

Elliott Laboratories www.elliottlabs.com 684 West Maude Avenue Sunnyvale, CA 94085-3518

408-245-7800 Phone 408-245-3499 Fax

Test Report Industry Canada Radio Standards Specification 119 Issue 6, Industry Canada Radio Standards Specification GEN Issue 2 FCC Part 90 and Part 15 (Receiver)

GE MDS LLC

Model: TRM450

FCC ID NUMBER: E5MDS-TRM450 UPN: 3738A-TRM450

> GRANTEE: GE MDS LLC 175 Science Parkway Rochester, NY 14620

TEST SITE: Elliott Laboratories 684 W. Maude Avenue Sunnyvale, CA 94086

REPORT DATE: June 5, 2009

FINAL TEST DATE:

May 22, May 27, May 28, May 29 and June 1, 2009

AUTHORIZED SIGNATORY:

Mark Briggs

Staff Engineer

Testing Cert #2016-01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

File: R75707 Page 1 of 16

REVISION HISTORY

Γ	Rev #	Date	Comments	Modified By
Γ	1	June 12, 2009	Initial Release	-

TABLE OF CONTENTS

COVER PAGE	1
REVISION HISTORY	2
TABLE OF CONTENTS	3
DECLARATIONS OF COMPLIANCE	4
SCOPE	5
OBJECTIVE	5
SUMMARY OF TEST RESULTS	6
PART 90 AND RSS-119 TEST SUMMARY	6
MEASUREMENT UNCERTAINTIES	7
EQUIPMENT UNDER TEST (EUT) DETAILS	8
GENERAL	
ENCLOSURE	
MODIFICATIONS SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION DURING TESTING	
TEST SITE	10
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER PEAK POWER METER	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	11
TEST PROCEDURES	12
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	16
RADIATED EMISSIONS SPECIFICATION LIMITS	16
CALCULATIONS – EFFECTIVE RADIATED POWER	
EXHIBIT 1: Test Equipment Calibration Data	
EXHIBIT 2: Test Data Log Sheets EXHIBIT 3: Test Configuration Photographs	
EXHIBIT 5: Test Configuration Photographs EXHIBIT 4: Theory of Operation	
EXHIBIT 5: Proposed FCC ID Label & Label Location	
EXHIBIT 6: Detailed Photographs	7
EXHIBIT 7: Installation Guide	8
EXHIBIT 8: Block Diagram	9

DECLARATIONS OF COMPLIANCE

Equipment Name and Model: TRM450

Manufacturer:

GE MDS LLC 175 Science Parkway Rochester, NY 14620

Tested to applicable standards:

RSS-119, Issue 6 (Land Mobile and Fixed Radio Transmitters and Receivers, 27.41 to 960 MHz) RSS GEN Issue 2 FCC Part 90 (Private Land Mobile Radio Service) FCC Part 15 Subpart B (Receiver)

Measurement Facility Description Filed With Department of Industry:

Departmental Acknowledgement Number: IC2845A-2

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above mentioned departmental standards (through the use of TIA/EIA-603 and the specific RSS standards applicable to this device); and that the equipment performed in accordance with the data submitted in this report.

Signature Name Title Address

Mark Briggs
Staff Engineer
Elliott Laboratories
684 W. Maude Ave
Sunnyvale, CA 94086
USA

Date: June 5, 2009

Maintenance of compliance with the above standards is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

SCOPE

FCC Part 90, Part 15, RSS GEN & IC RSS 119 testing was performed for the equipment mentioned in this report. The equipment was tested in accordance with the procedures specified in Sections 2.1046 to 2.1057 of the FCC Rules & IC RSS-119. TIA-603 was also used as a test procedure guideline to perform the tests required by FCC Part 90 and RSS 119 for the transmitter-related parameters. ANSI C63.4 was used as the procedure for the receiver measurements against RSS GEN limits and FCC Part 15 Subpart B limits.

The intentional radiator above was tested in a simulated typical installation to demonstrate compliance with the relevant FCC & RSS performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the FCC Part 90 & IC RSS-119. Certification of these devices is required as a prerequisite to marketing as defined in Section 2.1033 & RSP-100.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to FCC & Industry Canada. FCC & Industry Canada issues a grant of equipment authorization and a certification number upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product that may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

SUMMARY OF TEST RESULTS

	9 Test Summar	/			-	
Measurement Required	FCC Rule Part	RSS-119 Section	Test Performed	Measured Value	Test Method	Result
Modulation Tested	GMSK	GMSK	-	-	-	-
Modulation characteristics	2.1047	5.7	Modulated with appropriated signal	-	Н	-
Radiated RF power output (ERP/EIRP)	2.1046 / 90.279 & 90.205(g)	6.2	Radiated Output Power Test	Output pow antenna	ver measure a port direct	
RF power output	2.1046 / 90.279 & 90.205(g)	6.2	Output Power– High Power Output Power– Low Power	33.5 dBm 2.2 Watts 28.5dBm 0.7 Watts	В	Note 1
Occupied	2.1049/ 90.210(c)	6.4(c) &	25kHz Channel Emission Mask C Occupied Bandwidth	Refer to Plots 21.6 kHz	C, D	Pass
Bandwidth	& (d)	6.4(d)	12.5kHz Channel Emission Mask D Occupied Bandwidth	Refer to Plots 11.1 kHz	D, D	Pass
Transmitter spurious emissions	2.1053 /	6.3 &	Radiated Spurious Emissions	-34.8 dBm erp	Ν	Pass (14.8dB)
30MHz – 5GHz	90.210(d)	6.4(d)	Conducted Spurious Emission	< -30dBm	J	Pass (> 10dB)
Frequency stability	2.1055 / 90.213	7	vs. Temperature vs. Voltage	0.6 ppm	K L & M	Pass Pass
Transient Frequency Behavior	90.214	6.5	Transient Behavior	No evaluation	n performed	l. Note 2
Exposure to Mobile devices	2.1091	9	Exposure of Humans to RF Fields	No evaluation	n performed	l. Note 2
Receiver Spurious Emissions	15.109	8 (RSS GEN)	Radiated Spurious Emissions Conducted Spurious Emissions	34.4 dBµV/m @ 40.09MHz -58.8dBm @ 455 MHz	ANSI C63.4 (N)	Pass (5.6dB) Pass (1.8dB)

Part 90 and RSS-119 Test Summary

Note 1: Power measurements used to confirm output power within 0.5dB of certified power level prior to making transmitter measurements.

Note 2: No evaluation was performed. The proposed changes were not considered to have an effect on the values previously reported during the original application and subsequent permissive change/re-assessments.

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below were calculated using the approach described in CISPR 16-4-2:2003 using a coverage factor of k=2, which gives a level of confidence of approximately 95%. The levels were found to be below levels of *U*cispr and therefore no adjustment of the data for measurement uncertainty is required.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.6

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The GE MDS LLC model TRM450 is a radio module that operates in the 410-470 MHz range. The module has been modified from the original version to allow a single device to operate across the entire frequency band. The previous model had different hardware configurations for operating in the 410-430 MHz, 430-450 MHz or 450-470 MHz bands.

The EUT was connected to a test fixture in order to test it outside of any host system. The electrical rating of the EUT is 410-470MHz, 3.3 to 3.8Vdc, 2 amps max

The sample was received on May 22, 2009 and tested on May 22, May 27, May 28, May 29 and June 1, 2009. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
	TRM450	410-470MHz		E5MDS-
GE MDS	I KW430	XCVR	-	TRM450

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer or system.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with the emission specifications.

SUPPORT EQUIPMENT

The following equipment was used as remote support equipment for radiated emissions testing and was located locally for all other tests:

Manufacturer	Model	Description	Serial Number	FCC ID
Dell	Latitude CPx	Laptop Computer	CA asset 212	DoC
-	LFZVC36FS12D	AC/DC Adapter	2550	-
GE MDS	4766A01	Data Node Board	1877478	-

EUT INTERFACE PORTS

Port	Connected to	Description	Shielded or Unshielded	Length (m)		
USB J4 - Data Note Board	Laptop	Multiconductor	Shielded	0.8*		
Power - Data Node Board	AC/DC Adapter	2Wire	Unshielded	0.7		
AC Adapter	AC Mains	2wire	Unshielded	1.8		
RF Port (SMA)	Antenna	Coax	Shielded	0.3		
* Cable length extended to 5m so that the laptop could be located remotely during receiver radiated spurious emissions measurements.						

The I/O cabling configuration during emissions testing was as follows:

EUT OPERATION DURING TESTING

During testing for bandwidth and antenna port transmitter conducted emissions, the EUT was configured to transmit continuously on a single channel, at the rated maximum and minimum power level and at both data rates. Radiated transmitter spurious emissions were measured at both data rates at the highest output power level only.

Receiver spurious measurements were made with the device tuned to the lowest, highest and center frequencies. Radiated measurements were made with the antenna port terminated with a 50-ohm load as conducted measurements were also made to demonstrate that the spurious limits at the antenna port were below 2nW (-57dBm).

TEST SITE GENERAL INFORMATION

Final test measurements were taken on May 22, May 27, May 28, May 29 and June 1, 2009 at the Elliott Laboratories Open Area Test Site #2 located at 684 West Maude Avenue, Sunnyvale, California. Pursuant to Section 2.948 of the FCC Rules, construction, calibration, and equipment data has been filed with the Commission.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing are performed in conformance with Section 2 of FCC Rules. Measurements are made with the EUT connected to a spectrum analyzer through an attenuator to prevent overloading the analyzer.

RADIATED EMISSIONS CONSIDERATIONS

Radiated measurements are performed in an open field environment or Anechoic Chamber. The test site is maintained free of conductive objects within the CISPR 16-1 defined elliptical area.

MEASUREMENT INSTRUMENTATION RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers are capable of measuring over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the particular detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. If average measurements above 1000MHz are performed, the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz is used.

INSTRUMENT CONTROL COMPUTER

A personal computer is utilized to record the receiver measurements of the field strength at the antenna, which is then compared directly with the appropriate specification limit. The receiver is programmed with appropriate factors to convert the received voltage into filed strength at the antenna. Results are printed in a graphic and/or tabular format, as appropriate. The test receiver also provides a visual display of the signal being measured.

PEAK POWER METER

A power meter and peak power sensor may be used for output power measurements from transmitters as they provide a broadband indication of the power output.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or EUT and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transmitters and transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor drive to vary the antenna height.

The requirements of ANSI C63.4:2003 were used for configuration of the equipment turntable. It specifies that the test height above ground for table-mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An appendix of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

General: For Transmitters with detachable antenna, direct measurements for output power, modulation characterization, occupied bandwidth, and frequency stability are performed with the antenna port of the EUT connected to either the power meter, modulation analyzer, or spectrum analyzer via a suitable attenuator and/or filter. The attenuators and/or filters are used to ensure that the transmitter fundamental will not overload the front end of the measurement instrument.

Procedure B – Power Measurement (Conducted Method): The following procedure was used for transmitters that do use external antennas.

- 1) Set the EUT to maximum power and to the lowest channel.
- 2) Either a power meter or a spectrum analyzer was used to measure the power output.
- 3) If a spectrum analyzer was used a resolution and video bandwidth 10kHz was used to measure the power output. Corrected for any external attenuation used for the protection of the input of analyzer. In addition, For CDMA or TDMA modulations set spectrum analyzer resolution to 1MHz and video to 30 kHz. Use video averaging with a 100-sample rate.
- 4) If a power meter was used, corrected for any external attenuation used for the protection of the input of the sensor head. Also set the power sensor correction by setting up the frequency range that will be measured.
- 5) Repeat this for the high channel and all modulations that will be used and all output ports used for transmission

Procedure C - Occupied Bandwidth (Conducted Method): Either for analog, digital, or data modulations, occupied bandwidth was performed. The EUT was set to transmit the appropriate modulation at maximum power. The bandwidth was measured using following methods:

- 1) The built-in 99% function of the spectrum analyzer was used.
- 2) If the built-in 99% is not available then the following method is used:

26-dB or 20-dB was subtracted to the maximum peak of the emission. Then the display line function was used, in conjunction with the marker delta function, to measure the emissions bandwidth.

3) For the above two methods a resolution and video bandwidth of 100 or 300 Hz was used to measure the emission's bandwidth.

Procedure D - Occupied Bandwidth (Conducted Emission Mask): Either for analog, digital, or data modulations, emission mask was performed. The EUT was set to transmit the appropriate modulation at maximum power. The following method was used:

- 1) The EUT was connected directly to the spectrum analyzer and used an attenuator to protect the input of the analyzer. The EUT antenna was removable, so conducted measurements was performed. The EUT was set to transmit continuous packets of data and the Fundamental Frequency set to the middle of the EUT frequency range.
- 2) Since EUT is designed with a 12.5 kHz channel Section 90.210 (d)(1)(2)(3) was used to show compliance to the emission mask.
- 3) Any emission must be attenuated below the power (P) as follow:

90.210 (d)(1): 5.625 kHz: 0 dB

90.210(d)(2): 5.625 kHz: 20 dB 12.5 kHz: 70 dB

90.210(d)(3): more than 12.5 kHz: -20 dBm (50+10*log(P))

The following Resolution and Video bandwidth was used to show compliance for the above requirement: 100 Hz.

- 4) Since EUT is designed with a 25 kHz channel Section 90.210 (c)(1)(2)(3) was used to show compliance to the emission mask.
- 5) Any emission must be attenuated below the power (P) as follow:

90.210 (c)(1): 5 kHz but no more then 10kHz: 83*log(Fd / 5) dB

90.210(c)(2): 10kHz but no more then 250%: At least 29 log (fd 2/11) dB or 50 dB, whichever is the lesser attenuation

90.210(c)(3): more than 250%: -13 dBm (43+10*log(P))

The following Resolution and Video bandwidth was used to show compliance for the above requirement: 300 Hz.

Procedure H - Other Types of Equipment: Either digital or data modulated signals were simulated, by software or external sources, to performed the required tests. The EUT was set to transmit the appropriate digital modulation.

Procedure J – Antenna Conducted Emissions: For spurious emission measurements at the antenna terminal the following procedure was performed:

- 1) Set the transmitting signal at the middle of the operating range of the transmitter, as specified in the standard. Power is set to maximum and then to minimum.
- 2) Set the spectrum analyzer display line function to -20-dBm.
- 3) Set the spectrum analyzer bandwidth to 10kHz <1GHz and 1 MHz >1GHz.
- 4) For the spectrum analyzer, the start frequency was set to 30 MHz and the stop frequency set to the 10th harmonic of the fundamental. All spurious or intermodulation emission must not exceed the -20dBm limit.
- 5) Steps 1 to 4 were repeated for all modulations and output ports that will be used for transmission.

Procedure K - Frequency Stability: The EUT is placed inside a temperature chamber with all support and test equipment located outside of the chamber. The spectrum analyzer is configured to give a 6-digit display for the marker-frequency function. The spectrum analyzer's built-in frequency counter is used to measure the maximum deviation of the fundamental frequency at each temperature. The Temperature chamber was varied from -30 to $+50^{\circ}$ C (or $+60^{\circ}$ C for some IC RSS standards, if applicable) in 10 degrees increment. The EUT was allowed enough time to stabilize for each temperature variation.

