

NTS Silicon Valley www.nts.com 41039 Boyce Road Fremont, CA 94538 510-578-3500 Phone 510-440-9525 Fax

Radio Test Report

FCC Parts 24 and 101 and RSS 119 (930 To 941 MHz, 928 -960 MHz)

Model: Orbit Radio Card SDM9

- COMPANY: GE MDS LLC 175 Science Parkway Rochester, NY 14620
- TEST SITE(S): National Technical Systems Silicon Valley 41039 Boyce Road. Fremont, CA. 94538-2435
- REPORT DATE: February 12, 2014
- FINAL TEST DATES: December 16, 17 and 19, 2013 and January 13 and February 7, 2014

TOTAL NUMBER OF PAGES: 68

PROGRAM MGR / TECHNICAL REVIEWER:

David W. Bare Chief Engineer

QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

National Technical Systems - Silicon Valley is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	February 12, 2014	First release	

TABLE OF CONTENTS

REVISION HISTORY	
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	5
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS	
FCC PART 101 AND RSS119	
FCC PART 24D (BASE STATION)	7
EXTREME CONDITIONS	8
MEASUREMENT UNCERTAINTIES	8
EQUIPMENT UNDER TEST (EUT) DETAILS	9
GENERAL	9
OTHER EUT DETAILS	9
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TESTING	11
GENERAL INFORMATION	
RF PORT MEASUREMENT PROCEDURES	
OUTPUT POWER	12
BANDWIDTH MEASUREMENTS	13
CONDUCTED SPURIOUS EMISSIONS.	
TRANSMITTER MASK MEASUREMENTS	
FREQUENCY STABILITY TRANSIENT FREQUENCY BEHAVIOR:	14
RADIATED EMISSIONS MEASUREMENTS	
INSTRUMENTATION	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	10
SAMPLE CALCULATIONS	
SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS	17
SAMPLE CALCULATIONS –RADIATED FIELD STRENGTH	
SAMPLE CALCULATIONS –RADIATED POWER	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
END OF REPORT	68

SCOPE

Tests have been performed on the GE MDS LLC model Orbit Radio Card SDM9, pursuant to the relevant requirements of the following standard(s) in order to obtain device certification against the regulatory requirements of the Federal Communications Commission and Industry Canada.

- Code of Federal Regulations (CFR) Title 47 Part 2
- Industry Canada RSS-Gen Issue 3, December 2010
- RSS-119, Issue 11, June 2011 (Land Mobile and Fixed Radio Transmitters and Receivers Operating the Frequency Range 27.41 to 960 MHz)
- CFR 47 Part 24 Subpart D (Narrowband PCS)
- CFR 47 Part 101 Fixed Microwave Service

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in National Technical Systems - Silicon Valley test procedures:

ANSI C63.4:2009 ANSI TIA-603-C August 17, 2004

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the GE MDS LLC model Orbit Radio Card SDM9 and therefore apply only to the tested sample. The sample was selected and prepared by Dennis McCarthy of GE MDS LLC.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, the device requires certification. Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of GE MDS LLC model Orbit Radio Card SDM9 complied with the requirements of the standards and frequency bands declared in the scope of this test report.

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS

FCC Part 101 and RSS-119

FCC	Canada	Description	Measured	Limit	Result
Transmitter M		power and other characte	ristics		
§2.1033 (c) (5) § 101.101	RSP 100 7.2 (a) SRSP-504, - 505, -506, -507	Frequency range(s)	928-960 MHz	928 – 960 MHz	Complies
<pre>§2.1033 (c) (6) §2.1033 (c) (7) §2.1046 § 101.113</pre>	RSP 100 7.2 (a) RSS 119 5.4 SRSP-504, - 505, -506, -507	RF power output at the antenna terminals	20dBm to 40.1dBm	47 dBm EIRP ¹	Complies
§2.1033 (c)	RSP 100 7.2	Emission types	F1D, F2D, F3D	-	-
(4) §2.1047 §101.111(a)(5) & (a)(6)	(b) (iii) RSS 119 5.5 (masks D G & J)	Emission mask	Within Masks	Within Masks	Complied
	RSS GEN 4.4.1 RSS 119 5.5	99% Bandwidth	10.6 kHz 16.2 kHz 28.5 kHz	11.25 kHz 20 kHz 50 kHz ²	Complies
\$2.1049 \$ 101.109		Occupied Bandwidth	10.6 kHz 16.2 kHz 28.5 kHz	200 kHz	Complies
Transmitter sp	urious emissions				
§2.1051 §2.1057	RSS-119 5.8	At the antenna terminals	-24.8 dBm	-13 dBm	Complies
§2.1053 §2.1057	RSS-119 5.8	Field strength	-14.0 dBm	-13 dBm	Complies
Other details					
§2.1055 §101.107	RSS-119 5.3	Frequency stability	0.4 ppm	1.5 ppm	Complies
§2.1093	RS 102	RF Exposure	Refer to sep	barate MPE Calc e	xhibit
§2.1033 (c) (8)	RSP 100 7.2 (a)		Final radio frequency amplifying circuit's dc voltage = +15 Vdc, current = 3A dc	-	-
-	-	Antenna Gain	9.15dBi	-	-
Notes					

1- Power is adjusted to comply with 47dBm EIRP power limitation as needed depending on antenna gain. 2- Aggregated occupied BW per RSS-119 clause 5.6.

FCC	Description	Measured	Limit	Result
Transmitter Modulatio	n, output power and other character			
\$2.1033 (c) (5) \$24.129	Frequency Range	930 – 931 MHz 940 – 941 MHz	930 - 931 MHz∖ 940 - 941 MHz	Complies
\$2.1033 (c) (6) \$2.1033 (c) (7) \$2.1046 \$ 24.132	RF power output at the antenna terminals	20 dBm to 40.1dBm	65.4 dBm ERP	Complies
§2.1033 (c)	Emission types	F1D, F2D, F3D	-	-
(4) §2.1047 § 24.133(a)(1) and (a)(2)	Emission mask	Within mask	Within Mask	Complies
\$2.1049 \$24.131	Occupied Bandwidth	5.76 kHz 7.12 kHz 15.1 kHz 25.3 kHz	10 kHz 10 kHz 20 kHz 45 kHz	Complies
Transmitter spurious en	missions			
\$2.1051 \$2.1057 \$24.133	At the antenna terminals	-24.0 dBm	-13 dBm	Complies
\$2.1053 \$2.1057 \$24.133	Field strength	-18.8 dBm	-13 dBm	Complies
Other details				•
§2.1055 §24.135	Frequency stability	0.4 ppm	1.0 ppm	Complies
§2.1093	RF Exposure	Refer to sep	arate MPE Calc ex	xhibit
§2.1033 (c) (8)	Final radio frequency amplifying circuit's dc voltage is +15 Vdc @ 3A Final currents for normal operation over the power range (Radio Module) 2A @ +24 Vdc		-	-
	Antenna Gain	9.15dBi	-	-

FCC Part 24D (Base Station)

EXTREME CONDITIONS

Frequency stability is determined over extremes of temperature and voltage. The extremes of voltage were 85 to 115 percent of the nominal value.

