FCC CFR47 PART 24 SUBPART E BROADBAND

EVALUATION REPORT

FOR

1900MHz MULTI-CARRIER POWER AMPLIFIER

MODEL: G3S-1900-80

FCC ID: E675JS0045

REPORT NUMBER: 00U0339

ISSUE DATE: SEPTEMBER 27, 2000

Prepared for POWERWAVE TECHNOLOGIES, INC. 1117 Windfield Way, Suite 100 El Dorado, CA 95762

Prepared by COMPLIANCE CERTIFICATION SERVICES, INC. d.B.a. COMPLIANCE CERTIFICATION SERVICES 1366 BORDEAUX DRIVE SUNNYVALE, CA 94089, USA TEL: (408) 752-8166 FAX: (408) 752-8168

TABLE OF CONTENTS

PA	GE
1.	FCC CERTIFICATION INFORMATION
2.	TEST EQUIPMENT LIST
3.	TEST RESULT SUMMARY FOR PART 157
4.	FCC PART 2 CERTIFICATION TEST RESULTS:
SEC	CTION 2.1046: RF POWER OUTPUT10
SEC	CTION 2.1047: MODULATION CHARACTERISTICS10
SEC	CTION 2.1049: OCCUPIED BANDWIDTH10
SEC	CTION 2.1051: SPURIOUS EMISSION AT ANTENNA TERMINAL
SEC	CTION 2.1053: FIELD STRENGTH OF SPURIOUS RADIATION14
SEC	CTION 2.1055: FREQUENCY STABILITY
5.	EUT SETUP PHOTOS

ATTACHMENT

1.	EUT PHOTOGRAPHS

- 2. INSTALLATION & SERVICE MANUAL
- 3. ADDENUM 1 SCHEMATIC, PARTS LISTS & BLOCK DIAGRAM
- 4. PROPOSED FCC ID LABEL FORMAT
- 5. SPURIOUS EMISSIONS AT ANTENNA TERMINAL PLOTS

1. FCC CERTIFICATION INFORMATION

The following information is in accordance with FCC Rules, 47CFR Part2, Subpart J, Sections 2.1033 - 2.1055.

2.1033(c)(1) Applicant: POWERWAVE TECHNOLOGIES, INC. 2026 MCGAW AVENUE IRVINE, CA 92614

Contact person: CLINT LAWRENCE

Telephone number: (916) 941-3168

2.1033(c)(2) FCC ID: E675JS0045

2.1033(c)(3) Instructions/Installation Manual

Refer to Attachment: Installation and Service manual.

- 2.1033(c)(4) Type of emissions 5M00F9W (WCDMA) 1M25F9W (CDMA) DXW (TDMA) GXW (GSM) F8W (FM AMPS)
- 2.1033(c)(5) Frequency Range

Transmit: 1930 MHz. to 1990 MHz.

- 2.1033(c)(6) Range of Operation Power 80 to 100 WATTS
- 2.1033(c)(7) Maximum Power Rating

140 WATTS.

2.1033(c)(8) Applied voltage and currents into the final transistor elements

27VDC, 55Amps @ 80Watts

2.1033(c)(9) Tune-up/Optimizations Procedure

Refer to Attachment: Installation and Service manual.

2.1033(c)(10) Complete Circuit Diagrams and Functional Diagram

Refer to **Attachment**: Schematics, Parts list & Block Diagram. Confidentiality is requested for these items.

2.1033(c)(10a) Means for Frequency Stabilization

Not Applicable. Eut is a power amplifier

2.1033(c)(10b) Means for Suppressing of Spurious radiation.

Not Applicable. Eut is a power amplifier.

2.1033(c)(10c) Means for Limiting Modulation.

Not Applicable. Eut is a power amplifier.

2.1033(c)(10d) Means for Limiting Power.

RF Feedback control.

