.2	94.0	-2.8	None
9 17720.500M 40.6 +47.2 +0.0 87.8 94.0 -6.2 None 10 12921.710M 40.3 +47.2 +0.0 87.5 94.0 -6.5 None 11 14213.000M 40.1 +47.2 +0.0 87.3 94.0 -6.7 None 12 14522.310M 40.1 +47.2 +0.0 87.3 94.0 -6.7 None 13 14975.760M 40.1 +47.2 +0.0 87.3 94.0 -6.7 None 14 16242.030M 40.1 +47.2 +0.0 87.3 94.0 -6.7 None 15 15707.490M 40.0 +47.2 +0.0 87.2 94.0 -6.8 None 16 13890.680M 39.9 +47.2 +0.0 85.0 94.0 -9.0 None 17 5980.776M 37.8 +47.2 +0.0 84.8 94.0 -9.2 None 19 3956.75	7 1029.600M	43.5	+47.2	+0.0	90.7	94.0	-3.3	None
10 12921.710M 40.3 +47.2 +0.0 87.5 94.0 -6.5 None 11 14213.000M 40.1 +47.2 +0.0 87.3 94.0 -6.7 None 12 14522.310M 40.1 +47.2 +0.0 87.3 94.0 -6.7 None 13 14975.760M 40.1 +47.2 +0.0 87.3 94.0 -6.7 None 14 16242.030M 40.1 +47.2 +0.0 87.3 94.0 -6.7 None 15 15707.490M 40.0 +47.2 +0.0 87.2 94.0 -6.8 None 16 13890.680M 39.9 +47.2 +0.0 87.1 94.0 -6.9 None 17 5980.776M 37.8 +47.2 +0.0 84.6 94.0 -9.2 None 19 3956.754M 37.4 +47.2 +0.0 84.6 94.0 -9.4 None 20 6440.23	8 19910.850M	43.5	+47.2	+0.0	90.7	94.0	-3.3	None
11 14213.000M 40.1 +47.2 +0.0 87.3 94.0 -6.7 None 12 14522.310M 40.1 +47.2 +0.0 87.3 94.0 -6.7 None 13 14975.760M 40.1 +47.2 +0.0 87.3 94.0 -6.7 None 14 16242.030M 40.1 +47.2 +0.0 87.3 94.0 -6.7 None 15 15707.490M 40.0 +47.2 +0.0 87.2 94.0 -6.8 None 16 13890.680M 39.9 +47.2 +0.0 87.1 94.0 -6.9 None 17 5980.776M 37.8 +47.2 +0.0 85.0 94.0 -9.0 None 18 1742.542M 37.6 +47.2 +0.0 84.6 94.0 -9.2 None 20 6440.235M 37.4 +47.2 +0.0 84.6 94.0 -9.4 None 21 11350.140M 37.2 +47.2 +0.0 84.3 94.0 -9.6 None <td>9 17720.500M</td> <td>40.6</td> <td>+47.2</td> <td>+0.0</td> <td>87.8</td> <td>94.0</td> <td>-6.2</td> <td>None</td>	9 17720.500M	40.6	+47.2	+0.0	87.8	94.0	-6.2	None
12 14522.310M 40.1 +47.2 +0.0 87.3 94.0 -6.7 None 13 14975.760M 40.1 +47.2 +0.0 87.3 94.0 -6.7 None 14 16242.030M 40.1 +47.2 +0.0 87.3 94.0 -6.7 None 15 15707.490M 40.0 +47.2 +0.0 87.2 94.0 -6.8 None 16 13890.680M 39.9 +47.2 +0.0 87.1 94.0 -6.9 None 17 5980.776M 37.8 +47.2 +0.0 85.0 94.0 -9.0 None 18 1742.542M 37.6 +47.2 +0.0 84.8 94.0 -9.2 None 19 3956.754M 37.4 +47.2 +0.0 84.6 94.0 -9.4 None 20 6440.235M 37.4 +47.2 +0.0 84.4 94.0 -9.6 None 21 11350.140M 37.2 +47.2 +0.0 84.3 94.0 -9.7 None <td>10 12921.710M</td> <td>40.3</td> <td>+47.2</td> <td>+0.0</td> <td>87.5</td> <td>94.0</td> <td>-6.5</td> <td>None</td>	10 12921.710M	40.3	+47.2	+0.0	87.5	94.0	-6.5	None
13 14975.760M 40.1 +47.2 +0.0 87.3 94.0 -6.7 None 14 16242.030M 40.1 +47.2 +0.0 87.3 94.0 -6.7 None 15 15707.490M 40.0 +47.2 +0.0 87.2 94.0 -6.8 None 16 13890.680M 39.9 +47.2 +0.0 87.1 94.0 -6.9 None 17 5980.776M 37.8 +47.2 +0.0 85.0 94.0 -9.0 None 18 1742.542M 37.6 +47.2 +0.0 84.8 94.0 -9.2 None 19 3956.754M 37.4 +47.2 +0.0 84.6 94.0 -9.4 None 20 6440.235M 37.4 +47.2 +0.0 84.6 94.0 -9.4 None 21 11350.140M 37.2 +47.2 +0.0 84.4 94.0 -9.6 None 22 8997.791M 37.1 +47.2 +0.0 84.2 94.0 -9.8 None	11 14213.000M	40.1	+47.2	+0.0	87.3	94.0	-6.7	None
14 16242.030M 40.1 +47.2 +0.0 87.3 94.0 -6.7 None 15 15707.490M 40.0 +47.2 +0.0 87.2 94.0 -6.8 None 16 13890.680M 39.9 +47.2 +0.0 87.1 94.0 -6.9 None 17 5980.776M 37.8 +47.2 +0.0 85.0 94.0 -9.0 None 18 1742.542M 37.6 +47.2 +0.0 84.8 94.0 -9.2 None 19 3956.754M 37.4 +47.2 +0.0 84.6 94.0 -9.4 None 20 6440.235M 37.4 +47.2 +0.0 84.6 94.0 -9.4 None 21 11350.140M 37.2 +47.2 +0.0 84.4 94.0 -9.6 None 22 8997.791M 37.1 +47.2 +0.0 84.3 94.0 -9.7 None 23 9964.756M 37.0 +47.2 +0.0 84.2 94.0 -9.8 None	12 14522.310M	40.1	+47.2	+0.0	87.3	94.0	-6.7	None
15 15707.490M 40.0 +47.2 +0.0 87.2 94.0 -6.8 None 16 13890.680M 39.9 +47.2 +0.0 87.1 94.0 -6.9 None 17 5980.776M 37.8 +47.2 +0.0 85.0 94.0 -9.0 None 18 1742.542M 37.6 +47.2 +0.0 84.8 94.0 -9.2 None 19 3956.754M 37.4 +47.2 +0.0 84.6 94.0 -9.4 None 20 6440.235M 37.4 +47.2 +0.0 84.6 94.0 -9.4 None 21 11350.140M 37.2 +47.2 +0.0 84.4 94.0 -9.6 None 22 8997.791M 37.1 +47.2 +0.0 84.3 94.0 -9.7 None 23 9964.756M 37.0 +47.2 +0.0 84.2 94.0 -9.8 None 24 11051.840M 37.0 +47.2 +0.0 84.2 94.0 -9.8 None	13 14975.760M	40.1	+47.2	+0.0	87.3	94.0	-6.7	None
