

www.elliottlabs.com

Elliott Laboratories Inc. 684 West Maude Avenue Sunnyvale, CA 94085-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report In Accordance With FCC Part 90 on the Microwave Data Systems Transmitter Model: MDS Series 4 point to point microwave link

FCC ID NUMBER:	E5MDS- Series4
GRANTEE:	Microwave Data Systems 175 Science Parkway Rochester, NY 14620

TEST SITE: Elliott Laboratories, Inc. 684 W. Maude Avenue Sunnyvale, CA 94086

REPORT DATE: March 27, 2006

FINAL TEST DATE:

March 22, 2006

AUTHORIZED SIGNATORY:

man unn

Juan Martinez Senior EMC Engineer

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

File: R63391 Page 1 of 18

TABLE OF CONTENTS

COVER PAGE	1
TABLE OF CONTENTS	2
	-
FCC CERTIFICATION INFORMATION	3
DECLARATIONS OF COMPLIANCE	5
SCOPE	6
OBJECTIVE	6
SUMMARY OF TEST RESULTS	7
PART 90 TEST SUMMARY	7
MEASUREMENT UNCERTAINTIES	8
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	10
EUT OPERATION DURING TESTING	10
TEST SITE	11
GENERAL INFORMATION	11
CONDUCTED EMISSIONS CONSIDERATIONS	11
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	12
RECEIVER SYSTEM	12
INSTRUMENT CONTROL COMPUTER	
PEAK POWER METER	12
FILTERS/ATTENUATORS	12
ANTENNAS	13
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	13
TEST PROCEDURES	14
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	18
RADIATED EMISSIONS SPECIFICATION LIMITS	18
CALCULATIONS – EFFECTIVE RADIATED POWER	
EXHIBIT 1: Test Equipment Calibration Data	
EXHIBIT 2: Test Data Log Sheets	
EXHIBIT 3: Test Configuration Photographs	
EXHIBIT 4: Theory of Operation	
EXHIBIT 5: Proposed FCC ID Label & Label Location	
EXHIBIT 6: Detailed Photographs	
EXHIBIT 7: Installation Guide	
EXHIBIT 8: Block Diagram	
EXHIBIT 9: Schematic Diagrams	9

FCC CERTIFICATION INFORMATION

The following information is in accordance with FCC Rules, 47CFR Part 2, Subpart J, Section 2.1033(C) & to Industry Canada RSP-100.

2.1033(c)(1) Applicant:

Microwave Data Systems 175 Science Parkway Rochester, NY 14620

2.1033(c)(2) & RSP-100 (4) FCC ID: E5MDS- Series4

2.1033(c)(3) & RSP-100 (7.2(a)) Instructions/Installation Manual

Please refer to Exhibit 7: User Manual, Theory of Operation, and Tune-up Procedure

2.1033(c)(4) & RSP-100 (7.2(b)(iii)) Type of emissions

FCC 90: 12M5X1D , 13M7X1D

2.1033(c)(5) & RSP-100 (7.2(a)) Frequency Range

FCC 90: **4940 – 4990 MHz**

2.1033(c)(6) & RSP-100 (7.2(a)) Range of Operation Power

FCC 90 & RSS-119: **17.4 – 24.4 dBm**

2.1033(c)(7) & RSP-100 (7.2(a)) Maximum FCC & IC Allowed Power Level

FCC 90.210: Maximum power is 24.7 dBm (500mW)

2.1033(c)(8) & RSP-100 (7.2(a)) Applied voltage and currents into the final transistor elements

10Vdc, 2 Watts

2.1033(c)(9) & RSP-100 (7.2(a)) Tune-up Procedure

Please refer to Exhibit 7: User Manual, Theory of Operation, and Tune-up Procedure

2.1033(c)(10) & RSP 100 (7.2(a)) Schematic Diagram of the Transmitter

Refer to Exhibit 6: Schematic diagram

2.1033(c)(10) & RSP-100 (7.2(a)) Means for Frequency Stabilization

16 MHz TXCO (Y501)

2.1033(c)(10) & RSP-100 (7.2(a)) Means for Suppression of Spurious radiation

Please refer to Exhibit 6: Schematic diagram.

2.1033(c)(10) & RSP-100 (7.2(a)) Means for Limiting Modulation

Control by DSP (U504)

2.1033(c)(10) & RSP-100 (7.2(a)) Means for Limiting Power

Control by DSP (U504)

2.1033(c)(11) & RSP-100 (7.2(g)) Photographs or Drawing of the Equipment Identification Plate or Label

Refer to Exhibit 4

2.1033(c)(12) & RSP-100 (7.2(c)) Photographs of equipment

Refer to Exhibit 5

2.1033(c)(13) & RSP-100 (7.2(a)) Equipment Employing Digital Modulation & 90.203 (Certification Requirements)

N/A

2.1033(c)(14) & RSP-100 (7.2(b)(ii)) Data taken per Section 2.1046 to 2.1057 and RSS-133 issue 2, Rev. 1.

Refer to Exhibit 2

DECLARATIONS OF COMPLIANCE

Equipment Name and Model: MDS Series 4 point to point microwave link

Manufacturer:

Microwave Data Systems 175 Science Parkway Rochester, NY 14620

Tested to applicable standards: FCC Part 90 (Private Land Mobile Radio Service)

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above mentioned departmental standards (through the use of TIA/EIA-603 and the specific RSS standards applicable to this device); and that the equipment performed in accordance with the data submitted in this report.

Signature Name Title Address

man

Juan Martinez Senior EMC Engineer Elliott Laboratories Inc. 684 W. Maude Ave Sunnyvale, CA 94086 USA

Date: March 27, 2006

Maintenance of compliance with the above standards is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

SCOPE

FCC Part 90 testing was performed for the equipment mentioned in this report. The equipment was tested in accordance with the procedures specified in Sections 2.1046 to 2.1057 of the FCC Rules. TIA-603 was also used as a test procedure guideline to perform some of the required tests.

The intentional radiator above was tested in a simulated typical installation to demonstrate compliance with the relevant FCC & RSS performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the FCC Part 90. Certification of these devices is required as a prerequisite to marketing as defined in Section 2.1033.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to FCC & Industry Canada. FCC & Industry Canada issues a grant of equipment authorization and a certification number upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product that may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

SUMMARY OF TEST RESULTS

Part 90 Test Summ	lary				
Measurement Required	FCC Part 2 & 90 Sections	Test Performed	Measured Value	Test Procedure Used	Result
				Used	
Modulation Tested	16QAM 64QAM	-	-	-	-
Modulation characteristic s	2.1047	Modulated with appropriated signal	-	Н	-
Radiated RF power output (ERP/EIRP)	2.1046 / 90.279 & 90.205(g)	Radiated Output Power Test	-	-	-
Conducted RF power output	2.1046 / 90.279 & 90.205(g)	Conducted Output Power Test	24.4dBm (.2754 Watts)	В	Complies
Spurious emissions at antenna Port	2.1051/ 90.210(d)	Emission Limits and/or Unwanted Emission 30MHz – 40GHz (Antenna Conducted)	All spurious emissions < -25dBm	J	Complies
Occupied Bandwidth	2.1049/ 90.210(c) & (d)	Emission Mask and 99% Bandwidth	Refer to Plots	C & D	Complies
Field strength of spurious radiation	2.1053 / 90.210(d)	Radiated Spurious Emissions 30MHz – 40GHz	41.8dBµV/m @ 1125.0MHz (-28.5dB)	Ν	Complies
Frequency stability	2.1055 / 90.213	Frequency Vs. Temperature	.4 ppm	Κ	Complies
Frequency stability	2.1055 / 90.213	Frequency Vs. Voltage	0 ppm	L & M	Complies
Exposure to Mobile devices	2.1091	Exposure of Humans to RF Fields	MPE Calculation	-	Complies
Receiver	15.109	Receiver Spurious Emissions	-	-	-

Part 90 Test Summary

MEASUREMENT UNCERTAINTIES

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions Radiated Emissions	0.15 to 30 30 to 1000	$\pm 2.4 \pm 3.6$

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Microwave Data Systems model MDS Series 4 point to point microwave link is a "tower mounted 4.9GHz transceiver" for Public Safety organizations for applications that require high throughput and citywide coverage in the United States in the 4.94 - 4.99 GHz band. Normally, the EUT would be placed on a tabletop during operation. The EUT was, therefore, treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT is -48vdc @ 1amp max.

The sample was received on March 22, 2006 and tested on March 22, 2006. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
Microwave Data Systems	MDS Series Four	Tower mounted Microwave Transceiver	TBP	E5MDS-Series4

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host. The EUT is self enclosed for direct outdoor antenna mounting

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with the emission specifications.

SUPPORT EQUIPMENT

No local equipment was used during emissions testing.

The following equipment was used as remote support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
Microwave	Series 4	IDU	-	-

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port	Connected To		Cable(s)	
FOIL	Connected 10	Description	Shielded or Unshielded	Length(m)
Antenna power	50 ohm termination	-	-	-
DC Input	IDU	coaxial	Shielded	1

EUT OPERATION DURING TESTING

Device transmitting continuously at the data rate and power stated in each run description. For frequency stability the device was placed into a CW mode (ART software showed "Single Carrier" mode).

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on March 22, 2006 at the Elliott Laboratories Open Area Test Site #1 located at 684 West Maude Avenue, Sunnyvale, California. Pursuant to Section 2.948 of the FCC Rules, construction, calibration, and equipment data has been filed with the Commission.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing are performed in conformance with Section 2 of FCC Rules. Measurements are made with the EUT connected to a spectrum analyzer through an attenuator to prevent overloading the analyzer.

RADIATED EMISSIONS CONSIDERATIONS

Radiated measurements are performed in an open field environment or Anechoic Chamber. The test site is maintained free of conductive objects within the CISPR 16-1 defined elliptical area.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers are capable of measuring over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the particular detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. If average measurements above 1000MHz are performed, the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz is used.

INSTRUMENT CONTROL COMPUTER

A personal computer is utilized to record the receiver measurements of the field strength at the antenna, which is then compared directly with the appropriate specification limit. The receiver is programmed with appropriate factors to convert the received voltage into filed strength at the antenna. Results are printed in a graphic and/or tabular format, as appropriate.

The test receiver also provides a visual display of the signal being measured.

PEAK POWER METER

A peak power meter and thermister mount may be used for output power measurements from transmitters as they provide a broadband indication of the power output.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or EUT and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transmitters and transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor drive to vary the antenna height.

The requirements of ANSI C63.4:2003 were used for configuration of the equipment turntable. It specifies that the test height above ground for table-mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An appendix of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

General: For Transmitters with detachable antenna, direct measurements for output power, modulation characterization, occupied bandwidth, and frequency stability are performed with the antenna port of the EUT connected to either the power meter, modulation analyzer, or spectrum analyzer via a suitable attenuator and/or filter. The attenuators and/or filters are used to ensure that the transmitter fundamental will not overload the front end of the measurement instrument.

Procedure B – Power Measurement (Conducted Method): The following procedure was used for transmitters that do use external antennas.

- 1) Set the EUT to maximum power and to the lowest channel.
- 2) Either a power meter or a spectrum analyzer was used to measure the power output.
- 3) If a spectrum analyzer was used a resolution and video bandwidth 10kHz was used to measure the power output. Corrected for any external attenuation used for the protection of the input of analyzer. In addition, For CDMA or TDMA modulations set spectrum analyzer resolution to 1MHz and video to 30 kHz. Use video averaging with a 100-sample rate.
- 4) If a power meter was used, corrected for any external attenuation used for the protection of the input of the sensor head. Also set the power sensor correction by setting up the frequency range that will be measured.
- 5) Repeat this for the high channel and all modulations that will be used and all output ports used for transmission

Procedure C - Occupied Bandwidth (Conducted Method): Either for analog, digital, or data modulations, occupied bandwidth was performed. The EUT was set to transmit the appropriate modulation at maximum power. The bandwidth was measured using following methods:

- 1) The built-in 99% function of the spectrum analyzer was used.
- 2) If the built-in 99% is not available then the following method is used:

26-dB or 20-dB was subtracted to the maximum peak of the emission. Then the display line function was used, in conjunction with the marker delta function, to measure the emissions bandwidth.