2.1033(c)(11) Equipment Identification

A drawing of the equipment identification nameplate appears under **Attachment**: PROPOSED FCC ID LABEL FORMAT.

2.1033(c)(12) Photographs

Photographs of the equipment, internal and external views, are found in the **Attachment**: Eut Photographs.

2.1033(c)(13) Description of Digital Modulation Techniques

Not Applicable. Eut is a power amplifier.

2.1033(c)(14) Standard Test Condition

The power amplifier was tested under the following conditions.

DC Supply Voltage: 27Vdc

The amplifier was aligned and tuned up according to manufacturer's alignment procedure, prior to testing. All data presented represents the worst case parameter being measured.

2.1033 Description of Various Base Station Configuration

Not Applicable.

TYPE OF EQUIPMENT:	1900MHz MULTI-CARRIER POWER AMPLIFIER
MEASUREMENT DISTANCE:	(X) 3 METER () 10 METER
FCC RULES:	PART 2, PART 15, PART 24 SUBPART E
EQUIPMENT AUTHORIZATION PROCEDURE	CERTIFICATION
MODIFICATIONS MADE ON EUT	□ YES ⊠ NO

The above equipment was tested by Compliance Certification Services for compliance with the requirements set forth in the FCC CFR 47, PART 2, PART 15 and PART 24. The results of testing in this report apply to the product/system which was tested only. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Reviewed By

TOM N. COKENIAS, DIRECTOR OF ENGINEERING COMPLIANCE CERTIFICATION SERVICES

2. TEST EQUIPMENT LIST

Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
Spectrum Analyzer	H.P.	8566B	2140A01296	12/15/99	12/15/00
Spectrum Analyzer	H.P.	8593EM	3710A00205	05/25/00	05/25/01
Pre-Amp	H.P	8447D(P_1M)	2944A06833	10/25/99	10/25/00
Pre-Amp	MITEQ	NSP2600-44	646546	1/3/00	1/3/01
Bilog Antenna	CHASE	CBL6112	2049	11/23/99	11/23/00
Horn Antenna	EMCO	3115	9001-3245	1/05/00	1/05/01
Horn Antenna	ARA	MWH-1826/B	1013	7/28/00	7/28/01
Harmonic Mixer	H.P.	11970A	3003A04109	9/23/99	9/23/02
(26.5 – 40GHz)					
Mixer Amp	H.P.	HP11975	2517A01067	8/23/00	8/23/02

SUPPORT EQUIPMENT

Description	Manufa	cturer	Model N	No. S/	'N
Cal Due					
Signal Generator	Hewlett-Packard	E4432B	US40052	2843	
6/19/01					
Signal Generator 3/4/01	Hewlett-Packard	E4433B	US3844()633	
Signal Generator 6/28/01	Hewlett-Packard	E4432B	US40052	2707	
Spectrum Analyz	er Hewlett	-Packard	8563E	3728A0733	2
6/15/01					
Power Supply	Hewlett	-Packard	6673A	3239A0023	7
9/30/00					
Power Meter	Hewlett	-Packard	438A	3048U03364	4
3/28/01					
Power Sensor	Hewlett	-Packard	8481D	3643A2142	3
3/24/01					
Power Sensor	Hewlett	-Packard	8481A	1926A2334	3
3/2/01					
Directional Bridge	e Hewlett	-Packard	778D	18553	N/A
Computer	Hewlett	-Packard	Vectra 486/100	3503S00705	5 N/A
Monitor	Hewlett	-Packard		JP40869630) N/A
Power Supply	Hewlett	-Packard	6205C	2411A0668	1 N/A
Power Supply	Hewlett	-Packard	6291A	3304A1104	3 N/A
Digital Multimete	r Hewlett	-Packard	34401A	US3603383	8
3/2/01					
Power Attenuator	rWeinschel	82-30-34	LV409		
N/A					

6

Driver Amplifiers (3) N/A Misc. Cables, Combiners, Terminations N/A

3. TEST RESULT SUMMARY FOR PART 15. FCC PART 15 Radiated Emission Test

Test Result: See spreadsheet below.