16 13890.680M 39.9 +47.2 +0.0 87.1 94.0 -6.9 None 17 5980.776M 37.8 +47.2 +0.0 85.0 94.0 -9.0 None 18 1742.542M 37.6 +47.2 +0.0 84.8 94.0 -9.2 None 19 3956.754M 37.4 +47.2 +0.0 84.6 94.0 -9.4 None 20 6440.235M 37.4 +47.2 +0.0 84.6 94.0 -9.4 None 21 11350.140M 37.2 +47.2 +0.0 84.4 94.0 -9.6 None 22 8997.791M 37.1 +47.2 +0.0 84.3 94.0 -9.7 None 23 9964.756M 37.0 +47.2 +0.0 84.2 94.0 -9.8 None 24 11051.840M 37.0 +47.2 +0.0 84.2 94.0 -9.8 None 25 7210.004M 36.8 +47.2 +0.0 84.0 94.0 -10.0 None	14 16242.030M	40.1	+47.2	+0.0	87.3	94.0	-6.7	None
17 5980.776M 37.8 +47.2 +0.0 85.0 94.0 -9.0 None 18 1742.542M 37.6 +47.2 +0.0 84.8 94.0 -9.2 None 19 3956.754M 37.4 +47.2 +0.0 84.6 94.0 -9.4 None 20 6440.235M 37.4 +47.2 +0.0 84.6 94.0 -9.4 None 21 11350.140M 37.2 +47.2 +0.0 84.4 94.0 -9.6 None 22 8997.791M 37.1 +47.2 +0.0 84.3 94.0 -9.7 None 23 9964.756M 37.0 +47.2 +0.0 84.2 94.0 -9.8 None 24 11051.840M 37.0 +47.2 +0.0 84.2 94.0 -9.8 None 25 7210.004M 36.8 +47.2 +0.0 84.0 94.0 -10.0 None 26 4889.686M 34.3 +47.2 +0.0 81.5 94.0 -12.5 None	15 15707.490M	40.0	+47.2	+0.0	87.2	94.0	-6.8	None
18 1742.542M 37.6 +47.2 +0.0 84.8 94.0 -9.2 None 19 3956.754M 37.4 +47.2 +0.0 84.6 94.0 -9.4 None 20 6440.235M 37.4 +47.2 +0.0 84.6 94.0 -9.4 None 21 11350.140M 37.2 +47.2 +0.0 84.4 94.0 -9.6 None 22 8997.791M 37.1 +47.2 +0.0 84.3 94.0 -9.7 None 23 9964.756M 37.0 +47.2 +0.0 84.2 94.0 -9.8 None 24 11051.840M 37.0 +47.2 +0.0 84.2 94.0 -9.8 None 25 7210.004M 36.8 +47.2 +0.0 84.0 94.0 -10.0 None 26 4889.686M 34.3 +47.2 +0.0 81.5 94.0 -12.5 None	16 13890.680M	39.9	+47.2	+0.0	87.1	94.0	-6.9	None
19 3956.754M 37.4 +47.2 +0.0 84.6 94.0 -9.4 None 20 6440.235M 37.4 +47.2 +0.0 84.6 94.0 -9.4 None 21 11350.140M 37.2 +47.2 +0.0 84.4 94.0 -9.6 None 22 8997.791M 37.1 +47.2 +0.0 84.3 94.0 -9.6 None 23 9964.756M 37.0 +47.2 +0.0 84.2 94.0 -9.8 None 24 11051.840M 37.0 +47.2 +0.0 84.2 94.0 -9.8 None 25 7210.004M 36.8 +47.2 +0.0 84.0 94.0 -10.0 None 26 4889.686M 34.3 +47.2 +0.0 81.5 94.0 -12.5 None	17 5980.776M	37.8	+47.2	+0.0	85.0	94.0	-9.0	None
20 6440.235M 37.4 +47.2 +0.0 84.6 94.0 -9.4 None 21 11350.140M 37.2 +47.2 +0.0 84.4 94.0 -9.6 None 22 8997.791M 37.1 +47.2 +0.0 84.3 94.0 -9.7 None 23 9964.756M 37.0 +47.2 +0.0 84.2 94.0 -9.8 None 24 11051.840M 37.0 +47.2 +0.0 84.2 94.0 -9.8 None 25 7210.004M 36.8 +47.2 +0.0 84.0 94.0 -10.0 None 26 4889.686M 34.3 +47.2 +0.0 81.5 94.0 -12.5 None	18 1742.542M	37.6	+47.2	+0.0	84.8	94.0	-9.2	None
21 11350.140M 37.2 +47.2 +0.0 84.4 94.0 -9.6 None 22 8997.791M 37.1 +47.2 +0.0 84.3 94.0 -9.7 None 23 9964.756M 37.0 +47.2 +0.0 84.2 94.0 -9.8 None 24 11051.840M 37.0 +47.2 +0.0 84.2 94.0 -9.8 None 25 7210.004M 36.8 +47.2 +0.0 84.0 94.0 -10.0 None 26 4889.686M 34.3 +47.2 +0.0 81.5 94.0 -12.5 None	19 3956.754M	37.4	+47.2	+0.0	84.6	94.0	-9.4	None
22 8997.791M 37.1 +47.2 +0.0 84.3 94.0 -9.7 None 23 9964.756M 37.0 +47.2 +0.0 84.2 94.0 -9.8 None 24 11051.840M 37.0 +47.2 +0.0 84.2 94.0 -9.8 None 25 7210.004M 36.8 +47.2 +0.0 84.0 94.0 -10.0 None 26 4889.686M 34.3 +47.2 +0.0 81.5 94.0 -12.5 None	20 6440.235M	37.4	+47.2	+0.0	84.6	94.0	-9.4	None
23 9964.756M 37.0 +47.2 +0.0 84.2 94.0 -9.8 None 24 11051.840M 37.0 +47.2 +0.0 84.2 94.0 -9.8 None 25 7210.004M 36.8 +47.2 +0.0 84.0 94.0 -10.0 None 26 4889.686M 34.3 +47.2 +0.0 81.5 94.0 -12.5 None	21 11350.140M	37.2	+47.2	+0.0	84.4	94.0	-9.6	None
24 11051.840M 37.0 +47.2 +0.0 84.2 94.0 -9.8 None 25 7210.004M 36.8 +47.2 +0.0 84.0 94.0 -10.0 None 26 4889.686M 34.3 +47.2 +0.0 81.5 94.0 -12.5 None	22 8997.791M	37.1	+47.2	+0.0	84.3	94.0	-9.7	None
25 7210.004M 36.8 +47.2 +0.0 84.0 94.0 -10.0 None 26 4889.686M 34.3 +47.2 +0.0 81.5 94.0 -12.5 None	23 9964.756M	37.0	+47.2	+0.0	84.2	94.0	-9.8	None
26 4889.686M 34.3 +47.2 +0.0 81.5 94.0 -12.5 None	24 11051.840M	37.0	+47.2	+0.0	84.2	94.0	-9.8	None
	25 7210.004M	36.8	+47.2	+0.0	84.0	94.0	-10.0	None
27 2695.494M 34.1 +47.2 +0.0 81.3 94.0 -12.7 None	26 4889.686M	34.3	+47.2	+0.0	81.5	94.0	-12.5	None
	27 2695.494M	34.1	+47.2	+0.0	81.3	94.0	-12.7	None