The extremes of temperature were -30° C to $+50^{\circ}$ C as specified in FCC §2.1055(a)(1).

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2) and were calculated in accordance with NAMAS document NIS 81 and M3003.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF frequency	Hz	25 to 7,000 MHz	1.7 x 10 ⁻⁷
RF power, conducted	dBm	25 to 7,000 MHz	$\pm 0.52 \text{ dB}$
Conducted emission of transmitter	dBm	25 to 40,000 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of receiver	dBm	25 to 40,000 MHz	$\pm 0.7 \text{ dB}$
Radiated emission (substitution method)	dBm	25 to 40,000 MHz	± 2.5 dB
Radiated emission (field strength)	dBµV/m	25 to 1,000 MHz 1 to 40 GHz	$\begin{array}{c} \pm 3.6 \text{ dB} \\ \pm 6.0 \text{ dB} \end{array}$

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The GE MDS LLC model Orbit Radio Card SDM9 is a radio module that is designed to be used in a GE MDS LLC SD Master Station chassis. It operates in 928-960 MHz bands for FCC Part 101 and in the 930-931 and 940-941 MHz bands under Part 24. The EUT was treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 24 Volts DC, 2.5 Amps.

The sample was received on December 16, 2013 and tested on December 16, 17 and 19, 2013 and January 13 and February 7, 2014. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
GE MDS LLC	SDM9	Orbit Radio Module	2519103 778123	E5MDS-SDM9
				IC ID: 101D-SDM9

OTHER EUT DETAILS

The radio can operate on 6.25, 12.5, 25 or 50 kHz channel spacing (F1D, F2D and F3D modulations) depending on rule part licensing.

ENCLOSURE

The EUT has no enclosure. It is designed to be installed within the enclosure of a host computer.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Power Designs	6150D	Power supply	2884	-

The following equipment was used as remote support equipment for emissions testing:

Company	Model	Description	Serial Number	FCC ID
Dell	Latitude D620	Laptop	1949	-

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected To	Cable(s)				
ron	Connected 10	Description	Shielded or Unshielded	Length(m)		
Тx	Attenuator	Coax	Shielded	0.3		
Rx	Un-terminated	Coax	Shielded	0.3		
Fixture DC	Power Supply	Two wire	Unshielded	1.3		
Fixture Serial	Laptop	Multiwire	Shielded	2		

Note: The serial cable and laptop were disconnected after programming the radio during radiated testing.

EUT OPERATION

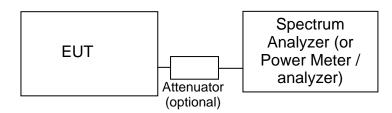
During emissions testing the EUT was configured to transmit continuously on the selected frequency and modulation or without modulation at rated power. During receiver and unintentional emissions testing, the radio was set for receive mode.

TESTING

GENERAL INFORMATION

Antenna port measurements were taken at the National Technical Systems - Silicon Valley test site located at 41039 Boyce Road, Fremont, CA 94538-2435.

Radiated spurious emissions measurements were taken at the National Technical Systems - Silicon Valley Anechoic Chambers and/or Open Area Test Site(s) listed below. The sites conform to the requirements of ANSI C63.4: 2003 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz and CISPR 16-1-4:2007 - Specification for radio disturbance and immunity measuring apparatus and methods Part 1-4: Radio disturbance and immunity measuring apparatus Ancillary equipment Radiated disturbances. They are on file with the FCC and industry Canada.


Site	Registration Numbers		Location
Site	FCC	Canada	Location
Chamber 3	769238	IC 2845B-3	41020 Davias Baad
Chamber 4	211948	IC 2845B-4	41039 Boyce Road
Chamber 5	211948	IC 2845B-5	Fremont, CA 94538-2435
Chamber 7	A2LA Accredited	IC 2845B-7	CA 94556-2455

In the case of Open Area Test Sites, ambient levels are at least 6 dB below the specification limits with the exception of predictable local TV, radio, and mobile communications traffic.

Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements.

RF PORT MEASUREMENT PROCEDURES

Conducted measurements are performed with the EUT's rf input/output connected to the input of a spectrum analyzer, power meter or modulation analyzer. When required an attenuator, filter and/or dc block is placed between the EUT and the spectrum analyzer to avoid overloading the front end of the measurement device. Measurements are corrected for the insertion loss of the attenuators and cables inserted between the rf port of the EUT and the measurement equipment.

Test Configuration for Antenna Port Measurements

For devices with an integral antenna the output power and spurious emissions are measured as a field strength at a test distance of (typically) 3m and then converted to an eirp using a substitution measurement (refer to RADIATED EMISSIONS MEASUREMENTS). All other measurements are made as detailed below but with the test equipment connected to a measurement antenna directed at the EUT.

OUTPUT POWER

Output power is measured using a power meter and an average sensor head, a spectrum analyzer or a power meter and peak power sensor head as required by the relevant rule part(s). Where necessary measurements are gated to ensure power is only measured over periods that the device is transmitting.

Power measurements made directly on the rf power port are, when appropriate, converted to an EIRP by adding the gain of the highest gain antenna that can be used with the device under test, as specified by the manufacturer.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN. The measurement bandwidth is set to be at least 1% of the instrument's frequency span.

