

Radio Test Report

FCC Part 90 and RSS 119 (217 MHz to 222 MHz)

For a Class II Permissive Change

Model: TD220

COMPANY: GE MDS LLC 175 Science Parkway Rochester, NY 14620

TEST SITE(S): Elliott Laboratories 41039 Boyce Road. Fremont, CA. 94538-2435

REPORT DATE: January 12, 2011

FINAL TEST DATES: December 10 and 23, 2010

AUTHORIZED SIGNATORY:

David W. Bare Chief Engineer Elliott Laboratories

Testing Cert #2016.01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report, except where noted otherwise. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	1-12-2011	First release	

TABLE OF CONTENTS

REVISION HISTORY	
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	5
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS	6
FCC PART 90 AND RSS-119	6
MEASUREMENT UNCERTAINTIES	7
EQUIPMENT UNDER TEST (EUT) DETAILS	8
GENERAL	8
OTHER EUT DETAILS	8
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TESTING	
GENERAL INFORMATION	
RF PORT MEASUREMENT PROCEDURES	
OUTPUT POWER	11
OUTPUT POWER BANDWIDTH MEASUREMENTS	11 12
OUTPUT POWER BANDWIDTH MEASUREMENTS CONDUCTED SPURIOUS EMISSIONS	11 12 12
OUTPUT POWER BANDWIDTH MEASUREMENTS CONDUCTED SPURIOUS EMISSIONS TRANSMITTER MASK MEASUREMENTS	11 12 12 13
OUTPUT POWER BANDWIDTH MEASUREMENTS CONDUCTED SPURIOUS EMISSIONS TRANSMITTER MASK MEASUREMENTS FREQUENCY STABILITY	11 12 12 13 13
OUTPUT POWER BANDWIDTH MEASUREMENTS CONDUCTED SPURIOUS EMISSIONS TRANSMITTER MASK MEASUREMENTS FREQUENCY STABILITY TRANSIENT FREQUENCY BEHAVIOR:	11 12 12 13 13 13
OUTPUT POWER BANDWIDTH MEASUREMENTS CONDUCTED SPURIOUS EMISSIONS TRANSMITTER MASK MEASUREMENTS FREQUENCY STABILITY TRANSIENT FREQUENCY BEHAVIOR: RADIATED EMISSIONS MEASUREMENTS	11 12 12 13 13 13 13
OUTPUT POWER. BANDWIDTH MEASUREMENTS . CONDUCTED SPURIOUS EMISSIONS. TRANSMITTER MASK MEASUREMENTS. FREQUENCY STABILITY . TRANSIENT FREQUENCY BEHAVIOR: RADIATED EMISSIONS MEASUREMENTS. INSTRUMENTATION .	11 12 12 13 13 13 13 14 15
OUTPUT POWER. BANDWIDTH MEASUREMENTS . CONDUCTED SPURIOUS EMISSIONS. TRANSMITTER MASK MEASUREMENTS. FREQUENCY STABILITY . TRANSIENT FREQUENCY BEHAVIOR: RADIATED EMISSIONS MEASUREMENTS . INSTRUMENTATION . FILTERS/ATTENUATORS .	11 12 12 13 13 13 13 14 15 15
OUTPUT POWER BANDWIDTH MEASUREMENTS CONDUCTED SPURIOUS EMISSIONS TRANSMITTER MASK MEASUREMENTS FREQUENCY STABILITY. TRANSIENT FREQUENCY BEHAVIOR: RADIATED EMISSIONS MEASUREMENTS INSTRUMENTATION FILTERS/ATTENUATORS ANTENNAS.	11 12 12 13 13 13 13 13
OUTPUT POWER. BANDWIDTH MEASUREMENTS CONDUCTED SPURIOUS EMISSIONS. TRANSMITTER MASK MEASUREMENTS. FREQUENCY STABILITY TRANSIENT FREQUENCY BEHAVIOR: RADIATED EMISSIONS MEASUREMENTS. INSTRUMENTATION FILTERS/ATTENUATORS ANTENNAS. ANTENNA MAST AND EQUIPMENT TURNTABLE.	11 12 12 13 13 13 13 13
OUTPUT POWER. BANDWIDTH MEASUREMENTS CONDUCTED SPURIOUS EMISSIONS. TRANSMITTER MASK MEASUREMENTS. FREQUENCY STABILITY TRANSIENT FREQUENCY BEHAVIOR: RADIATED EMISSIONS MEASUREMENTS. INSTRUMENTATION FILTERS/ATTENUATORS ANTENNAS. ANTENNA MAST AND EQUIPMENT TURNTABLE. SAMPLE CALCULATIONS	11 12 12 13 13 13 13 13
OUTPUT POWER. BANDWIDTH MEASUREMENTS CONDUCTED SPURIOUS EMISSIONS. TRANSMITTER MASK MEASUREMENTS. FREQUENCY STABILITY TRANSIENT FREQUENCY BEHAVIOR: RADIATED EMISSIONS MEASUREMENTS. INSTRUMENTATION FILTERS/ATTENUATORS ANTENNAS. ANTENNAS. ANTENNA MAST AND EQUIPMENT TURNTABLE. SAMPLE CALCULATIONS SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS	11 12 12 13 13 13 13 13
OUTPUT POWER. BANDWIDTH MEASUREMENTS CONDUCTED SPURIOUS EMISSIONS. TRANSMITTER MASK MEASUREMENTS. FREQUENCY STABILITY TRANSIENT FREQUENCY BEHAVIOR: RADIATED EMISSIONS MEASUREMENTS. INSTRUMENTATION FILTERS/ATTENUATORS ANTENNAS. ANTENNA MAST AND EQUIPMENT TURNTABLE. SAMPLE CALCULATIONS	11 12 12 13 13 13 13 13
OUTPUT POWER. BANDWIDTH MEASUREMENTS. CONDUCTED SPURIOUS EMISSIONS. TRANSMITTER MASK MEASUREMENTS. FREQUENCY STABILITY. TRANSIENT FREQUENCY BEHAVIOR: RADIATED EMISSIONS MEASUREMENTS. INSTRUMENTATION FILTERS/ATTENUATORS ANTENNAS. ANTENNAS. ANTENNA MAST AND EQUIPMENT TURNTABLE. SAMPLE CALCULATIONS . SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH.	11 12 12 13 13 13 13 15 15 15 15
OUTPUT POWER. BANDWIDTH MEASUREMENTS. CONDUCTED SPURIOUS EMISSIONS. TRANSMITTER MASK MEASUREMENTS. FREQUENCY STABILITY	11 12 12 13 13 13 13 15 15 15 15

SCOPE

Tests have been performed on the GE MDS LLC model TD220, pursuant to the relevant requirements of the following standard(s) in order to obtain a permissive change/reassessment against the regulatory requirements of the Federal Communications Commission and Industry Canada.

- Code of Federal Regulations (CFR) Title 47 Part 2
- Industry Canada RSS-Gen Issue 3
- CFR 47 Part 90 (Private Land Mobile Radio Service)
- RSS-119, Issue 10, April 2010 (Land Mobile and Fixed Radio Transmitters and Receivers Operating the Frequency Range 27.41 to 960 MHz)

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 ANSI TIA-603-C August 17, 2004

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards. It had been previously tested and Certified for operation under Part 90 of the FCC rules and RSS-119. Only the tests performed were considered necessary based on the design changes to the shield.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the GE MDS LLC model TD220 and therefore apply only to the tested sample. The sample was selected and prepared by Dennis McCarthy of GE MDS LLC.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, the device requires certification. Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of GE MDS LLC model TD220 complied with the requirements of the standards and frequency bands declared in the scope of this test report.