Procedure L - Frequency Stability: For AC or DC operated devices the nominal voltage is varied to 85% and to 115% at either room temperature or at a controlled +20°C temperature.

Procedure M - Frequency Stability: For battery-powered devices the voltage battery end-point is determined by reducing the dc voltage until the unit ceases to function. This is performed at either room temperature or at a controlled $+20^{\circ}$ C temperature.

Procedure N - Field Strength Measurement: The EUT was set on the turntable and the search antenna position 3 meters away. The output antenna terminal was terminated with a 50-ohm terminator. The EUT was set at the middle of the frequency band and set at maximum output power.

For the first scan, a preliminary measurement is performed. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. One or more of these is with the antenna polarized vertically while the one or more of these are with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

For the final measurements for transmitter spurious emissions the substitution method is performed for all signals not being 20-dB below the calculated radiated limit. Substitution method is performed by replacing the EUT with a horn antenna and signal generator. The horn antenna factors can be reference to a half-wave dipole in dBi. The signal generator power level was adjusted until a similar level, which was measured on

the first scan, is achieved on the spectrum analyzer. The level on the signal generator is than added to the antenna factor, in dBi, which will give the corrected value.

Receiver spurious emissions limits are specified as a field strength limit so the measured field strength from the EUT is compared directly to this limit.

Procedure I – Transient Frequency Behavior: The TIA/EIA 603 procedure was used to determine compliance to radio being keyed on and off.

- 1) Connected the Test Receiver DOP or Video Output to Channel 1 of the oscilloscope. The output of the RF crystal detector was connected to Auxiliary channel 1, which served as a trigger input. The output of the combiner was connected to the Test Receiver.
- Set the EUT to maximum power and connected as illustrated above. Set the signal generator to the assigned transmitter frequency and modulate it with a 1 kHz tone at 6.25kHz, 12.5 kHz, or 25 kHz deviation and set its output to -100 dBm, then turn on the EUT.
- 3) The Combiner output side was connected to the Test Receiver, which was used to measure the Power. Used enough external attenuation so that the output at the combiner was set to 40 dB below the maximum input of the Test Receiver, then turn off the EUT.
- 4) Set the signal generator output to the same level in step 3. This level was maintained for the remainder of the test.
- 5) Set the horizontal sweep rate on the storage oscilloscope to 10 milliseconds per division and adjusted the display to continuously view the 1 kHz tone from the DOP or Video Output. Adjusted the vertical amplitude control to display the 1 kHz at +/- 4 divisions vertically centered on the display.
- 6) Set the oscilloscope to trigger at the AUX channel 1 input port.
- 7) Removed enough external attenuation so that the input to the RF detector and combiner is increased by 30 dB.
- 8) Turn on the transmitter and plotted the result for **Ton**, **T1**, and **T2**.
- 9) Set the oscilloscope to trigger in decreasing magnitude from the RF crystal detector.
- 10) Turn off the transmitter and plotted the result for T3.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

RADIATED EMISSIONS SPECIFICATION LIMITS

The limits for radiated emissions are based on the power of the transmitter at the operating frequency. Data is measured in the logarithmic form of decibels relative to one milliwatt (dBm) or one microvolt/meter (dBuV/m,). The field strength of the emissions from the EUT is measured on a test site with a receiver.

Below is a formula example used to calculate the attenuation requirement, relative to the transmitters power output, in dBuV/m. For this example an operating power range of 3 watts is used. The radiated emissions limit for spurious signals outside of the assigned frequency block is $43+10Log_{10}$ (mean output power in watts) dB below the measured amplitude at the operating power.

CALCULATIONS – EFFECTIVE RADIATED POWER

$$E(V/m) = \frac{\sqrt{30 * P * G}}{d}$$

E= Field Strength in V/m

P= Power in Watts (for this example we use 3 watts) G= Gain of antenna in numeric gain (Assume 1.64 for ERP) d= distance in meters

 $E(V/m) = \frac{\sqrt{30 * 3 \text{ watts } * 1.64 \text{ dB}}}{3 \text{ meters}}$

 $20 * \log (4.049 \text{ V/m} * 1,000,000) = 132.14 \text{ dBuV/m} @ 3 \text{ meters}$

Note: Substitution Method is performed for spurious emission not being 20-dB below the calculated field strength.

EXHIBIT 1: Test Equipment Calibration Data

Radio Antenna Port (Power and Spurious Emissions), 22-May-09 Cal Due Manufacturer Description Model # Asset # Rohde & Schwarz Power Meter, Dual Channel 01-Jul-09 NRVD 1071 Power Sensor 100 uW - 2 Watts (w/ 20 Rohde & Schwarz NRV-Z32 1536 12-Sep-09 dB pad, SN BJ5155) PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, Agilent E4446A 2139 30-Dec-09 HYX, Radiated Emissions, 30 - 5,000 MHz, 27/28/29-May-09 Manufacturer Description Model # Asset # Cal Due Biconical Antenna, 30-300 MHz EL30.300 03-Apr-11 Elliott Laboratories 54 Elliott Laboratories Log Periodic Antenna 300-1000 MHz EL300.1000 55 03-Apr-10 EMCO Log Periodic Antenna, 0.3-1 GHz 3146A 364 23-Dec-09 EMC Spectrum Analyzer, 9 kHz - 6.5 Hewlett Packard 8595EM 30-Dec-09 780 GHz EMCO Biconical Antenna, 30-300 MHz 3110B 801 19-Sep-09 Microwave Preamplifier, 1-26.5GHz Hewlett Packard 8449B 870 09-Oct-09 EMC Spectrum Analyzer, 9 KHz-26.5 Hewlett Packard 8593EM 29-Dec-09 1141 GHz EMCO Antenna, Horn, 1-18 GHz (SA40-Red) 3115 1142 15-Jul-10 Test Receiver, 0.009-2750 MHz 14-Apr-10 Rohde & Schwarz ESN 1332 EMCO Antenna, Horn, 1-18 GHz 3117 11-Apr-10 1662 8447D OPT Hewlett Packard Preamplifier, 100 kHz - 1.3 GHz 1826 29-May-09 010

Environmental Test, 01-Jun-09

Manufacturer	Description	Model #	Asset #	Cal Due
Agilent	PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	E4446A	2139	30-Dec-09

File: R75707 Rev 1

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T75434 28 Pages

EMC Test Data

Sin Dates Company					
GE MDS	Job Number:	J75317			
RM450SB Single Band	T-Log Number:	T75434			
	Account Manager:	Susan Pelzl			
Dennis McCarthy	Project Manager:	Mark Briggs			
CC Part 90, RSS-210	Class:	-			
	Environment:	-			
	E MDS RM450SB Single Band ennis McCarthy	E MDSJob Number:RM450SB Single BandT-Log Number:Account Manager:Account Manager:ennis McCarthyProject Manager:CC Part 90, RSS-210Class:			

EMC Test Data

For The

GE MDS

Model

TRM450SB Single Band

Date of Last Test: 6/2/2009

Elliott

EMC Test Data

	An (ATA) company		
Client:	GE MDS	Job Number:	J75317
Madal	el: TRM450SB Single Band	T-Log Number:	T75434
wouer.		Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	FCC Part 90, RSS-210	Class:	-

Radiated Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

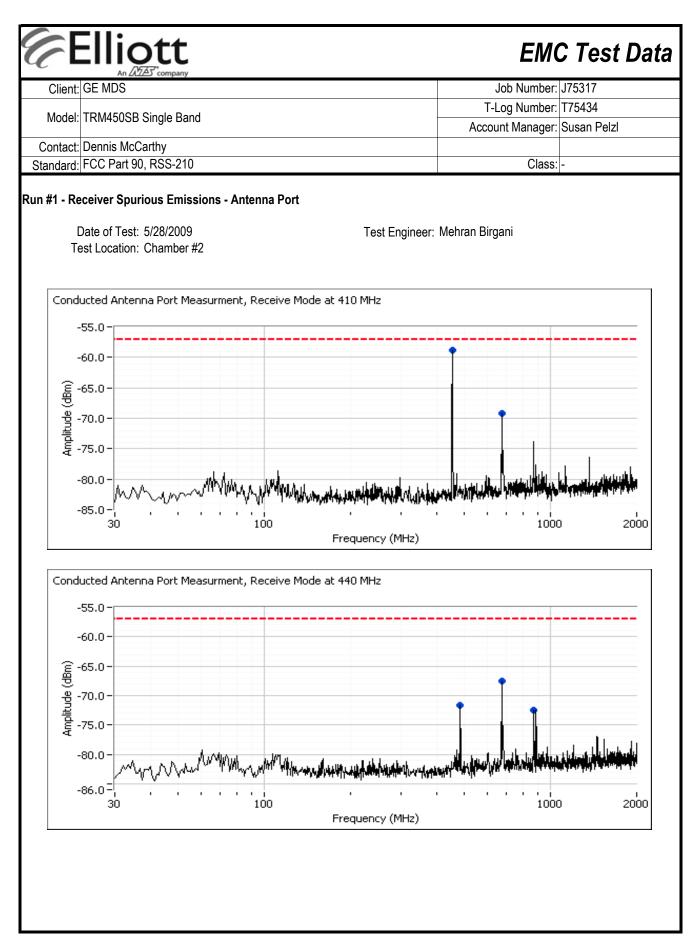
Conducted measurements are made with the EUT's rf port connected to the measurement instrument via an attenuator or dc-block if necessary.

Radiated measurements are made with the EUT located on a non-conductive table, 3m from the measurement antenna.

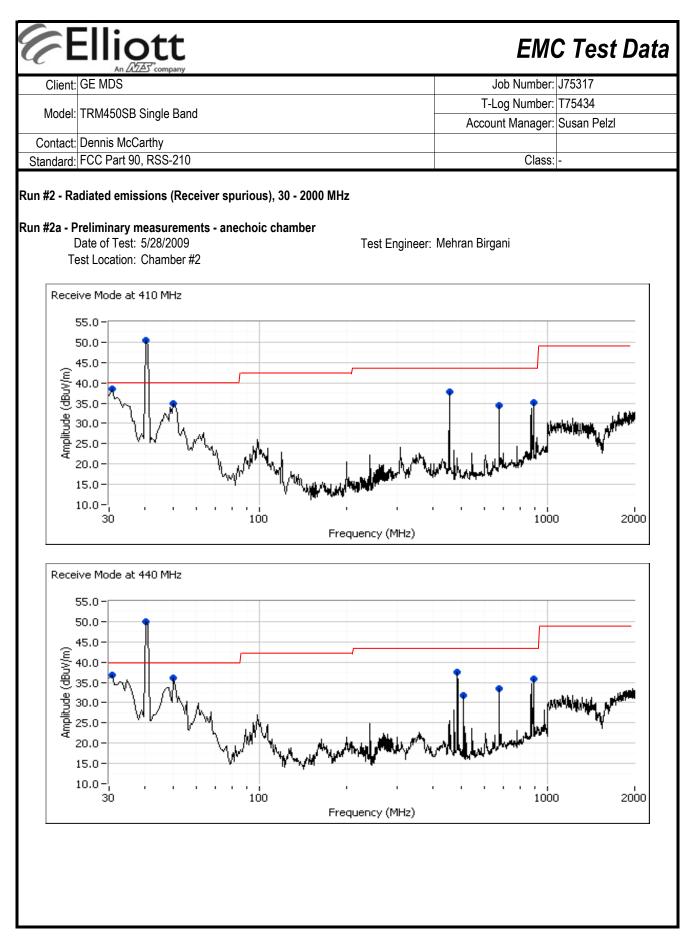
Ambient Conditions:	Temperature:	21-24 °C
	Rel. Humidity:	30-40 %

Summary of Results

Run # Test Performed		Limit	Result	Margin
1	Antenna port measurements	2nW (-57dBm)	Pass	-58.8dBm @ 455.00MHz (-1.8dB)
2	RE, 30 - 2000MHz Maximized Emissions	FCC Class B	Pass	34.4dBµV/m @ 40.09MHz (-5.6dB)


Modifications Made During Testing

No modifications were made to the EUT during testing


Deviations From The Standard

No deviations were made from the requirements of the standard.

Note that the radiated measurements were made with the antenna port temrinated based on the measurements in run #1 showing that the level of emissions at the antenna terminal were below 2nW.