CONDUCTED SPURIOUS EMISSIONS

Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode measurements). Where the limits are expressed as an average power the spectrum analyzer is tunes to that frequency with a narrow span (wide enough to capture the emission and its sidebands) and the resolution and video bandwidths are adjusted as required by the reference measurement standards. For transmitter measurements the appropriate detector (average, peak, normal ,sample, quasi-peak) is used when making measurements for licensed devices. For receiver conducted spurious measurements the detector is set to peak.

TRANSMITTER MASK MEASUREMENTS

The transmitter mask measurements are made using resolution bandwidths as specified in the pertinent rule part(s). Where narrower bandwidths are used the measurement is corrected to account for the reduced bandwidth by either using the adjacent channel power function of the spectrum analyzer to sum the power across the required measurement bandwidth. The frequency span of the analyzer is set to ensure the fundamental signal and all significant sidebands are displayed.

The top of the mask may be set by the total output power of the signal, the power of the unmodulated signal or the peak value of the signal in the reference bandwidth being used for the mask measurement.

FREQUENCY STABILITY

The EUT is placed inside a temperature chamber with all support and test equipment located outside of the chamber. The temperature is varied across the specified frequency range in 10 degree increments with frequency measurements made at each temperature step. The EUT is allowed enough time to stabilize at each temperature variation.

The spectrum analyzer is configured to give a 5- or 6-digit display for the markerfrequency function. The spectrum analyzer's built-in frequency counter is used to measure the maximum deviation of the fundamental frequency at each temperature. Where possible the device is set to transmit an unmodulated signal. Where this is not possible the frequency drift is determined by finding a stable point on the signal (e.g. the null at the centre of an OFDM signal) or by calculating a centre frequency based on the upper and lower XdB points (where X is typically 6dB or 10dB) on the signal's skirts.

TRANSIENT FREQUENCY BEHAVIOR:

The TIA/EIA 603 procedure is used to determine compliance with transient frequency timing requirements as the radio is keyed on and off.

The EUTs rf output is connected via a combiner/splitter to the test receiver/spectrum analyzer and to a diode detector. The test receiver or spectrum analyzer video output is connected to an oscilloscope, which is triggered by the output from the diode detector.

Plots showing Ton, T1, and T2 are made when turning on the transmitter and showing T3 when turning off the transmitter.

RADIATED EMISSIONS MEASUREMENTS

Receiver radiated spurious emissions measurements are made in accordance with ANSI ANSI C63.4:2003 by measuring the field strength of the emissions from the device at a specific test distance and comparing them to a field strength limit. Where the field strength limit is specified at a longer distance than the measurement distance the measurement is extrapolated to the limit distance.

Transmitter radiated spurious emissions are initially measured as a field strength. The eirp or erp limit as specified in the relevant rule part(s) is converted to a field strength at the test distance and the emissions from the EUT are then compared to that limit. Emissions within 20dB of this limit are the subjected to a substitution measurement.

All radiated emissions measurements are performed in two phases. A preliminary scan of emissions is conducted in either an anechoic chamber or on an OATS during which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed across the complete frequency range of interest and at each operating frequency identified in the reference standard. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode).

During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit. For transmitter spurious emissions, where the limit is expressed as an effective radiated power, the eirp or erp is converted to a field strength limit.

Final measurements are made on an OATS or in a semi-anechoic chamber at the significant frequencies observed during the preliminary scan(s) using the same process of rotating the EUT and raising/lowering the measurement antenna to find the highest level of the emission. The field strength is recorded and, for receiver spurious emissions, compared to the field strength limit. For the final measurement the appropriate detectors (average, peak, normal, sample, quasi-peak) are used. For receiver measurements below 1GHz the detector is a Quasi-Peak detector, above 1GHz a peak detector is used and the peak value (RB=VB=1MHz) and average value (RB=1MHz, VB=10Hz) are recorded.

For transmitter spurious emissions, the radiated power of all emissions within 20dB of the calculated field strength limit are determined using a substitution measurement. The substitution measurement is made by replacing the EUT with an antenna of known gain (typically a dipole antenna or a double-ridged horn antenna), connected to a signal source. The output power of the signal generator is adjusted until the maximum field strength from the substitution antenna is similar to the field strength recorded from the EUT. The erp of the EUT is then calculated.

INSTRUMENTATION

An EMI receiver as specified in CISPR 16-1-1 is used for radiated emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 7000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary.

For measurements above the frequency range of the receivers and for all conducted measurements a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis.

Measurement bandwidths for the test instruments are set in accordance with the requirements of the standards referenced in this document.

Software control is used to correct the measurements for transducer factors (e.g. antenna) and the insertion loss of cables, attenuators and other series elements to obtain the final measurement value. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are exported in a graphic and/or tabular format, as appropriate.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the EUT antenna port or receiving antenna and the test receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A combination of biconical, log periodic or bi-log antennas are used to cover the range from 30 MHz to 1000 MHz. Broadband antennas or tuned dipole antennas are used over the entire 25 to 1000 MHz frequency range as the reference antenna for substitution measurements.

Above 1000 MHz, a dual-ridge guide horn antenna or octave horn antenna are used as reference and measurement antennas.

The antenna calibration factors are included in site factors that are programmed into the test receivers and instrument control software when measuring the radiated field strength.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

Table mounted devices are placed on a non-conductive table at a height of 80 centimeters above the floor. Floor mounted equipment is placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. The EUT is positioned on a motorized turntable to allow it to be rotated during testing to determine the angel with the highest level of emissions.

SAMPLE CALCULATIONS

SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS

Measurements are compared directly to the conducted emissions specification limit (decibel form). The calculation is as follows:

 $R_r - S = M$

where:

 R_r = Measured value in dBm

S = Specification Limit in dBm

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS -RADIATED FIELD STRENGTH

Measurements of radiated field strength are compared directly to the specification limit (decibel form). The receiver and/or control software corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor is sued when measurements are made at a test distance that is different to the specified limit distance by using the following formula:

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

 $F_d = 20*LOG_{10} (D_m/D_s)$

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS -RADIATED POWER

The erp/eirp limits for transmitter spurious measurements are converted to a field strength in free space using the following formula:

$$E = \frac{\sqrt{30 P G}}{d}$$

where:

- E = Field Strength in V/m
- P = Power in Watts
- G = Gain of isotropic antenna (numeric gain) = 1

D = measurement distance in meters

The field strength limit is then converted to decibel form (dBuV/m) and the margin of a given emission peak relative to the limit is calculated (refer to *SAMPLE CALCULATIONS – RADIATED FIELD STRENGTH*).