13 PI	FCC, UL, C B66 BORDE HONE: (408 EUT Test C Mode	AUX DRIV AUX	tion S SPR, CE, A BSMI, DH VE, SUNNY 6 FA pany: iption: ation: f Test: ration:	AUSTEL, NZ HS, NVLAF (VALE, CA (: (408) 752 Powerwa 1900 MH Eut/supp FCC Cla Transmi	94089 2-8168 ave Techno 12 Multicar port equipm ass B tting	ologies <u>rier ampli</u> nent	Proj Rep Date& 2 Test J	ect #: ort #: Fime: Engr:	00u0339 000718a 07/18/00 Juan Ma	1 3:33 PM rtinez	
(A-Site	O	B-Site	C − 5	Site	💽 F-Site		6 Worst Dat	ta	Descending	
Frog	Pooding		Close	Dro amp		Limit	Margin	Pol	Λ-7	Hoight	Mork
(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBu\//m)	FCC B	(dB)	<u> Οι</u> (ΗΔΔ	(Dea)	(Meter)	(P/Q/A)
75.00	15.90	6.97	1 13		24.00	40.00	-16.00	3m\/	270.00	1.00	P
60.00	16.40	6.65	1.02	0.00	24.07	40.00	-15.93	3mV	225.00	1.00	P
120.00	19.70	14.33	1.49	0.00	35.52	43.50	-7.98	3mV	180.00	1.00	P
180.00	20.70	11.35	1.76	0.00	33.81	43.50	-9.69	3mV	90.00	1.00	P
360.00	14.60	15.34	2.66	0.00	32.59	46.00	-13.41	3mV	315.00	1.00	Р
225.00	12.80	12.23	2.00	0.00	27.03	46.00	-18.97	3mV	45.00	1.00	Р
105.00	10.40	12.44	1.35	0.00	24.19	43.50	-19.31	3mV	315.00	1.00	Р
105.00	9.80	12.23	1.35	0.00	23.38	43.50	-20.12	3mH	270.00	1.80	Р
225.00	12.20	11.71	2.00	0.00	25.91	46.00	-20.09	3mH	125.00	1.80	Р
90.00	13.60	9.69	1.26	0.00	24.55	43.50	-18.95	3mH	45.00	1.80	Р
180.00	14.60	10.79	1.76	0.00	27.15	43.50	-16.35	3mH	315.00	1.80	Р
195.00	15.80	10.88	1.87	0.00	28.54	43.50	-14.96	3mH	225.00	1.80	Р
210.00	14.90	11.09	1.94	0.00	27.93	43.50	-15.57	3mH	45.00	1.00	Р
above m	easurem	ents are f	for (S/N:	9) 19085.							
below is	for (S/N:	12) MRF	19090.								
225.00	14.30	11.71	2.00	0.00	28.01	46.00	-17.99	3mH	90.00	1.80	Р
120.00	17.10	13.16	1.49	0.00	31.75	43.50	-11.75	3mH	90.00	1.80	Р
105.00	6.50	12.23	1.35	0.00	20.08	43.50	-23.42	3mH	90.00	1.80	P
45.00	10.80	10.58	0.88	0.00	22.26	40.00	-1/./4	3mH	90.00	1.80	P
330.00	14.70	15.12	2.53	0.00	32.35	46.00	-13.65	3mH	90.00	1.80	P
120.00	19.90	14.33	1.49	0.00	35.72	43.50	-1.18	3mV	225.00	1.00	P
105.00	/.10	12.44	1.35	0.00	20.89	43.50	-22.61	3mV	180.00	1.00	P
225.00	12.70	12.23	2.00	0.00	26.93	46.00	-19.07	3mV	225.00	1.00	P
300.00	15.60	13.86	2.40	0.00	31.86	46.00	-14.14	3mV	225.00	1.00	P
270.00	15.00	13.58	2.22	0.00	30.80	46.00	-15.20	3mV	270.00	1.00	
180.00	20.60	11.35	1.76	0.00	33.66	43.50	-9.84	ЗШЛ	315.00	1.00	
Total dat V.2a	a #: 23				o						