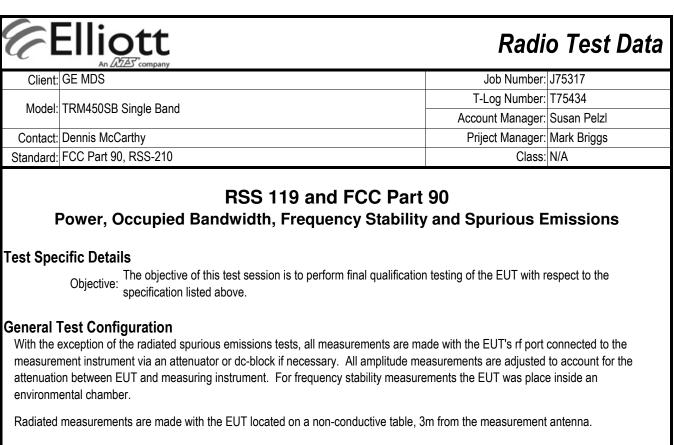
MHz dBm Port Limit Margin Pk/QP/Avg degrees meters (bps, kHz) (MHz) 64.999 -58.8 RF Port -57.0 -1.8 Peak - - 41 64.972 -71.6 RF Port -57.0 -14.6 Peak - - 44 14.992 -69.4 RF Port -57.0 -12.4 Peak - - 47 75.216 -69.2 RF Port -57.0 -12.2 Peak - - 41 75.224 -67.5 RF Port -57.0 -12.2 Peak - - 41 75.224 -67.5 RF Port -57.0 -10.5 Peak - - 44 75.225 -69.5 RF Port -57.0 -12.5 Peak - - 44	Model: IHM450SB Single Band Account Manager: Susan Pelzl Contact: Dennis McCarthy Class: Class: C andard: FCC Part 90, RSS-210 Class: C Conducted Antenna Port Measurment, Receive Mode at 470 MHz -55.0 - - -60.0 - - - - - -60.0 - - - - - - -60.0 - <	Model: IHM450SB Single Band Account Manager: Susan Pelzl Contact: Dennis McCarthy Class: Class: Class: andard: FCC Part 90, RSS-210 Class: C Conducted Antenna Port Measurment, Receive Mode at 470 MHz -55.0 - -60.0 - - - - -60.0 - - - - - -60.0 - - - - - - -60.0 - - - - - - - -60.0 - - - - - - - - -80.0 -	Client:	GE MDS					Job Number: J75317			
Contact: Dennis McCarthy Class: tandard: FCC Part 90, RSS-210 Class: Conducted Antenna Port Measurment, Receive Mode at 470 MHz -55.0 -60.0 -65.0 -60.0 -65.0 -60.0 -65.0 -60.0 -65.0 -60.0 -65.0 -60.0 -65.0 -60.0 -65.0 -60.0 -65.0 -60.0 -65.0 -60.0 -60.0 -86.0 -75.0 -86.0 -75.0 -86.0 -75.0 -86.0 -75.0 -86.0 -75.0 -75.0 -75.0 -86.0 -75.0 -75.0 -75.0 -86.0 -75.0 -75.0 -76.0 -86.0 -75.0 -75.0 -1.8 Peak - - -41 44.992 -69.4 - - - -	Contact: Dennis McCarthy Class: andard: FCC Part 90, RSS-210 Class: Conducted Antenna Port Measurment, Receive Mode at 470 MHz -55.0 -60.0 -60.0 -60.0 -65.0 -60.0 -65.0 -60.0 -65.0 -80.0 -65.0 -80.0 -75.0 -80.0 -75.0 -80.0 -75.0 -80.0 -75.0 -80.0 -75.0 -86.0 -75.0 -86.0 -75.0 -86.0 -75.0 -86.0 -75.0 -86.0 -75.0 -86.0 -75.0 -86.0 -75.0 -86.0 -75.0 -99.4 -75.0 -1000 2000 Frequency (MHz) 1000 -99.4 - -99.4 - -100 - -100 - -100 - -100	Contact: Dennis McCarthy Class: andard: FCC Part 90, RSS-210 Class: Conducted Antenna Port Measurment, Receive Mode at 470 MHz -55.0 -60.0 -60.0 -60.0 -65.0 -60.0 -65.0 -60.0 -65.0 -60.0 -65.0 -60.0 -65.0 -60.0 -65.0 -60.0 -65.0 -86.0 -75.0 -86.0 -75.0 -86.0 -75.0 -86.0 -75.0 -86.0 -75.0 -86.0 -75.0 -86.0 -75.0 -75.0 -75.0 -86.0 -75.0 -75.0 -75.0 -86.0 -75.0 -75.0 -76.0 -86.0 -75.0 -75.0 -76.0 -76.0 -76.0 -77.0 -71.8 Peak - -71.6 RF Port -75.0	Model:	TRM450SB	Single Band	d					-	
Conducted Antenna Port Measurment, Receive Mode at 470 MHz -55.0 -	Conducted Antenna Port Measurment, Receive Mode at 470 MHz -55.0 -60.0 -65.0 -65.0 -67.0 </td <td>Conducted Antenna Port Measurment, Receive Mode at 470 MHz -55.0 -</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7,000</td> <td></td> <td></td>	Conducted Antenna Port Measurment, Receive Mode at 470 MHz -55.0 -								7,000		
-55.0 -60.0 -60.0 -60.0 -60.0 -60.0 -60.0 -60.0 -60.0 -60.0 -60.0 -60.0 -60.0 -70.0 -60.0 -70.0 <td< td=""><td>-55.0 -60.0 - -60.0 -</td><td>55.0 </td><td>tandard:</td><td>FCC Part 90</td><td>), RSS-210</td><td></td><td></td><td></td><td></td><td></td><td>Class: -</td><td></td></td<>	-55.0 -60.0 - -60.0 -	55.0	tandard:	FCC Part 90), RSS-210						Class: -	
-55.0 -60.0 -60.0 -60.0 -60.0 -60.0 -60.0 -60.0 -60.0 -60.0 -60.0 -60.0 -60.0 -70.0 -60.0 -70.0 <td< td=""><td>-55.0 -60.0 - -60.0 -</td><td>55.0 </td><td>Condu</td><td>ucted Anten</td><td>ina Port Me</td><td>asurment.</td><td>Receive Mod</td><td>de at 470 MH</td><td>lz</td><td></td><td></td><td></td></td<>	-55.0 -60.0 - -60.0 -	55.0	Condu	ucted Anten	ina Port Me	asurment.	Receive Mod	de at 470 MH	lz			
-60.0 -65.0 -65.0 -75.0 -80.0 -80.0 -80.0 -80.0 -80.0 -80.0 -80.0 -80.0 -80.0 -80.0 -80.0 -80.0 -80.0 -80.0 -80.0 -80.0 -80.0 -80.0 -80.0 -80.0 -80.0 -80.0 -80.0 -80.0 -80.0 -80.0 -80.0 -80.0 -80.0 -90.0 -80.0 -90.0 -80.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -90.0 -9	-60.0 -65.0 -65.0 -75.0 -75.0 -75.0 -80.0 -75.0 -30.0 -75.0 -30.0 -75.0 -30.0 -75.0 -86.0 -75.0 -30.0 -75.0 -75.0 -75.0 -30.0 -75.0 -75.0 -75.0 -75.0 -75.0 -75.0 -75.0 -75.0 -75.0 -75.0 -75.0 -75.0 -75.0 -75.0 -77.0 -71.6 RF Port -57.0 -12.4 -71.6 RF Port -57.0 -12.2 -75.10 -12.2 -75.2 -75.0 -75.2 -75.0 -75.2 -75.0 -75.2 -75.0 -75.2 -75.0 -75.2 -75.0 -75.2 -75.0 -75.2 -75.0 -75.2 -75.0 -75.2 -75.0 <	-60.0 -65.0 -65.0 -75.0 -75.0 -75.0 -80.0 -86.0 -30 100 Frequency (MHz) Quency Level RF Detector Azimuth Height Comments Frequency (MHz)										
	<u>ge</u> -65.0											
-80.0	-80.0	-80.0										
-80.0	-80.0	-80.0	l (mg -	65.0-								
-80.0	-80.0	-80.0	<u>9</u> -	70.0-						•	•	
-80.0	-80.0	-80.0	blitu	75.0-								
Application	-86.0	quency Level RF Detector Azimuth Height Comments Frequency MHz dBm Port Limit Margin Pk/QP/Avg degrees meters (bps, kHz) (MHz) 44.992 -58.8 RF Port -57.0 -18.8 Peak - - 4100 44.992 -69.4 RF Port -57.0 -12.4 Peak - - 4100 '5.224 -67.5 RF Port -57.0 -12.5 Peak - - 4400 '5.225 -69.5 RF Port -57.0 -12.5 Peak - - 4400 '5.225 -69.5 RF Port -57.0 -12.5 Peak - - 4400	4	/ 3.0								
86.0	-86.0 -86.0 -1	-86.0 -86.0 -1		80.0-	w. Aller	MANAN	W. M. William	والتمادي والدروق	والمراجب والعروالي	الموجلية وبالترجي		
30 100 100 2000 Frequency Level RF Detector Azimuth Height Comments Frequency MHz dBm Port Limit Margin Pk/QP/Avg degrees meters (bps, kHz) (MH 34.972 -71.6 RF Port -57.0 -1.8 Peak - - 41 34.972 -71.6 RF Port -57.0 -14.6 Peak - - 44 34.992 -69.4 RF Port -57.0 -12.4 Peak - - 44 75.216 -69.2 RF Port -57.0 -12.2 Peak - - 44 75.224 -67.5 RF Port -57.0 -12.5 Peak - - 44 75.225 -69.5 RF Port -57.0 -12.5 Peak - - 44	30 100 Frequency (MHz) 1000 2000 quency Level RF Detector Azimuth Height Comments Frequency (MHz) MHz dBm Port Limit Margin Pk/QP/Avg degrees meters (bps, kHz) (MH 4.999 -58.8 RF Port -57.0 -1.8 Peak - - 410 4.972 -71.6 RF Port -57.0 -14.6 Peak - - 440 4.992 -69.4 RF Port -57.0 -12.4 Peak - - 440 5.216 -69.2 RF Port -57.0 -12.2 Peak - - 440 5.224 -67.5 RF Port -57.0 -10.5 Peak - - 440 5.225 -69.5 RF Port -57.0 -12.5 Peak - - 440	30 100 Frequency (MHz) 1000 2000 quency Level RF Detector Azimuth Height Comments Frequency (MHz) MHz dBm Port Limit Margin Pk/QP/Avg degrees meters (bps, kHz) (MHz) MHz dBm Port Limit Margin Pk/QP/Avg degrees meters (bps, kHz) (MHz) 64.972 -71.6 RF Port -57.0 -1.8 Peak - - 4400 64.972 -71.6 RF Port -57.0 -12.4 Peak - - 4400 64.992 -69.4 RF Port -57.0 -12.2 Peak - - 4400 75.216 -69.2 RF Port -57.0 -12.2 Peak - - 4400 75.224 -67.5 RF Port -57.0 -12.5 Peak - - 4400 75.225 -69.5 RF Port <td></td> <td>86.0=</td> <td>γγγ• γ·•</td> <td></td> <td>. ևաև</td> <td>a dal malenta da antes a</td> <td>, keinen keinen</td> <td></td> <td></td> <td></td>		86.0=	γγγ• γ·•		. ևաև	a dal malenta da antes a	, keinen keinen			
quency Level RF Detector Azimuth Height Comments Frequ MHz dBm Port Limit Margin Pk/QP/Avg degrees meters (bps, kHz) (MHz) 64.999 -58.8 RF Port -57.0 -1.8 Peak - - 41 34.972 -71.6 RF Port -57.0 -14.6 Peak - - 44 4.992 -69.4 RF Port -57.0 -12.4 Peak - - 44 75.216 -69.2 RF Port -57.0 -12.2 Peak - - 41 75.224 -67.5 RF Port -57.0 -12.5 Peak - - 44 75.225 -69.5 RF Port -57.0 -12.5 Peak - - 44	quency Level RF Detector Azimuth Height Comments Frequency MHz dBm Port Limit Margin Pk/QP/Avg degrees meters (bps, kHz) (MH 4.999 -58.8 RF Port -57.0 -1.8 Peak - - 410 4.972 -71.6 RF Port -57.0 -14.6 Peak - - 440 4.992 -69.4 RF Port -57.0 -12.4 Peak - - 440 5.216 -69.2 RF Port -57.0 -12.2 Peak - - 440 5.224 -67.5 RF Port -57.0 -12.5 Peak - - 440 5.225 -69.5 RF Port -57.0 -12.5 Peak - - 440	quency Level RF Detector Azimuth Height Comments Freque MHz dBm Port Limit Margin Pk/QP/Avg degrees meters (bps, kHz) (MHz) 64.999 -58.8 RF Port -57.0 -1.8 Peak - - 410 64.972 -71.6 RF Port -57.0 -14.6 Peak - - 440 44.992 -69.4 RF Port -57.0 -12.4 Peak - - 440 75.216 -69.2 RF Port -57.0 -12.2 Peak - - 440 75.224 -67.5 RF Port -57.0 -12.5 Peak - - 440 75.225 -69.5 RF Port -57.0 -12.5 Peak - - 440										2000
MHz dBm Port Limit Margin Pk/QP/Avg degrees meters (bps, kHz) (MHz) 64.999 -58.8 RF Port -57.0 -1.8 Peak - - 41 34.972 -71.6 RF Port -57.0 -14.6 Peak - - 44 4992 -69.4 RF Port -57.0 -12.4 Peak - - 47 75.216 -69.2 RF Port -57.0 -12.2 Peak - - 41 75.224 -67.5 RF Port -57.0 -12.5 Peak - - 41 75.225 -69.5 RF Port -57.0 -12.5 Peak - - 41	MHz dBm Port Limit Margin Pk/QP/Avg degrees meters (bps, kHz) (MH 4.999 -58.8 RF Port -57.0 -1.8 Peak - - 410 4.972 -71.6 RF Port -57.0 -14.6 Peak - - 440 4.992 -69.4 RF Port -57.0 -12.4 Peak - - 440 5.216 -69.2 RF Port -57.0 -12.2 Peak - - 410 5.224 -67.5 RF Port -57.0 -12.2 Peak - - 440 5.224 -67.5 RF Port -57.0 -12.5 Peak - - 440 5.225 -69.5 RF Port -57.0 -12.5 Peak - - 440	MHz dBm Port Limit Margin Pk/QP/Avg degrees meters (bps, kHz) (MHz 64.999 -58.8 RF Port -57.0 -1.8 Peak - - 410 64.972 -71.6 RF Port -57.0 -14.6 Peak - - 440 4.992 -69.4 RF Port -57.0 -12.4 Peak - - 440 75.216 -69.2 RF Port -57.0 -12.2 Peak - - 410 75.224 -67.5 RF Port -57.0 -12.2 Peak - - 440 75.224 -67.5 RF Port -57.0 -12.5 Peak - - 440 75.225 -69.5 RF Port -57.0 -12.5 Peak - - 440		•			100	_	/ · ·		1000	2000
MHz dBm Port Limit Margin Pk/QP/Avg degrees meters (bps, kHz) (MHz) 64.999 -58.8 RF Port -57.0 -1.8 Peak - - 41 64.972 -71.6 RF Port -57.0 -14.6 Peak - - 44 14.992 -69.4 RF Port -57.0 -12.4 Peak - - 47 75.216 -69.2 RF Port -57.0 -12.2 Peak - - 41 75.224 -67.5 RF Port -57.0 -12.2 Peak - - 41 75.224 -67.5 RF Port -57.0 -10.5 Peak - - 44 75.225 -69.5 RF Port -57.0 -12.5 Peak - - 44	MHz dBm Port Limit Margin Pk/QP/Avg degrees meters (bps, kHz) (MH 4.999 -58.8 RF Port -57.0 -1.8 Peak - - 410 4.972 -71.6 RF Port -57.0 -14.6 Peak - - 440 4.992 -69.4 RF Port -57.0 -12.4 Peak - - 440 5.216 -69.2 RF Port -57.0 -12.2 Peak - - 410 5.224 -67.5 RF Port -57.0 -12.2 Peak - - 440 5.224 -67.5 RF Port -57.0 -10.5 Peak - - 440 5.225 -69.5 RF Port -57.0 -12.5 Peak - - 440	MHz dBm Port Limit Margin Pk/QP/Avg degrees meters (bps, kHz) (MHz 64.999 -58.8 RF Port -57.0 -1.8 Peak - - 410 64.999 -71.6 RF Port -57.0 -14.6 Peak - - 440 44.992 -69.4 RF Port -57.0 -12.4 Peak - - 440 75.216 -69.2 RF Port -57.0 -12.2 Peak - - 440 75.224 -67.5 RF Port -57.0 -12.2 Peak - - 440 75.224 -67.5 RF Port -57.0 -12.5 Peak - - 440 75.225 -69.5 RF Port -57.0 -10.5 Peak - - 440		•			100	Frequen	cy (MHz)		1000	2000
34.972 -71.6 RF Port -57.0 -14.6 Peak - - 44 14.992 -69.4 RF Port -57.0 -12.4 Peak - - 44 75.216 -69.2 RF Port -57.0 -12.2 Peak - - 41 75.224 -67.5 RF Port -57.0 -10.5 Peak - - 44 75.225 -69.5 RF Port -57.0 -12.5 Peak - - 44	4.972 -71.6 RF Port -57.0 -14.6 Peak - - 440 4.992 -69.4 RF Port -57.0 -12.4 Peak - - 470 5.216 -69.2 RF Port -57.0 -12.2 Peak - - 410 5.224 -67.5 RF Port -57.0 -10.5 Peak - - 440 5.225 -69.5 RF Port -57.0 -12.5 Peak - - 440	34.972 -71.6 RF Port -57.0 -14.6 Peak - - 440 4.992 -69.4 RF Port -57.0 -12.4 Peak - - 440 75.216 -69.2 RF Port -57.0 -12.2 Peak - - 410 75.224 -67.5 RF Port -57.0 -10.5 Peak - - 440 75.225 -69.5 RF Port -57.0 -12.5 Peak - - 440		30	RF		100			Height		
14.992 -69.4 RF Port -57.0 -12.4 Peak - - 47 75.216 -69.2 RF Port -57.0 -12.2 Peak - - 41 75.224 -67.5 RF Port -57.0 -10.5 Peak - - 44 75.225 -69.5 RF Port -57.0 -12.5 Peak - - 44	4.992 -69.4 RF Port -57.0 -12.4 Peak - - 470 5.216 -69.2 RF Port -57.0 -12.2 Peak - - 410 5.224 -67.5 RF Port -57.0 -10.5 Peak - - 440 5.225 -69.5 RF Port -57.0 -12.5 Peak - - 440	4.992 -69.4 RF Port -57.0 -12.4 Peak - - 470 '5.216 -69.2 RF Port -57.0 -12.2 Peak - - 410 '5.224 -67.5 RF Port -57.0 -10.5 Peak - - 440 '5.225 -69.5 RF Port -57.0 -12.5 Peak - - 440	quency MHz	30 Level dBm	Port		Margin	Detector Pk/QP/Avg	Azimuth	-	Comments	Freque (MHz
75.224 -67.5 RF Port -57.0 -10.5 Peak - - 44 75.225 -69.5 RF Port -57.0 -12.5 Peak - - 47	5.224 -67.5 RF Port -57.0 -10.5 Peak - - 440 5.225 -69.5 RF Port -57.0 -12.5 Peak - - 440	'5.224 -67.5 RF Port -57.0 -10.5 Peak - - 440 '5.225 -69.5 RF Port -57.0 -12.5 Peak - - 440	quency MHz 54.999	30 Level dBm -58.8	Port RF Port	-57.0	Margin	Detector Pk/QP/Avg Peak	Azimuth degrees -	meters -	Comments	Freque (MHz 410
75.225 -69.5 RF Port -57.0 -12.5 Peak 47	5.225 -69.5 RF Port -57.0 -12.5 Peak 470	75.225 -69.5 RF Port -57.0 -12.5 Peak 470	quency MHz 54.999 34.972	30 Level dBm -58.8 -71.6	Port RF Port RF Port	-57.0 -57.0	Margin -1.8 -14.6	Detector Pk/QP/Avg Peak Peak	Azimuth degrees -	meters - -	Comments	Freque (MH:
			quency MHz 54.999 34.972 14.992 75.216	30 Level dBm -58.8 -71.6 -69.4 -69.2	Port RF Port RF Port RF Port RF Port	-57.0 -57.0 -57.0 -57.0	Margin -1.8 -14.6 -12.4 -12.2	Detector Pk/QP/Avg Peak Peak Peak Peak	Azimuth degrees - - -	meters - - -	Comments	Freque (MH: 410 440 470 410
			equency MHz 54.999 34.972 14.992 75.216 75.224	30 Level dBm -58.8 -71.6 -69.4 -69.2 -67.5	Port RF Port RF Port RF Port RF Port RF Port	-57.0 -57.0 -57.0 -57.0 -57.0	Margin -1.8 -14.6 -12.4 -12.2 -10.5	Detector Pk/QP/Avg Peak Peak Peak Peak Peak	Azimuth degrees - - - - -	meters - - - - - -	Comments	Freque (MH: 410 440 470 410 410 440
			quency MHz 54.999 34.972 4.992 75.216 75.224 75.225	30 Level dBm -58.8 -71.6 -69.4 -69.2 -67.5 -69.5	Port RF Port RF Port RF Port RF Port RF Port	-57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0	Margin -1.8 -14.6 -12.4 -12.2 -10.5 -12.5	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak	Azimuth degrees - - - - - - -	meters - - - - - - -	Comments	Freque (MH: 410 440 470 410 410 440 470
			equency MHz 54.999 34.972 14.992 75.216 75.224 75.225 71.591	30 Level dBm -58.8 -71.6 -69.4 -69.2 -67.5 -69.5	Port RF Port RF Port RF Port RF Port RF Port	-57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0	Margin -1.8 -14.6 -12.4 -12.2 -10.5 -12.5	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak	Azimuth degrees - - - - - - -	meters - - - - - - -	Comments	Freque (MH 410 440 470 410 410 410 470
			quency MHz i4.999 i4.972 i4.992 i5.216 i5.224 i5.225	30 Level dBm -58.8 -71.6 -69.4 -69.2 -67.5 -69.5	Port RF Port RF Port RF Port RF Port RF Port	-57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0	Margin -1.8 -14.6 -12.4 -12.2 -10.5 -12.5	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak	Azimuth degrees - - - - - - -	meters - - - - - - -	Comments	Freque (MH 410 440 470 410 410 410 470
			quency MHz i4.999 i4.972 i4.992 i5.216 i5.224 i5.225	30 Level dBm -58.8 -71.6 -69.4 -69.2 -67.5 -69.5	Port RF Port RF Port RF Port RF Port RF Port	-57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0	Margin -1.8 -14.6 -12.4 -12.2 -10.5 -12.5	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak	Azimuth degrees - - - - - - -	meters - - - - - - -	Comments	Freque (MH 410 440 470 410 410 410 470
			quency MHz i4.999 i4.972 i4.992 i5.216 i5.224 i5.225	30 Level dBm -58.8 -71.6 -69.4 -69.2 -67.5 -69.5	Port RF Port RF Port RF Port RF Port RF Port	-57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0	Margin -1.8 -14.6 -12.4 -12.2 -10.5 -12.5	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak	Azimuth degrees - - - - - - -	meters - - - - - - -	Comments	Freque (MH 410 440 470 410 410 410 470
			quency MHz 54.999 34.972 14.992 75.216 75.224 75.225	30 Level dBm -58.8 -71.6 -69.4 -69.2 -67.5 -69.5	Port RF Port RF Port RF Port RF Port RF Port	-57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0	Margin -1.8 -14.6 -12.4 -12.2 -10.5 -12.5	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak	Azimuth degrees - - - - - - -	meters - - - - - - -	Comments	Freque (MH: 410 440 470 410 410 440 470
			equency MHz 54.999 34.972 14.992 75.216 75.224 75.225	30 Level dBm -58.8 -71.6 -69.4 -69.2 -67.5 -69.5	Port RF Port RF Port RF Port RF Port RF Port	-57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0	Margin -1.8 -14.6 -12.4 -12.2 -10.5 -12.5	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak	Azimuth degrees - - - - - - -	meters - - - - - - -	Comments	Freque (MH: 410 440 470 410 410 440 470
			equency MHz 54.999 34.972 14.992 75.216 75.224 75.225	30 Level dBm -58.8 -71.6 -69.4 -69.2 -67.5 -69.5	Port RF Port RF Port RF Port RF Port RF Port	-57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0	Margin -1.8 -14.6 -12.4 -12.2 -10.5 -12.5	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak	Azimuth degrees - - - - - - -	meters - - - - - - -	Comments	Freque (MHz 410 440 470 410 410 440 470
			equency MHz 54.999 34.972 14.992 75.216 75.224 75.225	30 Level dBm -58.8 -71.6 -69.4 -69.2 -67.5 -69.5	Port RF Port RF Port RF Port RF Port RF Port	-57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0	Margin -1.8 -14.6 -12.4 -12.2 -10.5 -12.5	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak	Azimuth degrees - - - - - - -	meters - - - - - - -	Comments	Freque (MH: 410 440 470 410
			equency MHz 54.999 34.972 14.992 75.216 75.224 75.225	30 Level dBm -58.8 -71.6 -69.4 -69.2 -67.5 -69.5	Port RF Port RF Port RF Port RF Port RF Port	-57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0	Margin -1.8 -14.6 -12.4 -12.2 -10.5 -12.5	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak	Azimuth degrees - - - - - - -	meters - - - - - - -	Comments	Freque (MH: 410 440 470 410 410 440 470
			equency MHz 54.999 34.972 14.992 75.216 75.224 75.225	30 Level dBm -58.8 -71.6 -69.4 -69.2 -67.5 -69.5	Port RF Port RF Port RF Port RF Port RF Port	-57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0	Margin -1.8 -14.6 -12.4 -12.2 -10.5 -12.5	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak	Azimuth degrees - - - - - - -	meters - - - - - - -	Comments	Freque (MHz 410 440 470 410 410 440 470