Test Equipment						
Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	01865	HP	8566B	2532A02509	092801	092802
QP Adapter	01437	HP	85650A	3303A01884	092801	092802
Directional Coupler		HP	86205A	3140A03083	NA	NA
Power Sensor		HP	8481A	US37298441	81501	81502
Power Meter		HP	E4418B	US39251104	41702	51702
Power Meter	00613	HP	435B	2702A16632	81001	81002
Power Sensor	00774	HP	8481A	2349A41124	81001	81002

Direct Connect Test Setup

Page 43 of 57 Report No.: FC02-048A

2.1033(c)(14)/2.1053/24.238 - FIELD STRENGTH OF SPURIOUS RADIATION

Frequency	Channel	Power	Limit (dBm)
	Block	(dBm)	
3914.7	В	-27.1	-13
3964.9	С	-27.1	-13
3967.7	С	-28.0	-13
3956.4	С	-28.6	-13
3967.2	С	-29.0	-13
3965	С	-29.2	-13
3906.2	В	-29.6	-13
3903.6	В	-31.8	-13
3886.1	А	-32.0	-13

The input frequencies chosen are as follows:

(Low) Block A: 1931.875, 1934.375 and 1943.125

(Mid) Block B: 1951.875, 1954.375 and 1963.125 (High) Block C: 1976.875, 1979.375 and 1988.125

Customer: Specification:	Powerwave Technologies FCC 24.238		
Work Order #:	78784	Date:	04/18/2002
Test Type:	Radiated Scan	Time:	10:51:00
Equipment:	Power amplifier	Sequence#:	10
Manufacturer:	Powerwave Technologies	Tested By:	Randal Clark
Model:	G3S-1900-80		
S/N:	C00000P252		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Power amplifier*	Powerwave Technologies	G3S-1900-80	C00000P252
Support Devices:			

Function	Manufacturer	Model #	S/N
Power Supply	Sorensen	DCS40-75	9741098
Input Signal Generator	Agilent	E4433B	US40051593
Input Signal Generator	Agilent	E4433B	US40051146
Input Signal Generator	Agilent	E4433B	US40052095
Combiner/Splitter	Anaren	4-4000	9641
High Power Attenuator	Weinschel Corp	53-20-34	LF243

Test Conditions / Notes:

EUT is a power amplifier located on an 80cm table. The support equipment is located on top of the turntable. EUT input frequencies are chosen such that the lowest, middle and highest blocks are used. Three input signals are combined and fed to the EUT such that the output of the amplifier is set to 125W. EUT output is terminated through a high power attenuator to a power meter. The input signals are CDMA, which represents the worst case for spurious emissions. The input frequencies chosen are as follows: (Low) Block A: 1931.875, 1934.375 and 1943.125. (Mid) Block B: 1951.875, 1954.375 and 1963.125. (High) Block C: 1976.875, 1979.375 and 1988.125. Frequency Range investigated: 15MHz - 20GHz. Input frequencies are in Block A (Low Channel). For measurements within 1MHz of the block edge a 30kHz RBW was used. For all other measurements, 1MHz RBW was used. In the frequency range of 18-20GHz a test distance of 1 meter was used. No spurious emissions were found in this frequency range.