When substitution measurements are required (all signals with less than 20dB of margin relative to the calculated field strength limit) the eirp of the spurious emission is calculated using:

$$P_{EUT} = P_{S} - (E_S - E_{EUT})$$

$$P_s = G + P_{in}$$

where:

- P_{S} = effective isotropic radiated power of the substitution antenna (dBm)
- P_{in} = power input to the substitution antenna (dBm)
- G = gain of the substitution antenna (dBi)
- E_S = field strength the substitution antenna (dBm) at eirp P_S

 E_{EUT} = field strength measured from the EUT

Where necessary the effective isotropic radiated power is converted to effective radiated power by subtracting the gain of a dipole (2.2dBi) from the eirp value.

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109. Note that receivers operating outside of the frequency range 30 MHz - 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

Appendix A Test Equipment Calibration Data

Radio Antenna Port (F <u>Manufacturer</u> Agilent Technologies	Power and Spurious Emissions), 7 Description 3Hz -44GHz PSA Spectrum Analyzer	I 6-Dec-13 <u>Model</u> E4446A	<u>Asset #</u> 2796	<u>Cal Due</u> 1/28/2014
Radiated Emissions, 3 <u>Manufacturer</u> Sunol Sciences Rohde & Schwarz	30 - 1,000 MHz, 17-Dec-13 <u>Description</u> Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz	<u>Model</u> JB3 ESIB7	<u>Asset #</u> 1548 1756	<u>Cal Due</u> 8/9/2014 6/8/2014
Radiated Emissions, 7 <u>Manufacturer</u> EMCO Hewlett Packard Hewlett Packard	1000 - 10,000 MHz, 17-Dec-13 <u>Description</u> Antenna, Horn, 1-18GHz High Pass filter, 1.5 GHz (Blu System) SpecAn 9 kHz - 40 GHz, (SA40) Purple	<u>Model</u> 3115 P/N 84300-80037 (84125C) 8564E (84125C)	<u>Asset #</u> 868 1389 2415	<u>Cal Due</u> 6/19/2014 5/14/2014 8/24/2014
Radiated Emissions, ⁻ <u>Manufacturer</u> Hewlett Packard	1 ,000 - 10,000 MHz, 19-Dec-13 <u>Description</u> Microwave Preamplifier, 1- 26.5GHz	<u>Model</u> 8449B	<u>Asset #</u> 785	<u>Cal Due</u> 10/31/2014
EMCO Hewlett Packard	Antenna, Horn, 1-18GHz SpecAn 30 Hz -40 GHz, SV (SA40) Red	3115 8564E (84125C)	868 1148	6/19/2014 9/14/2014
Hewlett Packard	High Pass filter, 1.5 GHz (Blu System)	P/N 84300-80037 (84125C)	1389	5/14/2014
Radiated Emissions, 3 <u>Manufacturer</u> Sunol Sciences Rohde & Schwarz	30 - 1,000 MHz, 19-Dec-13 <u>Description</u> Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz	<u>Model</u> JB3 ESIB7	<u>Asset #</u> 1548 1756	<u>Cal Due</u> 8/9/2014 6/8/2014
Radio Antenna Port (F <u>Manufacturer</u> Agilent Technologies	Power and Spurious Emissions), 7 Description 3Hz -44GHz PSA Spectrum Analyzer	I 3-Jan-14 <u>Model</u> E4446A	<u>Asset #</u> 2796	<u>Cal Due</u> 1/28/2014
Radio Antenna Port (I <u>Manufacturer</u> Agilent Technologies	Power and Spurious Emissions), (<u>Description</u> PXA Spectrum Analyzer S/N MY53310386	07-Feb-14 <u>Model</u> 9030 PXA	<u>Asset #</u> -	<u>Cal Due</u> 1/16/2016

Appendix B Test Data

T93925 Pages 22 - 67

EMC Test Data

WE ENGINEER S	UCCESS		
Client:	GE MDS LLC	Job Number:	J93834
Product	Radio Card SDM9	T-Log Number:	T93925
		Project Manager:	Christine Krebill
Contact:	Dennis McCarthy	Project Coordinator:	Irene Rademacher
Emissions Standard(s):	FCC Parts 24 and 101, RSS-119	Class:	A
Immunity Standard(s):	-	Environment:	Radio

EMC Test Data

For The

GE MDS LLC

Product

Radio Card SDM9

Date of Last Test: 2/7/2014

Radio Test Data

"	E ENGINEER BUCCEBB		
Client:	GE MDS LLC	Job Number:	J93834
Madal	Radio Card SDM9	T-Log Number:	Т93925
Model: Ra	Raulo Cald SDM9	Project Manager:	Christine Krebill
Contact:	Dennis McCarthy	Project Coordinator:	Irene Rademacher
Standard:	FCC Parts 24 and 101, RSS-119	Class:	N/A

RSS 119 and FCC Part 24

Power, Occupied Bandwidth, Frequency Stability and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