Client:	GE MDS							Job Number:	J75317	
N		0	л				T-	Log Number:	T75434	
Model:	TRM450SB	Single Ban	Id				Acco	unt Manager:	Susan Pelzl	
Contact:	Dennis McC	arthy								
Standard:	FCC Part 90	, RSS-210						Class:	-	
	ive Mode at	470 MHz								
	55.0-									
	45.0-	1								
E		Ű –								
	40.0-						•			
P	35.0-24	I M						🕈 🤻 İ		di.
j p	30.0- \	<u>∏/ \</u>						1 1 1		
텔	25.0-	VP 7	A.	8.					··· Y'	
		ę	ľ	MN.	1	Mar i Ma	1 1	alwely lard	•	
	20.0-		Y MR	Mark .	all and a second state	M WYM HY	المغلبات	Varian.		
	15.0-		γ		קדר ייצר דק			-		_
	10.0-!									
	10.0-¦ 30			100				1000	0 2	2000
				100	' Frequenc	'''		1000	0 2	2000
				100	Frequenc	:y (MHz)		1000	0 2	2000
	30	· ·					 			
equency	30 Level	Pol	FCC C	Class B	Detector	Azimuth	Height	Comments		reque
equency MHz	30 Level dBm	V/H	FCC C	Class B Margin	Detector Pk/QP/Avg	Azimuth degrees	meters			Freque (MHz
equency MHz 00.106	30 Level dBm 38.5	V/H V	FCC C Limit 40.0	Class B Margin -1.5	Detector Pk/QP/Avg Peak	Azimuth degrees 61	meters 1.7	Comments		Freque (MHz 410
equency MHz 30.106 31.284	30 Level dBm 38.5 36.9	V/H V V	FCC C Limit 40.0 40.0	Class B Margin -1.5 -3.1	Detector Pk/QP/Avg Peak Peak	Azimuth degrees 61 360	meters 1.7 1.7	Comments		reque (MHz 410 440
equency MHz 30.106 31.284 35.084	30 Level dBm 38.5 36.9 37.2	V/H V V V	FCC C Limit 40.0 40.0 40.0	Class B Margin -1.5 -3.1 -2.8	Detector Pk/QP/Avg Peak Peak Peak	Azimuth degrees 61 360 271	meters 1.7 1.7 1.7	Comments		reque (MHz 410 440 470
equency MHz 30.106 31.284 35.084 40.095	30 Level dBm 38.5 36.9 37.2 50.5	V/H V V V V	FCC C Limit 40.0 40.0	Class B Margin -1.5 -3.1	Detector Pk/QP/Avg Peak Peak	Azimuth degrees 61 360 271 181	meters 1.7 1.7	Comments		reque (MHz 410 440 470
equency MHz 30.106 31.284 35.084 40.095	30 Level dBm 38.5 36.9 37.2	V/H V V V	FCC C Limit 40.0 40.0 40.0	Class B Margin -1.5 -3.1 -2.8	Detector Pk/QP/Avg Peak Peak Peak	Azimuth degrees 61 360 271	meters 1.7 1.7 1.7	Comments		reque (MHz 410 440 470
equency MHz 0.106 1.284 5.084 0.095 0.095 0.095	30 Level dBm 38.5 36.9 37.2 50.5 50.0 49.8	V/H V V V V V V	FCC 0 Limit 40.0 40.0 40.0 40.0 40.0 40.0	Class B Margin -1.5 -3.1 -2.8 10.5 10.0 9.8	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak	Azimuth degrees 61 360 271 181 208 211	meters 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	Comments		reque (MHz 410 440 470 410 440 470
equency MHz 0.106 1.284 5.084 0.095 0.095 0.095	30 Level dBm 38.5 36.9 37.2 50.5 50.0 49.8 35.8	V/H V V V V V V V V	FCC C Limit 40.0 40.0 40.0 40.0 40.0	Class B Margin -1.5 -3.1 -2.8 10.5 10.0	Detector Pk/QP/Avg Peak Peak Peak Peak Peak	Azimuth degrees 61 360 271 181 208 211 31	meters 1.7 1.7 1.7 1.7 1.7 1.7 1.7	Comments		Freque (MHz 410 440 470 410 440 470 470 470
equency MHz 0.106 1.284 5.084 0.095 0.095 0.095 0.095	30 Level dBm 38.5 36.9 37.2 50.5 50.0 49.8	V/H V V V V V V	FCC 0 Limit 40.0 40.0 40.0 40.0 40.0 40.0	Class B Margin -1.5 -3.1 -2.8 10.5 10.0 9.8	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak	Azimuth degrees 61 360 271 181 208 211	meters 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	Comments		Freque (MHz 410 440 470 410 440 470 470 470
equency MHz 0.106 1.284 5.084 0.095 0.095 0.095 0.001 0.119	30 Level dBm 38.5 36.9 37.2 50.5 50.0 49.8 35.8	V/H V V V V V V V V	FCC C Limit 40.0 40.0 40.0 40.0 40.0 40.0 40.0	Class B Margin -1.5 -3.1 -2.8 10.5 10.0 9.8 -4.2	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 61 360 271 181 208 211 31	meters 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	Comments		Freque (MHz 410 440 470 410 440 470 470 440
equency MHz 0.106 1.284 5.084 0.095 0.095 0.095 0.001 0.119 0.162	30 Level dBm 38.5 36.9 37.2 50.5 50.0 49.8 35.8 36.2	V/H V V V V V V V V V	FCC C Limit 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.	Class B Margin -1.5 -3.1 -2.8 10.5 10.0 9.8 -4.2 -3.8	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 61 360 271 181 208 211 31 179	meters 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	Comments		reque (MHz 410 440 470 410 440 470 470 470 410
equency MHz 0.106 1.284 5.084 0.095 0.095 0.095 0.095 0.001 0.119 0.162 55.000	30 Level dBm 38.5 36.9 37.2 50.5 50.0 49.8 35.8 36.2 35.0	V/H V V V V V V V V V V	FCC C Limit 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.	Class B Margin -1.5 -3.1 -2.8 10.5 10.0 9.8 -4.2 -3.8 -5.0	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 61 360 271 181 208 211 31 179 61	meters 1.7	Comments		Freque (MHz 410 440 470 410 470 470 440 410 410
equency MHz 0.106 1.284 5.084 0.095 0.095 0.095 0.095 0.001 0.119 0.162 55.000 35.016	30 Level dBm 38.5 36.9 37.2 50.5 50.0 49.8 35.8 35.8 35.8 36.2 35.0 37.8 37.5	V/H V V V V V V V V V V H H	FCC 0 Limit 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.	Class B Margin -1.5 -3.1 -2.8 10.5 10.0 9.8 -4.2 -3.8 -5.0 -8.2 -8.5	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 61 360 271 181 208 211 31 179 61 141 335	meters 1.7	Comments		Freque (MHz 410 440 470 410 440 470 470 440 410 410 440
equency MHz 0.106 1.284 5.084 0.095 0.095 0.095 0.095 0.095 0.001 0.119 0.162 55.000 35.016 07.801	30 Level dBm 38.5 36.9 37.2 50.5 50.0 49.8 35.8 36.2 35.0 37.8 37.5 31.7	V/H V V V V V V V V V H H	FCC C Limit 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.	Class B Margin -1.5 -3.1 -2.8 10.5 10.0 9.8 -4.2 -3.8 -5.0 -8.2 -8.5 -14.3	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 61 360 271 181 208 211 31 179 61 141 335 92	meters 1.7	Comments		reque (MHz 410 440 470 410 440 470 440 410 410 440 440 440
equency MHz 0.106 1.284 5.084 0.095 0.005 0.095 0.005 0.005 0.005 0.005 0.005 0.005 0.0050	30 Level dBm 38.5 36.9 37.2 50.5 50.0 49.8 35.8 36.2 35.0 37.8 37.5 31.7 38.1	V/H V V V V V V V V V H H H	FCC C Limit 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.	Class B Margin -1.5 -3.1 -2.8 10.5 10.0 9.8 -4.2 -3.8 -4.2 -3.8 -5.0 -8.2 -8.5 -14.3 -7.9	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 61 360 271 181 208 211 31 179 61 141 335 92 350	meters 1.7	Comments		reque (MHz 410 440 470 410 440 470 440 410 440 440 440 440 440 440
equency MHz 0.106 1.284 5.084 0.095 0.095 0.095 0.095 0.001 0.119 0.162 55.000 35.016 07.801 15.001 75.229	30 Level dBm 38.5 36.9 37.2 50.5 50.0 49.8 35.8 36.2 35.0 37.8 37.5 31.7 38.1 34.7	V/H V V V V V V V V V H H H H	FCC C Limit 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.	Class B Margin -1.5 -3.1 -2.8 10.5 10.0 9.8 -4.2 -3.8 -5.0 -8.2 -8.5 -14.3 -7.9 -11.3	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 61 360 271 181 208 211 31 179 61 141 335 92 350 70	meters 1.7	Comments		reque (MHz 410 440 470 410 470 470 470 440 410 410 440 440 470 470 470 470
equency MHz 0.106 1.284 5.084 0.095 0.095 0.095 0.095 0.001 0.119 0.162 55.000 35.016 07.801 15.001 75.229 75.238	30 Level dBm 38.5 36.9 37.2 50.5 50.0 49.8 35.8 36.2 35.0 37.8 37.5 31.7 38.1 34.7 34.3	V/H V V V V V V V V V V V H H H H	FCC C Limit 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.	Class B Margin -1.5 -3.1 -2.8 10.5 10.0 9.8 -4.2 -3.8 -5.0 -8.2 -8.5 -14.3 -7.9 -11.3 -11.7	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 61 360 271 181 208 211 31 179 61 141 335 92 350 70 137	meters 1.7	Comments		Freque (MHz 410 440 470 410 440 470 440 410 440 440 440 470 470 470 470 410
equency MHz 0.106 1.284 5.084 0.095 0.005 0.095 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.0050	30 Level dBm 38.5 36.9 37.2 50.5 50.0 49.8 35.8 35.8 36.2 35.0 37.8 37.5 31.7 38.1 34.7 34.3 33.4	V/H V	FCC C Limit 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.	Class B Margin -1.5 -3.1 -2.8 10.5 10.0 9.8 -4.2 -3.8 -5.0 -8.2 -8.5 -14.3 -7.9 -11.3 -7.9 -11.3 -11.7 -12.6	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 61 360 271 181 208 211 31 179 61 141 335 92 350 70 137 21	meters 1.7	Comments		Freque (MHz 410 440 470 410 440 470 410 440 440 440 470 470 470 470 470 470 47
equency MHz 0.106 1.284 5.084 0.095 0.005 0.095 0.005 0.005 0.005 0.005 0.005 0.005 0.005	30 Level dBm 38.5 36.9 37.2 50.5 50.0 49.8 35.8 36.2 35.0 37.8 37.5 31.7 38.1 34.7 34.3 33.4 35.6	V/H V	FCC C Limit 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.	Class B Margin -1.5 -3.1 -2.8 10.5 10.0 9.8 -4.2 -3.8 -4.2 -3.8 -5.0 -8.2 -8.5 -14.3 -7.9 -11.3 -11.7 -12.6 -10.4	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 61 360 271 181 208 211 31 179 61 141 335 92 350 70 137 21 61	meters 1.7	Comments		reque (MHz 410 440 470 410 440 470 440 410 440 440 440 470 470 470 470 470 470 47
equency MHz 00.106 11.284 15.084 00.095 00.095 00.095 00.095 00.001 00.119 00.162 055.000 85.016 07.801 15.001 75.229 75.238 75.255 74.467 90.937	30 Level dBm 38.5 36.9 37.2 50.5 50.0 49.8 35.8 36.2 35.0 37.8 37.5 31.7 38.1 34.7 34.3 33.4 35.6 35.2	V/H > > > > > > > > > > > > > > > > +	FCC C Limit 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.	Class B Margin -1.5 -3.1 -2.8 10.5 10.0 9.8 -4.2 -3.8 -4.2 -3.8 -5.0 -8.2 -8.5 -14.3 -7.9 -11.3 -7.9 -11.3 -11.7 -12.6 -10.4 -10.8	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 61 360 271 181 208 211 31 179 61 141 335 92 350 70 137 21 61 52	meters 1.7	Comments		reque (MHz 410 440 470 410 440 470 440 410 440 440 470 410 440 470 410 410 410 410 410 410 410
equency MHz 0.106 11.284 5.084 0.095 0.095 0.095 0.095 0.001 0.119 0.162 55.000 85.016 07.801 15.001 75.229 75.238 75.255 74.467 90.937 90.946	30 Level dBm 38.5 36.9 37.2 50.5 50.0 49.8 35.8 36.2 35.0 37.8 37.5 31.7 38.1 34.7 38.1 34.7 34.3 33.4 35.6 35.2 35.9	V/H > > > > > > > > > > > H H H H H H H H H H H H H H	FCC C Limit 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.	Class B Margin -1.5 -3.1 -2.8 10.5 10.0 9.8 -4.2 -3.8 -5.0 -8.2 -8.5 -14.3 -7.9 -11.3 -7.9 -11.3 -11.7 -12.6 -10.4 -10.8 -10.1	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 61 360 271 181 208 211 31 179 61 141 335 92 350 70 137 21 61 52 201	meters 1.7	Comments		reque (MHz 410 440 470 410 470 470 440 410 440 470 440 470 440 470 410 440 470 410 440 440 470 440 470 440 440 470
equency MHz 30.106 31.284 35.084 40.095 40.095 40.095 50.001 50.019 50.162 55.000 85.016 07.801 15.001 75.229 75.238 75.255 74.467 90.937 90.946 91.033 30.000	30 Level dBm 38.5 36.9 37.2 50.5 50.0 49.8 35.8 36.2 35.0 37.8 37.5 31.7 38.1 34.7 34.3 33.4 35.6 35.2	V/H > > > > > > > > > > > > > > > > +	FCC C Limit 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.	Class B Margin -1.5 -3.1 -2.8 10.5 10.0 9.8 -4.2 -3.8 -5.0 -8.2 -8.5 -14.3 -7.9 -11.3 -7.9 -11.3 -11.7 -12.6 -10.4 -10.8	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 61 360 271 181 208 211 31 179 61 141 335 92 350 70 137 21 61 52	meters 1.7	Comments		Frequer (MHz 410 440 470 410 440