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS

FCC Part 90 and RSS-119

Transmitter Mo §2.1033 (c) (5)	·	power and other character	ristics		
§2.1033 (c) (5)					
	RSP 100 7.2 (a) RSS 119	Frequency range(s)	217.0125 – 219.9875 MHz 220.0125 – 221.9875 MHz	217-222 MHz ²	Complies
<pre>§2.1033 (c) (6) §2.1033 (c) (7) §2.1046 §90.205(g)</pre>	RSP 100 7.2 (a) RSS 119	RF power output at the antenna terminals	32.3 dBm to 44.4 dBm	47 dBm	Complies
	RSP 100 7.2 (a) RSS 119 SRSP 512	RF Output Power (ERP)	32.3 dBm to 51 dBm	51 dBm	Complies
§2.1033 (c) (4)	RSP 100 7.2	Emission types	F1D	Information only	-
\$2.1047 \$90.207	(b) (iii) RSS 119	Emission mask	Not measured (Same as original filing)	Mask C	Complies
	RSS GEN 4.4.1 RSS 119	99% Bandwidth	Not measured (Same as original filing)	11.25 kHz	Complies
\$2.1049 \$90.209		Occupied Bandwidth	Not measured (Same as original filing)	11.25 kHz	Complies
Transmitter spu	irious emissions				
\$2.1051 \$2.1057 \$90.210		At the antenna terminals	-26.7 dBm (From original filing)	-13 dBm	Complies
\$2.1053 \$2.1057 \$90.210		Field strength	-30.1 dBm ERP	-13 dBm ERP	Complies
Receiver spurio	us emissions		1		
15.109	RSS GEN 7.2.3 Table 1	Field strength	28.7 dBuV/m (From original filing)	See limit table on page 18	Complies
Other details			1		r
§2.1055 §90.213		Frequency stability	0.954 ppm (From original filing)	217-222 MHz 1.0 ppm	Complies
§2.1093	RS 102	RF Exposure	No chang	ge from original fili	ing
§2.1033 (c) (8)	RSP 100 7.2 (a)	Final radio frequency amplifying circuit's dc voltages and currents for normal operation over the power range	13.8V, 6A	Information only	-
-	-	Antenna Gain	This application is for antennas of up to 16.5dBi gain.		

Spurious emissions performed at maximum power and complete while
 Industry Canada limits use to 217-218 MHz and 219-222 MHz bands.

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2) and were calculated in accordance with NAMAS document NIS 81 and M3003.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF frequency	Hz	25 to 7,000 MHz	1.7 x 10 ⁻⁷
RF power, conducted	dBm	25 to 7,000 MHz	$\pm 0.52 \text{ dB}$
Conducted emission of transmitter	dBm	25 to 40,000 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of receiver	dBm	25 to 40,000 MHz	$\pm 0.7 \text{ dB}$
Radiated emission (substitution method)	dBm	25 to 40,000 MHz	± 2.5 dB
Radiated emission (field strength)	dBµV/m	25 to 1,000 MHz 1 to 40 GHz	$\begin{array}{c} \pm 3.6 \text{ dB} \\ \pm 6.0 \text{ dB} \end{array}$

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The GE MDS LLC model TD220 is a narrowband wireless transceiver which is designed to transmit and receive data in the 216 to 220 MHz bands for FCC Parts 80, 90 and 95 and RSS-119. Normally, the EUT would be placed on a tabletop or in a rack during operation. The EUT was, therefore, placed on a table during emissions testing to simulate the end user environment. The electrical rating of the EUT is 13.8vdc, 6 Amps.

The sample was received on December 10, 2010 and tested on December 10 and 23, 2010. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
GE MDS LLC	TD220	Digital	1892922	E5MDS-TD220
		Microwave		
		Radio		

OTHER EUT DETAILS

The EUT can be used with antennas up to 16.5 dBi.

ENCLOSURE

The EUT enclosure is primarily constructed of steel sheet metal. It measures approximately 14.0cm wide by 17.0cm deep by 5.0cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Power Designs	6150D	Power Supply	None	-
Inc.				

No remote support equipment was used during testing.

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected	Cable(s)			
Folt	То	Description	Shielded or Unshielded	Length(m)	
Serial	Terminator	Multiwire	Shielded	2	
Antenna	Terminator	No cable	-	-	
DC Power	Power Supply	Two wire	Unshielded	4	

Note: The USB port was not connected during testing. GE MDS stated that this is for configuration purposes and therefore would not normally be connected.

EUT OPERATION

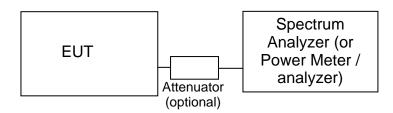
During emissions testing the EUT was set to transmit a modulated signal at the selected frequency.

TESTING

GENERAL INFORMATION

Antenna port measurements were taken at the Elliott Laboratories test site located at 41039 Boyce Road, Fremont, CA 94538-2435.

Radiated spurious emissions measurements were taken at the Elliott Laboratories Anechoic Chambers and/or Open Area Test Site(s) listed below. The sites conform to the requirements of ANSI C63.4: 2003 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz and CISPR 16-1-4:2007 - Specification for radio disturbance and immunity measuring apparatus and methods Part 1-4: Radio disturbance and immunity measuring apparatus Ancillary equipment Radiated disturbances. They are on file with the FCC and industry Canada.


Site	Registration Numbers		Location	
510	FCC	Canada	Location	
Chamber 3	769238	IC 2845B-3	41020 Dovos Dood	
Chamber 4	211948	IC 2845B-4	41039 Boyce Road	
Chamber 5	211948	IC 2845B-5	Fremont, CA 94538-2435	
Chamber 7	A2LA Accredited	IC 2845B-7	CA 94538-2455	

In the case of Open Area Test Sites, ambient levels are at least 6 dB below the specification limits with the exception of predictable local TV, radio, and mobile communications traffic.

Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements.

RF PORT MEASUREMENT PROCEDURES

Conducted measurements are performed with the EUT's rf input/output connected to the input of a spectrum analyzer, power meter or modulation analyzer. When required an attenuator, filter and/or dc block is placed between the EUT and the spectrum analyzer to avoid overloading the front end of the measurement device. Measurements are corrected for the insertion loss of the attenuators and cables inserted between the rf port of the EUT and the measurement equipment.

Test Configuration for Antenna Port Measurements

For devices with an integral antenna the output power and spurious emissions are measured as a field strength at a test distance of (typically) 3m and then converted to an eirp using a substitution measurement (refer to RADIATED EMISSIONS MEASUREMENTS). All other measurements are made as detailed below but with the test equipment connected to a measurement antenna directed at the EUT.

OUTPUT POWER

Output power is measured using a power meter and an average sensor head, a spectrum analyzer or a power meter and peak power sensor head as required by the relevant rule part(s). Where necessary measurements are gated to ensure power is only measured over periods that the device is transmitting.

Power measurements made directly on the rf power port are, when appropriate, converted to an EIRP by adding the gain of the highest gain antenna that can be used with the device under test, as specified by the manufacturer.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN. The measurement bandwidth is set to be at least 1% of the instrument's frequency span.

CONDUCTED SPURIOUS EMISSIONS

Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode measurements). Where the limits are expressed as an average power the spectrum analyzer is tunes to that frequency with a narrow span (wide enough to capture the emission and its sidebands) and the resolution and video bandwidths are adjusted as required by the reference measurement standards. For transmitter measurements the appropriate detector (average, peak, normal ,sample, quasi-peak) is used when making measurements for licensed devices. For receiver conducted spurious measurements the detector is set to peak.

TRANSMITTER MASK MEASUREMENTS

The transmitter mask measurements are made using resolution bandwidths as specified in the pertinent rule part(s). Where narrower bandwidths are used the measurement is corrected to account for the reduced bandwidth by either using the adjacent channel power function of the spectrum analyzer to sum the power across the required measurement bandwidth. The frequency span of the analyzer is set to ensure the fundamental signal and all significant sidebands are displayed.

The top of the mask may be set by the total output power of the signal, the power of the unmodulated signal or the peak value of the signal in the reference bandwidth being used for the mask measurement.

FREQUENCY STABILITY

The EUT is placed inside a temperature chamber with all support and test equipment located outside of the chamber. The temperature is varied across the specified frequency range in 10 degree increments with frequency measurements made at each temperature step. The EUT is allowed enough time to stabilize at each temperature variation.

The spectrum analyzer is configured to give a 5- or 6-digit display for the markerfrequency function. The spectrum analyzer's built-in frequency counter is used to measure the maximum deviation of the fundamental frequency at each temperature. Where possible the device is set to transmit an unmodulated signal. Where this is not possible the frequency drift is determined by finding a stable point on the signal (e.g. the null at the centre of an OFDM signal) or by calculating a centre frequency based on the upper and lower XdB points (where X is typically 6dB or 10dB) on the signal's skirts.

TRANSIENT FREQUENCY BEHAVIOR:

The TIA/EIA 603 procedure is used to determine compliance with transient frequency timing requirements as the radio is keyed on and off.

The EUTs rf output is connected via a combiner/splitter to the test receiver/spectrum analyzer and to a diode detector. The test receiver or spectrum analyzer video output is connected to an oscilloscope, which is triggered by the output from the diode detector.

