MPE Exposure Formula:

$$S = (P X G) / (4 X \pi X d^2)$$

where:

S = power density

P = transmitter conducted power in (mW)

G = antenna numeric gain

 $d = distance to radiation center (m) or (.02^2) = .020 m$

Enter Data in Linear Units					
Gain =	7.1	Numeric		9.2	dBi
Power =	5012	mW		37	dBm
Frequency =	221	MHz		0.200	mW/cm^2
Cable Loss =	0	dB			
EIRP =	35584.29	mW	I	41686.94	mW
R (cm) =	118.9896657		S (20cm) =		8.293

Microwave Data Systems will be using different antennas so only the highest gain Note: antenna to be used with transmitter is stated. For worse case scenario this does not include any cable loss. The calculated safe distance is 1.2 meters.