3) For the above two methods a resolution and video bandwidth of 100 or 300 Hz was used to measure the emission's bandwidth.

Procedure D - Occupied Bandwidth (Conducted Emission Mask): Either for analog, digital, or data modulations, emission mask was performed. The EUT was set to transmit the appropriate modulation at maximum power. The following method was used:

Taken from Part 90.210 Emission Mask M

The following Resolution and Video bandwidth was used to show compliance for the above requirement: 1% of the occupied bandwidth.

Procedure H - Other Types of Equipment: Either digital or data modulated signals were simulated, by software or external sources, to performed the required tests. The EUT was set to transmit the appropriate digital modulation.

Procedure J – Antenna Conducted Emissions: For spurious emission measurements at the antenna terminal the following procedure was performed:

- 1) Set the transmitting signal at the middle of the operating range of the transmitter, as specified in the standard. Power is set to maximum and then to minimum.
- 2) Set the spectrum analyzer display line function to -25-dBm.
- 3) Set the spectrum analyzer bandwidth to 10kHz <1GHz and 1 MHz >1GHz.
- 4) For the spectrum analyzer, the start frequency was set to 30 MHz and the stop frequency set to the 10th harmonic of the fundamental. All spurious or intermodulation emission must not exceed the -25dBm limit.
- 5) Steps 1 to 4 were repeated for all modulations and output ports that will be used for transmission.

Procedure K - Frequency Stability: The EUT is placed inside a temperature chamber with all support and test equipment located outside of the chamber. The spectrum analyzer is configured to give a 6-digit display for the marker-frequency function. The spectrum analyzer's built-in frequency counter is used to measure the maximum deviation of the fundamental frequency at each temperature. The Temperature chamber was varied from -30 to $+50^{\circ}$ C (or $+60^{\circ}$ C for some IC RSS standards, if applicable) in 10 degrees increment. The EUT was allowed enough time to stabilize for each temperature variation.

Procedure L - Frequency Stability: For AC or DC operated devices the nominal voltage is varied to 85% and to 115% at either room temperature or at a controlled +20°C temperature.

Procedure M - Frequency Stability: For battery-powered devices the voltage battery end-point is determined by reducing the dc voltage until the unit ceases to function. This is performed at either room temperature or at a controlled +20°C temperature.

Procedure N - Field Strength Measurement: The EUT was set on the turntable and the search antenna position 3 meters away. The output antenna terminal was terminated with a 50-ohm terminator. The EUT was set at the middle of the frequency band and set at maximum output power.

For the first scan, a pre-liminary measurement is performed. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. One or more of these is with the antenna polarized vertically while the one or more of these are with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

For the final measurement, Substitution method is performed on spurious emissions not being 20-dB below the calculated radiated limit. Substitution method is performed by replacing the EUT with a horn antenna and signal generator. The horn antenna factors can be reference to a half-wave dipole in dBi. The signal generator power level was adjusted until a similar level, which was measured on the first scan, is achieved on the spectrum analyzer. The level on the signal generator is than added to the antenna factor, in dBi, which will give the corrected value.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

RADIATED EMISSIONS SPECIFICATION LIMITS

The limits for radiated emissions are based on the power of the transmitter at the operating frequency. Data is measured in the logarithmic form of decibels relative to one milliwatt (dBm) or one microvolt/meter (dBuV/m,). The field strength of the emissions from the EUT is measured on a test site with a receiver.

Below is a formula example used to calculate the attenuation requirement, relative to the transmitters power output, in dBuV/m. For this example an operating power range of 3 watts is used. The radiated emissions limit for spurious signals outside of the assigned frequency block is $43+10Log_{10}$ (mean output power in watts) dB below the measured amplitude at the operating power.

CALCULATIONS – EFFECTIVE RADIATED POWER

$$E(V/m) = \frac{\sqrt{30 * P * G}}{d}$$

E= Field Strength in V/m P= Power in Watts (for this example we use 3 watts) G= Gain of antenna in numeric gain (Assume 1.64 for ERP) d= distance in meters

$$E(V/m) = \frac{\sqrt{30 * 3 \text{ watts } * 1.64 \text{ dB}}}{3 \text{ meters}}$$

 $20 * \log (4.049 \text{ V/m} * 1,000,000) = 132.14 \text{ dBuV/m} @ 3 \text{ meters}$

FCC Rules request an attenuation of $43 + 10 \log (3)$ or 47.8 dB for all emissions outside the assigned block, the limit for spurious and harmonic emissions is:

132.1 dBuV/m - 47.8 dB = 84.3 dBuV/m @ 3 meter.

Note: Substitution Method is performed for spurious emission not being 20-dB below the calculated field strength.

EXHIBIT 1: Test Equipment Calibration Data

1 Page

1000 - 40,000 MHz, Transmitter Radiated Emissions, 06-Apr-06 Engineer: Juan Martinez

Engineer: Juan Martinez				
<u>Manufacturer</u>	Description	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785	26-Apr-06
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	786	28-Nov-06
Hewlett Packard	EMC Spectrum Analyzer 30Hz - 40GHz, Sunnyvale (SA40) Red	8564E (84125C)	1148	09-Sep-06

Antenna Conducted Measurements, 06-Apr-06 Engineer: Juan Martinez

<u>Manufacturer</u>	Description	Model #	Asset #	Cal Due
Hewlett Packard	EMC Spectrum Analyzer 30Hz - 40GHz, Sunnyvale (SA40) Red	8564E (84125C)	1148	09-Sep-06
Rohde & Schwarz Rohde & Schwarz	Power Sensor 100uW - 10 Watts Power Meter, Single Channel	NRV-Z53 NRVS	1236 1290	01-Mar-06 09-May-06

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T63391 24 Pages

EMC Test Data

U			
Client:	Microwave Data Systems	Job Number:	J62991
Model:	MDS Series 4 point to point microwave	T-Log Number:	T63325
	link	Account Manager:	Esther Zhu
Contact:	Greg Mills		
Emissions Spec:	FCC part 90	Class:	Radio
Immunity Spec:	-	Environment:	-

EMC Test Data

For The

Microwave Data Systems

Model

MDS Series 4 point to point microwave link

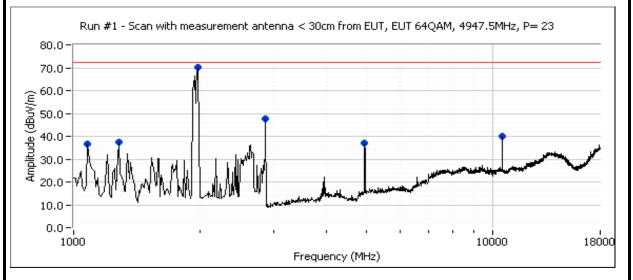
Date of Last Test: 8/2/2006

	ЛІ		EM	C Test Data
Ellic	nt: Microwave Data Syste	ms	Job Number:	
	el: MDS Series 4 point to		T-Log Number:	
	link		Account Manager:	
Conta	ct: Greg Mills		Ŭ	
	ec: FCC part 90		Class:	Radio
Immunity Spe	C: -		Environment:	-
	E	EUT INFORMATIC	ON	
and citywide coverag during operation. Th	e in the United States in t		mally, the EUT would be ring testing to simulate the	placed on a tabletop
		Equipment Under Tes		
Manufacturer	Model	Description	Serial Number	FCC ID
Microwave Data Systems	MDS Series Four	Tower mounted Microwave Transceiver	TBP	E5MDS-Series4
The EUT does not ha for direct outdoor ant		EUT Enclosure esigned to be installed within t	he enclosure of a host. Th	ne EUT is self enclosed
for direct outdoor ant	enna mounting	esigned to be installed within t Modification History		ne EUT is self enclosed
		esigned to be installed within t	he enclosure of a host. Th Modification None	ne EUT is self enclosed
for direct outdoor ant	enna mounting	esigned to be installed within t Modification History		ne EUT is self enclose

Ellio	t		EM	C Test Data	
Client:	Microwave Data Systems		Job Number:	J62991	
	MDS Series 4 point to poi		T-Log Number:	T63325	
	link		Account Manager:	Esther Zhu	
Contact:	Greg Mills				
Emissions Spec:	FCC part 90		Class: Radio		
Immunity Spec:			Environment:	-	
		t Configuration			
Manufacturer	Model	Description	Serial Number	FCC ID	
None					
	-	note Support Equipm		500 12	
Manufacturer Microwave	Model Series 4	Description IDU	Serial Number	FCC ID	
Port	Inte Connected To	erface Cabling and Po	Cable(s)		
		Description	Shielded or Unshield	ded Length(m)	
Antenna power	50 ohm termination	-	-	-	
DC Input	IDU	coaxial	Shielded	1	
Device transmitting cor was placed into a CW r	tinuously at the data rate a	ration During Emission		ncy stability the device	

Client: Microwave	e Data Systems		Jo	b Number: J62991	
Model: MDS Seri	es 4 point to point microwave link	T-Lo	og Number: T63325		
	· ·	Accour	t Manager: Esther Zhu		
Contact: Greg Mills					
Spec: FCC part	90			Class: N/A	
	Radiated Spuriou	ıs Emissio	ns, FCC	Part 90	
Test Specifics					
Objective:	The objective of this test session is specification listed above.	s to perform final qu	alification testin	g of the EUT with respe	ct to t
Data of Tost	3/22/2005	Config. Us			
	Mark Briggs, Juan Martinez SV #1	Config Chan EUT Volta	ge: None ge: 48Vdc to ID	U	
Test Engineer: Test Location: General Test Cor	SV #1	EUT Volta	ge: 48Vdc to ID		
Test Engineer: Test Location: General Test Cor The EUT and all local	SV #1	EUT Volta n the turntable for r	ge: 48Vdc to ID		
Test Engineer: Test Location: General Test Cor The EUT and all local The measurement and	SV #1 nfiguration support equipment were located or tenna was located 3 meters from th	EUT Volta n the turntable for r	ge: 48Vdc to ID		
Test Engineer: Test Location: General Test Cor The EUT and all local The measurement and	SV #1 nfiguration support equipment were located or tenna was located 3 meters from th	EUT Volta n the turntable for r ne EUT.	ge: 48Vdc to ID		
Test Engineer: Test Location: General Test Cor The EUT and all local	SV #1 nfiguration support equipment were located of tenna was located 3 meters from th ons: Temperature: Rel. Humidity:	EUT Volta n the turntable for r ne EUT. 18 °C	ge: 48Vdc to ID		
Test Engineer: Test Location: General Test Cor The EUT and all local The measurement an Ambient Conditio	SV #1 nfiguration support equipment were located of tenna was located 3 meters from th ons: Temperature: Rel. Humidity:	EUT Volta n the turntable for r ne EUT. 18 °C	ge: 48Vdc to ID]

Deviations From The Standard


No deviations were made from the requirements of the standard.