Plots showing Ton, T1, and T2 are made when turning on the transmitter and showing T3 when turning off the transmitter.

RADIATED EMISSIONS MEASUREMENTS

Receiver radiated spurious emissions measurements are made in accordance with ANSI ANSI C63.4:2003 by measuring the field strength of the emissions from the device at a specific test distance and comparing them to a field strength limit. Where the field strength limit is specified at a longer distance than the measurement distance the measurement is extrapolated to the limit distance.

Transmitter radiated spurious emissions are initially measured as a field strength. The eirp or erp limit as specified in the relevant rule part(s) is converted to a field strength at the test distance and the emissions from the EUT are then compared to that limit. Emissions within 20dB of this limit are the subjected to a substitution measurement.

All radiated emissions measurements are performed in two phases. A preliminary scan of emissions is conducted in either an anechoic chamber or on an OATS during which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed across the complete frequency range of interest and at each operating frequency identified in the reference standard. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode).

During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit. For transmitter spurious emissions, where the limit is expressed as an effective radiated power, the eirp or erp is converted to a field strength limit.

Final measurements are made on an OATS or in a semi-anechoic chamber at the significant frequencies observed during the preliminary scan(s) using the same process of rotating the EUT and raising/lowering the measurement antenna to find the highest level of the emission. The field strength is recorded and, for receiver spurious emissions, compared to the field strength limit. For the final measurement the appropriate detectors (average, peak, normal, sample, quasi-peak) are used. For receiver measurements below 1GHz the detector is a Quasi-Peak detector, above 1GHz a peak detector is used and the peak value (RB=VB=1MHz) and average value (RB=1MHz, VB=10Hz) are recorded.

For transmitter spurious emissions, the radiated power of all emissions within 20dB of the calculated field strength limit are determined using a substitution measurement. The substitution measurement is made by replacing the EUT with an antenna of known gain (typically a dipole antenna or a double-ridged horn antenna), connected to a signal source. The output power of the signal generator is adjusted until the maximum field strength from the substitution antenna is similar to the field strength recorded from the EUT. The erp of the EUT is then calculated.

INSTRUMENTATION

An EMI receiver as specified in CISPR 16-1-1 is used for radiated emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 7000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary.

For measurements above the frequency range of the receivers and for all conducted measurements a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis.

Measurement bandwidths for the test instruments are set in accordance with the requirements of the standards referenced in this document.

Software control is used to correct the measurements for transducer factors (e.g. antenna) and the insertion loss of cables, attenuators and other series elements to obtain the final measurement value. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are exported in a graphic and/or tabular format, as appropriate.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the EUT antenna port or receiving antenna and the test receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A combination of biconical, log periodic or bi-log antennas are used to cover the range from 30 MHz to 1000 MHz. Broadband antennas or tuned dipole antennas are used over the entire 25 to 1000 MHz frequency range as the reference antenna for substitution measurements.

Above 1000 MHz, a dual-ridge guide horn antenna or octave horn antenna are used as reference and measurement antennas.

The antenna calibration factors are included in site factors that are programmed into the test receivers and instrument control software when measuring the radiated field strength.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

Table mounted devices are placed on a non-conductive table at a height of 80 centimeters above the floor. Floor mounted equipment is placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. The EUT is positioned on a motorized turntable to allow it to be rotated during testing to determine the angel with the highest level of emissions.

SAMPLE CALCULATIONS

SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS

Measurements are compared directly to the conducted emissions specification limit (decibel form). The calculation is as follows:

 $R_r - S = M$

where:

 R_r = Measured value in dBm

S = Specification Limit in dBm

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS -RADIATED FIELD STRENGTH

Measurements of radiated field strength are compared directly to the specification limit (decibel form). The receiver and/or control software corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor is sued when measurements are made at a test distance that is different to the specified limit distance by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS -RADIATED POWER

The erp/eirp limits for transmitter spurious measurements are converted to a field strength in free space using the following formula:

$$E = \frac{\sqrt{30 P G}}{d}$$

where:

E = Field Strength in V/m
 P = Power in Watts
 G = Gain of isotropic antenna (numeric gain) = 1
 D = measurement distance in meters

The field strength limit is then converted to decibel form (dBuV/m) and the margin of a given emission peak relative to the limit is calculated (refer to *SAMPLE CALCULATIONS –RADIATED FIELD STRENGTH*).

When substitution measurements are required (all signals with less than 20dB of margin relative to the calculated field strength limit) the eirp of the spurious emission is calculated using:

 $P_{EUT} = P_{S} - (E_{S} - E_{EUT})$

and

 $P_s = G + P_{in}$

where:

 P_{S} = effective isotropic radiated power of the substitution antenna (dBm)

 P_{in} = power input to the substitution antenna (dBm)

G = gain of the substitution antenna (dBi)

 E_S = field strength the substitution antenna (dBm) at eirp P_S

 E_{EUT} = field strength measured from the EUT

Where necessary the effective isotropic radiated power is converted to effective radiated power by subtracting the gain of a dipole (2.2dBi) from the eirp value.

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

Appendix A Test Equipment Calibration Data

Radiated Emissions, 30 - 2,300 MHz, 10-Dec-10						
<u>Manufacturer</u>	Description	Model	<u>Asset #</u>	<u>Cal Due</u>		
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1657	5/28/2012		
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	3/16/2011		
Radio Antenna Port (F	Power and Mask), 10-Dec-10					
<u>Manufacturer</u>	Description	<u>Model</u>	Asset #	Cal Due		
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1422	12/1/2011		
Rohde & Schwarz	Attenuator, 20 dB, 10W, DC-18 GHz	20dB, 10W, Type N	1795	6/2/2011		
Rohde & Schwarz	Power Sensor 100 uW - 10 Watts	NRV-Z53	1796	6/2/2011		
Agilent	PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	E4446A	2139	1/6/2011		
FCC Masks, 23-Dec-1	D					
<u>Manufacturer</u>	Description	Model	Asset #	Cal Due		
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	3/31/2011		

Appendix B Test Data

T81418 18 Pages

Elliott

EMC Test Data

211 Arbitis	2 company		
Client:	GE MDS LLC	Job Number:	J81361
Model:	TD220	T-Log Number:	T81418
		Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		-
Emissions Standard(s):	FCC Parts 80, 90 and 95	Class:	Radio
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The

GE MDS LLC

Model

TD220

Date of Last Test: 12/23/2010

Radio Test Data

Client:	GE MDS LLC	Job Number:	J81361
Model:	10000	T-Log Number:	T81418
	10220	Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	FCC Parts 80, 90 and 95	Class:	Radio

FCC Parts 80 and 95

Power, Occupied Bandwidth, Frequency Stability and Spurious Emissions

Test Specific Details

©Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

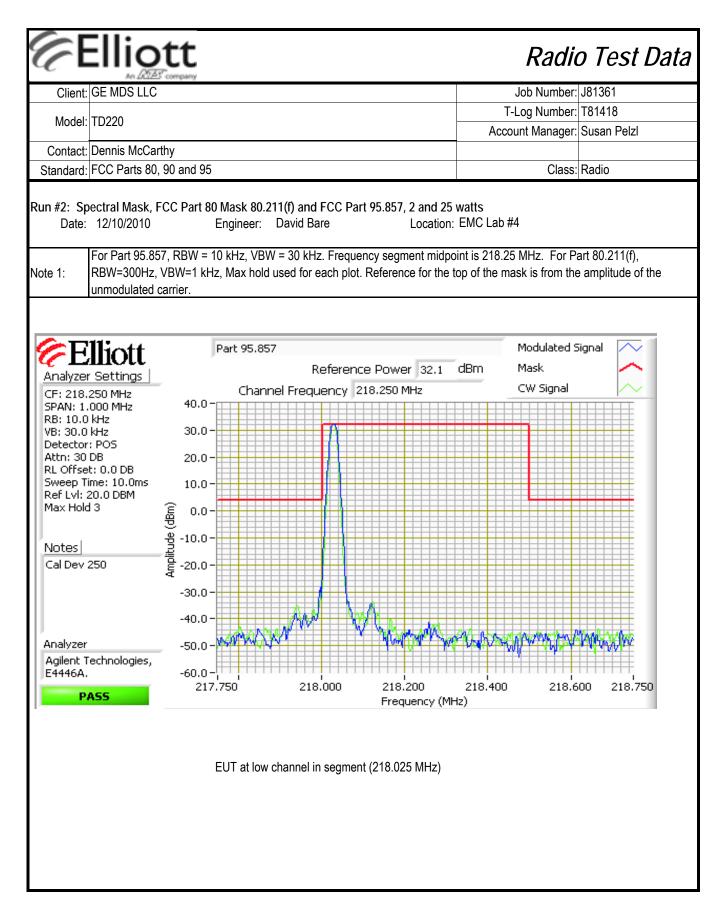
All measurements are made with the EUT's rf port connected to the measurement instrument via an attenuator or dc-block if necessary. All amplitude measurements are adjusted to account for the attenuation between EUT and measuring instrument.