Elliott

EMC Test Data

Job Number	J75317
Log Number	T75434
unt Manager	Susan Pelzl
Class	-
	Job Number: Log Number: unt Manager: Class


Run #2b - Final OATS EUT Field Strength Measurements

Date of Test: 5/29/2009 Test Location: SV OATS #2 Test Engineer: Mehran Birgani

EUT Field Strength

Frequency	Level	Pol	FCC C	Class B	Detector	Azimuth	Height	Comments	Frequency
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	(bps, kHz)	(MHz)
1029.970	29.9	Н	54.0	-24.1	AVG	208	1.0		470
675.229	32.8	Н	46.0	-13.2	Peak	201	1.0		470
874.467	33.1	Н	46.0	-12.9	Peak	199	1.0		470
891.033	32.0	Н	46.0	-14.0	Peak	155	1.0		470
1029.580	45.8	Н	74.0	-28.2	PK	208	1.0		470
30.106	21.6	V	40.0	-18.4	QP	231	1.0		410
35.084	30.7	V	40.0	-9.3	QP	201	1.0		470
40.093	34.4	٧	40.0	-5.6	QP	197	1.0		410
50.158	25.0	V	40.0	-15.0	QP	210	1.0		440
454.998	39.1	Н	46.0	-6.9	QP	155	1.0		410
484.998	34.1	Н	46.0	-11.9	QP	168	1.0		440
507.801	19.3	Н	46.0	-26.7	QP	15	1.0		440
514.998	35.4	Н	46.0	-10.6	QP	169	1.0		470

Note 1: Measurements are made with the antenna port terminated.

Ambient Conditions:	Temperature:	21-24 °C
	Rel. Humidity:	30-40 %

Summary of Results

Run #	Spacing	Data Rate	Test Performed	Limit	Pass / Fail	Result / Margin
1	25.0 kHz	9.6kbps	Output Power (Low Power)	30dBm	Pass	28.5dBm
1	25.0 kHz	9.6kbps	Output Power (High Power)	33.4dBm	Pass	33.5dBm
2	12.5 kHz	4.8kbps	Spectral Mask 90.210 D	-	Pass	-
2	25.0 kHz	9.6kbps	Spectral Mask 90.210 C	-	Pass	-
3	12.5 kHz	4.8kbps	26dB Occupied Bandwidth	12.5 kHz	Pass	11.1 kHz
3	25.0 kHz	9.6kbps	26dB Occupied Bandwidth	25.0 kHz	Pass	21.6 kHz
3	12.5 kHz	4.8kbps	99% or Occupied Bandwidth	-	-	9.2 kHz
3	25.0 kHz	9.6kbps	99% or Occupied Bandwidth	-	-	16.1 kHz
4	12.5 kHz	4.8kbps	Spurious Emissions (conducted)	-13 dBm	Pass	> 20dB Margin
4	25.0 kHz	9.6kbps	Spurious Emissions (conducted)	-20 dBm	Pass	> 15dB Margin
5	12.5 kHz	4.8kbps	Spurious emissions (radiated)	-20 dBm	Pass	> 20dB margin
5	25.0 kHz	9.6kbps	Spurious emissions (radiated)	-20 dBm	Pass	-34.8dBm erp (-14.8 dB margin
6	N/A	N/A	Frequency Stability	-	Pass	0.6ppm

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Elliott

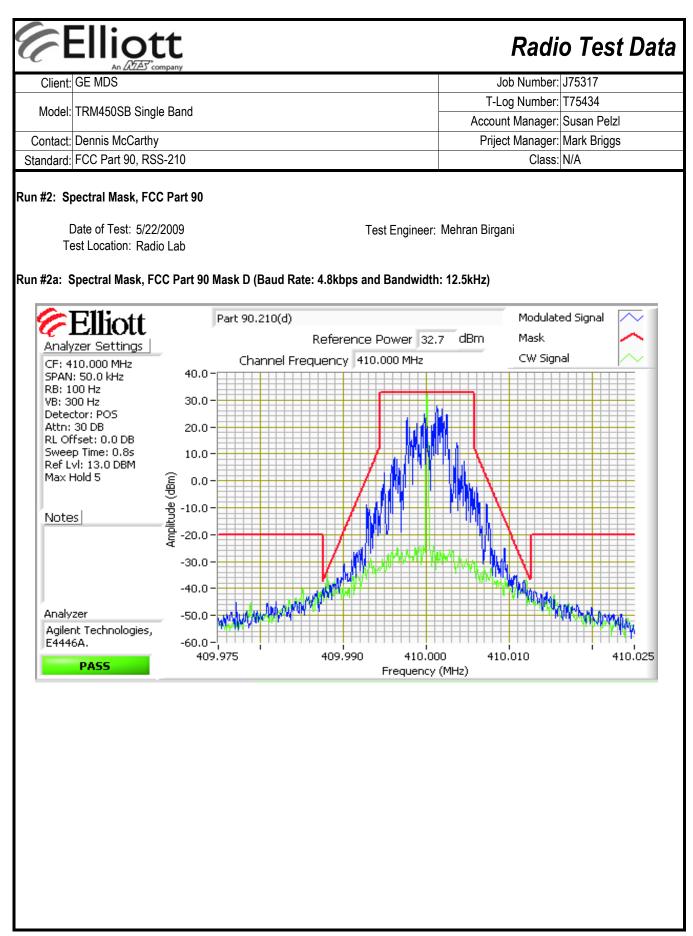
Radio Test Data

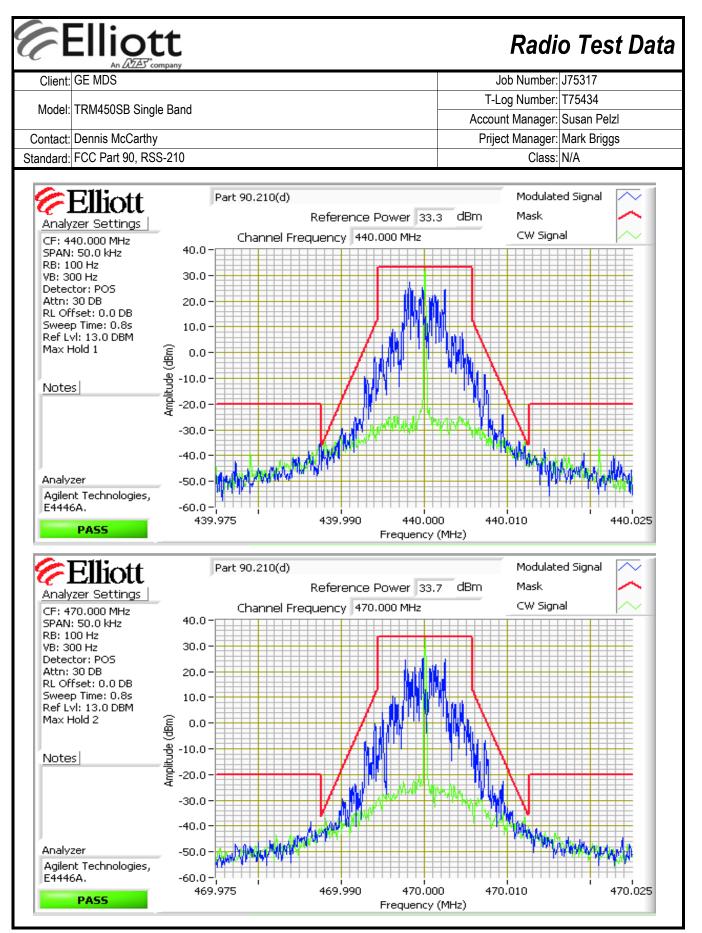
	An 2022 Company		
Client:	GE MDS	Job Number:	J75317
Madal	TRM450SB Single Band	T-Log Number:	T75434
Model.		Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy	Priject Manager:	Mark Briggs
Standard:	FCC Part 90, RSS-210	Class:	N/A