ITS

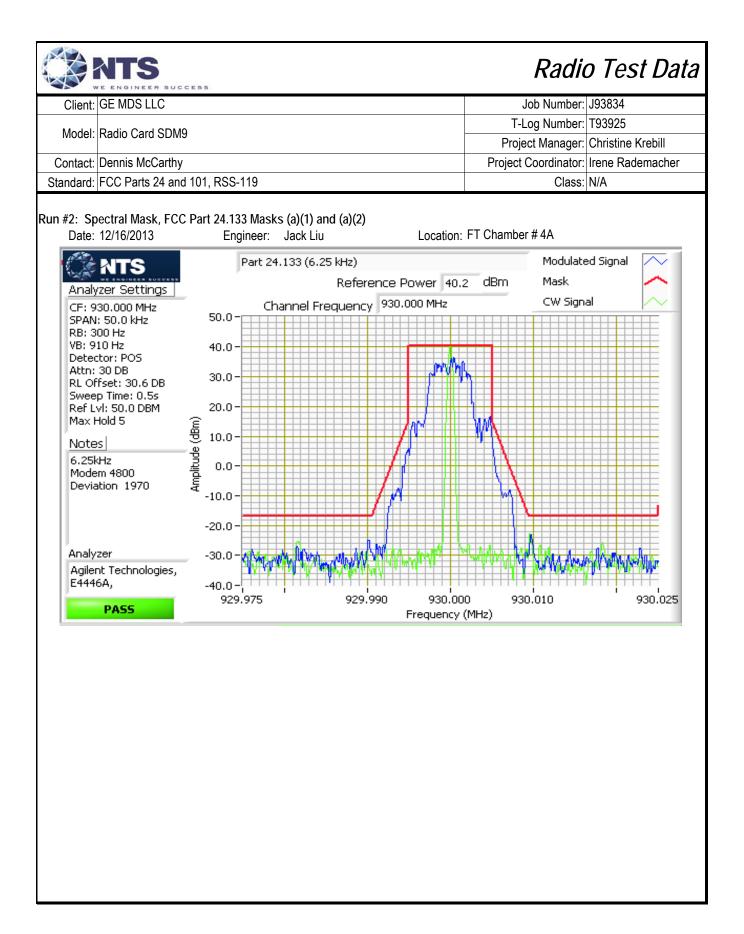
With the exception of the radiated spurious emissions tests, all measurements are made with the EUT's rf port connected to the measurement instrument via an attenuator or dc-block if necessary. All amplitude measurements are adjusted to account for the attenuation between EUT and measuring instrument. For frequency stability measurements the EUT was place inside an environmental chamber.

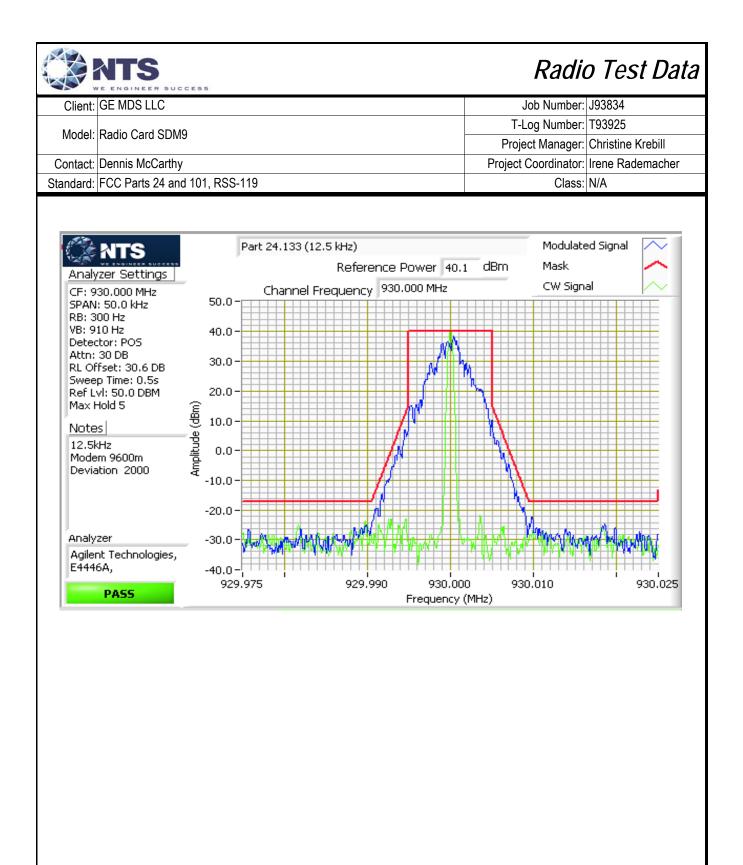
Radiated measurements are made with the EUT located on a non-conductive table, 3m from the measurement antenna.

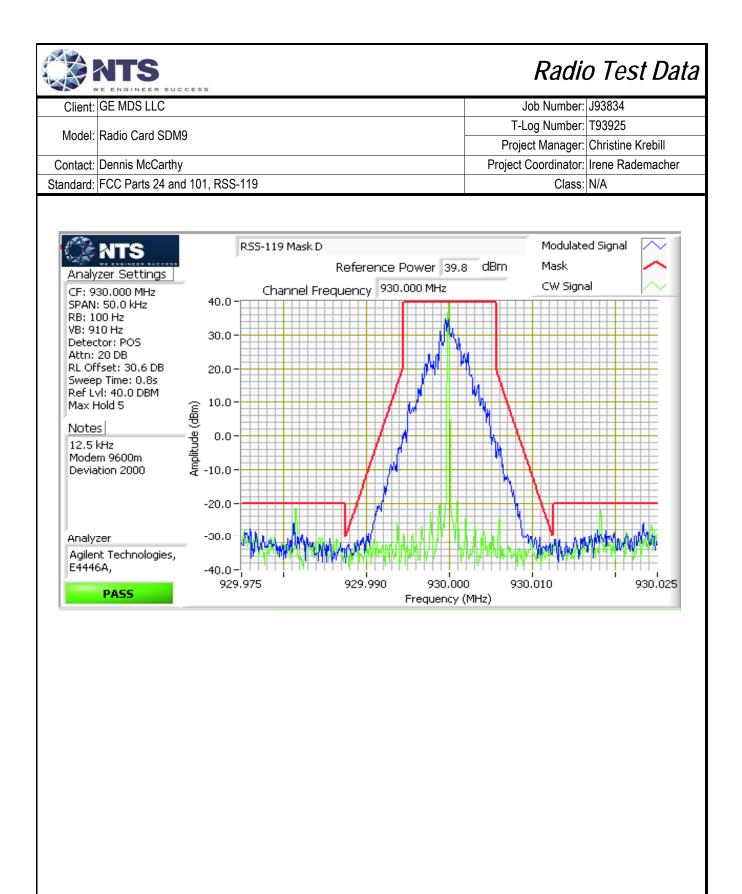
Ambient Conditions:	Temperature:	18-23 °C
	Rel. Humidity:	30-40 %