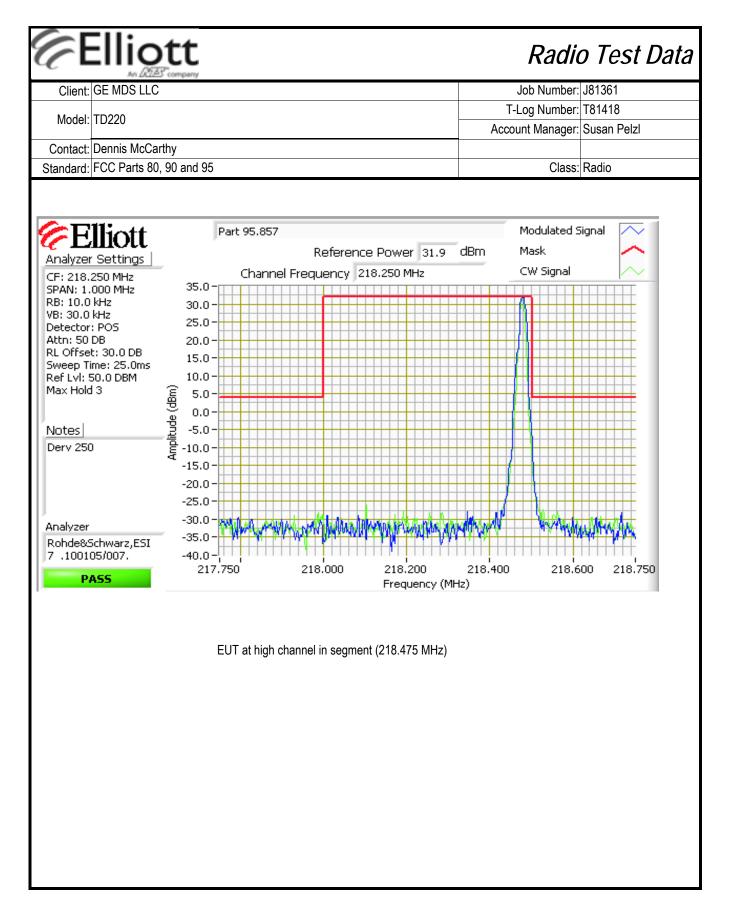
Radiated measurements are made with the EUT located on a non-conductive table, 3m from the measurement antenna.

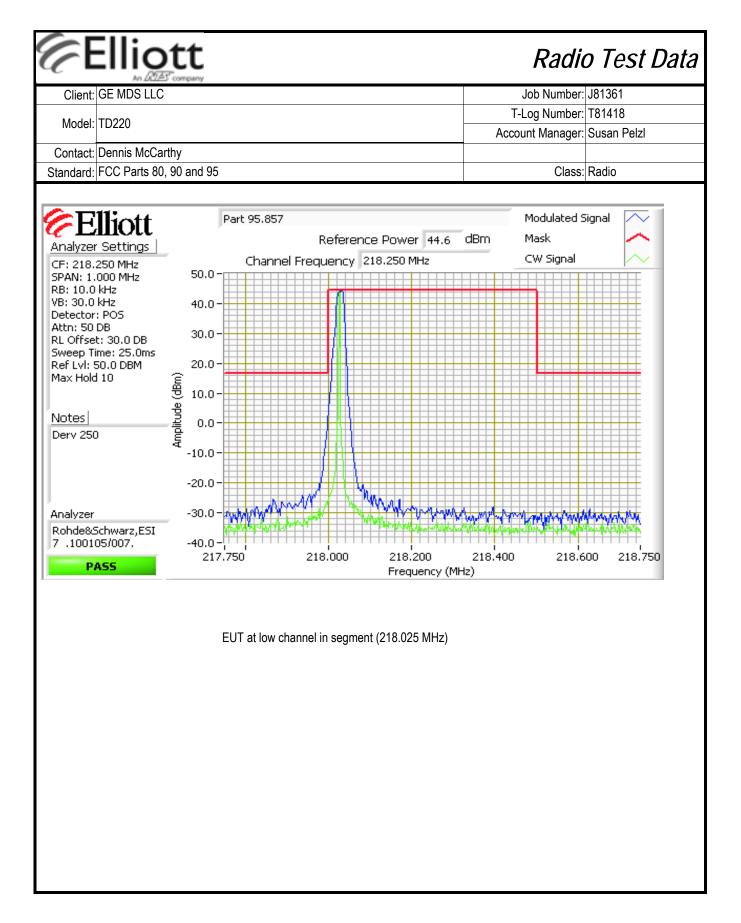
Ambient Conditions:	Temperature:	20 °C
	Rel. Humidity:	41 %