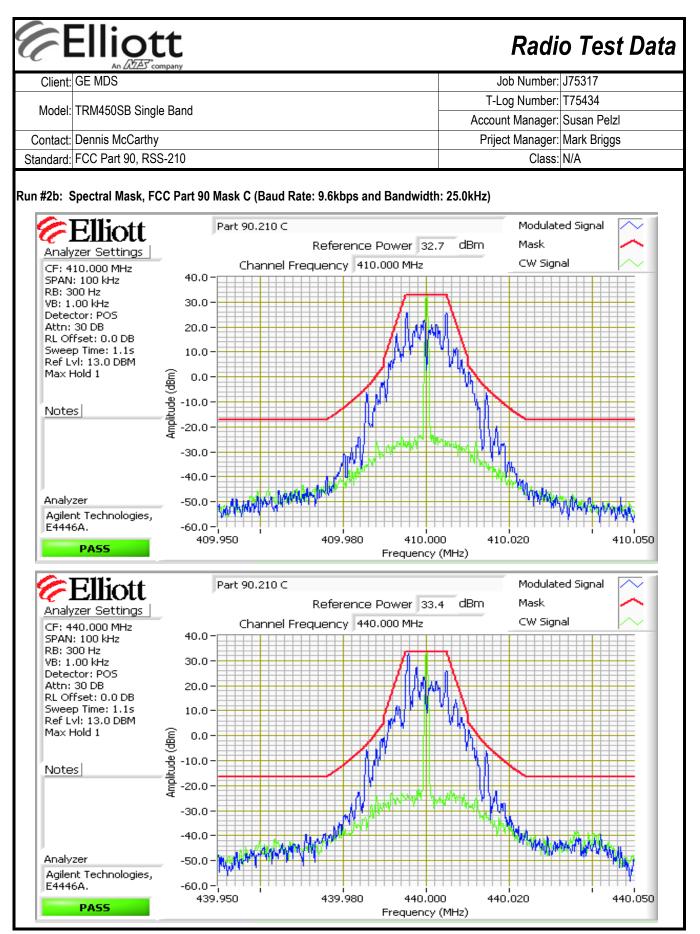
Run #1: Output Power

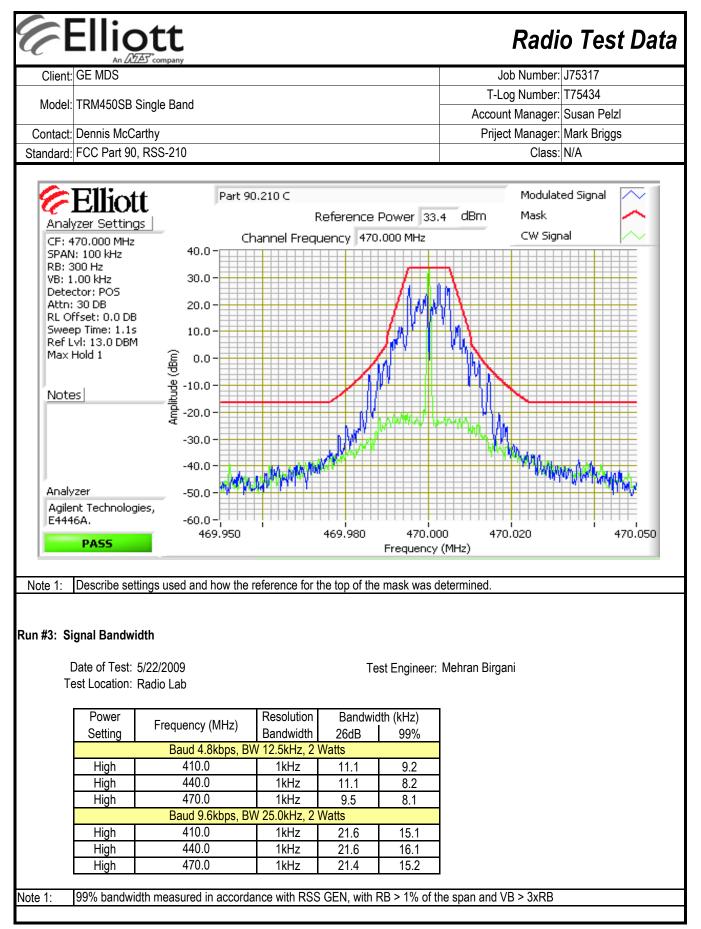
Date of Test: 5/22/2009 Test Location: Radio Lab Test Engineer: Mehran Birgani

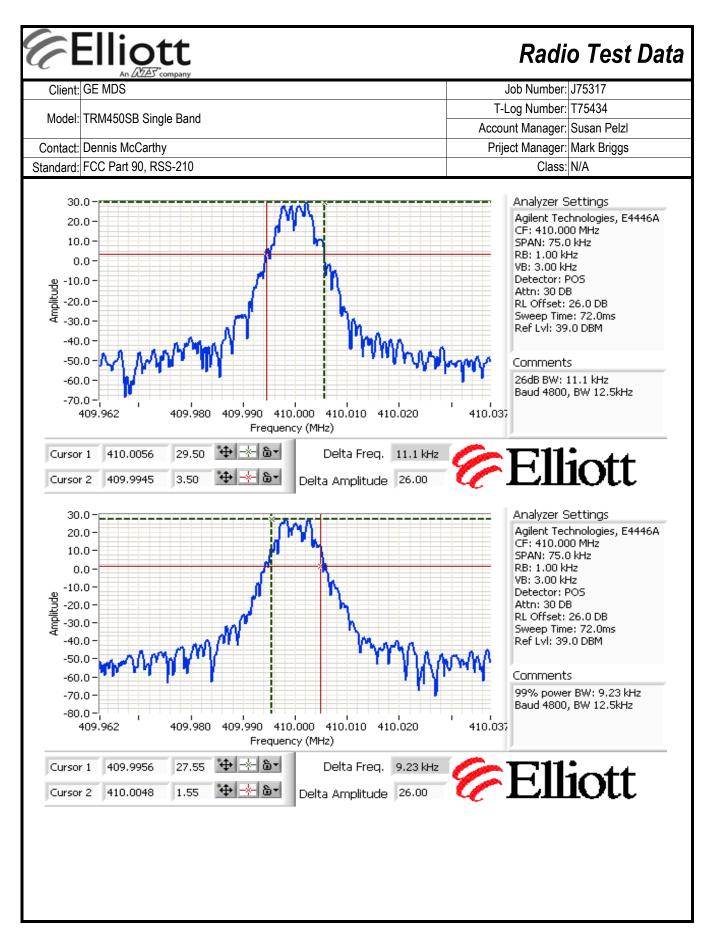
Run #1a: Output Power (Baud rate: 4.8kbps, Bandwidth: 12.5kHz)

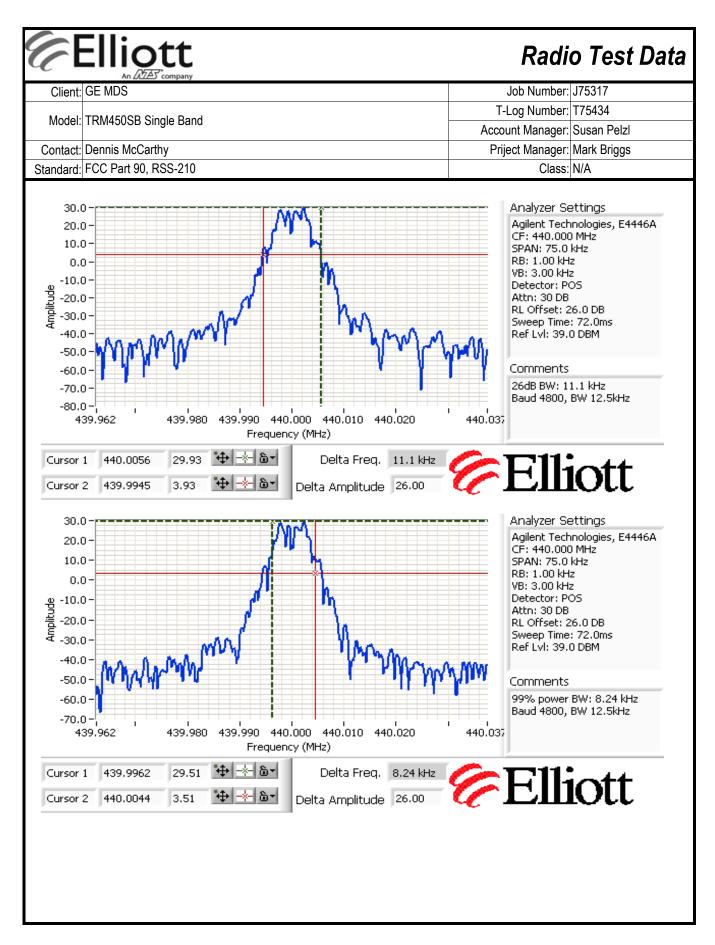

Power		Output	Output Power		Desult	EIRP	
Setting ²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W
L	410.0	26.5	446.7		Pass	26.5	0.447
L	440.0	27.4	549.5		Pass	27.4	0.550
L	470.0	27.0	501.2		Pass	27.0	0.501
Н	410.0	32.7	1862.1		Pass	32.7	1.862
Н	440.0	33.2	2089.3		Pass	33.2	2.089
Н	470.0	33.0	1972.4		Pass	33.0	1.972

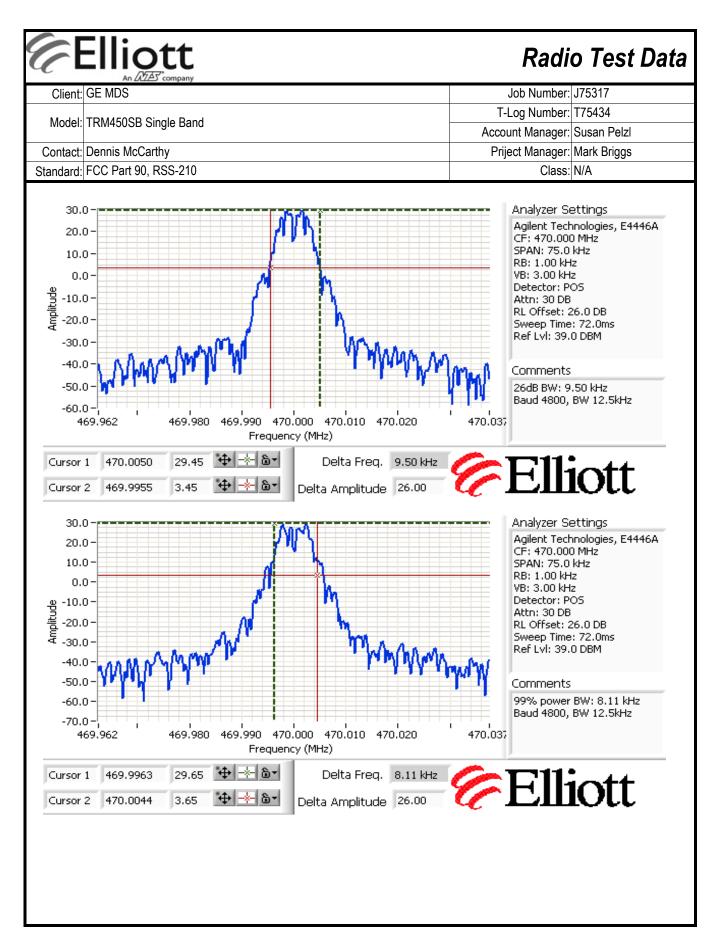

Run #1b: Output Power (Baud rate: 9.6kbps, Bandwidth: 25.0kHz)

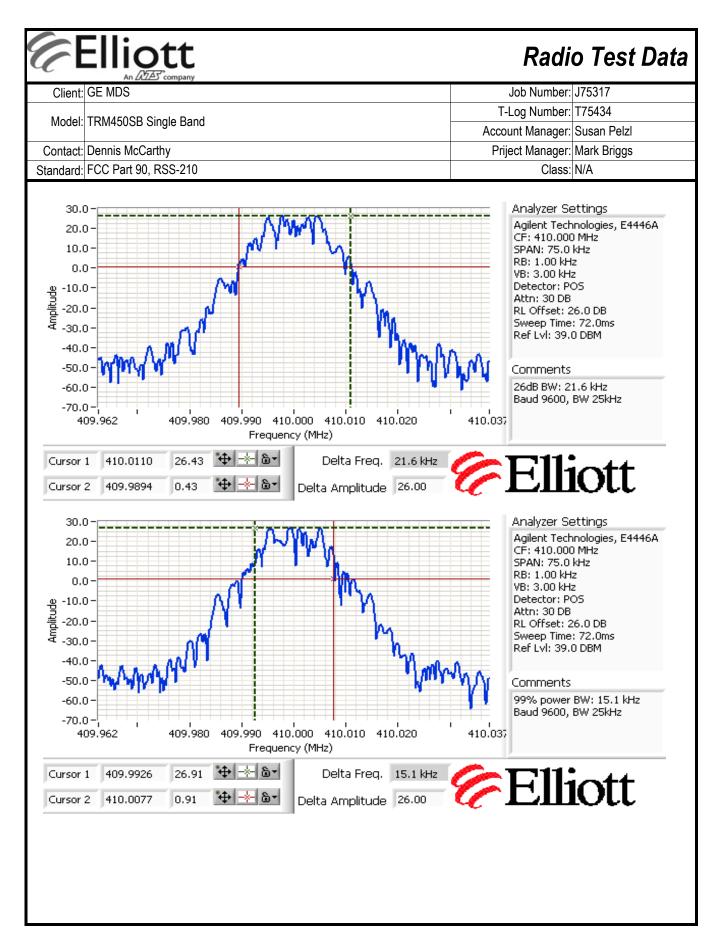

Power	Fraguanay (MHz)	Output Power		Antenna	Result	EIRP	
Setting ²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W
L	410.0	26.4	436.5		Pass	26.4	0.437
L	440.0	27.3	537.0		Pass	27.3	0.537
L	470.0	27.0	501.2		Pass	27.0	0.501
Н	410.0	32.8	1905.5		Pass	32.8	1.905
Н	440.0	33.4	2187.8		Pass	33.4	2.188
Н	470.0	33.0	1981.5		Pass	33.0	1.982