Client:Microwave Data SystemsJob Number:J62991Model:MDS Series 4 point to point microwave linkT-Log Number:T63325Contact:Greg MillsAccount Manager:Esther ZhuSpec:FCC part 90Class:N/A

Run #1: Radiated Spurious Emissions, Transmit Mode: Final Field Strength and Substitution Measurements

Spurious measurements made on the power setting and modulation that gave the highest PSD (64 QAM, highest power setting). Spurious limits based on the lowest output power (17.1 dBm, 0.05W) and the limit is 55+10Log(P) dB below the fundamental signal = 42dB. The field strength limit was based on the -42dB attenuation and the lowest power (17.1dBm), which would be a reference power of -25dBm, field strength of ~ 70.3dBuV/m.

Frequency = 4947.5 MHz, Power setting = 23 (24.2dBm), Modulation = 64 QAM

Preliminary measurements made with measurement antenna < 30cm from the EUT and results extrapolated to 3m using 20log(0.3/3).

Frequency	Level	Pol	FCC 9	0 Note 1	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1078.355	36.5	V	-	-	Peak	-	-	Ambient
1285.066	37.7	V	-	-	Peak	-	-	Ambient
1974.585	70.3	V	-	-	Peak	-	-	GSM/CDMA Cellular ambient
1988.472	70.3	V	-	-	Peak	-	-	GSM/CDMA Cellular ambient
1989.003	70.3	V	-	-	Peak	-	-	GSM/CDMA Cellular ambient
1970.598	70.3	V	-	-	Peak	-	-	GSM/CDMA Cellular ambient
2875.407	47.6	V	-	-	Peak	-	-	Ambient, pulsed signal
4947.500	36.9	V	-	-	Peak	-	-	Fundamental, leakage
10523.70	40.1	V	-	-	Peak	_	-	Ambient, pulsed signal

Client:	Microwave	e Data Sy	/stems					Job Number: J62991
Model:	MDS Serie	es 4 poin	t to point mi		T-Log Number: T63325			
Contact:	Greg Mills						Accou	Int Manager: Esther Zhu
	FCC part 9							Class: N/A
			t a 3m test	distance				
requency	Level	Pol	FCC 9	0 Note 1	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
124.989	41.8	V	70.3	-28.5	AVG	71	1.0	Leakage from IF interface cable
893.655	31.9	V	70.3	-38.4	AVG	242	1.0	Harmonic Noise floor
895.400	32.2	Н	70.3	-38.1	AVG	82	1.0	Harmonic Noise floor
4841.41 125.104	40.5 37.7	H H	70.3 70.3	-29.8 -32.6	AVG AVG	69 337	1.0 1.0	Harmonic Noise floor Leakage from IF interface cable
4841.97	40.4	V	70.3	-32.0	AVG	32	1.0	Harmonic Noise floor
	Aba. 404	<u> </u>						
ote 2:	Above 180	GHz, no (emissions w	vere observ	ed above the	noise tioor		
ote 2:	Above 180	GHz, no (emissions w	vere observ	ed above the			
ote 2:	Above 180	GHz, no (emissions w	vere observ	ed above the	noise tioor		
ote 2:	Above 180	<u>GHz, no o</u>	emissions w	vere observ	ed above the	noise fioor		
ote 2:	Above 180	<u>GHz, no (</u>	emissions w	vere observ	ed above the			
ote 2:	Above 180	<u>GHz, no (</u>	emissions w	vere observ	ed above the			
ote 2:	Above 180	<u>GHz, no (</u>	emissions w	vere observ	ed above the	noise floor		
ote 2:	Above 180	<u>GHz, no (</u>	emissions w	vere observ	ed above the	noise floor		
ote 2:	Above 180	<u>GHz, no (</u>	emissions w	vere observ	ed above the	noise floor		
ote 2:	Above 180	<u>GHz, no (</u>	emissions w	<u>vere observ</u>	ed above the	noise floor		
ote 2:	Above 180	<u> 3Hz, no (</u>	emissions w	vere observ	ed above the	noise floor		
ote 2:	Above 180	<u>3Hz, no (</u>	emissions w	<u>vere observ</u>	ed above the	noise floor		
ote 2:	Above 180	<u> 3Hz, no (</u>	emissions w	vere observ	ed above the	noise floor		
ote 2:	Above 180	<u> 3Hz, no (</u>	emissions w	<u>vere observ</u>	ed above the	noise floor		
ote 2:	Above 180	<u> 3Hz, no (</u>	emissions w	<u>vere observ</u>	ed above the	noise floor		
ote 2:	Above 180	<u> 3Hz, no (</u>	emissions w	vere observ	ed above the			
ote 2:	Above 180	<u> 3Hz, no (</u>	emissions w	<u>vere observ</u>	ed above the	noise floor		
ote 2:	Above 180	<u> 3Hz, no (</u>	emissions w	<u>vere observ</u>	ed above the			
ote 2:	Above 180	<u> 3Hz, no (</u>	emissions w	<u>vere observ</u>	ed above the			
ote 2:	Above 180	<u> 3Hz, no (</u>	emissions w	<u>vere observ</u>	ed above the			

1125.034

1125.029

48.4

40.2

V

Н

70.3

70.3

-21.9

-30.1

AVG

AVG

58

23

1.0

1.0

Leakage from IF interface cable

Leakage from IF interface cable

E	Elliott	EM	C Test Data
Client:	Microwave Data Systems	Job Number:	J62991
		T-Log Number:	T63325
Model:	MDS Series 4 point to point microwave link	Account Manager:	Esther Zhu
Contact:	Greg Mills		
Spec:	FCC part 90	Class:	N/A
Note 1: Note 2:	The field strength limit in the tables above was calculated fro the free space propagation equation: $E=\sqrt{(30PG)/d}$. This limit the ground plane and, for erp limits, the dipole gain (2.2dBi) I than 20dB of margin relative to this field strength limit is deter Above 18GHz, no emissions were observed above the noise	it is conservative - it does not on has not been included. The ein rmined using substitution meas	onsider the presence of p for all signals with less

6	Elliott	EMC Test Data			
Client:	Microwave Data Systems	Job Number:	J62991		
Model	MDS Series 4 point to point microwave link	T-Log Number:	T63325		
Model.	MDS Series 4 point to point microwave link	Account Manager:	Esther Zhu		
Contact:	Greg Mills				
Spec:	FCC part 90	Class:	Radio		

Antenna Conducted Emissions

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 3/22/2005 Test Engineer: Mark Briggs Test Location: SV #1 Config. Used: 1 Config Change: None EUT Voltage: 48Vdc to IDU

General Test Configuration

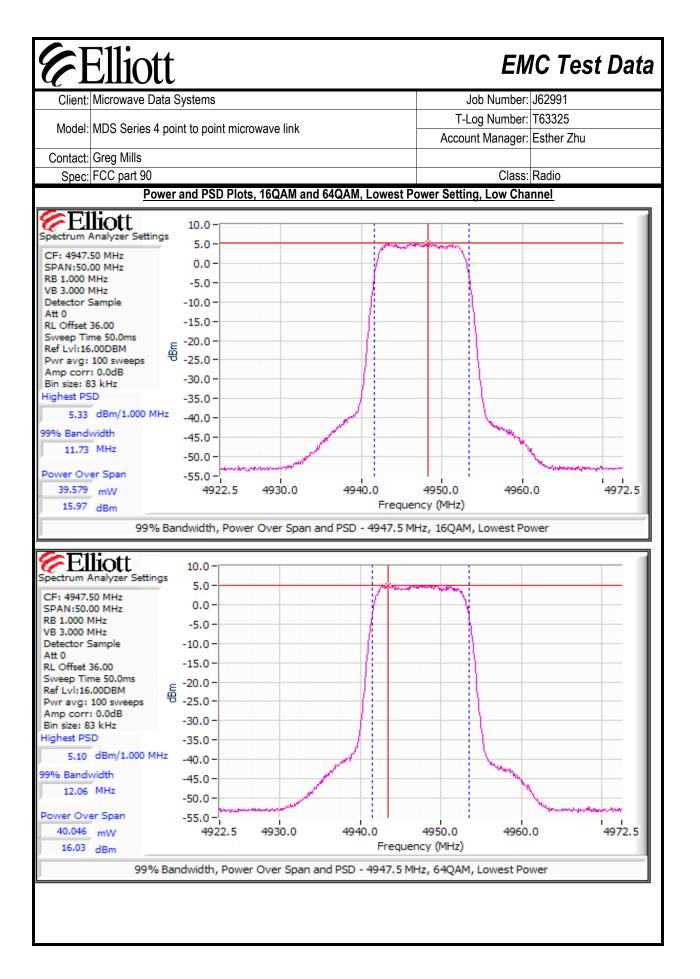
Connected the radios antenna port directly to the spetrum analyzer. Used external attenuation to protect the analyzer input. Any losses were included into the measurements.

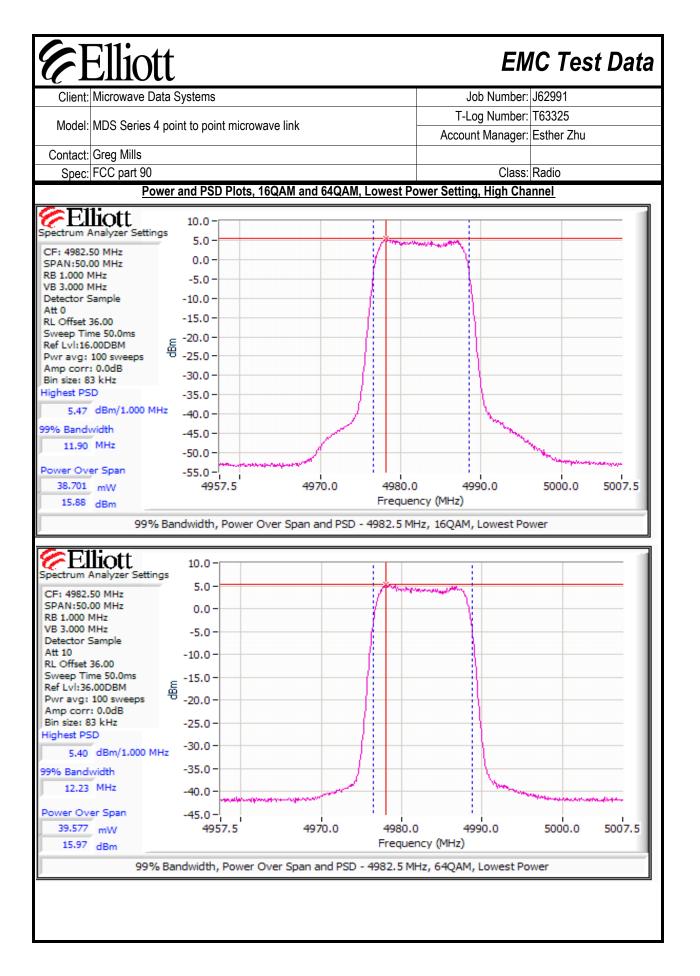
For the out of band measurements the limit is based on the following: 20.1 dBm (Average Power) and Per 90.210 (m)(6) 50 dB attenuation. Per this emissions must be below 19 dBm - 50 dB = -31 dBm. (Note: 19 dBm was selected as this gives the worse case attenuation for both Spurious conducted and radiated).