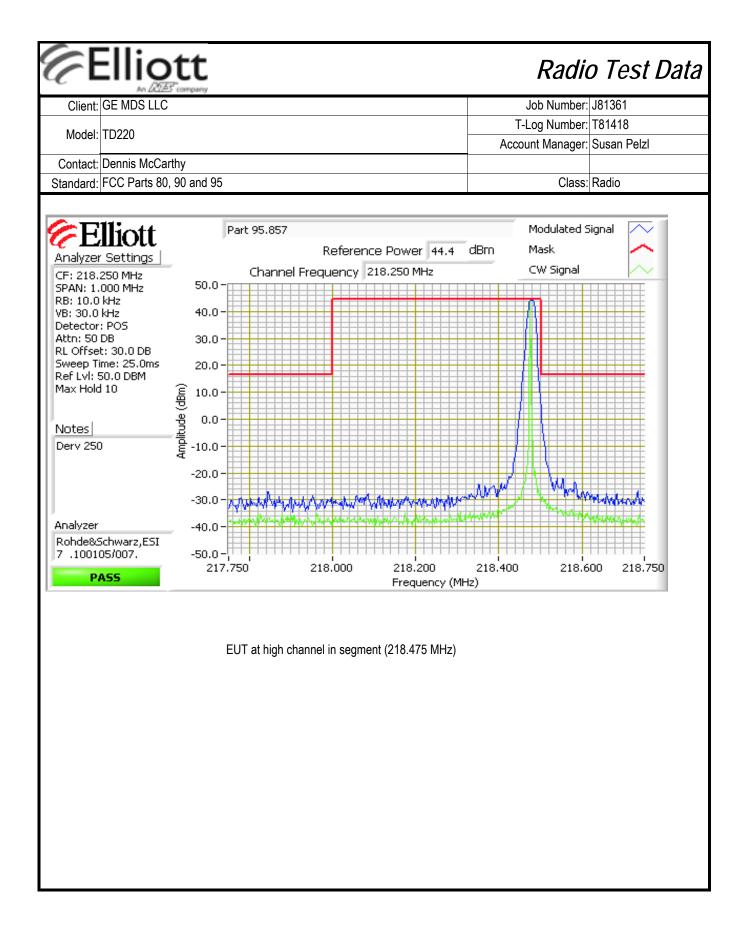
Summary of Results

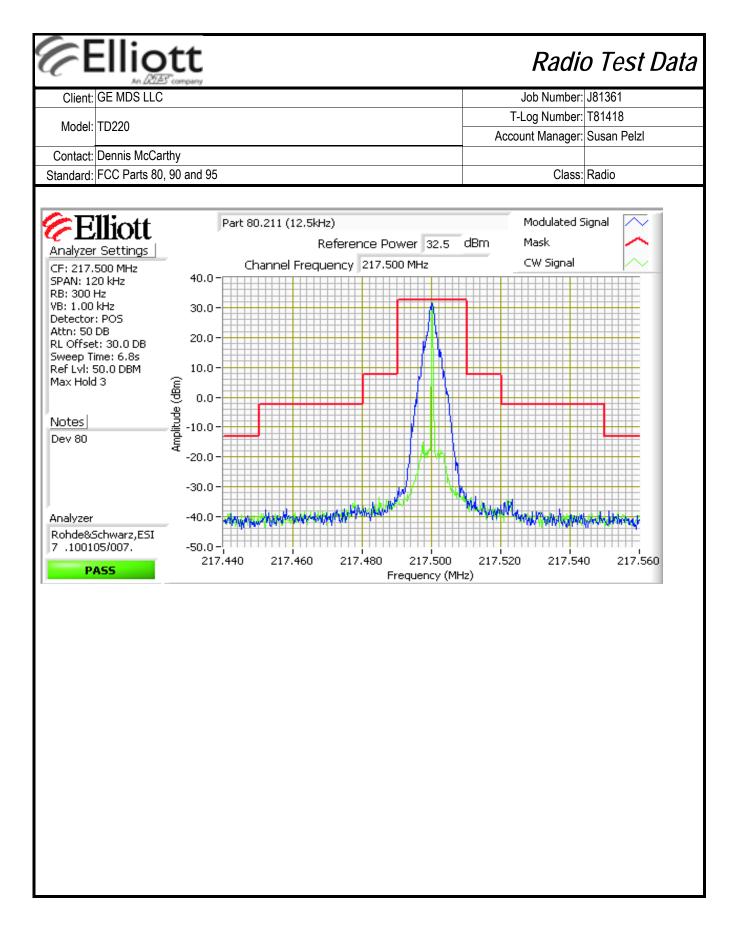
Run #	Spacing	Data Rate	Test Performed	Limit	Pass / Fail	Result / Margin
1	12.5 kHz		Output Power	Depends on Usage	Pass	44.4 dBm / 32.3 dBm
2	12.5 kHz		Spectral Mask	Within Mask	Pass	Within Mask
3	12.5 kHz		99% or Occupied Bandwidth	20 kHz	-	10.2 kHz