Transducer Legend:

T1=HP3017A sn3123A00281 11-Sept-01 T2=Horn Antenna sn6246 T3=Heliax #18 70' 11Sept2001

<i>Measurement Data:</i> Reading listed by margin.				argin.	Test Distance: 3 Meter						
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	3886.100M	64.8	-37.6	+31.7	+6.1		+0.0	65.0	84.4	-19.4	Horiz
2	3886.300M	64.7	-37.6	+31.7	+6.1		+0.0	64.9	84.4	-19.5	Vert
3	3868.900M	63.4	-37.6	+31.7	+6.1		+0.0	63.6	84.4	-20.8	Vert
4	3877.600M	63.3	-37.6	+31.7	+6.1		+0.0	63.5	84.4	-20.9	Horiz
5	10267.460M	55.8	-40.1	+37.4	+9.8		+0.0	62.9	84.4	-21.5	Horiz

6	3877.850M	62.6	-37.6	+31.7	+6.1	+0.0	62.8	84.4	-21.6	Vert
7	3863.400M	62.3	-37.5	+31.7	+6.1	+0.0	62.6	84.4	-21.8	Vert
8	3868.850M	61.8	-37.6	+31.7	+6.1	+0.0	62.0	84.4	-22.4	Horiz
9	3875.300M	61.7	-37.6	+31.7	+6.1	+0.0	61.9	84.4	-22.5	Horiz
10	10267.590M	54.4	-40.1	+37.4	+9.8	+0.0	61.5	84.4	-22.9	Vert
11	3866.150M	61.1	-37.5	+31.7	+6.1	+0.0	61.4	84.4	-23.0	Vert
12	3875.200M	60.8	-37.6	+31.7	+6.1	+0.0	61.0	84.4	-23.4	Vert
13	3866.200M	60.4	-37.5	+31.7	+6.1	+0.0	60.7	84.4	-23.7	Horiz
14	5809.250M	56.8	-37.0	+33.6	+7.3	+0.0	60.7	84.4	-23.7	Vert
15	3863.500M	59.5	-37.5	+31.7	+6.1	+0.0	59.8	84.4	-24.6	Horiz
16	5800.700M	55.3	-37.0	+33.6	+7.3	+0.0	59.2	84.4	-25.2	Vert
17	5798.150M	55.0	-37.0	+33.6	+7.3	+0.0	58.9	84.4	-25.5	Vert
18	1928.900M	65.3	-38.3	+26.2	+3.7	+0.0	56.9	84.4	-27.5	Vert
19	5818.200M	51.7	-37.0	+33.6	+7.3	+0.0	55.6	84.4	-28.8	Vert
20	1925.540M	61.6	-38.3	+26.1	+3.7	+0.0	53.1	84.4	-31.3	Vert
21	1923.180M	59.7	-38.3	+26.1	+3.7	+0.0	51.2	84.4	-33.2	Vert
22	1920.580M	57.4	-38.3	+26.1	+3.7	+0.0	48.9	84.4	-35.5	Vert
23	1929.251M	39.7	-38.3	+26.2	+3.7	+0.0	31.3	84.4	-53.1	Vert

Customer:	Powerwave Technologies		
Specification:	FCC 24.238		
Work Order #:	78784	Date:	04/18/2002
Test Type:	Radiated Scan	Time:	11:16:15
Equipment:	Power amplifier	Sequence#:	11
Manufacturer:	Powerwave Technologies	Tested By:	Randal Clark
Model:	G3S-1900-80		
S/N:	C00000P252		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Power amplifier*	Powerwave Technologies	G3S-1900-80	C00000P252
Support Devices:			

Function	Manufacturer	Model #	S/N
Power Supply	Sorensen	DCS40-75	9741098
Input Signal Generator	Agilent	E4433B	US40051593
Input Signal Generator	Agilent	E4433B	US40051146
Input Signal Generator	Agilent	E4433B	US40052095
High Power Attenuator	Weinschel Corp	53-20-34	LF243
Combiner/Splitter	Anaren	4-4000	9641

Test Conditions / Notes:

EUT is a power amplifier located on an 80cm table. The support equipment is located on top of the turntable. EUT input frequencies are chosen such that the lowest, middle and highest blocks are used. Three input signals are combined and fed to the EUT such that the output of the amplifier is set to 125W. EUT output is terminated through a high power attenuator to a power meter. The input signals are CDMA, which represents the worst case for spurious emissions. The input frequencies chosen are as follows: (Low) Block A: 1931.875, 1934.375 and 1943.125. (Mid) Block B: 1951.875, 1954.375 and 1963.125. (High) Block C: 1976.875, 1979.375 and 1988.125. Frequency Range investigated: 15MHz - 20GHz. Input frequencies are in Block B (Mid Channel). In the frequency range of 18-20GHz a test distance of 1 meter was used. No spurious emissions were found in this frequency range.