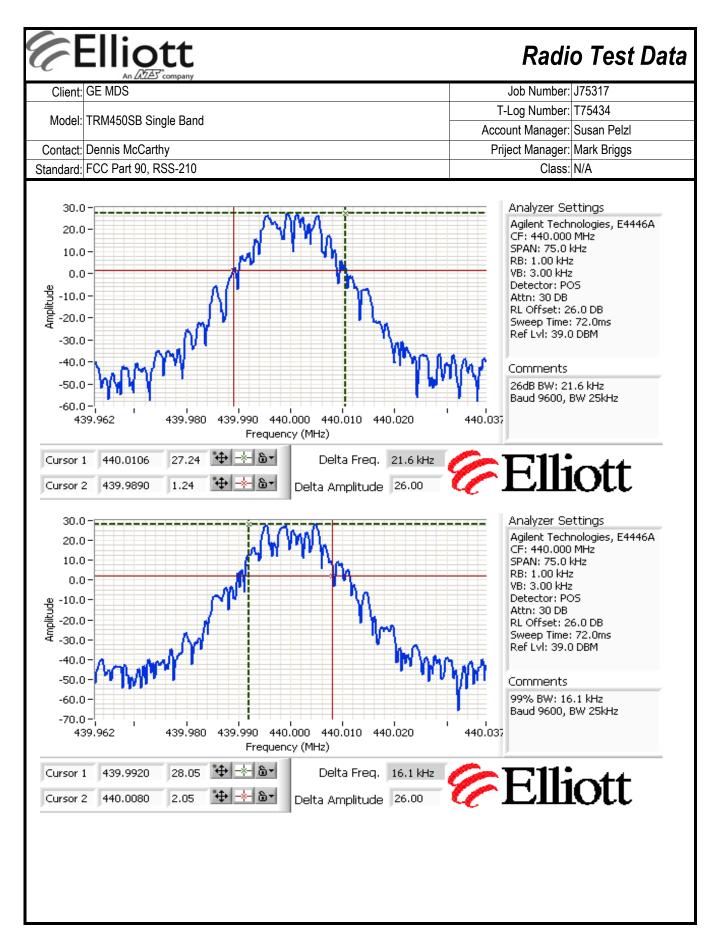

Note 1: Output power measured using a peak power meter

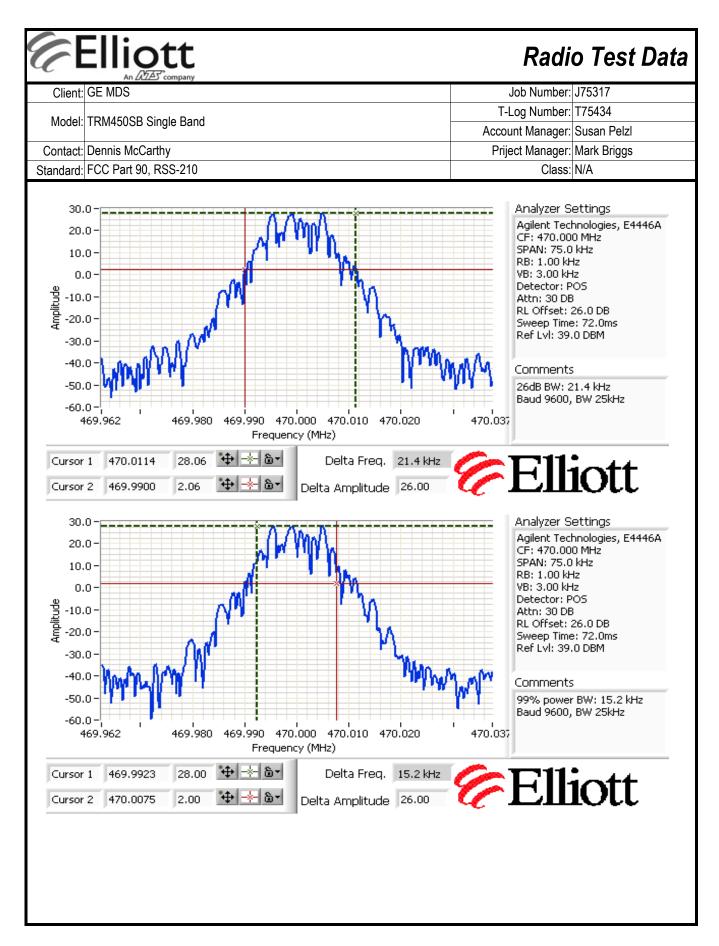

Note 2: Power setting - the software power setting used during testing, included for reference only.