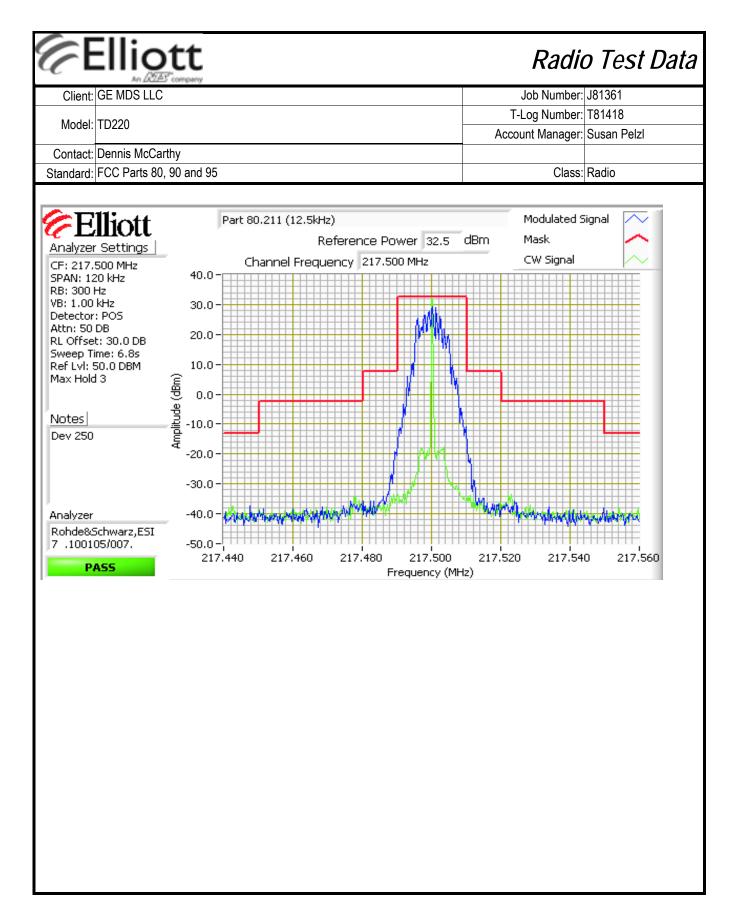

Modifications Made During Testing

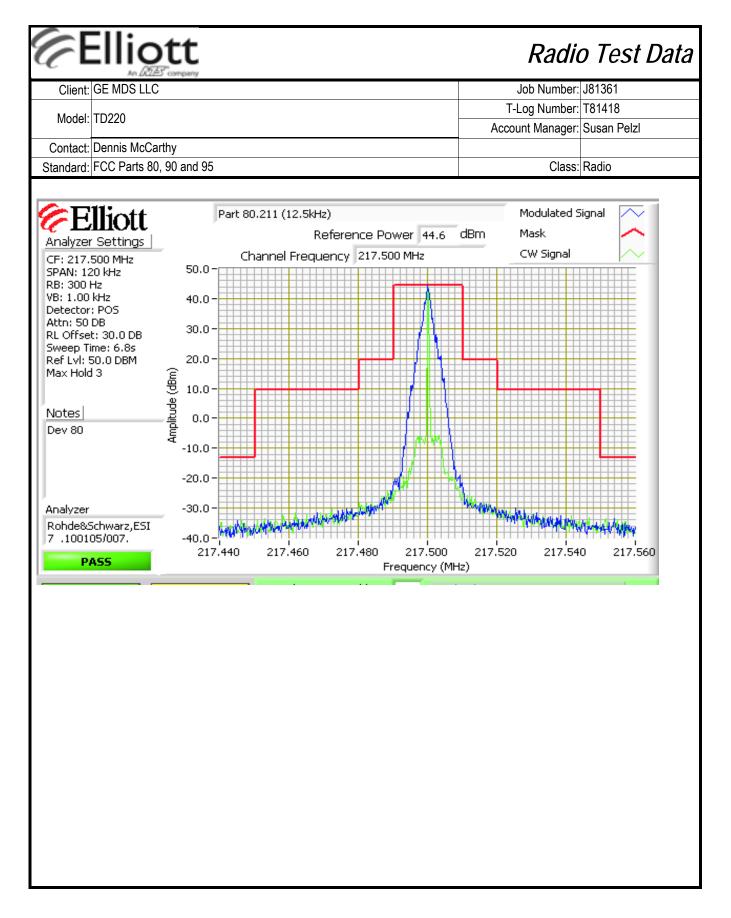

No modifications were made to the EUT during testing

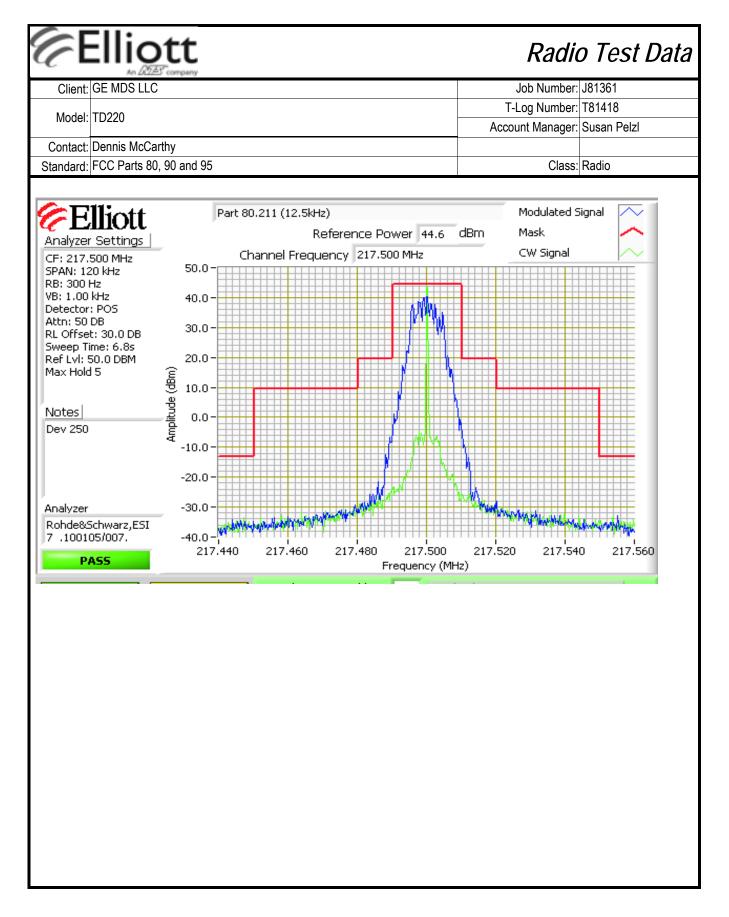

Deviations From The Standard

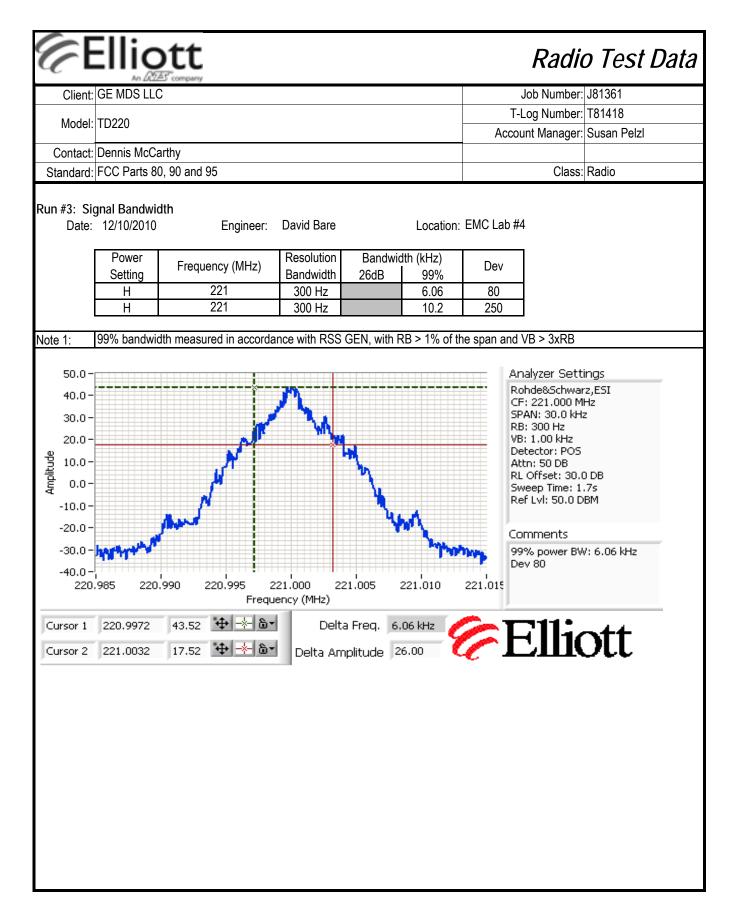

No deviations were made from the requirements of the standard.

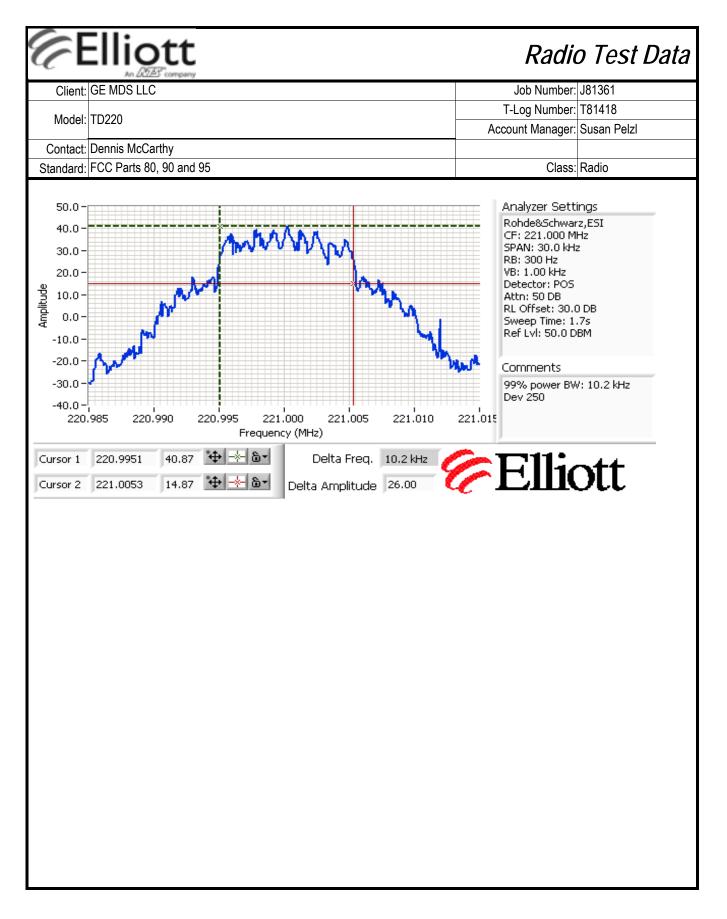

	Elliott							o Test Data
Client:	GE MDS LLC						Job Number:	
Model:	TD220						Log Number: unt Manager:	
Contact:	Dennis McCarthy					7,000	unt manager.	Susan Peizi
	FCC Parts 80, 90 and 95						Class:	Radio
otandara.							0.0.001	
	utput Power 12/10/2010	Engineer:	David Bare		Location:	EMC Lab #	4	
	Cable Loss: 0.0 dB Cable ID(s): None used			Attenuator: enuator IDs:		& 2102	Total Loss:	30.0 dB
Power Setting ²	Frequency (MHz)	Output (dBm) ¹	t Power W	Antenna Gain (dBi)	Result	El dBm	RP W	
XL	216	32.3			Pass	32.3	1.698	
Н	216	44.4			Pass	44.4	27.542	
XL	217.5	32.2			Pass	32.2	1.660	
H	217.5 219	44.4 32.2			Pass	44.4 32.2	27.542	
XL H	219	32.2 44.3			Pass Pass	44.3	1.660 26.915	
XL	213	32.0			Pass	32.0	1.585	
H	222	44.1			Pass	44.1	25.704	
	Output power measured Power setting - the softw				included for	reference on	l <u>y.</u>	