4. FCC PART 2 CERTIFICATION TEST RESULTS:

Test Set-up for the following tests:

SECTION 2.1046: RF POWER OUTPUT

Minimum Requirement:

24.232(A); Maximum Peak output power for base station transmitters should not exceed 100 Watts EIRP.

24.232(B); Mobile/Portable stations are limited to 2 Watts EIRP peak power.

Test Procedure:

The EUT was set to maximum output power (maximum gain). RF output power was measured with Power Meter.

Test Result:

Measured with power meter. All outputs were adjusted to 100 Watts, during testing.

SECTION 2.1047: MODULATION CHARACTERISTICS

(NOT APPLICABLE TO AMPLIFIERS)

SECTION 2.1049: OCCUPIED BANDWIDTH

Minimum:

Section 2.1049(i); transmitters designed for other types of modulation-when modulated by an appropriate signal of sufficient amplitude to be representative of the type of service in which used. A description of the input signal should be supplied.

Test Procedure:

The Eut's occupied bandwidth output plot is compared with the input source plot to check that no distortion is created when the input signal is amplified by the Eut. Identical bandwidths, spans and center frequencies are used for both plots. Reference levels and attenuation are adjusted.

Test Result:

Plots of the input and output are included. Please refer to spectrum plots under SECTION 2.1051: SPURIOUS EMISSION AT ANTENNA TERMINAL.

SECTION 2.1051: SPURIOUS EMISSION AT ANTENNA TERMINAL.

Minimum standard:

24.238(a); The magnitude of each spurious and harmonic emission that can be detected when the equipment is operated under conditions specified in the instruction manual and/or alignment procedure, shall not be less than 43+10 log (mean output power in watts) dBc below the mean power output outside a licensee's frequency block.

Amplifier Mean Power = 100 Watts (50 dBm) $43 + 10 \log (100 \text{ Watts}) = 63 \text{ dB}$

Out-of-Band and Band-edges emissions must be attenuated by the following amount: 50 dBm - 63 dB = -13 dBm

24.238 (b) & (c):

- (1) Compliance with the out-of-band emissions requirement is based on test being performed with 1MHz analyzer RES BW.
- (2) At block edges, RES BW may be adjusted to a level at least as large as 1% of emission bandwidth. The emissions bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. For the EUT this is at least:

CDMA:

.01 * 1.25 MHz = 12.5 kHz. A RES BW of 100 KHz was used for measurement at the block edges.

TDMA:

.01 *30KHz. =0.3 KHz. A RES BW of 30 KHz was used for measurement at the block edges.

GSM:

.01 *250KHz =2.5 KHz. A RES BW of 30 KHz was used for measurement at the block edges.

Test Procedure:

- 1) Three balanced signals were applied to the RF input. One set as close as possible to the bottom of the block edge, one set as close as possible to the top of the block edge and one set near the middle of the block. Set the RES BW to 1% of the emission bandwidth to show compliance with the -13 dBm limit, in the 1 MHz bands immediately outside and adjacent to the top and bottom edges of the frequency block.
- 2) For the Out-of-Band measurements a 1 MHz RES BW was used to scan from 1483 MHz to 10fo of the fundamental carrier for all frequency blocks. A display line was placed at -13 dBm to show compliance.

Test Results:

The following table indicates the plot number associated with the Input Bandwidth, Output Bandwidth, Block Edge and Out of Band emission plots. All measurement are in average mode. (See attachment 5. *SPURIOUS EMISSIONS AT ANTENNA TERMINAL PLOTS*.)