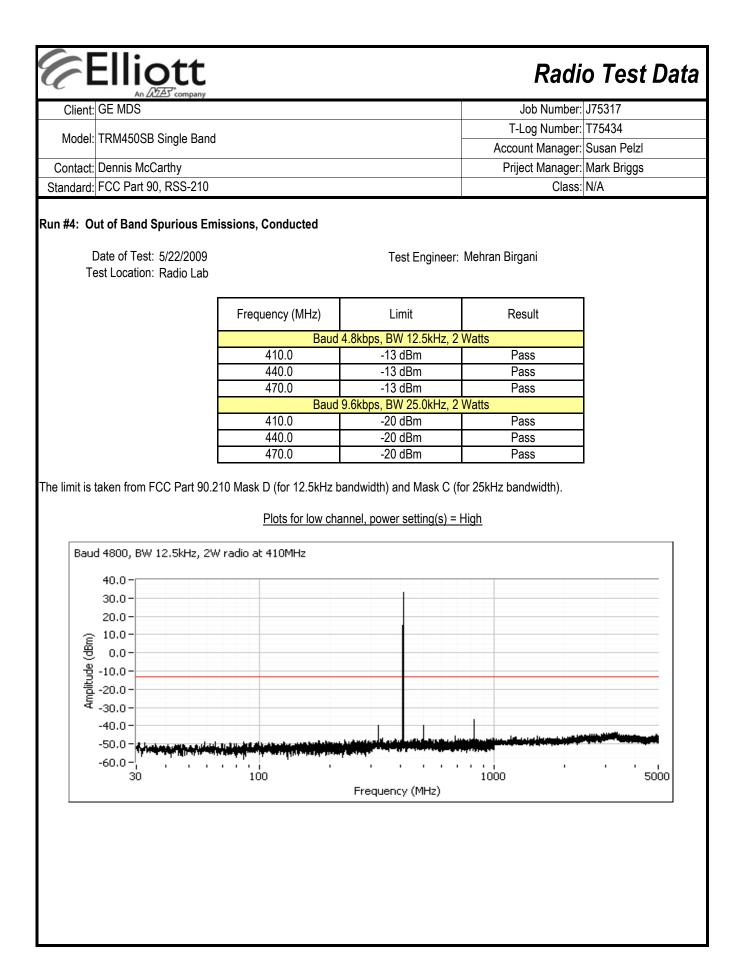


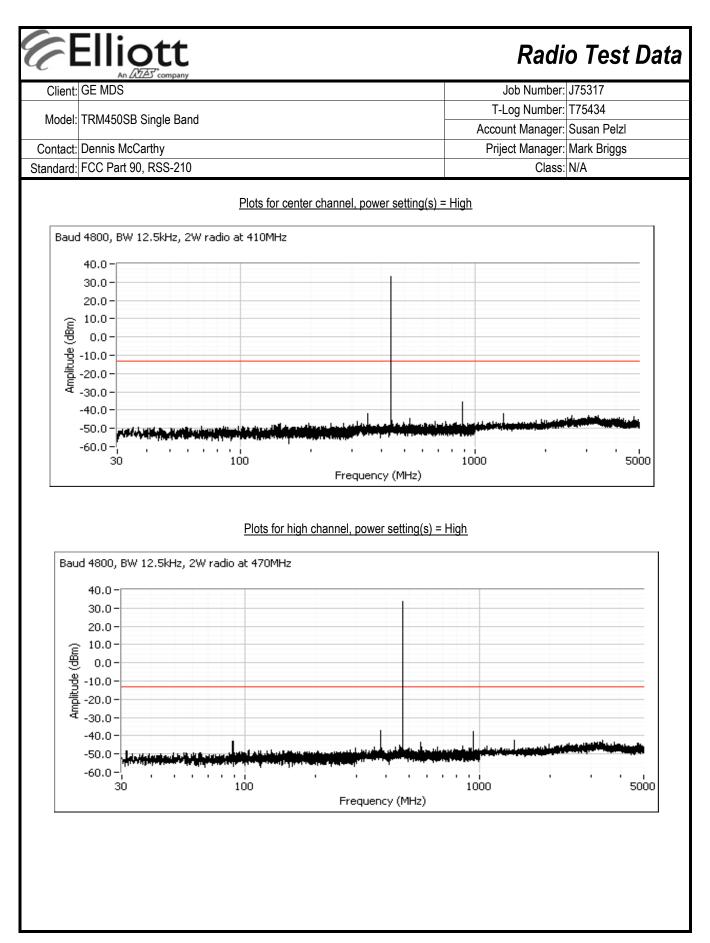


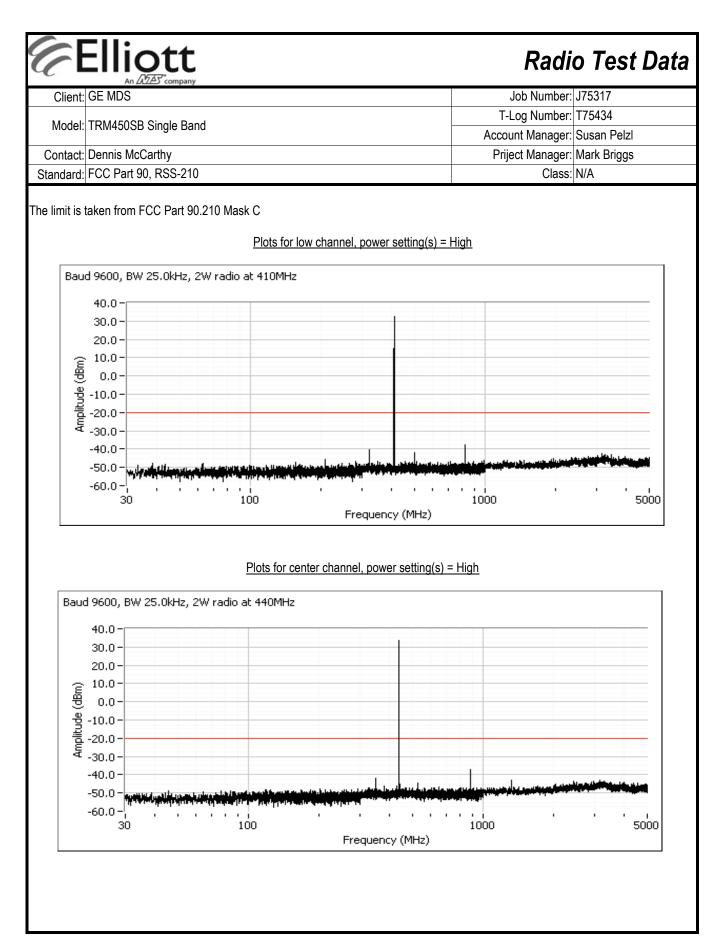


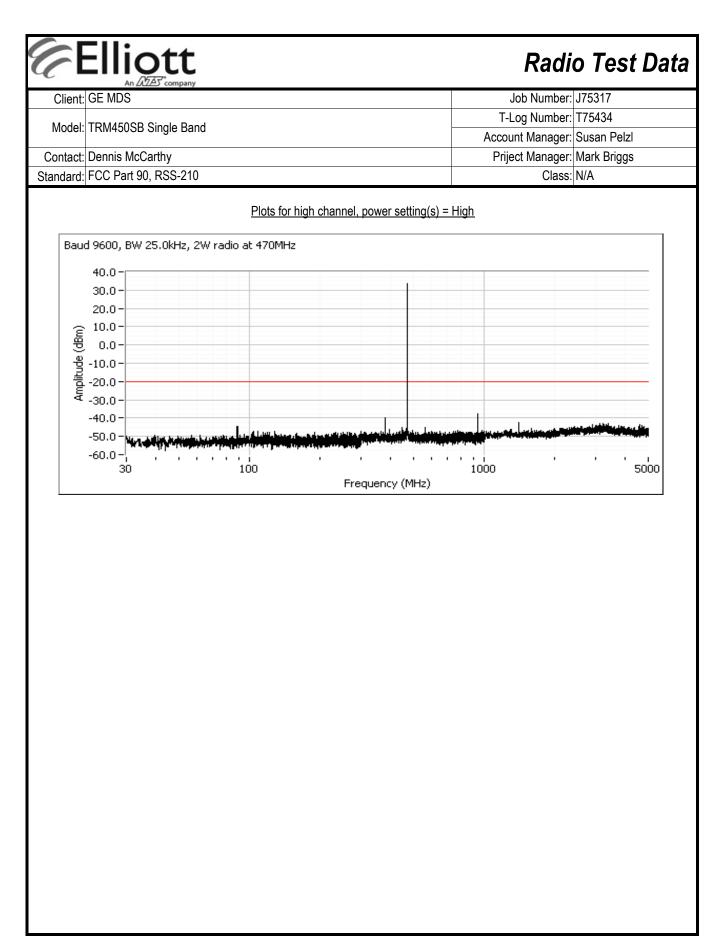


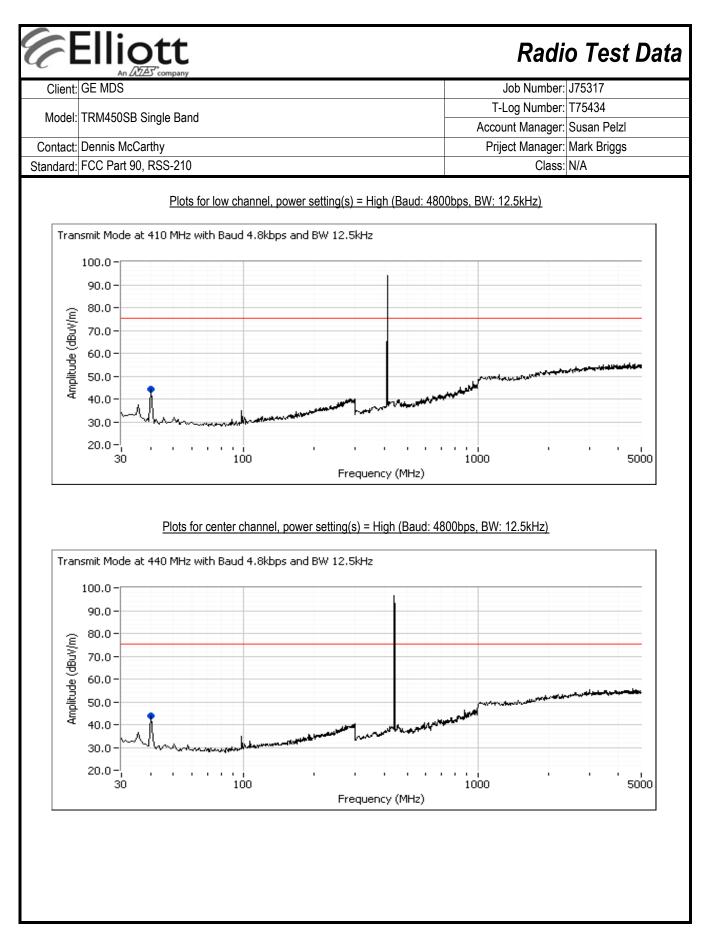


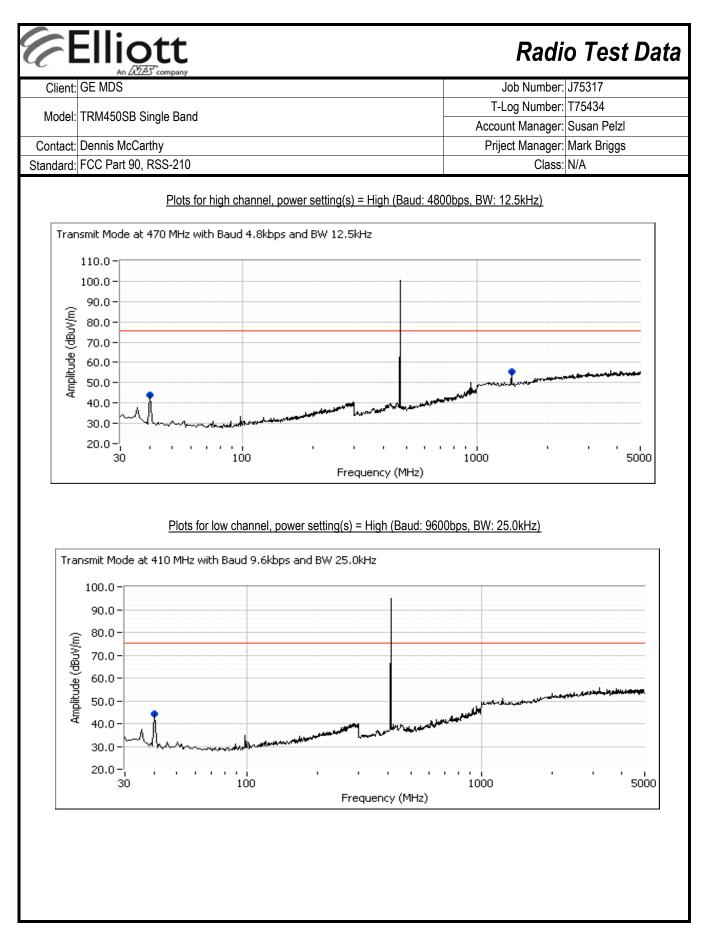


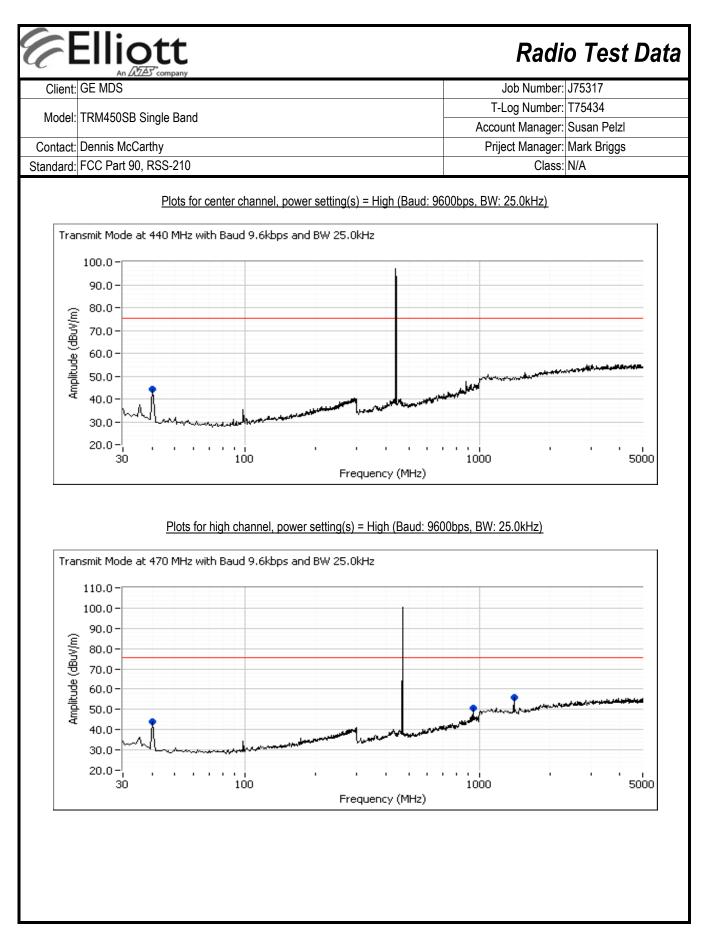












	GE MDS				Job Number: J75317						
Model:	Madely TDM/50CD Single Dend							T-Log Number: T75434			
Model: TRM450SB Single Band								Account Manager: Susan Pelzl			
Contact: Dennis McCarthy								Priject Manager: Mark Briggs			
Standard: FCC Part 90, RSS-210							,	Class: N/A	-		
Run #5: Ou	It of Band S	purious Em	issions, Rac	liated							
The limit is ta	aken from FC										
Conducted limit (dBm): -20 Approximate field strength limit @ 3m: 75.3											
		-	•								
Run #5a - P	reliminary n	neasuremen	its - chambe	er scans							
•							: Mehran Birgani				
Ie	st Location:	Radio Lab									
Frequency	Level	Pol	FCC 9	0.210	Detector	Azimuth	Height	Comments	Frequenc		
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	(bps, kHz)	(MHz)		
40.095	44.3	V	75.3	-31.0	Peak	178	1.7	Baud 4800, BW 12.5	410		
40.091	43.7	V	75.3	-31.6	Peak	181	1.7	Baud 4800, BW 12.5	440		
40.095	44.1	V	75.3	-31.2	Peak	179	1.7	Baud 4800, BW 12.5	470		
1410.050	53.8	V	75.3	-21.5	Peak	87	1.7	Baud 4800, BW 12.5	470		
40.095	44.1	V	75.3	-31.2	Peak	181	1.7	Baud 9600, BW 25.0	410		
40.095	44.1	V	75.3	-31.2	Peak	208	1.7	Baud 9600, BW 25.0	440		
40.095	43.8	V	75.3	-31.5	Peak	181	1.7	Baud 9600, BW 25.0	470		
940.003	50.6	Н	75.3	-24.7	Peak	52	1.7	Baud 9600, BW 25.0	470		
1410.100	55.8	V	75.3	-19.5	Peak	69	1.7	Baud 9600, BW 25.0	470		
[-	The field stre	nath limit in	the tables at	ove was cal	culated from t	the ern/eirn li	mit detailed	in the standard using the	free snace		
								presence of the ground p			
		•	. ,					with less than 20dB of m			
	•	•	. ,		titution measu	• •	all signals		aryin relativ		
	Measuremer					liements.					
Note 2:	Measuremen		with the ante								

Contact: [Dennis McCa	arthy						Job Number.	J75317				
Contact: [Dennis McCa	arthy		TPM/50SB Single Band									
			el: TRM450SB Single Band						Account Manager: Susan Pelzl				
Standard: F	FCC Part 90			Priject Manager: Mark Briggs									
		FCC Part 90, RSS-210							Class: N/A				
Run #5b: - C	DATS EUT F	-	h Measurer:	nents and S				loni					
	st Location:				Te	st Engineer:	Merilan birg	an					
Frequency	Level	Pol	FCC S	90.210	Detector	Azimuth	Height	Comments		Frequenc			
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	(bps, kHz)		(MHz)			
1409.960	64.3	V	75.3	-11.0	Peak	215	1.0	Baud 9600,	BW 25.0	470			
1409.920	59.8	Н	75.3	-15.5	Peak	6	1.0	Baud 9600,	BW 25.0	470			
939.993	46.5	V	75.3	-28.8	Peak	165	1.0	Baud 9600,	BW 25.0	470			
939.993	50.3	Н	75.3	-25.0	Peak	180	1.0	Baud 9600,	BW 25.0	470			
Note 2:	Measuremen n measurem		with the ant	enna port tei	rminated.								
Frequency	Subatitu			Site	EU	T measureme	ents	eirp Limit	erp Limit	Margin			
	Subsiliu	tion measur	ements						•·• =····				
		tion measur Gain ²	_		FS ⁵	eirp (dBm)	erp (dBm)	dBm	dBm	-			
MHz 1409.920	Pin ¹ -15.0	ition measur Gain ² 7.6	Ements FS ³ 89.5	Factor ⁴ 96.9	FS ⁵ 64.3	eirp (dBm) -32.6	erp (dBm) -34.8	dBm	dBm -20.0	dB -14.8			
MHz 1409.920	Pin ¹	Gain ²	FS ³	Factor ⁴		,	,	dBm		dB			
MHz 1409.920 Horizontal	Pin ¹ -15.0	Gain ² 7.6	FS ³ 89.5	Factor ⁴ 96.9	64.3	-32.6	-34.8		-20.0	dB -14.8			
MHz 1409.920 Horizontal Frequency	Pin ¹ -15.0 Substitu	Gain ² 7.6	FS ³ 89.5 ements	Factor ⁴ 96.9 Site	64.3 EU	-32.6	-34.8	eirp Limit	-20.0 erp Limit	dB -14.8 Margin			
MHz 1409.920 Horizontal Frequency MHz	Pin ¹ -15.0 Substitu Pin ¹	Gain ² 7.6 tion measur Gain ²	FS ³ 89.5 ements FS ³	Factor ⁴ 96.9 Site Factor ⁴	64.3 EU ⁻ FS ⁵	-32.6 T measureme eirp (dBm)	-34.8 ents erp (dBm)		-20.0 erp Limit dBm	dB -14.8 Margin dB			
MHz 1409.920 Horizontal Frequency	Pin ¹ -15.0 Substitu	Gain ² 7.6	FS ³ 89.5 ements	Factor ⁴ 96.9 Site	64.3 EU	-32.6	-34.8	eirp Limit	-20.0 erp Limit	dB -14.8 Margin			
MHz 1409.920 Horizontal Frequency MHz 1409.920	Pin ¹ -15.0 Substitu Pin ¹ -15.0	Gain ² 7.6 tion measur Gain ² 7.6	FS ³ 89.5 ements FS ³ 89.5	Factor ⁴ 96.9 Site Factor ⁴ 96.9	64.3 EU ⁻ FS ⁵ 59.8	-32.6 T measureme eirp (dBm)	-34.8 ents erp (dBm)	eirp Limit	-20.0 erp Limit dBm	dB -14.8 Margin dB			
MHz 1409.920 Horizontal Frequency MHz 1409.920 Note 1: F	Pin ¹ -15.0 Substitu Pin ¹	Gain ² 7.6 tion measur Gain ² 7.6 ut power (dE	FS ³ 89.5 ements FS ³ 89.5 Bm) to the su	Factor ⁴ 96.9 Site Factor ⁴ 96.9	64.3 EU ⁻ FS ⁵ 59.8	-32.6 T measureme eirp (dBm)	-34.8 ents erp (dBm)	eirp Limit	-20.0 erp Limit dBm	dB -14.8 Margin dB			
MHz 1409.920 Horizontal Frequency MHz 1409.920 Note 1: F Note 1: F	Pin ¹ -15.0 Substitu Pin ¹ -15.0 Pin is the inp Gain is the g	Gain ² 7.6 tion measur Gain ² 7.6 ut power (dE ain (dBi) for	FS ³ 89.5 ements FS ³ 89.5 Bm) to the su	Factor ⁴ 96.9 Site Factor ⁴ 96.9	64.3 EU ⁻ FS ⁵ 59.8	-32.6 T measureme eirp (dBm) -37.1	-34.8 ents erp (dBm)	eirp Limit	-20.0 erp Limit dBm	dB -14.8 Margin dB			
MHz 1409.920 Horizontal Frequency MHz 1409.920 Note 1: Note 1: Note 2: Note 2: Note 3: F Note 4:	Pin ¹ -15.0 Substitu Pin ¹ -15.0 Pin is the inp Gain is the g FS is the field	Gain ² 7.6 tion measur Gain ² 7.6 ut power (dE ain (dBi) for d strength (d this is the sit	FS ³ 89.5 ements FS ³ 89.5 Bm) to the su the substitut BuV/m) mea te factor to c	Factor ⁴ 96.9 Site Factor ⁴ 96.9 Ibstitution an ion antenna. asured from t onvert from a	64.3 EU ⁻ FS ⁵ 59.8 tenna	-32.6 T measureme eirp (dBm) -37.1 on antenna.	-34.8 ents erp (dBm) -39.3	eirp Limit dBm	-20.0 erp Limit dBm	dB -14.8 Margin dB			

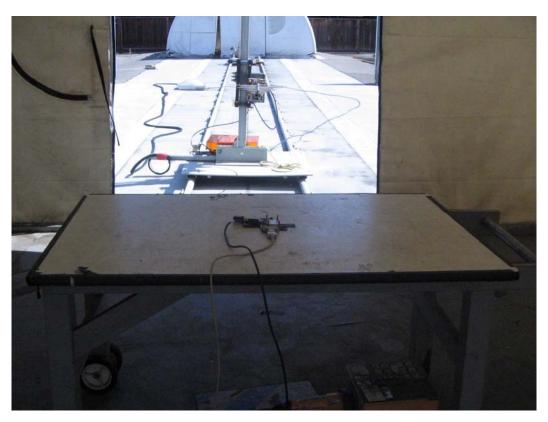
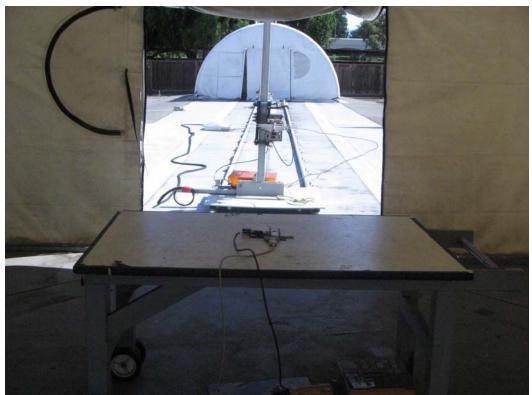



EXHIBIT 3: Test Configuration Photographs

Close-up of the EUT on test card

EXHIBIT 4: Theory of Operation

EXHIBIT 5: Proposed FCC ID Label & Label Location

Unchanged from original application

EXHIBIT 6: Detailed Photographs

EXHIBIT 7: Installation Guide

EXHIBIT 8: Block Diagram