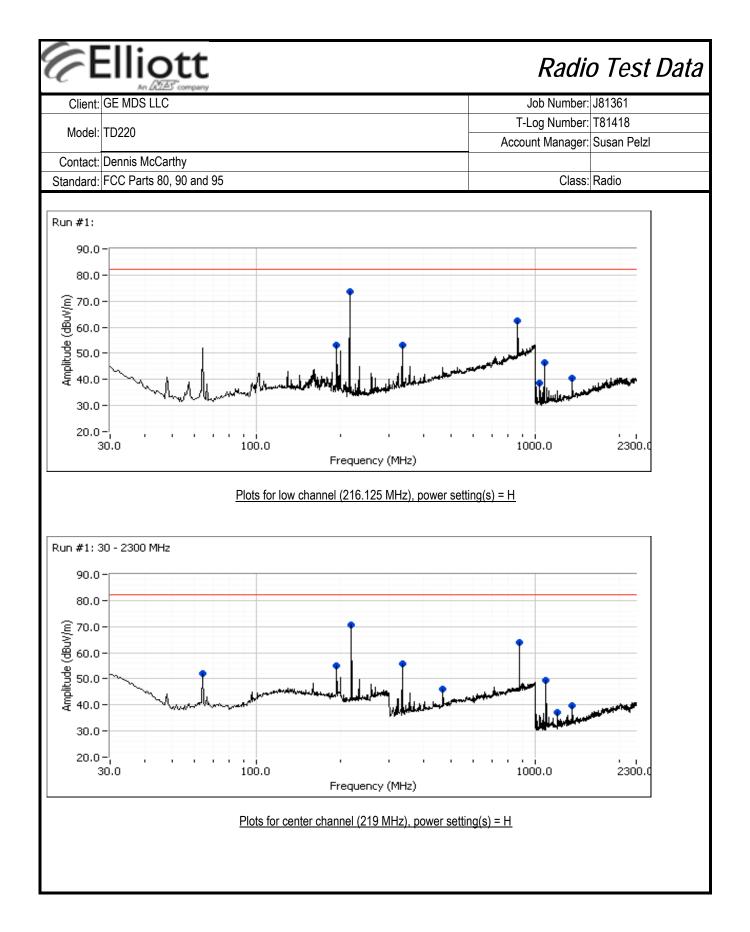




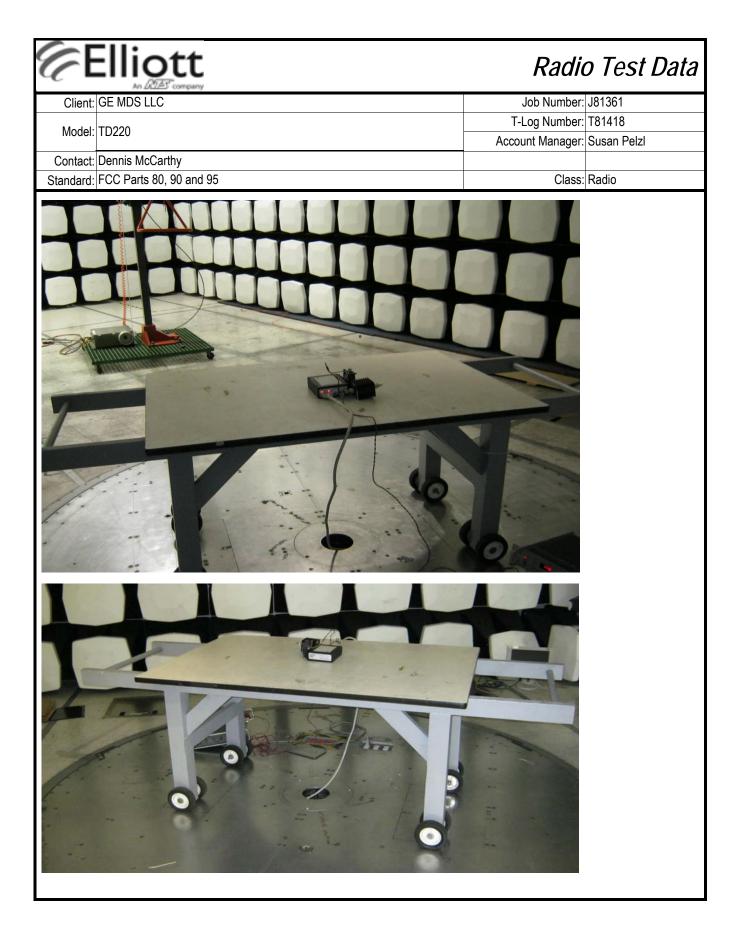







Radio Test Data

	Ellic					Kadi	o Test Da
Client:	GE MDS LLO)				Job Number	: J81361
						T-Log Number	: T81418
Model:	TD220					Account Manager	: Susan Pelzl
Contact:	Dennis McCa	arthy					
Standard:	FCC Parts 8), 90 and 95				Class	: Radio
			FCC Parts Spurious				
est Spec		The objectiv	re of this test session is to perfo n listed above.	orm final	qualification te	sting of the EUT with	respect to the
equipment	was located	approximate	oment were located on the turnt ely 30 meters from the EUT. th the EUT located on a non-co			-	
mbiont (Conditions	••	Temperature:	18 °	20		
).	Rel. Humidity:	42 9			
		-					
Summary	of Results	3					
Summary	of Results	.	Test Performed		Limit	Pass / Fai	
3		5	Test Performed Spurious emissions (radiated) Spurious emissions (substitution		Limit -13 dBr -13 dBr	n Eval	Result / Margin Refer to Run -30.1 dBm


Deviations From The Standard

No deviations were made from the requirements of the standard.

	AU TYTE	2 company					-		
Client:	GE MDS LLC							Job Number: J8136	1
Madalı							T	-Log Number: T8141	8
Model.	TD220						Acco	ount Manager: Susan	Pelzl
	Dennis McCa								
Standard:	FCC Parts 80	, 90 and 95						Class: Radio	
₋ow Channe Γhe limit is t Run #1a - P	ut of Band Spi el = 216.0125 I aken from FCC Preliminary me	MHz, Mid C Conductec C Part 80 M	hannel = 21 I limit (dBm): ask F and § ts	9 MHz, High -13 95.857	β Α	pproximate	Ū	h limit @ 3m:	82.3
	12/10/2010		Engineer:	David Bare	1 1		Chamber #		
Frequency	Level	Pol		CC	Detector	Azimuth	Height	Comments	Channe
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
194.070	53.1	Н	82.2	-29.1	Peak	128	1.0		216.12
216.125	73.5	Н	N/A	-	Peak	144	1.0	Fundamental	216.12
334.130	53.1	Н	82.2	-29.1	Peak	128	1.0		216.12
864.500	62.4	Н	82.2	-19.8	Peak	210	1.0		216.12
1039.970	38.5	Н	82.2	-43.7	Peak	56	1.0		216.12
1080.530	46.6	V	82.2	-35.6	Peak	130	1.0		216.12
1358.050	40.4	Н	82.2	-41.8	Peak	125	1.0		216.12
64.696	52.0	Н	82.2	-30.2	Peak	46	3.0		21
194.076	55.1	Н	82.2	-27.1	Peak	88	1.0		21
219.000	70.6	Н	N/A	-	Peak	93	1.5		21
334.121	55.8	Н	82.2	-26.4	Peak	171	1.0		2
467.781	45.9	Н	82.2	-36.3	Peak	94	1.5		2
876.009	64.0	Н	82.2	-18.2	Peak	206	1.0		2
1093.790	49.3	V	82.2	-32.9	Peak	134	1.0		2 ⁻
1198.000	37.0	V	82.2	-45.2	Peak	115	1.0		2
1314.000	39.9	V	82.2	-42.3	Peak	27	1.0		2
64.696	52.4	Н	82.2	-29.8	Peak	243	4.0		221.9
194.084	53.9	Н	82.2	-28.3	Peak	115	2.0		221.9
221.978	70.2	Н	N/A	-	Peak	89	1.0	Fundamental	221.9
334.133	54.2	Н	82.2	-28.0	Peak	166	1.0		221.9
887.900	59.7	Н	82.2	-22.5	Peak	208	1.0		221.9
1109.870	42.5	Н	82.2	-39.7	Peak	49	1.0		221.9
1358.150	38.0	V	82.2	-44.2	Peak	7	2.5		221.9
1885.770	47.0	H	82.2	-35.2	Peak	35	1.0	Cell phone pickup a	
1896.190	48.7	Н	82.2	-33.5	Peak	270	2.0	Cell phone pickup a	
ote 1:	propagation e	equation: E= the dipole g field streng	:√(30PG)/d. ain (2.2dBi) gth limit is de	This limit is o has not beer termined usi	conservative - n included. Th ing substitution	it does not o ne erp or eirp	onsider the for all sign	l in the standard usin presence of the grou als with less than 20	ind plane and,
lote 2:									