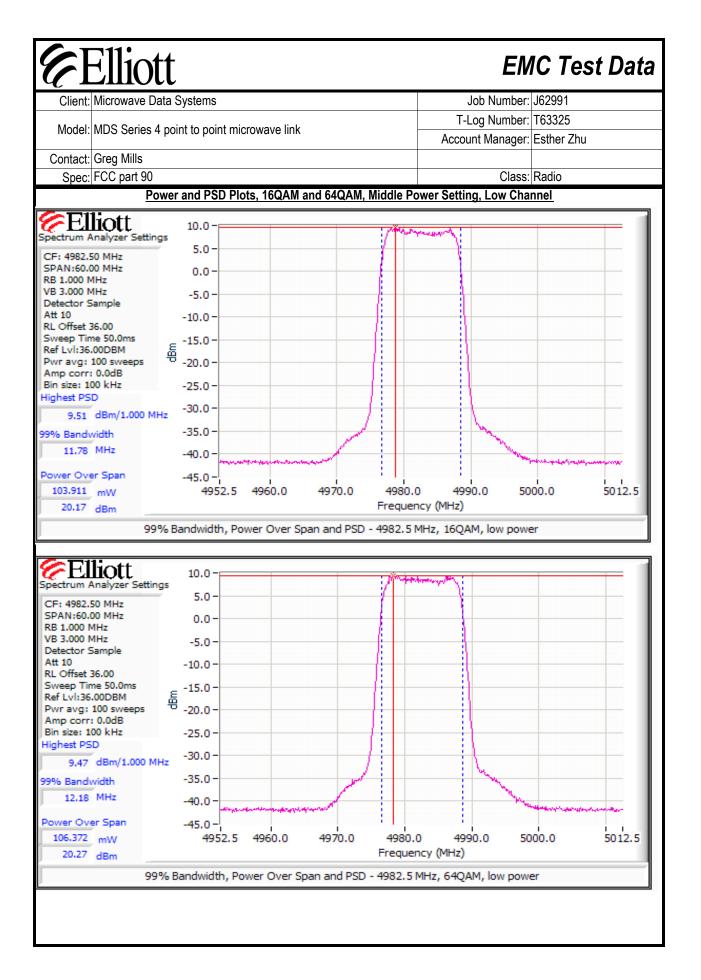
Ambient Conditions:	Temperature:	19 °C
	Rel. Humidity:	48 %

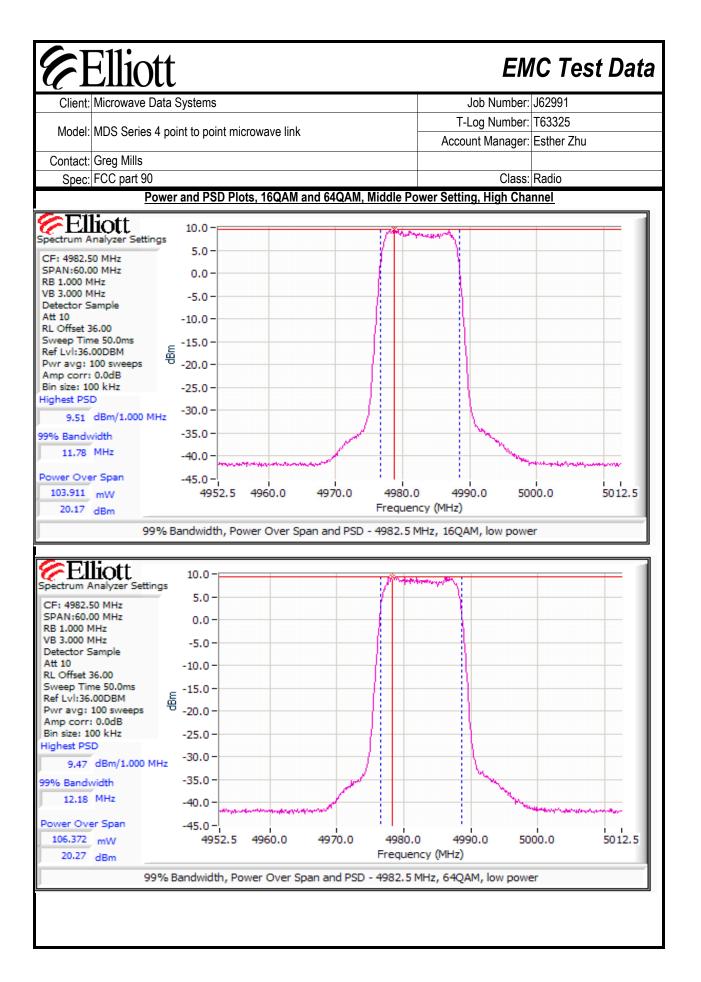
Summary of Results

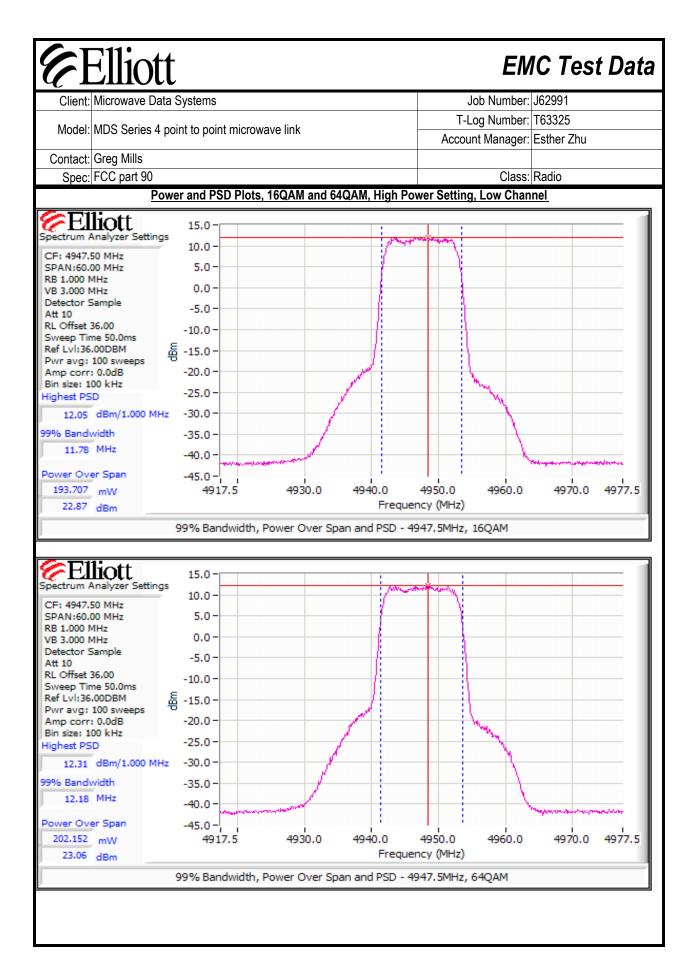
Run #	Test Performed	Limit	Result	Margin
1	Power Output & PSD	Part 90	Pass	Refer to run
1	Occupied Bandwith	FCC 90.210 (Mask M)	Pass	Refer to plots
2	Out of Band	Part 90 - high power	Pass	-40.8dBm (noise floor), limit = -25dBm

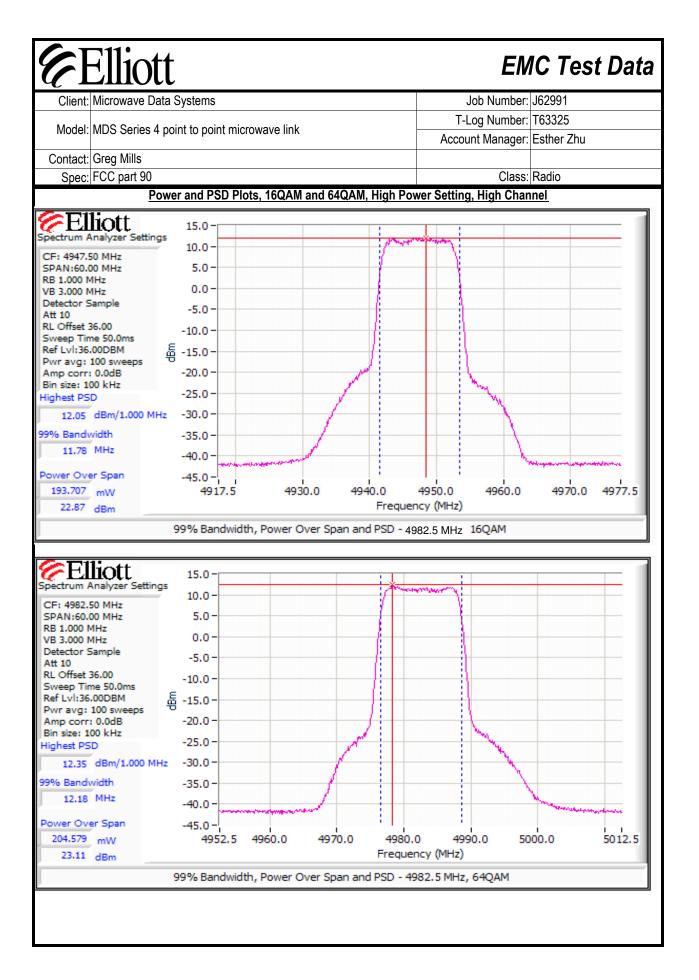

Modifications Made During Testing:

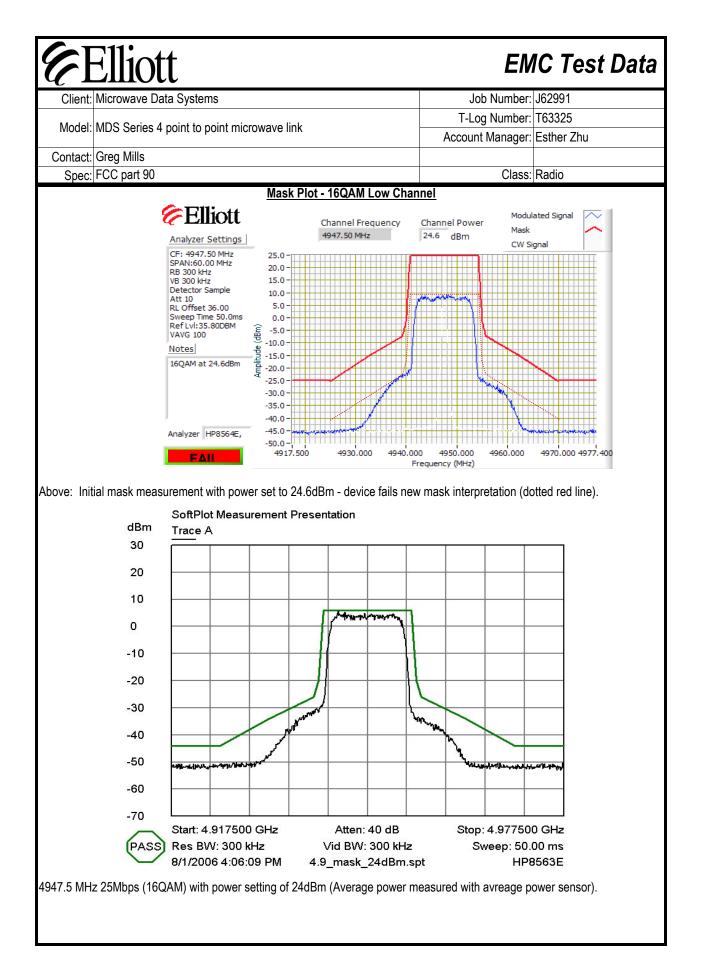

No modifications were made to the EUT during testing

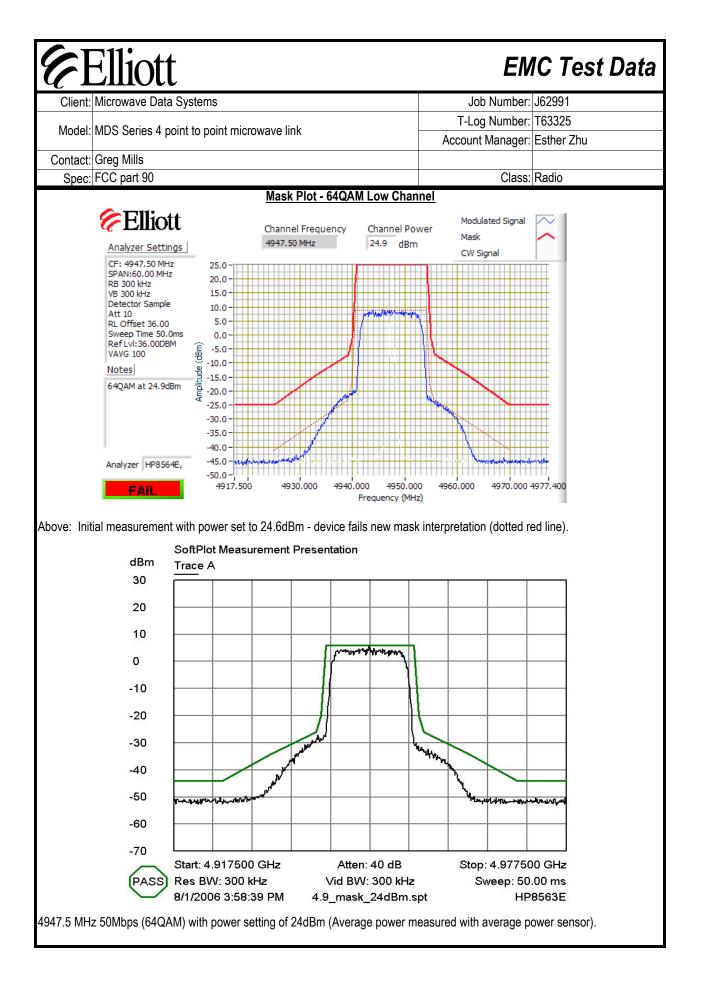

Deviations From The Standard

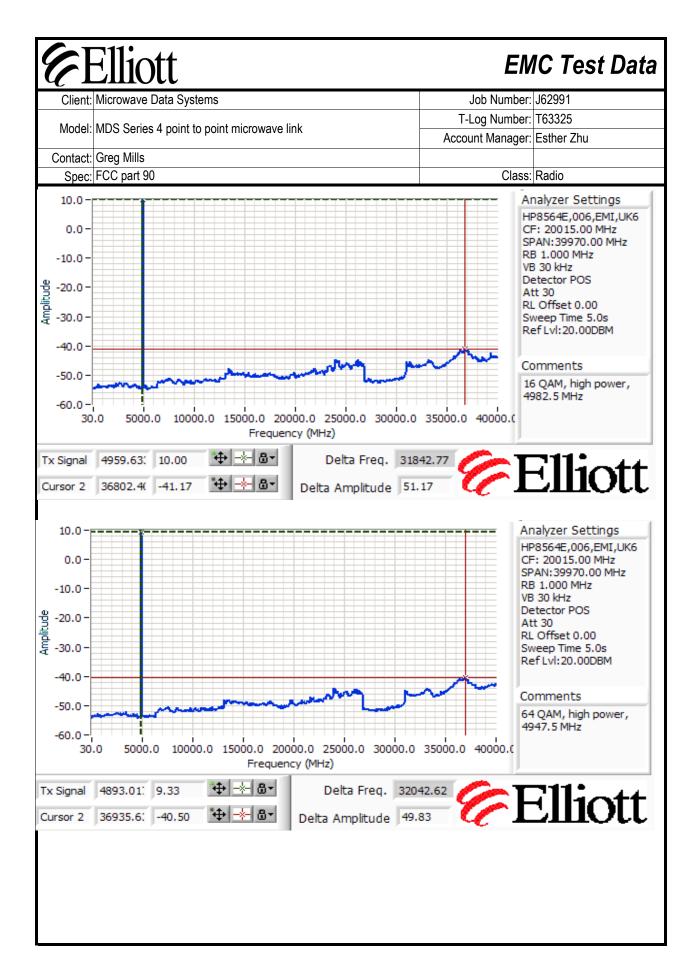

No deviations were made from the requirements of the standard.

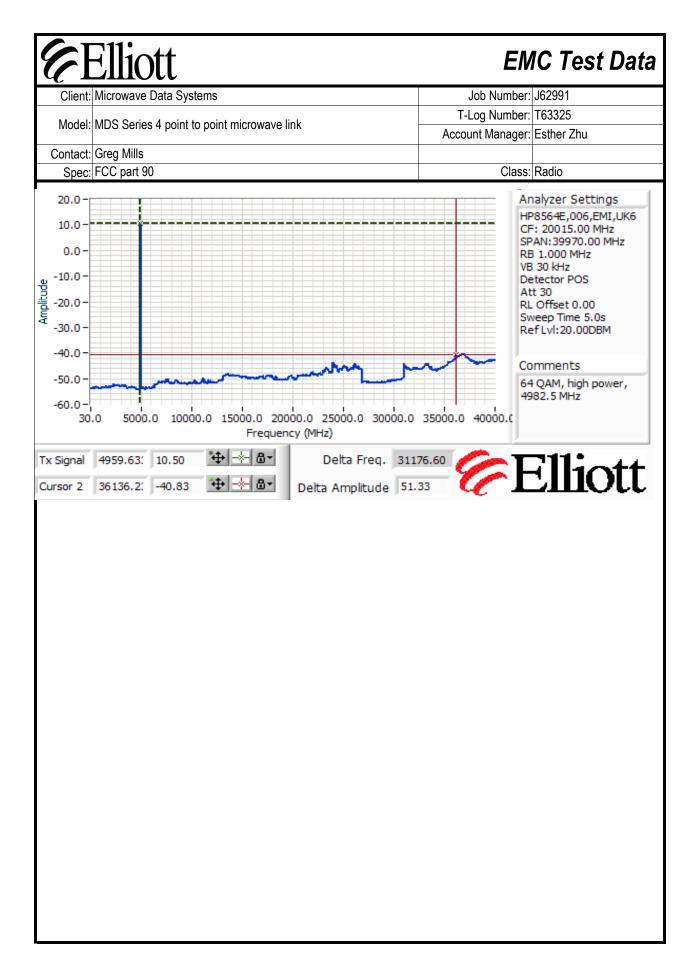

Clien	t: Microwav	e Data S	ystems				J	ob Number:	J62991		
			·				T-Log Number: T63325				
Mode	l: MDS Seri	es 4 poin	t to point m	icrowave lin	k		Account Manager: Esther Zhu				
Contac	t: Greg Mills	6									
	c: FCC part							Class:	Radio		
Measuren	eirp with an	at three	different pov	wer settings	to demonsti	rate that the s nd 33.1dBi.	•	•	-	ximum is limited by	
	Freq.	Gmax	Output	Power	Limit	PSD ²	PSD limit	Modulation	Setting	Mask	
ЗW	(MHz)	dBi	Avg ¹	Avg ²	(dBm)	(dBm)	(MHz)	modulation	ootang	Maak	
3.700	4947.5	39.5	17.4	16.0	18.3	5.3	7.5	16QAM	16.0		
2.500	4947.5	39.5	17.4	16.0	18.3	5.1	7.5	64QAM	16.0	-	
2.000	4982.5	39.5	17.1	15.9	18.3	5.5	7.5	16QAM	16.0	-	
	4982.5	39.5	17.2	16.0	18.3	5.4	7.5	64QAM	16.0	-	
	4947.5	36.1	21.7	19.9	21.7	9.1	10.9	16QAM	20.0	-	
	4947.5	36.1	21.1	20.1	21.7	9.3	10.9	64QAM	20.0	-	
	4982.5	36.1	21.4	20.2	21.7	9.5	10.9	16QAM	20.0	-	
	4982.5	36.1	21.0	20.3	21.7	9.5	10.9	64QAM	20.0	-	
	4947.5	33.1	24.6	22.9	24.7	12.1	13.9	16QAM	23.0	FAIL	
	4947.5	33.1	24.6	23.1	24.7	12.3	13.9	64QAM	23.0	FAIL	
	4947.5	33.1	24.0	22.2	24.7	11.7	13.9	16QAM	23.0	Pass, note	
	4947.5	33.1	24.0	22.5	24.7	11.6	13.9	64QAM	23.0	Pass, note	
	4982.5	33.1	24.4	22.9	24.7	12.2	13.9	16QAM	23.0	Pass	
	4982.5	33.1	24.4	23.1	24.7	12.4	13.9	64QAM	23.0	Pass	
lote 1	Average r	ower me	asured usir	ng a power r	neter with av	verage powe	r sensor				
Note 2	Average p	ower me	asured fror	n integration	over emiss	ion bandwidt al density tak	h with a spe		er, RB=1MI	Hz, VB=3MH	
Note 3	Setting is	the powe	er setting us	ed in the co	ntrol softwar	e and is inclu	uded for refe	erence only			
Note 4	57.8dBm dish, G=3 setting for	eirp. Dev 0.5; 2'dis the 8' dia	vice uses th h, G=27.1. sh, one for t	e following a Power and the 6' dish a	antennas: 8' PSD measu nd one for th	p-point applic dish, G=39.8 rements wer ne remaining	5dBi; 6' dish, e evaluated antennas.	G=36.1dBi; at three pow	4' dish, G=3 er settings (33.1dBi; 3' one power	
Note 5	measured The chan power ave	l using Rl nel powe eraging.	B=VB=300k er detailed i It is include	Hz (BW > 1 n the mask d for referen	% of 15 MH plot is obtrai ice only.	ots and use the section of the secti	ideo averag mask plot v	ing enabled. vhich uses vi	deo averagi	ng and not	
lote 6	and modu system (5	llation tha 1dBm eir	at gave the p).	highest PSD) (64 QAM, h	ng only. Spun nighest powe	r setting). S	purious limit	s based on t	the lowest ei	
lote 7	measuren higher pov	nents we wer settir	re made on	the modulat d mask M - t	tion that gav	ower setting the highes represent wo	t PSD (64 Q	AM, highest	power settir	ng) and at the	











EMC Test Data Job Number: J62991 Client: Microwave Data Systems T-Log Number: T63325 Model: MDS Series 4 point to point microwave link Account Manager: Esther Zhu Contact: Greg Mills Spec: FCC part 90 Class: Radio Run #2: Out of Band Spurious Emissions (Antenna Port), 30MHz - 40 GHz The spurious limits were based on the lowest output power (17.1 dBm, 0.05W). This gave a limit of 42 dBc below the fundamental signal. The limit would, therefore, be [17.1 - 42] = -25dBm. The measurements were made with the output power set at nominal 25dBm average. As the device met the limit for the lowest power setting at the highest power setting, measurements were not made at other power settings. Measurements were made using RB=1MHz and VB=30kHz. The RB was greater than 1% of the signal bandwidth. Analyzer Settings 10.0 HP8564E,006,EMI,UK6 0.0 CF: 20015.00 MHz SPAN: 39970.00 MHz RB 1.000 MHz -10.0 VB 30 kHz Detector POS Amplitude -20.0 Att 30 RL Offset 0.00 -30.0 Sweep Time 5.0s RefLvl:20.00DBM -40.0 Comments -50.0 16 QAM, high power, 4947.5 MHz -60.0 10000.0 15000.0 20000.0 25000.0 30000.0 35000.0 40000.0 5000.0 30.0 Frequency (MHz) ÷ *- 8-Tx Signal 4959.63: 8.00 Delta Freq. 32242.47 Elliott Cursor 2 37202.1(-40.83 *-|8-Delta Amplitude 48.83

E I	Elliott	EM	C Test Data
Client:	Microwave Data Systems	Job Number:	J62991
Madal	MDS Series 4 point to point microwave link	T-Log Number:	T63325
MOUEI.	NDS Series 4 point to point microwave link	Account Manager:	Esther Zhu
Contact:	Greg Mills		
Spec:	FCC part 90	Class:	Radio

Radio Performance Test - Part 90 Frequency Stability

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 2/23/2006 Test Engineer: Jmartinez/Mark Briggs Test Location: Environmental Chamber Config. Used: 1 Config Change: None EUT Voltage: 48Vdc to IDU

General Test Configuration

The EUT's rf port was connected to the measurement instrument's rf port, via an attenuator or dc-block if necessary. EUT was place inside an environmental chamber.