FM AMPS SIGNALS								
Unit s/n 9, Block C, Input frequencies1975.625MHz., 1980.625MHz. & 1989.375MHz.								
Plot #	Description	Frequency Range (MHz.)						
1	Block Edges/Intermod	1957.5 to 2007.5						
2	2 nd Harmonic Out of Band	3940 to 3990						
3	3 rd Harmonic Out of Band	5922.5 to 5972.5						
4	4 th Harmonic Out of Band	7905 to 7955						
5	Out of Band	7000 to 20,000						

CDMA SIGNALS								
Unit s/n 12, Block (C, Input frequencies1975.	625MHz., 1980.625MHz. &						
1989.375MHz.								
Plot #	Description	Frequency Range (MHz.)						
6	Input Bandwidth	1986.875 to 1991.875						
7	Output Bandwidth	1986.875 to 1991.875						
8	Block Edge	1957.5 to 2007.5						
9	Out of Band	1957.5 to 2007.5						
10	Out of Band	1483 to 2483						
11	Out of Band	2000 to 20,000						
Unit s/n 12, Block A	A, Input frequencies1930.	625MHz., 1935.625MHz. &						
	1944.375MHz.							
Plot #	Description	Frequency Range (MHz.)						
12	Block Edge	1912.5 to 1962.5						
13	Out of Band	1912.5 to 1962.5						
14	Out of Band	1438 to 2438						
15	Out of Band	2000 to 20,000						
Unit s/n 9, Block C	, Input frequencies1975.	625MHz., 1980.625MHz. &						
	1989.375MHz.							
Plot #	Description	Frequency Range (MHz.)						
16	Output Bandwidth	1986.875 to 1991.875						
17	Out of Band	2000 to 20,000						
18	Block Edge	1957.5 to 2007.5						
19	Out of Band	1957.5 to 2007.5						
20	Out of Band	1483 to 2483						
Unit s/n 9, Block A	, Input freque ncies 1930.6	25MHz., 1935.625MHz. &						
	1944.375MHz.							
Plot #	Description	Frequency Range (MHz.)						

21	Block Edge	1912.5 to 1962.5				
22	Out of Band	1912.5 to 1962.5				
23	Out of Band	1438 to 2438				
24	Out of Band	2000 to 20,000				
Unit s/n 9, Block B, Input frequencies1950.625MHz., 1955.625MHz. &						
1964.375MHz.						
Plot #	Description	Frequency Range (MHz.)				
25	Block Edge	1932.5 to 1982.5				
26	Out of Band	1932.5 to 1982.5				
27	Out of Band	1458 to 2458				
28	Out of Band	2000 to 20,000				

TDMA SIGNALS							
Unit s/n 12, Block C, Input frequencies1975MHz., 1982.5MHz. & 1990MHz.							
Plot #	Description	Frequency Range (MHz.)					
29	Input Bandwidth	1982 to 1983					
30	Output Bandwidth	1982 to 1983					
31	Block Edge	1972.5 to 1992.5					
32	Out of Band	1957.5 to 2007.5					
33	Out of Band	1483 to 2483					
34	Out of Band	2000 to 20,000					
Unit s/n 9, Block C, Ir	put frequencies 1975MHz., 19	982.5MHz. & 1990MHz.					
Plot #	Description	Frequency Range (MHz.)					
35	Output Bandwidth	1982 to 1983					
36	Block Edge	1972.5 to 1992.5					
37	Out of Band	1957.5 to 2007.5					
38	Out of Band	1483 to 2483					
39	Out of Band	2000 to 20,000					