	Ellig	JT						Radio	o Test	Data
Client:	GE MDS LLC	ES company						Job Number:	J81361	
M. 1.1	TD000						T-	Log Number:	T81418	
Model:	TD220						Acco	unt Manager:	Susan Pelzl	
Contact:	Dennis McCa	arthy								
Standard:	FCC Parts 8	0, 90 and 95						Class:	Radio	
										1
Run #1: 3	30 - 2300 MH	z								
90.0	-									
80.0										
<u></u> 70.0	-				1					
5 860.0	_									
9 9				•	•		I			
월 50.0 북	- my	Ĭ		ال الاستخط			المسريد ال	-	-	
(w/\70.0 60.0 50.0 40.0	- ~	mundance	June and a street		under an and a state of the second	and	A A A A A A A A A A A A A A A A A A A			
					Harris			All deal and		
30.0										
20.0	_									
	30.0		100.0		equency (MH el (221.975),	-		00.0	2300.0	
un #1b: -		•	100.0 <u>Plots fo</u> surements	r high chann	el (221.975), ution Measu	power setting rements				
: un #1b: - Date:	30.0 Final Field Si 12/10/2010		100.0 <u>Plots fo</u> surements Engineer:	<u>r high chann</u> and Substit David Bare	el (221.975), ution Measu	power setting rements Location:	g <u>(s) = H</u> Chamber #	5		Chann
un #1b: - Date: requency	30.0 Final Field Si 12/10/2010 Level	Pol	100.0 <u>Plots fo</u> surements Engineer: F	<u>r high chann</u> and Substit David Bare	el (221.975), ution Measur	power setting rements Location: Azimuth	g(s) = H Chamber # Height			Chann
un #1b: - Date: requency MHz	30.0 Final Field Si 12/10/2010 Level dBµV/m	Pol v/h	100.0 <u>Plots fo</u> surements Engineer: <u>F</u> Limit	r high chann and Substit David Bare CC Margin	el (221.975), ution Measur Detector Pk/QP/Avg	power setting rements Location: Azimuth degrees	g <u>(s) = H</u> Chamber # Height meters	5		
In #1b: - Date: Tequency MHz 376.000	30.0 Final Field Si 12/10/2010 Level	Pol	100.0 <u>Plots fo</u> surements Engineer: F	<u>r high chann</u> and Substit David Bare	el (221.975), ution Measur	power setting rements Location: Azimuth	g(s) = H Chamber # Height	5		, ,
un #1b: - Date: Tequency MHz 376.000 364.500 ubstitutio prizontal	SO.0 Final Field Si 12/10/2010 Level dBμV/m 64.9 63.5 n measureme	Pol v/h H H	100.0 <u>Plots fo</u> surements Engineer: <u>F</u> Limit 82.2 82.2	r high chann and Substit David Bare CC Margin -17.3 -18.7	el (221.975), ution Measur Detector Pk/QP/Avg Pk Peak	rements Location: Azimuth degrees 210 209	g(s) = H Chamber # Height meters 1.2 1.2	5 Comments	2300.0	2 216.*
un #1b: - Date: <u>requency</u> <u>MHz</u> 876.000 864.500 ubstitutio prizontal requency	30.0 Final Field Si 12/10/2010 Level dBμV/m 64.9 63.5 n measureme Substitu	Pol v/h H H ents	100.0 <u>Plots fo</u> surements Engineer: <u>F</u> Limit 82.2 82.2 ements	r high chann and Substit David Bare CC Margin -17.3 -18.7 Site	el (221.975), ution Measur Detector Pk/QP/Avg Pk Peak	power setting rements Location: Azimuth degrees 210 209	g(s) = H Chamber # Height meters 1.2 1.2 1.2	5 Comments	2300.d	216.1 Margi
In #1b: - Date: Tequency MHz 376.000 364.500 Ibstitutio prizontal requency MHz	30.0 Final Field St 12/10/2010 Level dBμV/m 64.9 63.5 n measuremo Substitu Pin ¹	Pol v/h H H ents ution measure Gain ²	100.0 <u>Plots fo</u> surements Engineer: F Limit 82.2 82.2 ements FS ³	r high chann and Substit David Bare CC Margin -17.3 -18.7 Site Factor ⁴	el (221.975), ution Measur Detector Pk/QP/Avg Pk Peak EU FS ⁵	power setting rements Location: Azimuth degrees 210 209 T measureme eirp (dBm)	g(s) = H Chamber # Height neters 1.2 1.2 ents erp (dBm)	5 Comments	2300.d erp Limit dBm	2 216.1 Margi dB
un #1b: - Date: Date: MHz 376.000 364.500 ubstitutio prizontal requency MHz 876.000	30.0 Final Field St 12/10/2010 Level dBμV/m 64.9 63.5 n measureme Substitu Pin ¹ -11.0	Pol v/h H H ents ution measure Gain ² 2.2	100.0 <u>Plots fo</u> surements Engineer: F Limit 82.2 82.2 ements FS ³ 84.0	r high chann and Substit David Bare CC Margin -17.3 -18.7 Site Factor ⁴ 92.8	el (221.975), ution Measur Detector Pk/QP/Avg Pk Peak EU FS ⁵ 64.9	power setting rements Location: Azimuth degrees 210 209 T measureme eirp (dBm) -27.9	g(s) = H Chamber # Height meters 1.2 1.2 ents erp (dBm) -30.1	5 Comments	erp Limit dBm -13.0	-17.1
In #1b: - Date: Tequency MHz 376.000 364.500 Ibstitutio prizontal requency MHz	30.0 Final Field St 12/10/2010 Level dBμV/m 64.9 63.5 n measuremo Substitu Pin ¹ -11.0	Pol v/h H H ents ution measure Gain ²	100.0 <u>Plots fo</u> surements Engineer: F Limit 82.2 82.2 ements FS ³	r high chann and Substit David Bare CC Margin -17.3 -18.7 Site Factor ⁴	el (221.975), ution Measur Detector Pk/QP/Avg Pk Peak EU FS ⁵	power setting rements Location: Azimuth degrees 210 209 T measureme eirp (dBm)	g(s) = H Chamber # Height neters 1.2 1.2 ents erp (dBm)	5 Comments	2300.d erp Limit dBm	2 216.1 Margi dB
un #1b: - Date: Date: MHz 876.000 864.500 ubstitutio prizontal requency MHz 876.000 864.500	30.0 Final Field St 12/10/2010 Level dBμV/m 64.9 63.5 n measurem Substitu Pin ¹ -11.0 -11.0	Pol V/h H H ents ution measure <u>Gain²</u> 2.2 2.2	100.0 <u>Plots fo</u> surements Engineer: F Limit 82.2 82.2 ements FS ³ 84.0 84.5	r high chann and Substit David Bare CC Margin -17.3 -18.7 Site Factor ⁴ 92.8 93.3	el (221.975), ution Measur Detector Pk/QP/Avg Pk Peak EU FS ⁵ 64.9 63.5	power setting rements Location: Azimuth degrees 210 209 T measureme eirp (dBm) -27.9	g(s) = H Chamber # Height meters 1.2 1.2 ents erp (dBm) -30.1	5 Comments	erp Limit dBm -13.0	216. 216. Margi dB -17.1
un #1b: - Date: Date: MHz 376.000 364.500 ubstitutio prizontal requency MHz 876.000 864.500 ote 1:	Substitu Pinal Field Si 12/10/2010 Level dBµV/m 64.9 63.5 n measureme Substitu Pin ¹ -11.0 -11.0 Pin is the inp	Pol v/h H H ents ution measure Gain ² 2.2 2.2 out power (dB	100.0 <u>Plots fo</u> surements Engineer: <u>F</u> Limit 82.2 82.2 ements FS ³ 84.0 84.5 Em) to the su	r high chann and Substit David Bare CC Margin -17.3 -18.7 Site Factor ⁴ 92.8 93.3	el (221.975), ution Measur Detector Pk/QP/Avg Pk Peak EU FS ⁵ 64.9 63.5	power setting rements Location: Azimuth degrees 210 209 T measureme eirp (dBm) -27.9	g(s) = H Chamber # Height meters 1.2 1.2 ents erp (dBm) -30.1	5 Comments	erp Limit dBm -13.0	216.1 216.1 Margii dB -17.1
un #1b: - Date: Tequency MHz 376.000 364.500 ubstitutio prizontal requency MHz 876.000 864.500 864.500 000 864.500	Final Field St 12/10/2010 Level dBμV/m 64.9 63.5 n measureme Substitu Pin ¹ -11.0 -11.0 Pin is the inp Gain is the g	Pol v/h H H ents ution measure Gain ² 2.2 2.2 2.2 out power (dB ain (dBi) for t	100.0 Plots fo surements Engineer: F Limit 82.2 82.2 ements FS ³ 84.0 84.5 em) to the su he substitut	r high chann and Substit David Bare CC Margin -17.3 -18.7 Site Factor ⁴ 92.8 93.3 ibstitution an ion antenna.	el (221.975), ution Measur Pk/QP/Avg Pk Peak EU FS ⁵ 64.9 63.5 tenna	power setting rements Location: Azimuth degrees 210 209 T measurem eirp (dBm) -27.9 -29.8	g(s) = H Chamber # Height meters 1.2 1.2 ents erp (dBm) -30.1	5 Comments	erp Limit dBm -13.0	216. 216. Margi dB -17.1
un #1b: - Date: Tequency MHz 876.000 864.500 ubstitutio prizontal requency MHz 876.000	Final Field St 12/10/2010 Level dBμV/m 64.9 63.5 n measureme Substitu Pin ¹ -11.0 -11.0 Pin is the inp Gain is the g FS is the field	Pol v/h H H ents ution measure Gain ² 2.2 2.2 ut power (dB ain (dBi) for t d strength (dl	100.0 Plots fo surements Engineer: F Limit 82.2 82.2 ements FS ³ 84.0 84.5 Em) to the su the substitut BuV/m) mea	r high chann and Substit David Bare CC Margin -17.3 -18.7 Site Factor ⁴ 92.8 93.3 ibstitution an ion antenna. isured from t	el (221.975), ution Measur Detector Pk/QP/Avg Pk Peak EU FS ⁵ 64.9 63.5	power setting rements Location: Azimuth degrees 210 209 T measureme eirp (dBm) -27.9 -29.8 n antenna.	g(s) = H Chamber # Height meters 1.2 1.2 1.2 ents erp (dBm) -30.1 -32.0	5 Comments eirp Limit dBm	erp Limit dBm -13.0	216.1 216.1 Margii dB -17.1