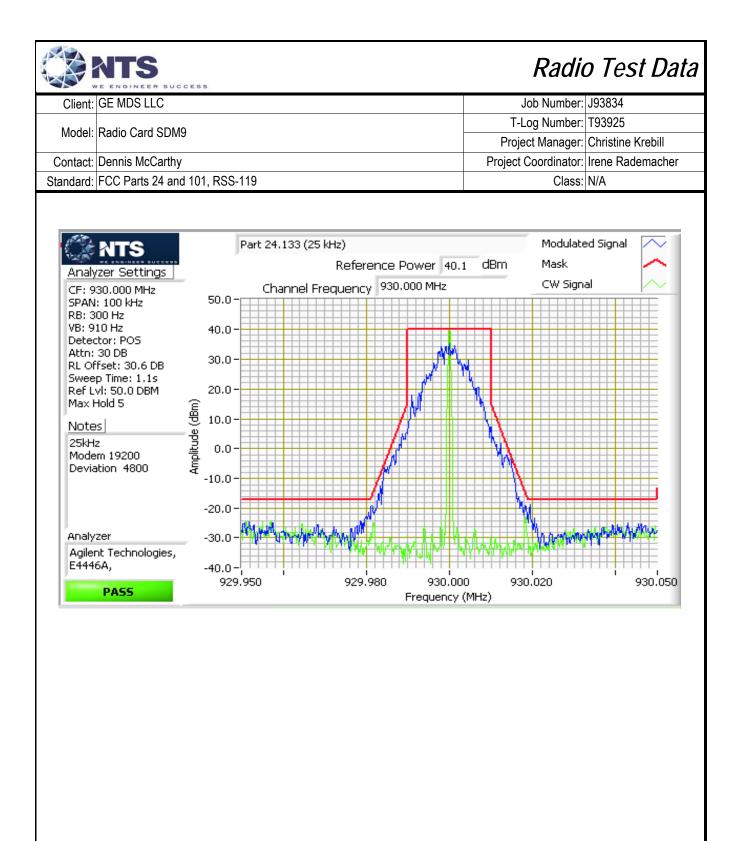
Summary of Results

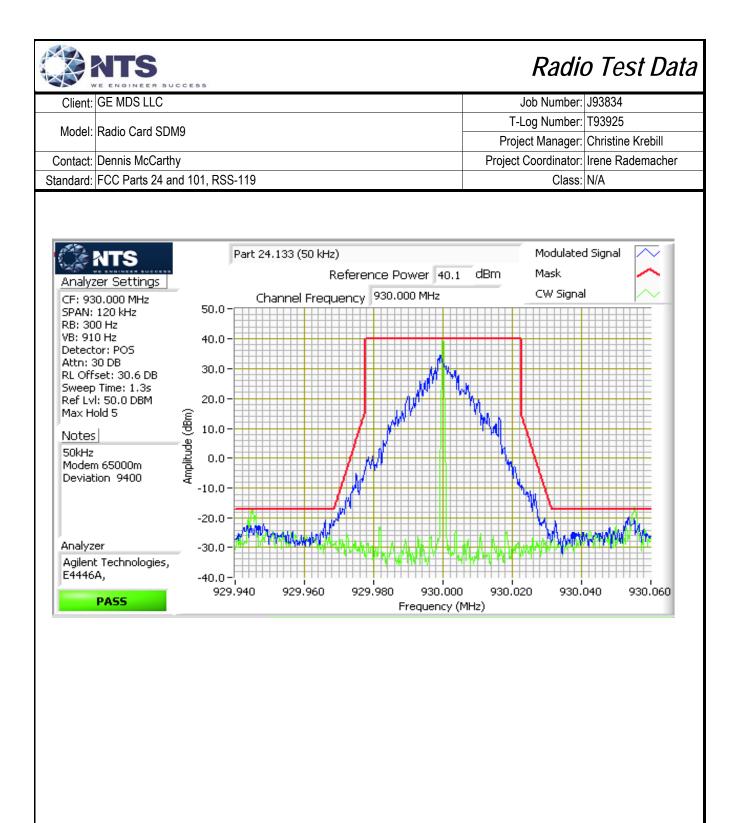
Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power	None	Pass	40.1 dBm (10.2W)
2	Spectral Mask	Within Mask	Pass	Refer to table
3	99% or Occupied Bandwidth		-	Refer to table
4	Spurious Emissions (conducted)	-13 dBm	Pass	-24.0 dBm @ 717.31 MHz (-4.0 dB)
5	Spurious emissions (radiated)	-13 dBm	Pass	-18.8 dBm @ 2790.03 MHz (-5.8 dB)
6	Frequency Stability	1 ppm	Pass	0.4 ppm