Summary of Results

Run #	Test Performed	Limit	Result	Value / Margin
1,2	Frequency Stability Over Temperature and Voltage	Part 90	Pass	+0.4/-0.1ppm

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Model: MDS Series 4 point to point microwave link Account Manager: Esther Contact: Greg Mills Class: Radio n #1: Temperature Vs. Frequency Class: Radio n #1: Temperature Vs. Frequency Frequency at T Drift Drift (°C) (MHz) (MHz) (Hz) (ppm) -30 4947.501017 4947.500552 -465 -0.1 -20 4947.501017 4947.500552 -465 -0.1 -10 4947.501017 4947.501634 617 0.1 0 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501059 42 0.0 10 4947.501017 4947.501017 0 0.0 20 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.503025 2008 0.4 40 4947.501017 4947.503025	Account Manager: Esther Zhu Class: Radio quency Class: Radio frequency at T Drift Drift (ppm) 4947.500592 -425 -0.1 4947.500552 -465 4947.501634 617 0.1 4947.501634 617 0.1 4947.501059 42 0.0 4947.501059 42 0.0 4947.501059 42 0.0 4947.501017 0 0.0 4947.501059 542 0.1 4947.5010559 542 0.1 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm equency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal. ey 48 Vdc	Model: MDS Series 4 point to point microwave link Account Manager: Esther Zhu Contact: Greg Mills Class: Radio Spec: FCC part 90 Class: Radio n#1: Temperature Vs. Frequency (MHz) (Hz) (ppm) -30 4947.501017 4947.500592 -425 -0.1 -20 4947.501017 4947.500552 -465 -0.1 -10 4947.501017 4947.501334 317 0.1 0 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501059 542 0.1 10 4947.501017 4947.501025 2008 0.4 40 4947.501017 4947.501025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm Note 1: Ref. Frequency: Frequency measured at 20°C and nominal input voltag		: Microwave Data Sy	stems		Job Number:	J62991
Model: MUSS Series 4 point to point microwave link Account Manager: Esther Contact: Greg Mills Class: Radio spec: FCC part 90 Class: Radio un #1: Temperature Vs. Frequency Class: Radio T Ref Frequency ¹ Frequency at T Drift Drift (°C) (MHz) (MHz) (Hz) (ppm) -30 4947.501017 4947.500552 -465 -0.1 -20 4947.501017 4947.501634 617 0.1 -10 4947.501017 4947.501334 317 0.1 0 4947.501017 4947.501017 0 0.0 20 4947.501017 4947.501017 0 0.0 20 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.501559 542 0.1 50 4947.501017 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm +0.	Account Manager: Esther Zhu Class: Radio quency Class: Frequency at T Drift (MHz) (Hz) 4947.500592 -425 -0.1 4947.501634 4947.501634 617 4947.501634 617 4947.501059 42 0.0 4947.501059 422 0.0 4947.501059 42 0.0 4947.50100 4947.50100 83 0.0 4947.501259 542 0.1 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm requency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal. e with RB=300Hz, VB=3MHz, Span = 5kHz. reg< <p>48 Vdc Frequency Drift Drift</p>	Model: MDS Series 4 point to point microwave link Account Manager. Esther Zhu Contact: Greg Mills Class: Radio spec: FCC part 90 Class: Radio m#1: Temperature Vs. Frequency Frequency at T Drift Drift (°C) (MHz) (MHz) (Hz) (ppm) -30 4947.501017 4947.500552 -0.1 -20 4947.501017 4947.501634 617 0.1 0 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.501017 0 0.0 20 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.50102 83 0.0 40 4947.501017 4947.503025 2008 0.4 50 4947.501017 4947.503025 2008 0.4					T-Log Number:	T63325
Contact: Greg Mills Class: Radio Spec: FCC part 90 Class: Radio un #1: Temperature Vs. Frequency T Ref Frequency ¹ Frequency at T Drift Drift (ppm) -30 4947.501017 4947.500592 -425 -0.1 -20 4947.501017 4947.500552 -465 -0.1 -10 4947.501017 4947.501634 617 0.1 0 4947.501017 4947.501334 317 0.1 10 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.501559 542 0.1 50 4947.501017 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm	Frequency at T Drift Drift (MHz) (Hz) (ppm) 4947.500592 -425 -0.1 4947.500552 -465 -0.1 4947.501634 617 0.1 4947.50159 42 0.0 4947.501059 42 0.0 4947.501059 42 0.0 4947.501059 42 0.0 4947.501017 0 0.0 4947.50159 542 0.1 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm equency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal. ey 48 Vdc Frequency Drift Drift Drift	Contact: Greg Mills Class: Radio spec: FCC part 90 Class: Radio nn #1: Temperature Vs. Frequency Class: Radio T Ref Frequency ¹ Frequency at T Drift Drift (°C) (MHz) (MHz) (Hz) (ppm) -30 4947.501017 4947.500552 -0.1 -20 4947.501017 4947.501334 617 0.1 0 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501059 542 0.1 30 4947.501017 4947.503025 2008 0.4 40 4947.501017 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm Note 1: Ref. Frequency: Frequency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal Measurements made with RB=300Hz,	Model	: MDS Series 4 point	to point microwave link			
Spec: FCC part 90 Class: Radio un #1: Temperature Vs. Frequency Frequency ¹ Frequency at T Drift Drift Drift (ppm) -30 4947.501017 4947.500592 -425 -0.1 -20 4947.501017 4947.500552 -465 -0.1 -10 4947.501017 4947.501634 617 0.1 0 4947.501017 4947.501334 317 0.1 10 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501017 0 0.1 10 4947.501017 4947.501017 0 0.0 20 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.501025 2008 0.4 50 4947.501017 4947.503025 2008 0.4 50 4947.501017 4947.503025 2008 0.4 <	Frequency Frequency at T Drift Drift prift prift <td>Spec: FCC part 90 Class: Radio In #1: Temperature Vs. Frequency Image: Temperature Vs. Frequency Image: Temperature Vs. Frequency Image: Temperature Vs. Frequency T Ref Frequency¹ Frequency at T Drift Drift (ppm) -30 4947.501017 4947.500592 -425 -0.1 -20 4947.501017 4947.501552 -465 -0.1 -10 4947.501017 4947.501334 617 0.1 0 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.50159 542 0.1 10 4947.501017 4947.50159 542 0.1 20 4947.501017 4947.50159 542 0.1 50 4947.501017 4947.501559 542 0.1 50 4947.501017 4947.501559 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm Note 1: Ref. Frequency: Frequency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal Measurements m</td> <td>Contact</td> <td>Grea Mills</td> <td></td> <td></td> <td>5</td> <td></td>	Spec: FCC part 90 Class: Radio In #1: Temperature Vs. Frequency Image: Temperature Vs. Frequency Image: Temperature Vs. Frequency Image: Temperature Vs. Frequency T Ref Frequency ¹ Frequency at T Drift Drift (ppm) -30 4947.501017 4947.500592 -425 -0.1 -20 4947.501017 4947.501552 -465 -0.1 -10 4947.501017 4947.501334 617 0.1 0 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.50159 542 0.1 10 4947.501017 4947.50159 542 0.1 20 4947.501017 4947.50159 542 0.1 50 4947.501017 4947.501559 542 0.1 50 4947.501017 4947.501559 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm Note 1: Ref. Frequency: Frequency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal Measurements m	Contact	Grea Mills			5	
Image: second	Frequency Drift Drift (MHz) (Hz) (ppm) 4947.500592 -425 -0.1 4947.500552 -465 -0.1 4947.501634 617 0.1 4947.501634 617 0.1 4947.501634 617 0.1 4947.501059 42 0.0 4947.501059 42 0.0 4947.501017 0 0.0 4947.50159 542 0.1 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm equency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal. ewith RB=300Hz, VB=3MHz, Span = 5kHz. ey 48 Vdc Frequency Drift Drift Drift	Im #1: Temperature Vs. Frequency T Ref Frequency ¹ Frequency at T Drift Drift (°C) (MHz) (MHz) (Hz) (ppm) -30 4947.501017 4947.500592 -425 -0.1 -20 4947.501017 4947.500552 -465 -0.1 -10 4947.501017 4947.501334 617 0.1 0 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.501017 0 0.0 20 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.501018 83 0.0 40 4947.501017 4947.501025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm Note 1: Ref. Frequency: Frequency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal Measurements made with		-			Class	Radio
(°C) (MHz) (MHz) (Hz) (ppm) -30 4947.501017 4947.500592 -425 -0.1 -20 4947.501017 4947.500552 -465 -0.1 -10 4947.501017 4947.501634 617 0.1 0 4947.501017 4947.501334 317 0.1 10 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.501559 542 0.1 50 4947.501017 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm	Frequency at T Drift Drift (MHz) (Hz) (ppm) 4947.500592 -425 -0.1 4947.500552 -465 -0.1 4947.501634 617 0.1 4947.501334 317 0.1 4947.501059 42 0.0 4947.501059 42 0.0 4947.501017 0 0.0 4947.50159 542 0.1 4947.501559 542 0.1 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm equency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal. e e with RB=300Hz, VB=3MHz, Span = 5kHz. sy 48 Vdc Frequency Drift Drift Drift Comment	T Ref Frequency ¹ Frequency at T Drift Drift Drift prift prift	0,000					
(°C) (MHz) (MHz) (Hz) (ppm) -30 4947.501017 4947.500592 -425 -0.1 -20 4947.501017 4947.500552 -465 -0.1 -10 4947.501017 4947.501634 617 0.1 0 4947.501017 4947.501334 317 0.1 10 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.501559 542 0.1 50 4947.501017 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm	(MHz) (Hz) (ppm) 4947.500592 -425 -0.1 4947.500552 -465 -0.1 4947.501634 617 0.1 4947.501034 317 0.1 4947.501059 42 0.0 4947.501059 42 0.0 4947.501017 0 0.0 4947.501025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm	(°C) (MHz) (Hz) (ppm) -30 4947.501017 4947.500592 -425 -0.1 -20 4947.501017 4947.500552 -465 -0.1 -10 4947.501017 4947.501634 617 0.1 0 4947.501017 4947.501334 317 0.1 10 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.50100 83 0.0 40 4947.501017 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm Note 1: Ref. Frequency: Frequency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal Measurements made with RB=300Hz, VB=3MHz, Span = 5kHz. +0.4/-0.1ppm Immatrix Nominal Voltage is: 48 Vdc (Hz) (ppm)	un #1: 1	Femperature Vs. Fre	quency			