Transducer Legend:

T1=HP3017A sn3123A00281 11-Sept-01	T2=Horn Antenna sn6246
T3=Heliax #18 70' 11Sept2001	

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meter		
#	Freq MHz	Rdng dBµV	T1 dB	T2 dB	T3 dB	dB	Dist Table	Corr dBµV/m	Spec dBµV/m	Margin dB	Polar Ant
1	3914.700M	69.6	-37.6	+31.8	+6.1		+0.0	69.9	84.4	-14.5	Horiz
2	3906.200M	67.1	-37.6	+31.8	+6.1		+0.0	67.4	84.4	-17.0	Horiz
3	3903.600M	64.9	-37.6	+31.8	+6.1		+0.0	65.2	84.4	-19.2	Horiz
4	5869.200M	59.5	-37.0	+33.6	+7.4		+0.0	63.5	84.4	-20.9	Vert
5	5871.800M	59.1	-37.1	+33.6	+7.4		+0.0	63.0	84.4	-21.4	Horiz
6	3917.300M	62.5	-37.6	+31.8	+6.1		+0.0	62.8	84.4	-21.6	Vert

7	5881.100M	58.4	-37.1	+33.6	+7.4	+0.0	62.3	84.4	-22.1	Vert
8	3914.500M	62.0	-37.6	+31.8	+6.1	+0.0	62.3	84.4	-22.1	Vert
9	3925.900M	61.4	-37.6	+31.8	+6.1	+0.0	61.7	84.4	-22.7	Vert
10	3906.400M	61.1	-37.6	+31.8	+6.1	+0.0	61.4	84.4	-23.0	Vert
11	5871.700M	57.4	-37.1	+33.6	+7.4	+0.0	61.3	84.4	-23.1	Vert
12	3903.800M	60.9	-37.6	+31.8	+6.1	+0.0	61.2	84.4	-23.2	Vert
13	5860.500M	57.1	-37.0	+33.6	+7.4	+0.0	61.1	84.4	-23.3	Vert
14	5858.100M	56.7	-37.0	+33.6	+7.4	+0.0	60.7	84.4	-23.7	Vert
15	5858.600M	56.7	-37.0	+33.6	+7.4	+0.0	60.7	84.4	-23.7	Horiz
16	5877.600M	56.7	-37.1	+33.6	+7.4	+0.0	60.6	84.4	-23.8	Vert
17	3926.200M	60.3	-37.6	+31.8	+6.1	+0.0	60.6	84.4	-23.8	Horiz
18	10268.000M	53.3	-40.1	+37.4	+9.8	+0.0	60.4	84.4	-24.0	Vert
19	5866.900M	55.9	-37.0	+33.6	+7.4	+0.0	59.9	84.4	-24.5	Vert
20	3908.400M	59.6	-37.6	+31.8	+6.1	+0.0	59.9	84.4	-24.5	Vert
21	10267.620M	52.4	-40.1	+37.4	+9.8	+0.0	59.5	84.4	-24.9	Horiz
22	5878.000M	53.1	-37.1	+33.6	+7.4	+0.0	57.0	84.4	-27.4	Horiz
23	5889.700M	51.1	-37.1	+33.6	+7.4	+0.0	55.0	84.4	-29.4	Vert
L										

Customer:	Powerwave Technologies		
Specification:	FCC 24.238		
Work Order #:	78784	Date:	04/18/2002
Test Type:	Radiated Scan	Time:	11:46:43
Equipment:	Power amplifier	Sequence#:	12
Manufacturer:	Powerwave Technologies	Tested By:	Randal Clark
Model:	G3S-1900-80		
S/N:	C00000P252		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Power amplifier*	Powerwave Technologies	G3S-1900-80	C00000P252
Support Devices:			
-			

Function	Manufacturer	Model #	S/N	
Power Supply	Sorensen	DCS40-75	9741098	
Input Signal Generator	Agilent	E4433B	US40051593	
Input Signal Generator	Agilent	E4433B	US40051146	
Input Signal Generator	Agilent	E4433B	US40052095	
High Power Attenuator	Weinschel Corp	53-20-34	LF243	
Combiner/Splitter	Anaren	4-4000	9641	

Test Conditions / Notes:

EUT is a power amplifier located on an 80cm table. The support equipment is located on top of the turntable. EUT input frequencies are chosen such that the lowest, middle and highest blocks are used. Three input signals are combined and fed to the EUT such that the output of the amplifier is set to 125W. EUT output is terminated through a high power attenuator to a power meter. The input signals are CDMA, which represents the worst case for spurious emissions. The input frequencies chosen are as follows: (Low) Block A: 1931.875, 1934.375 and 1943.125. (Mid) Block B: 1951.875, 1954.375 and 1963.125. (High) Block C: 1976.875, 1979.375 and 1988.125. Frequency Range investigated: 15MHz - 20GHz. Input frequencies are in Block C (High Channel). For measurements within 1MHz of the block edge a 30kHz RBW was used. For all other measurements, 1MHz RBW was used. In the frequency range of 18-20GHz a test distance of 1 meter was used. No spurious emissions were found in this frequency range.

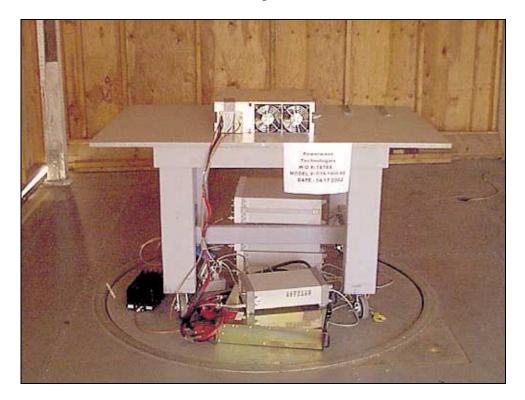
Transducer Legend:

T1=HP3017A sn3123A00281 11-Sept-01	T2=Horn Antenna sn6246
T3=Heliax #18 70' 11Sept2001	