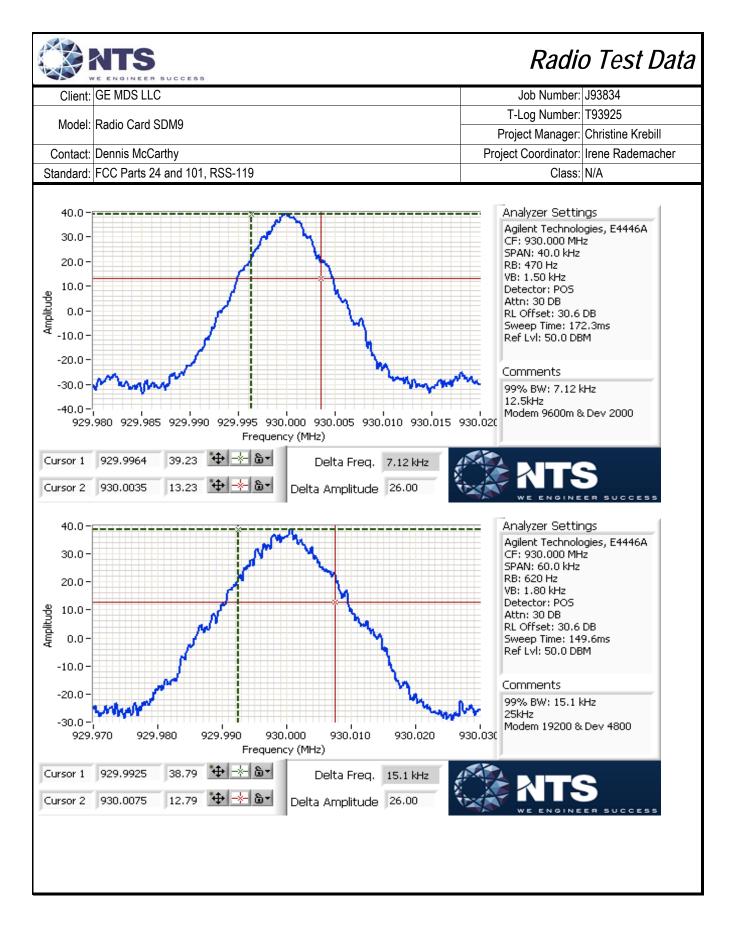

Modifications Made During Testing

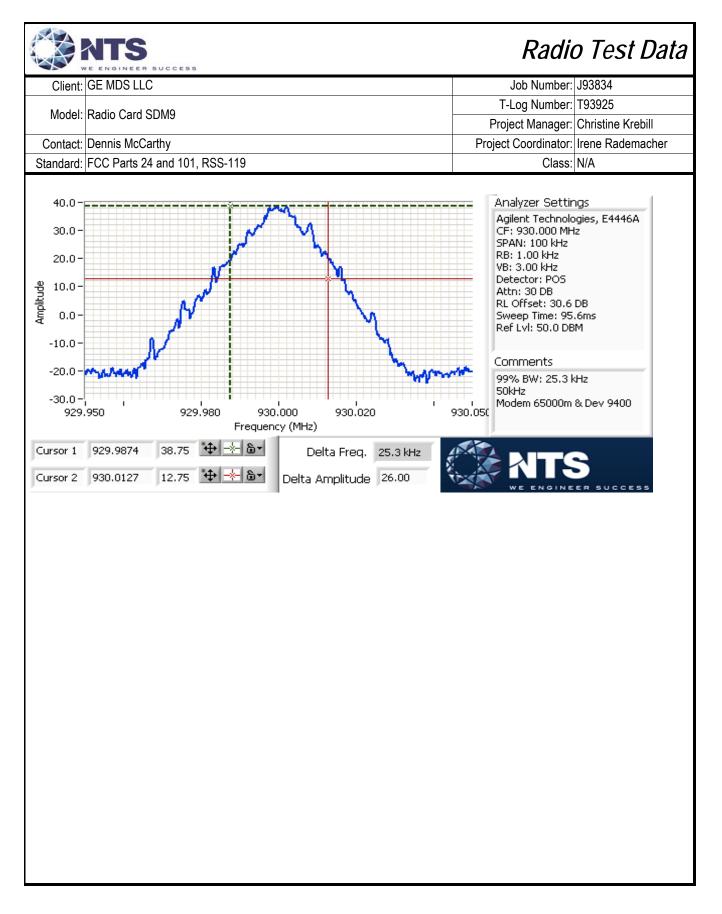

No modifications were made to the EUT during testing

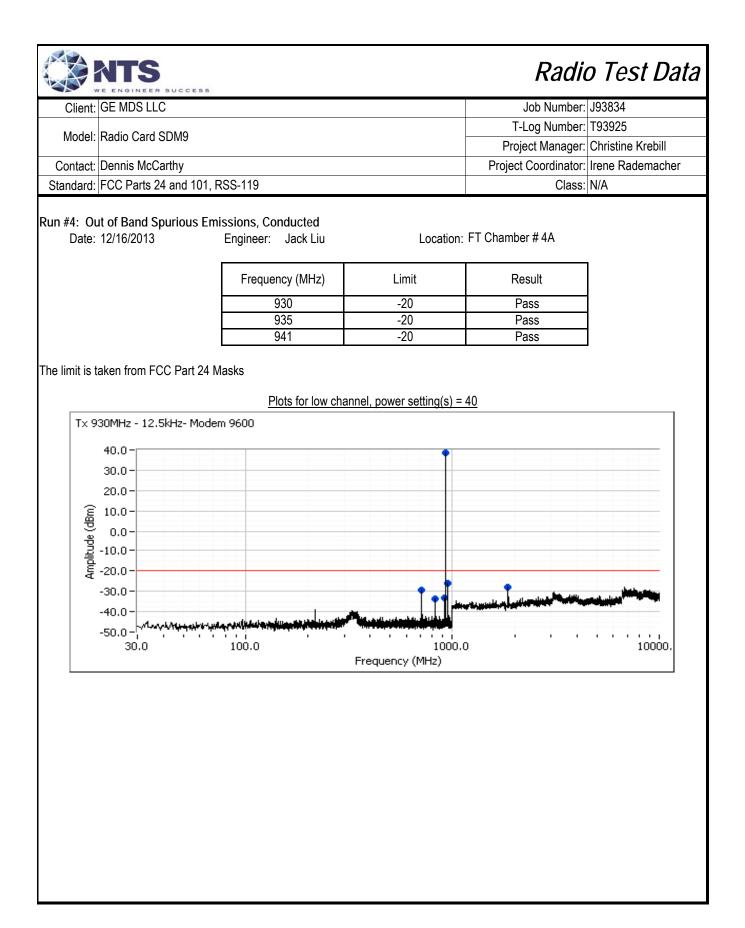

Deviations From The Standard

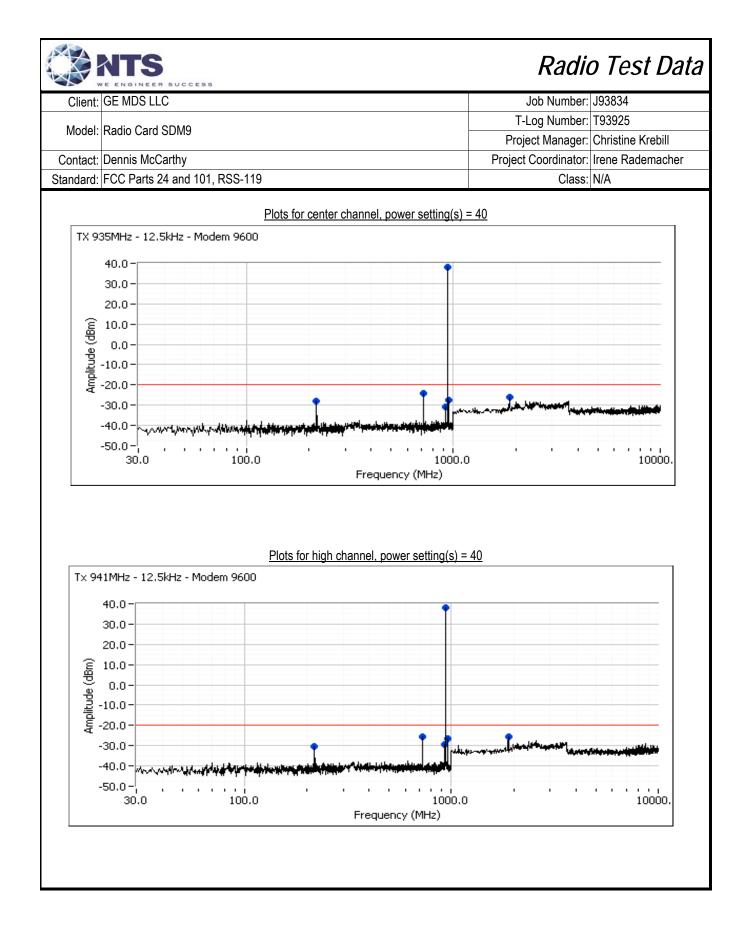

No deviations were made from the requirements of the standard.