	GSM SIGNAL	S							
Unit s/n 12, Block C, Input frequencies1975MHz., 1982.5MHz. & 1990MHz.									
Plot #	Description	Frequency Range (MHz.)							
40	Input Bandwidth	1982 to 1983							
41	Output Bandwidth	1982 to 1983							
42	Block Edge	1972.5 to 1992.5							
43	Out of Band	1957.5 to 2007.5							
44	Out of Band	1483 to 2483							
45	Out of Band	2000 to 20,000							
Unit s/n 9, I	Block C, Input frequencies1975M	Hz., 1982.5MHz. & 1990MHz.							
Plot #	Description	Frequency Range (MHz.)							
46	Output Bandwidth	1982 to 1983							
47	Block Edge	1972.5 to 1992.5							
48	Out of Band	1957.5 to 2007.5							
49	Out of Band	1483 to 2483							
	12								

50

Out of Band

2000 to 20,000

SECTION 2.1053: FIELD STRENGTH OF SPURIOUS RADIATION.

TEST SETUP:

Horn antenna

Minimum Requirement:

The magnitude of each spurious and harmonic emissions detected as being radiated from the EUT must be at a level no more than $43 + 10 \log$ (mean output power, watts) dB below the mean power output.

Using the relationship between field strength and RF power into an isotropic transmit antenna. Since Section 24.232A refers power as EIRP, 1 will be used for antenna gain.

 $E(V/m) = \sqrt{\frac{30 \times P \times G}{D}}$

P= Eut Maximum Power (Watts) G= Antenna in Numeric Gain (Assume 1) D= Distance (Meters)

 $E = \frac{\sqrt{30 \times 140W \times 1}}{1} = 64.81 \text{ V/m}$

20 * log (64.81 V/m x 1,000,000) = **156.23 dBuV/m @ 1 meters**

Emission Mask: $43 + 10 * \log(P) dB$

43 + 10 * Log (140 W) = 64.46 dB

156.23 - 64.46 = 91.77 dBuV/m @ 1 meters

Resultant radiated field at 1 meters from -13 dBm source feeding isotropic antenna: 91.77 **dBuV/m**

14

Test procedure:

EUT antenna output was terminated with a 50-ohm load. The EUT was placed on a wooden table on the outdoor ground plane. The search antenna was placed 1 meter from the EUT. With the transmitter operating at full power the turntable was slowly rotated to locate the direction of maximum emission once maximum direction was determined the search antenna was raised and lowered in both vertical and horizontal polarization.

Test Result:

The maximum readings so obtained are recorded in a spreadsheet attached. Maximum levels measured at 1 meter were extrapolated to specified distance of 3 meters.

COMPLIANCE ENGINEERING

SERVICES, INC. Harmonic Emissions

24.238(a)

7/18/00 Juan Maritnez A site (1.0 Meter)

Powerwave Technologies, Inc. 1900 MHz Multi-Carrier Power Amplifier (M/N: MPF19090) S/N: 12

f1 = 1975 MHz		f2 = 1982.5	5 MHz	f3 = 199	90 MHz		High er	nd		
F(MHz)	READ	NG A	AF CL	AMP	DIST	HPF	ΤΟΤΑ	LIM	IT MARC	SIN
	(dBuV	(d	dB) (dB)	(dB)	(dB)	(dB)	∟) (dBuV/	m) (dBu	ıV/m) (dB)	
) <u>Pk</u>	Avg					Pk	Avg	Pk	Avg
Vertical										
3964	64.1	32	2.9 5.08	-31.25	0	0	70.83	82.	2 -11.4	
5946	51.9	36	6.4 5.6	-31.25	0	0	62.65	82.	2 -19.6	
7928	48.81	38	8.9 7	-31.25	0	0	63.46	82.	2 -18.7	
9910	42.74	39	9.9 7.53	-31.25	0	0	58.92	82.	2 -23.3	
11892	46.07	4	40 8.225	5 -31.25	0	0	63.05	82.	2 -19.2	
13874	45.01	41	1.5 9.62	-31.25	0	0	64.88	82.	2 -17.3	
15856	45.68	4(0.5 10.25	5 -31.25	0	0	65.18	82.	2 -17	
17838	46.2	44	4.7 11.45	5 -31.25	0	0	71.1	82.	2 -11.1	
19820	49.5	3	33 12.74	-31.25	0	0	63.99	82.	2 -18.2	
<u>Horizonta</u> I										
3964	67.08	32	2.9 5.08	-31.25	0	0	73.81	82.	2 -8.39	
5946	51.16	36	6.4 5.6	-31.25	0	0	61.91	82.	2 -20.3	
7928	49.07	38	8.9 7	-31.25	0	0	63.72	82.	2 -18.5	
9910	45.35	39	9.9 7.53	-31.25	0	0	61.53	82.	2 -20.7	
11892	46.14	4	40 8.225	5 -31.25	0	0	63.12	82.	2 -19.1	
13874	46.05	41	1.5 9.62	-31.25	0	0	65.92	82.	2 -16.3	
15856	46.89	4(0.5 10.25	5 -31.25	0	0	66.39	82.	2 -15.8	
17838	47.58	44	4.7 11.45	5 -31.25	0	0	72.48	82.	2 -9.72	
				15						