(°C) (MHz) (MHz) (Hz) (ppm) -30 4947.501017 4947.500592 -425 -0.1 -20 4947.501017 4947.500552 -465 -0.1 -10 4947.501017 4947.501634 617 0.1 0 4947.501017 4947.501334 317 0.1 10 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.501559 542 0.1 50 4947.501017 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm	(MHz) (Hz) (ppm) 4947.500592 -425 -0.1 4947.500552 -465 -0.1 4947.501634 617 0.1 4947.501034 317 0.1 4947.501059 42 0.0 4947.501059 42 0.0 4947.501017 0 0.0 4947.501025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm	(°C) (MHz) (Hz) (ppm) -30 4947.501017 4947.500592 -425 -0.1 -20 4947.501017 4947.500552 -465 -0.1 -10 4947.501017 4947.501634 617 0.1 0 4947.501017 4947.501334 317 0.1 10 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.50100 83 0.0 40 4947.501017 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm Note 1: Ref. Frequency: Frequency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal Measurements made with RB=300Hz, VB=3MHz, Span = 5kHz. +0.4/-0.1ppm Immatrix Nominal Voltage is: 48 Vdc (Hz) (ppm)						-
-30 4947.501017 4947.500592 -425 -0.1 -20 4947.501017 4947.500552 -465 -0.1 -10 4947.501017 4947.501634 617 0.1 0 4947.501017 4947.501334 317 0.1 10 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.501100 83 0.0 40 4947.501017 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz Frequency drift: +2008/-465Hz	4947.500592 -425 -0.1 4947.500552 -465 -0.1 4947.501634 617 0.1 4947.501334 317 0.1 4947.501059 42 0.0 4947.501059 42 0.0 4947.501017 0 0.0 4947.501059 42 0.1 4947.501017 0 0.0 4947.501559 542 0.1 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm equency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal. e e with RB=300Hz, VB=3MHz, Span = 5kHz. Sy 48 Vdc Frequency Drift Drift Drift	-30 4947.501017 4947.500592 -425 -0.1 -20 4947.501017 4947.500552 -465 -0.1 -10 4947.501017 4947.501634 617 0.1 0 4947.501017 4947.501334 317 0.1 0 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501017 0 0.0 20 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.501025 2008 0.4 4947.501017 4947.503025 2008 0.4 50 4947.501017 4947.503025 2008 0.4 $Frequency drift: +2008/-465Hz +0.4/-0.1ppm Note 1: Ref. Frequency: Frequency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal Measurements made with RB=300Hz, VB=3MHz, Span = 5kHz. Im#2 Voltage Vs. Fr$	Т	Ref Frequency ¹	Frequency at T	<u>Drift</u>	<u>Drift</u>	
-20 4947.501017 4947.500552 -465 -0.1 -10 4947.501017 4947.501634 617 0.1 0 4947.501017 4947.501334 317 0.1 10 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.501100 83 0.0 40 4947.501017 4947.501559 542 0.1 50 4947.501017 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm	4947.500552 -465 -0.1 4947.501634 617 0.1 4947.501334 317 0.1 4947.501059 42 0.0 4947.501017 0 0.0 4947.501017 0 0.0 4947.501017 0 0.0 4947.501559 542 0.1 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm equency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal. e e with RB=300Hz, VB=3MHz, Span = 5kHz. - Sy 48 Vdc Frequency Drift Drift Drift Comment	-20 4947.501017 4947.500552 -465 -0.1 -10 4947.501017 4947.501634 617 0.1 0 4947.501017 4947.501334 317 0.1 10 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.50159 542 0.1 50 4947.501017 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm Note 1: Ref. Frequency: Frequency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal Measurements made with RB=300Hz, VB=3MHz, Span = 5kHz. In #2: Voltage Vs. Frequency Mote 1: Ref. Frequency ¹ Frequency Drift Drift Comment (DC) (MHz) (MHz) (Hz) (ppm) 85% 4947.501017 4947.501184 167 0.0 40.8 v 115% 4947.501017 4947.501184 167 0.0 55.2 v		$\langle \rangle$	· · · · ·		(ppm)	
-10 4947.501017 4947.501634 617 0.1 0 4947.501017 4947.501334 317 0.1 10 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.501100 83 0.0 40 4947.501017 4947.501559 542 0.1 50 4947.501017 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz Frequency drift: +2008/-465Hz	4947.501634 617 0.1 4947.501334 317 0.1 4947.501059 42 0.0 4947.501059 42 0.0 4947.501017 0 0.0 4947.50159 542 0.1 4947.50159 542 0.1 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm equency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal. e with RB=300Hz, VB=3MHz, Span = 5kHz. Sy 48 Vdc Vdc	-10 4947.501017 4947.501634 617 0.1 0 4947.501017 4947.501334 317 0.1 10 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.501559 542 0.1 50 4947.501017 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm Note 1: Ref. Frequency: Frequency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal Measurements made with RB=300Hz, VB=3MHz, Span = 5kHz. In #2: Voltage Vs. Frequency Mote 1: Ref Frequency ¹ Frequency Drift Drift Drift Comment (Dc) (MHz) (MHz) (Hz) (ppm) 40.8 v 85% 4947.501017 4947.501184 167 0.0 40.8 v 115% 4947.501017 4947.501184						
0 4947.501017 4947.501334 317 0.1 10 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.501559 542 0.1 40 4947.501017 4947.503025 2008 0.4 50 4947.501017 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz Note 1: Ref. Frequency: Frequency measured at 20°C and nominal input voltage(s). EUT transmitting CW	4947.501334 317 0.1 4947.501059 42 0.0 4947.501017 0 0.0 4947.50100 83 0.0 4947.501559 542 0.1 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm equency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal. e with RB=300Hz, VB=3MHz, Span = 5kHz. Sy 48 Vdc Frequency Drift Drift Drift	0 4947.501017 4947.501334 317 0.1 10 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.50100 83 0.0 40 4947.501017 4947.501559 542 0.1 50 4947.501017 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm Note 1: Ref. Frequency: Frequency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal Measurements made with RB=300Hz, VB=3MHz, Span = 5kHz. In #2: Voltage Vs. Frequency Motift Difft Difft (Dc) (MHz) (MHz) (Dc) (MHz) (MHz) (ppm) 85% 4947.501017 4947.501184 167 0.0 40.8 v 115% 4947.501017 4947.501184 167 0.0 55.2 v						
10 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.501100 83 0.0 40 4947.501017 4947.501559 542 0.1 50 4947.501017 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz Note 1: Ref. Frequency: Frequency measured at 20°C and nominal input voltage(s). EUT transmitting CW	4947.501059 42 0.0 4947.501017 0 0.0 4947.501100 83 0.0 4947.501559 542 0.1 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm equency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal. e with RB=300Hz, VB=3MHz, Span = 5kHz.	10 4947.501017 4947.501059 42 0.0 20 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.50100 83 0.0 40 4947.501017 4947.501559 542 0.1 50 4947.501017 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm Note 1: Ref. Frequency: Frequency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal Measurements made with RB=300Hz, VB=3MHz, Span = 5kHz. In #2: Voltage Vs. Frequency Motinal Voltage is: 48 Vdc 12 MHz) (Hz) (ppm) 85% 4947.501017 4947.501184 167 0.0 40.8 v 115% 4947.501017 4947.501184 167 0.0 55.2 v						
20 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.501100 83 0.0 40 4947.501017 4947.501559 542 0.1 50 4947.501017 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz Note 1: Ref. Frequency: Frequency measured at 20°C and nominal input voltage(s). EUT transmitting CW	4947.501017 0 0.0 4947.501100 83 0.0 4947.501559 542 0.1 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm equency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal. e with RB=300Hz, VB=3MHz, Span = 5kHz. Ey 48 Vdc Frequency Drift Drift Comment	20 4947.501017 4947.501017 0 0.0 30 4947.501017 4947.501100 83 0.0 40 4947.501017 4947.501559 542 0.1 50 4947.501017 4947.503025 2008 0.4 50 4947.501017 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm Note 1: Ref. Frequency: Frequency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal Measurements made with RB=300Hz, VB=3MHz, Span = 5kHz. Im #2: Voltage Vs. Frequency 48 Vdc Lage Ref Frequency ¹ Frequency Drift Drift Drift Comment (Dc) (MHz) (MHz) (Hz) (ppm) 0.0 40.8 v 85% 4947.501017 4947.501184 167 0.0 40.8 v 115% 4947.501017 4947.501184 167 0.0 55.2 v						4
30 4947.501017 4947.501100 83 0.0 40 4947.501017 4947.501559 542 0.1 50 4947.501017 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz Hote 1: Ref. Frequency: Frequency measured at 20°C and nominal input voltage(s). EUT transmitting CW	4947.501100 83 0.0 4947.501559 542 0.1 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm equency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal. e with RB=300Hz, VB=3MHz, Span = 5kHz. Sy 48 Vdc Frequency Drift Drift Drift Comment	30 4947.501017 4947.501100 83 0.0 40 4947.501017 4947.501559 542 0.1 50 4947.501017 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm Note 1: Ref. Frequency: Frequency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal Measurements made with RB=300Hz, VB=3MHz, Span = 5kHz. Im #2: Voltage Vs. Frequency 48 Vdc Itage Ref Frequency ¹ Frequency Drift Drift Drift Comment (Dc) (MHz) (MHz) (Hz) (ppm) 40.8 v 85% 4947.501017 4947.501184 167 0.0 40.8 v 115% 4947.501017 4947.501184 167 0.0 55.2 v						4
40 4947.501017 4947.501559 542 0.1 50 4947.501017 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm	4947.501559 542 0.1 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm equency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal. e with RB=300Hz, VB=3MHz, Span = 5kHz. Sy 48 Vdc Frequency Drift Drift Drift Comment	40 4947.501017 4947.501559 542 0.1 50 4947.501017 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm Note 1: Ref. Frequency: Frequency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal Measurements made with RB=300Hz, VB=3MHz, Span = 5kHz. In #2: Voltage Vs. Frequency Nominal Voltage is: 48 Vdc Itage Ref Frequency ¹ Frequency Drift Drift Drift Comment (Dc) (MHz) (MHz) (Hz) (ppm) 0.0 40.8 v 85% 4947.501017 4947.501184 167 0.0 55.2 v	20	4947.501017				