Measu	rement Data:	Re	Reading listed by margin.				Test Distance: 3 Meter				
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBµV/m	dB	Ant
1	3964.900M	69.6	-37.6	+31.8	+6.1		+0.0	69.9	84.4	-14.5	Vert
2	3967.750M	68.6	-37.6	+31.9	+6.1		+0.0	69.0	84.4	-15.4	Vert
3	3956.400M	68.1	-37.6	+31.8	+6.1		+0.0	68.4	84.4	-16.0	Horiz
4	3976.250M	67.6	-37.6	+31.9	+6.1		+0.0	68.0	84.4	-16.4	Vert
5	3965.050M	67.5	-37.6	+31.8	+6.1		+0.0	67.8	84.4	-16.6	Horiz

6	3956.250M	67.1	-37.6	+31.8	+6.1	+0.0	67.4	84.4	-17.0	Vert
7	3967.250M	66.8	-37.6	+31.9	+6.1	+0.0	67.2	84.4	-17.2	Horiz
8	3953.550M	66.7	-37.6	+31.8	+6.1	+0.0	67.0	84.4	-17.4	Horiz
9	3958.800M	65.6	-37.6	+31.8	+6.1	+0.0	65.9	84.4	-18.5	Horiz
10	3958.800M	64.1	-37.6	+31.8	+6.1	+0.0	64.4	84.4	-20.0	Vert
11	5944.880M	60.2	-37.1	+33.6	+7.4	+0.0	64.1	84.4	-20.3	Vert
12	3953.650M	63.8	-37.6	+31.8	+6.1	+0.0	64.1	84.4	-20.3	Vert
13	3976.300M	63.5	-37.6	+31.9	+6.1	+0.0	63.9	84.4	-20.5	Horiz
14	10268.090M	56.0	-40.1	+37.4	+9.8	+0.0	63.1	84.4	-21.3	Vert
15	10268.110M	55.3	-40.1	+37.4	+9.8	+0.0	62.4	84.4	-22.0	Horiz
16	5933.500M	57.3	-37.1	+33.6	+7.4	+0.0	61.2	84.4	-23.2	Horiz
17	5935.450M	56.8	-37.1	+33.6	+7.4	+0.0	60.7	84.4	-23.7	Horiz
18	5941.980M	56.8	-37.1	+33.6	+7.4	+0.0	60.7	84.4	-23.7	Vert
19	5956.250M	56.3	-37.1	+33.6	+7.5	+0.0	60.3	84.4	-24.1	Horiz
20	5946.700M	56.4	-37.1	+33.6	+7.4	+0.0	60.3	84.4	-24.1	Horiz
21	5933.530M	56.1	-37.1	+33.6	+7.4	+0.0	60.0	84.4	-24.4	Vert
22	5944.250M	55.7	-37.1	+33.6	+7.4	+0.0	59.6	84.4	-24.8	Horiz
23	5955.630M	54.6	-37.1	+33.6	+7.5	+0.0	58.6	84.4	-25.8	Vert
24	5941.200M	54.5	-37.1	+33.6	+7.4	+0.0	58.4	84.4	-26.0	Horiz
25	3949.800M	58.1	-37.6	+31.8	+6.1	+0.0	58.4	84.4	-26.0	Vert
26	5952.680M	53.6	-37.1	+33.6	+7.5	+0.0	57.6	84.4	-26.8	Vert
27	1990.341M	65.0	-38.4	+26.4	+3.9	+0.0	56.9	84.4	-27.5	Vert
28	3944.700M	54.7	-37.6	+31.8	+6.1	+0.0	55.0	84.4	-29.4	Horiz
29	1999.200M	61.8	-38.4	+26.4	+3.9	+0.0	53.7	84.4	-30.7	Vert

30 1990.659M	61.8	-38.4	+26.4	+3.9	+0.0	53.7	84.4	-30.7	Vert
31 5964.200M	49.7	-37.2	+33.6	+7.5	+0.0	53.6	84.4	-30.8	Horiz
32 1991.392M	61.1	-38.4	+26.4	+3.9	+0.0	53.0	84.4	-31.4	Vert
33 1990.160M	45.4	-38.4	+26.4	+3.9	+0.0	37.3	84.4	-47.1	Vert


Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	01865	HP	8566B	2532A02509	092801	092802
QP Adapter	01437	HP	85650A	3303A01884	092801	092802
Bicon Antenna	306	AH	SAS200/540	220	092401	092402
Log Periodic	331	AH	SAS 00/516	330	092401	092402
Antenna						
Pre-amp	00309	HP	8447D	1937A02548	090501	090502
Antenna cable	NA	NA	RG214	Cable#15	122001	122002
Pre-amp to SA cable	NA	Harbour	RG223/U	Cable#10	071601	071602
Horn Antenna	0849	EMCO	3115	6246	091201	091202
Microwave Pre-amp	00786	HP	83017A	3123A00281	091201	091202
¹ /4" Heliax Coaxial	NA	Andrew	LDF1-50	Cable#18 (70	091101	091102
Cable				ft)		
Antenna cable (from bulkhead to antenna,	NA	Andrew	FSJ1-50A	Cable#13	071701	071702
high frequency						
hardline) (25ft)						
SMA Cable	2212	Beldon	9273	NA	101701	101702
Antenna, Horn 18-	01413	HP	84125-	942126-003	070901	070902
26GHz			80008			
Loop Antenna	00314	EMCO	6502	2014	073101	073102
Directional Coupler		HP	86205A	3140A03083	NA	NA
Power Sensor		HP	8481A	US37298441	81501	81502
Power Meter		HP	E4418B	US39251104	41702	51702