19820	49.3	33	12.74	-31.25	0	0	63.79	82.2	-18.4
f1 = 1950	MHz	f2 = 1957.5 MHz		f3 = 1965	MHz		Low end		
Vertical									
3964	60.09	32.9	5.08	-31.25	0	0	66.82	82.2	-15.4
5946	52.48	36.4	5.6	-31.25	0	1	64.23	82.2	-18
7928	47.08	38.9	7	-31.25	0	1	62.73	82.2	-19.5
9910	44.81	39.9	7.53	-31.25	0	1	61.99	82.2	-20.2
11892	46.51	40	8.225	-31.25	0	1	64.49	82.2	-17.7
13874	45.01	41.5	9.62	-31.25	0	1	65.88	82.2	-16.3
15856	45.68	40.5	10.25	-31.25	0	1	66.18	82.2	-16
17838	46.2	44.7	11.45	-31.25	0	1	72.1	82.2	-10.1
19820	49.5	33	12.74	-31.25	0	1	64.99	82.2	-17.2
<u>Horizonta</u>	<u>l</u>								
<u>I</u>									
3964	62.08	32.9	5.08	-31.25	0	0	68.81	82.2	-13.4
5946	51.86	36.4	5.6	-31.25	0	1	63.61	82.2	-18.6
7928	45.85	38.9	7	-31.25	0	1	61.5	82.2	-20.7
9910	48.56	39.9	7.53	-31.25	0	1	65.74	82.2	-16.5
11892	47.26	40	8.225	-31.25	0	1	65.24	82.2	-17
13874	45.21	41.5	9.62	-31.25	0	1	66.08	82.2	-16.1
15856	43.25	40.5	10.25	-31.25	0	1	63.75	82.2	-18.5
17838	46.2	44.7	11.45	-31.25	0	1	72.1	82.2	-10.1
19820	48.75	33	12.74	-31.25	0	1	64.24	82.2	-18

NOTE: ALL READINGS MEASURED AT 3 METER. LIMIT IS BASED ON 3 METER DISTANCE

DIST: Correction to extrapolate reading to 3m specification distance

AF: Antenna Factor	ANALYZER SETTING	S	
AMP: Pre-amp gain	Res B/	W	Vid B/W
CL: Cable loss	PEAK(Pk):	1MHz	1MHz
HPF: High pass filter insertion loss (4.5GHz)	AVERAGE(Avg):	1MHz	10Hz

SECTION 2.1055: FREQUENCY STABILITY

(NOT APPLICABLE, EUT IS AN AMPLIFIER)

5. EUT SETUP PHOTOS

RADIATED PART 15 SETUP

ANTENNA CONDUCTED SETUP

1 METER RADIATED SETUP

ATTACHMENTS