50 4947.501017 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz Note 1: Ref. Frequency: Frequency measured at 20°C and nominal input voltage(s). EUT transmitting CW	4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm equency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal. e with RB=300Hz, VB=3MHz, Span = 5kHz. Sy 48 Vdc Frequency Drift Drift Drift	50 4947.501017 4947.503025 2008 0.4 Frequency drift: +2008/-465Hz +0.4/-0.1ppm Note 1: Ref. Frequency: Frequency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal Measurements made with RB=300Hz, VB=3MHz, Span = 5kHz. EUT transmitting CW signal Voltage Vs. Frequency In #2: Voltage Vs. Frequency 48 Vdc Itage Ref Frequency ¹ Frequency Drift Drift Comment (Dc) (MHz) (MHz) (Hz) (ppm) 0.0 40.8 v 85% 4947.501017 4947.501184 167 0.0 55.2 v						
Frequency drift: +2008/-465Hz +0.4/-0.1ppm Note 1: Ref. Frequency: Frequency measured at 20°C and nominal input voltage(s). EUT transmitting CW	Frequency drift: +2008/-465Hz +0.4/-0.1ppm equency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal. e with RB=300Hz, VB=3MHz, Span = 5kHz. ey 48 Vdc Frequency Drift Drift Drift Comment	Frequency drift: +2008/-465Hz +0.4/-0.1ppm Note 1: Ref. Frequency: Frequency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal Measurements made with RB=300Hz, VB=3MHz, Span = 5kHz. Itage EUT transmitting CW signal VB=3MHz, Span = 5kHz. In #2: Voltage Vs. Frequency Itage Ref Frequency ¹ Frequency Drift Drift Comment (Dc) (MHz) (MHz) (Hz) (ppm) Itage 85% 4947.501017 4947.501184 167 0.0 40.8 v 115% 4947.501017 4947.501184 167 0.0 55.2 v	30					
Ref. Frequency: Frequency measured at 20°C and nominal input voltage(s). EUT transmitting CW	equency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal. e with RB=300Hz, VB=3MHz, Span = 5kHz. y 48 Vdc Frequency Drift <u>Drift Comment</u>	Note 1: Ref. Frequency: Frequency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal Measurements made with RB=300Hz, VB=3MHz, Span = 5kHz. In #2: Voltage Vs. Frequency Nominal Voltage is: 48 Vdc Itage Ref Frequency ¹ Frequency Drift Drift Drift Comment (Dc) (MHz) (MHz) (Hz) (ppm) Comment 0.0 40.8 v 115% 4947.501017 4947.501184 167 0.0 55.2 v	30 40	4947.501017	4947.501559	542	0.1	
	e with RB=300Hz, VB=3MHz, Span = 5kHz.	Note 1: Measurements made with RB=300Hz, VB=3MHz, Span = 5kHz. In #2: Voltage Vs. Frequency Vdc Nominal Voltage is: 48 Vdc Itage Ref Frequency ¹ Frequency Drift Drift Comment (Dc) (MHz) (Hz) (Hz) (ppm) 0.0 40.8 v 85% 4947.501017 4947.501184 167 0.0 55.2 v	30 40	4947.501017	4947.501559 4947.503025	542 2008	0.1 0.4	
	e with RB=300Hz, VB=3MHz, Span = 5kHz.	Note 1: Measurements made with RB=300Hz, VB=3MHz, Span = 5kHz. In #2: Voltage Vs. Frequency Vdc Nominal Voltage is: 48 Vdc Itage Ref Frequency ¹ Frequency Drift Drift Comment (Dc) (MHz) (Hz) (Hz) (ppm) 0.0 40.8 v 85% 4947.501017 4947.501184 167 0.0 55.2 v	30 40	4947.501017	4947.501559 4947.503025	542 2008	0.1 0.4	
	29 48 Vdc Frequency Drift Drift	In #2: Voltage Vs. Frequency Nominal Voltage is: 48 Vdc Itage Ref Frequency ¹ Frequency Drift Drift Drift Comment (Dc) (MHz) (MHz) (Hz) (ppm) 0.0 40.8 v 85% 4947.501017 4947.501184 167 0.0 55.2 v	30 40 50	4947.501017 4947.501017	4947.501559 4947.503025 Frequency drift:	542 2008 +2008/-465Hz	0.1 0.4 +0.4/-0.1ppm	ting CW signal
	48 Vdc Frequency Drift Drift	Nominal Voltage is: 48 Vdc Itage Ref Frequency ¹ Frequency Drift Drift Drift Comment (Dc) (MHz) (MHz) (Hz) (ppm) 0.0 40.8 v 85% 4947.501017 4947.501184 167 0.0 40.8 v 115% 4947.501017 4947.501184 167 0.0 55.2 v	30 40 50	4947.501017 4947.501017 Ref. Frequency: Fr	4947.501559 4947.503025 Frequency drift: equency measured at 2	542 2008 +2008/-465Hz 0°C and nominal input v	0.1 0.4 +0.4/-0.1ppm	ting CW signal.
un #2: Voltage Vs. Frequency	Frequency Drift Drift Comment	Itage Ref Frequency ¹ Frequency Drift Drift Drift Comment (Dc) (MHz) (MHz) (Hz) (ppm) 0.0 40.8 v 85% 4947.501017 4947.501184 167 0.0 40.8 v 115% 4947.501017 4947.501184 167 0.0 55.2 v	30 40 50	4947.501017 4947.501017 Ref. Frequency: Fr	4947.501559 4947.503025 Frequency drift: equency measured at 2	542 2008 +2008/-465Hz 0°C and nominal input v	0.1 0.4 +0.4/-0.1ppm	ting CW signal.
	Frequency Drift Drift Comment	Itage Ref Frequency ¹ Frequency Drift Drift Drift Comment (Dc) (MHz) (MHz) (Hz) (ppm) 0.0 40.8 v 85% 4947.501017 4947.501184 167 0.0 40.8 v 115% 4947.501017 4947.501184 167 0.0 55.2 v	30 40 50 Note 1:	4947.501017 4947.501017 Ref. Frequency: Fr Measurements mac	4947.501559 4947.503025 Frequency drift: equency measured at 2 le with RB=300Hz, VB=	542 2008 +2008/-465Hz 0°C and nominal input v	0.1 0.4 +0.4/-0.1ppm	ting CW signal.
		(Dc) (MHz) (MHz) (Hz) (ppm) 85% 4947.501017 4947.501184 167 0.0 40.8 v 115% 4947.501017 4947.501184 167 0.0 55.2 v	30 40 50 Note 1: un #2: \	4947.501017 4947.501017 Ref. Frequency: Fr Measurements mac /oltage Vs. Frequen	4947.501559 4947.503025 Frequency drift: equency measured at 2 le with RB=300Hz, VB= cy	542 2008 +2008/-465Hz 0°C and nominal input v	0.1 0.4 +0.4/-0.1ppm	ting CW signal.
		85% 4947.501017 4947.501184 167 0.0 40.8 v 115% 4947.501017 4947.501184 167 0.0 55.2 v	30 40 50 Note 1: un #2: N	4947.501017 4947.501017 Ref. Frequency: Fr Measurements mac /oltage Vs. Frequen lominal Voltage is:	4947.501559 4947.503025 Frequency drift: equency measured at 2 le with RB=300Hz, VB= cy 48 Vdc	542 2008 +2008/-465Hz 0°C and nominal input v	0.1 0.4 +0.4/-0.1ppm roltage(s). EUT transmit	
		115% 4947.501017 4947.501184 167 0.0 55.2 v	30 40 50 Note 1: un #2: \ N	4947.501017 4947.501017 Ref. Frequency: Fr Measurements mac /oltage Vs. Frequen lominal Voltage is: Ref Frequency ¹	4947.501559 4947.503025 Frequency drift: equency measured at 2 le with RB=300Hz, VB= cy 48 Vdc Frequency Drift	542 2008 +2008/-465Hz 0°C and nominal input v 3MHz, Span = 5kHz. <u>Drift</u>	0.1 0.4 +0.4/-0.1ppm roltage(s). EUT transmit	
	4947.501184 167 0.0 40.8 v		30 40 50 Note 1: un #2: N <u>N</u> <u>Ditage</u> (Dc)	4947.501017 4947.501017 Ref. Frequency: Fr Measurements mac /oltage Vs. Frequen lominal Voltage is: Ref Frequency ¹ (MHz)	4947.501559 4947.503025 Frequency drift: equency measured at 2 le with RB=300Hz, VB= cy 48 Vdc Frequency Drift (MHz)	542 2008 +2008/-465Hz 0°C and nominal input v 3MHz, Span = 5kHz. <u>Drift</u> (Hz)	0.1 0.4 +0.4/-0.1ppm roltage(s). EUT transmit	<u>Comment</u>
		Frequency drift: +167/-0Hz +0.0/-0ppm	30 40 50 Note 1: un #2: N <u>Note 1:</u> <u>un #2: N</u> <u>Ditage</u> (Dc) 85%	4947.501017 4947.501017 Ref. Frequency: Fr Measurements mac /oltage Vs. Frequen lominal Voltage is: Ref Frequency ¹ (MHz) 4947.501017	4947.501559 4947.503025 Frequency drift: equency measured at 2 le with RB=300Hz, VB= cy 48 Vdc Frequency Drift (MHz) 4947.501184	542 2008 +2008/-465Hz 0°C and nominal input v 3MHz, Span = 5kHz. <u>Drift</u> (Hz) 167	0.1 0.4 +0.4/-0.1ppm roltage(s). EUT transmit <u>Drift</u> (ppm) 0.0	<u>Comment</u> 40.8 v
r_{0}	4947.501184 167 0.0 55.2 v		30 40 50 Note 1: un #2: N <u>N</u> <u>Ditage</u> (Dc)	4947.501017 4947.501017 Ref. Frequency: Fr Measurements mac /oltage Vs. Frequen lominal Voltage is: Ref Frequency ¹ (MHz) 4947.501017	4947.501559 4947.503025 Frequency drift: equency measured at 2 le with RB=300Hz, VB= cy 48 Vdc Frequency Drift (MHz) 4947.501184 4947.501184	542 2008 +2008/-465Hz 0°C and nominal input v 3MHz, Span = 5kHz. <u>Drift</u> (Hz) 167 167	0.1 0.4 +0.4/-0.1ppm roltage(s). EUT transmit <u>Drift</u> (ppm) 0.0 0.0	<u>Comment</u> 40.8 v
		Frequency drift: +167/-0Hz +0.0/-0ppm	30 40 50 bte 1: #2: \ <u>\$</u> \$ \$ \$ \$ \$ \$ \$ \$	4947.501017 4947.501017 Ref. Frequency: Fr Measurements mac /oltage Vs. Frequen lominal Voltage is: Ref Frequency ¹ (MHz) 4947.501017	4947.501559 4947.503025 Frequency drift: equency measured at 2 le with RB=300Hz, VB= cy 48 Vdc Frequency Drift (MHz) 4947.501184	542 2008 +2008/-465Hz 0°C and nominal input v 3MHz, Span = 5kHz. <u>Drift</u> (Hz) 167	0.1 0.4 +0.4/-0.1ppm roltage(s). EUT transmit <u>Drift</u> (ppm) 0.0	<u>Comment</u> 40.8 v
	4947.501184 167 0.0 55.2 v		30 40 50 Note 1: n #2: N tage (Dc) 85%	4947.501017 4947.501017 Ref. Frequency: Fr Measurements mac /oltage Vs. Frequen lominal Voltage is: Ref Frequency ¹ (MHz) 4947.501017	4947.501559 4947.503025 Frequency drift: equency measured at 2 le with RB=300Hz, VB= cy 48 Vdc Frequency Drift (MHz) 4947.501184 4947.501184	542 2008 +2008/-465Hz 0°C and nominal input v 3MHz, Span = 5kHz. <u>Drift</u> (Hz) 167 167	0.1 0.4 +0.4/-0.1ppm roltage(s). EUT transmit <u>Drift</u> (ppm) 0.0 0.0	Comment 40.8 v
Note 1: Ref. Frequency: Frequency measured at 20°C and nominal input voltage(s). EUT transmitting CW Measurements made with RB=300Hz, VB=3MHz, Span = 5kHz.	4947.501184 167 0.0 55.2 v Frequency drift: +167/-0Hz +0.0/-0ppm equency measured at 20°C and nominal input voltage(s). EUT transmitting CW signal.		30 40 50 Note 1: In #2: N Note 1: Note	4947.501017 4947.501017 4947.501017 Ref. Frequency: Frequents mac /oltage Vs. Frequen lominal Voltage is: Ref Frequency ¹ (MHz) 4947.501017 4947.501017 Ref. Frequency: Frequency	4947.501559 4947.503025 Frequency drift: equency measured at 2 le with RB=300Hz, VB= cy 48 Vdc Frequency Drift (MHz) 4947.501184 4947.501184 Frequency drift:	542 2008 +2008/-465Hz 0°C and nominal input v 3MHz, Span = 5kHz. <u>Drift</u> (Hz) 167 167 167 +167/-0Hz 0°C and nominal input v	0.1 0.4 +0.4/-0.1ppm roltage(s). EUT transmit Drift (ppm) 0.0 0.0 +0.0/-0ppm	<u>Comment</u> 40.8 v 55.2 v

EXHIBIT 3: Test Configuration Photographs

EXHIBIT 4: Theory of Operation Microwave Data Systems Model MDS Series 4 point to point microwave link

EXHIBIT 5: Proposed FCC ID Label & Label Location

EXHIBIT 6: Detailed Photographs Microwave Data Systems Model MDS Series 4 point to point microwave link

EXHIBIT 7: Installation Guide Microwave Data Systems Model MDS Series 4 point to point microwave link

EXHIBIT 8: Block Diagram Microwave Data Systems Model MDS Series 4 point to point microwave link

EXHIBIT 9: Schematic Diagrams Microwave Data Systems Model MDS Series 4 point to point microwave link