Oats Test Setup - Front View

Oats Test Setup - Back View

15.109 - RADIATED EMISSIONS - RECEIVER/DIGITAL

	ANA	ALYZE	R BANI	WIDT	'H SET'	TINGS	S PER	FREQU	ENCY R	ANGE	
	TEST		BEGINN	ING FRE	QUENCY	E E	NDING I	FREQUENC	CY BA	NDWIDTH	SETTING
RADI	ATED EMIS	SIONS		30 MHz	-			0 MHz	120 kHz		
RADI	ATED EMIS	SIONS		1000 MH	[z		10 GHz 1 MHz			[z	
Test Lo	cation: (CKC LAB	ORATOR	IES INC	• 110 N.	OLINDA	A PL. •]	BREA, CA S	92823 • 714	-993-6112	
Customer:Powerwave TechnologiesSpecification:FCC 15.109 Class BWork Order #:78784Test Type:Radiated ScanEquipment:Power amplifierManufacturer:Powerwave TechnologiesModel:G3S-1900-80S/N:C00000P252							Ti: Sequenc	ate: 04/18 me: 15:18 ce#: 14 By: Rand	3:00		
	ment Under										
Functio			Manufactu			Model #			S/N		
Power a	amplifier*	I	Powerwav	e Techno	logies	G3S-190	00-80		C00000I	P252	
Suppor	rt Devices:										
Functio	n	1	Manufactu	rer		Model #	ł		S/N		
Input Si	ignal Genera	tor A	Agilent			E4433B			US4005	1593	
Input Si	ignal Genera	tor A	Agilent			E4433B			US4005	1146	
Input Si	ignal Genera	tor A	Agilent			E4433B			US40052	2095	
High Po	ower Attenua	ator V	Veinschel	Corp		53-20-34	53-20-34 LF243				
Combin	ner/Splitter	1	Anaren	-		4-4000	4-4000 9641				
Test C	onditions / I	Notes.									
EUT is input is	a power amp terminated [Hz. EUT is	plifier loca in a 50 ohi	n dummy	load (rep	oresentativ						
Transa	lucer Legen	d:									
	amp 8447D					T2=Bico					
	g 331 09240 ple #10 0716					T4=Cab	le #15 1	20602			
	ement Data		eading lis					est Distanc			1
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	T5 dB	dB	dB	dB	Table	dBuV/m	dBµV/m	dB	Ant
1	134.973M	<u>ивµ v</u> 45.4	-28.4	+16.7	+0.0	+2.1	+0.0	<u>авµ v/ш</u> 36.0	43.5	-7.5	Horiz
1	1.54.775141	45.4	+0.2	±10.7	± 0.0	⊤∠.1	+0.0	50.0	+3.3	-1.5	TIOUZ
2	30.100M	42.7	-28.5 +0.1	+16.2	+0.0	+1.0	+0.0	31.5	40.0	-8.5	Vert
3						+2.3	+0.0	34.2	43.5	-9.3	Horiz

CKC -M Tosting the Future

4	299.987M	38.7	-28.3 +0.3	+22.2	+0.0	+3.3	+0.0	36.2	46.0	-9.8	Horiz
5	135.027M	42.2	-28.4 +0.2	+16.7	+0.0	+2.1	+0.0	32.8	43.5	-10.7	Vert
6	187.515M	41.1	-28.3 +0.3	+17.1	+0.0	+2.5	+0.0	32.7	43.5	-10.8	Horiz
7	142.505M	41.6	-28.4 +0.2	+17.2	+0.0	+2.1	+0.0	32.7	43.5	-10.8	Horiz
8	149.998M	40.7	-28.4 +0.2	+17.4	+0.0	+2.2	+0.0	32.1	43.5	-11.4	Horiz
9	127.507M	42.0	-28.4 +0.2	+16.0	+0.0	+2.0	+0.0	31.8	43.5	-11.7	Horiz
10	232.508M	40.9	-28.3 +0.3	+17.5	+0.0	+2.8	+0.0	33.2	46.0	-12.8	Horiz
11	45.012M	41.4	-28.3 +0.1	+12.6	+0.0	+1.2	+0.0	27.0	40.0	-13.0	Vert
12	120.038M	41.1	-28.4 +0.2	+15.3	+0.0	+2.0	+0.0	30.2	43.5	-13.3	Horiz
13	299.999M	35.1	-28.3 +0.3	+22.2	+0.0	+3.3	+0.0	32.6	46.0	-13.4	Vert
14	164.992M	37.4	-28.3 +0.3	+17.5	+0.0	+2.3	+0.0	29.2	43.5	-14.3	Vert
15	315.048M	34.8	-28.3 +0.3	+0.0	+21.3	+3.4	+0.0	31.5	46.0	-14.5	Vert
16	120.028M	39.7	-28.4 +0.2	+15.3	+0.0	+2.0	+0.0	28.8	43.5	-14.7	Vert
17	329.958M	35.5	-28.2 +0.3	+0.0	+20.2	+3.4	+0.0	31.2	46.0	-14.8	Vert
18	269.992M	36.4	-28.3 +0.3	+19.7	+0.0	+3.1	+0.0	31.2	46.0	-14.8	Horiz
19	450.009M	39.2	-28.7 +0.4	+0.0	+16.2	+4.0	+0.0	31.1	46.0	-14.9	Horiz
20	150.001M	37.2	-28.4 +0.2	+17.4	+0.0	+2.2	+0.0	28.6	43.5	-14.9	Vert
21	239.978M	38.4	-28.2 +0.3	+17.6	+0.0	+2.8	+0.0	30.9	46.0	-15.1	Horiz
22	210.008M	36.9	-28.4 +0.3	+17.0	+0.0	+2.6	+0.0	28.4	43.5	-15.1	Horiz
23	525.008M	37.1	-28.6 +0.4	+0.0	+17.4	+4.5	+0.0	30.8	46.0	-15.2	Horiz
24	127.507M	38.4	-28.4 +0.2	+16.0	+0.0	+2.0	+0.0	28.2	43.5	-15.3	Vert
25	570.031M	35.3	-28.4 +0.4	+0.0	+18.3	+4.7	+0.0	30.3	46.0	-15.7	Horiz
26	78.742M	44.0	-28.2 +0.1	+6.8	+0.0	+1.6	+0.0	24.3	40.0	-15.7	Vert
27	558.799M	35.3	-28.5 +0.4	+0.0	+18.1	+4.7	+0.0	30.0	46.0	-16.0	Horiz
28	180.003M	35.6	-28.2 +0.3	+17.3	+0.0	+2.4	+0.0	27.4	43.5	-16.1	Vert

29	390.021M	37.9	-28.3	+0.0	+16.1	+3.7	+0.0	29.8	46.0	-16.2	Horiz
			+0.4								
30	224.994M	37.8	-28.3	+17.3	+0.0	+2.7	+0.0	29.8	46.0	-16.2	Horiz
			+0.3								
31	359.984M	35.7	-28.2	+0.0	+18.1	+3.6	+0.0	29.5	46.0	-16.5	Vert
			+0.3								
32	420.032M	37.0	-28.5	+0.0	+15.8	+3.9	+0.0	28.6	46.0	-17.4	Horiz
			+0.4								
33	480.008M	35.7	-28.6	+0.0	+16.6	+4.2	+0.0	28.3	46.0	-17.7	Horiz
			+0.4								

Customer:	Powerwave Technologies
Specification:	FCC 15.109 Class B
Work Order #:	78784
Test Type:	Radiated Scan
Equipment:	Power amplifier
Manufacturer:	Powerwave Technologies
Model:	G3S-1900-80
S/N:	C00000P252

Date:	04/18/2002
Time:	14:08:15
Sequence#:	13
Tested By:	Randal Clark

Equipment Under Test (* = EUT):

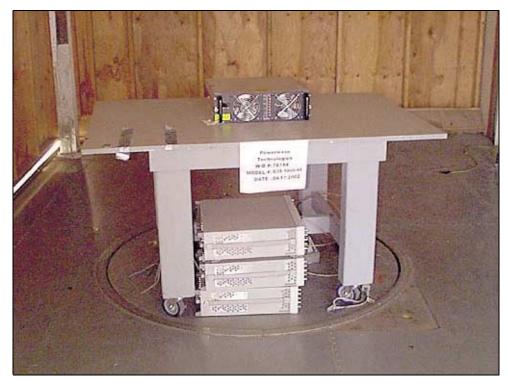
Function	Manufacturer	Model #	S/N
Power amplifier*	Powerwave Technologies	G3S-1900-80	C00000P252

Support Devices:				
Function	Manufacturer	Model #	S/N	
Power Supply	Sorensen	DCS40-75	9741098	
Input Signal Generator	Agilent	E4433B	US40051593	
Input Signal Generator	Agilent	E4433B	US40051146	
Input Signal Generator	Agilent	E4433B	US40052095	
High Power Attenuator	Weinschel Corp	53-20-34	LF243	
Combiner/Splitter	Anaren	4-4000	9641	

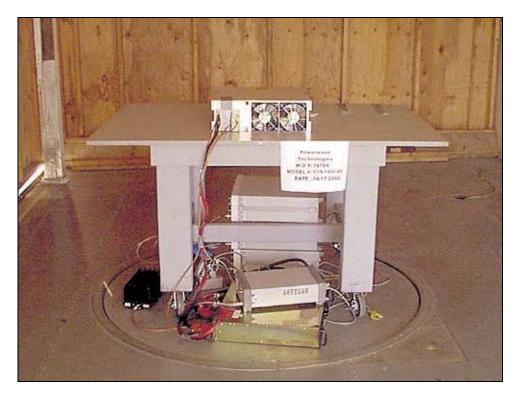
Test Conditions / Notes:

EUT is a power amplifier located on an 80cm table. The support equipment is located on top of the turntable. EUT input is terminated in a 50 ohm dummy load (representative of recieve mode). Frequency Range investigated is 1-10GHz.

Transducer Legend:


T1=HP3017A sn3123A00281 11-Sept-01	T2=Horn Antenna sn6246
÷	
T3=Heliax #18 70' 11Sept2001	

N	1easu	rement Data:	R	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meter		
	#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
		MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1	1527.100M	48.0	-38.8	+24.6	+3.4		+0.0	37.2	54.0	-16.8	Horiz
	2	1538.460M	46.7	-38.8	+24.7	+3.4		+0.0	36.0	54.0	-18.0	Vert



Test Equipment						
Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	01865	HP	8566B	2532A02509	092801	092802
QP Adapter	01437	HP	85650A	3303A01884	092801	092802
Bicon Antenna	306	AH	SAS200/540	220	092401	092402
Log Periodic Antenna	331	AH	SAS 00/516	330	092401	092402
Pre-amp	00309	HP	8447D	1937A02548	090501	090502
Antenna cable	NA	NA	RG214	Cable#15	122001	122002
Pre-amp to SA cable	NA	Harbour	RG223/U	Cable#10	071601	071602
Horn Antenna	0849	EMCO	3115	6246	091201	091202
Microwave Pre-amp	00786	HP	83017A	3123A00281	091201	091202
¹ /4" Heliax Coaxial Cable	NA	Andrew	LDF1-50	Cable#18 (70 ft)	091101	091102
Antenna cable (from bulkhead to antenna, high frequency hardline) (25ft)	NA	Andrew	FSJ1-50A	Cable#13	071701	071702
SMA Cable	2212	Beldon	9273	NA	101701	101702
Antenna, Horn 18- 26GHz	01413	HP	84125- 80008	942126-003	070901	070902
Loop Antenna	00314	EMCO	6502	2014	073101	073102
Directional Coupler		HP	86205A	3140A03083	NA	NA
Power Sensor		HP	8481A	US37298441	81501	81502
Power Meter		HP	E4418B	US39251104	41702	51702

Oats Test Setup - Front View

Oats Test Setup - Back View