Client:	GE MDS LLC			Job Number:	J93834
Madal	Dadia Card CDM0			T-Log Number:	T93925
woder:	Radio Card SDM9			Project Manager:	Christine Krebill
Contact:	Dennis McCarthy			Project Coordinator:	Irene Rademacher
Standard:	FCC Parts 24 and 101,	RSS-119		Class:	N/A
	utput Power 12/16/2013 Cable Loss: <mark>0.60 dB</mark> Cable ID(s): EL540+ Cu	Engineer: Jack Liu	Attenuator: 30.0 dB	FT Chamber # 4A Total Loss: + 2098	30.60 dB
Power Setting ² 40 40 40	Frequency (MHz) 930 935 941	Output Power (dBm) ¹ W 39.9 9.7 40.1 10.2 40.1 10.2			
30 20 philude 0 Amblitude	Power setting - the software .0	d using a spectrum analyze ware power setting used du		Analyzer Se Agilent Tech CF: 935,000 SPAN: 5,000 RB: 1,000 M VB: 3,000 M Detector: PC Attn: 30 DB RL Offset: 3 Sweep Time: Ref Lvl: 50,0	ettings nologies, E4446A MHz MHz Hz Hz OS 0.6 DB 1.0ms
				Comments	-
-20	.0-			Power 40.09	

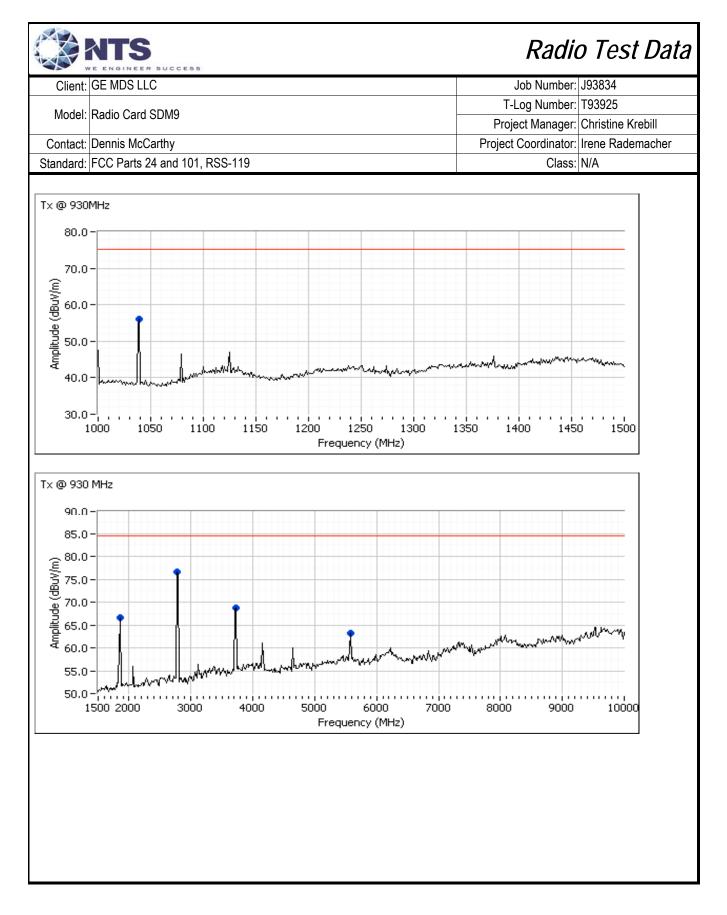


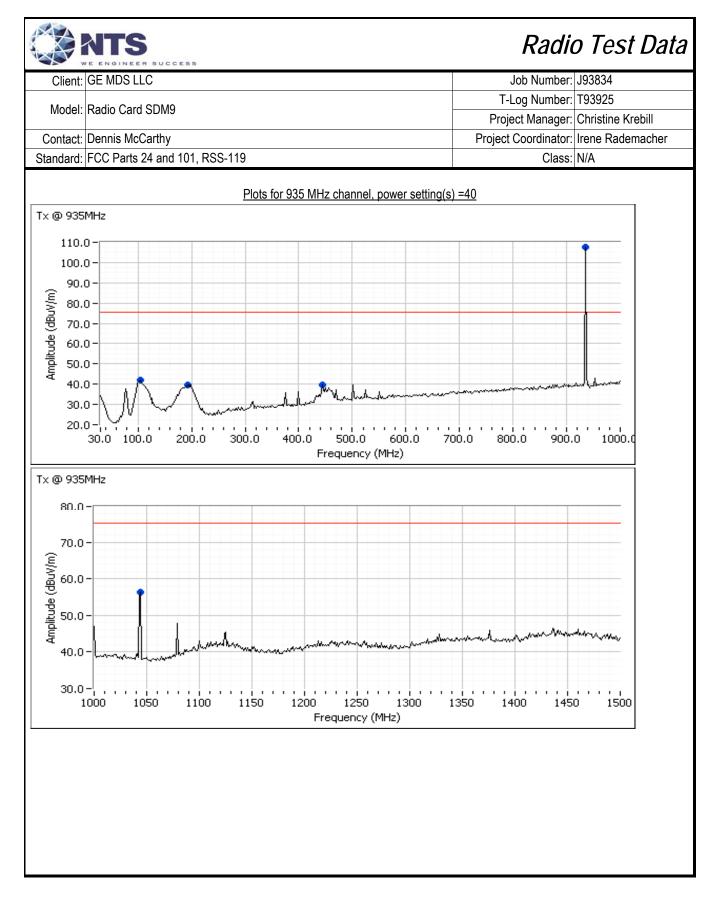


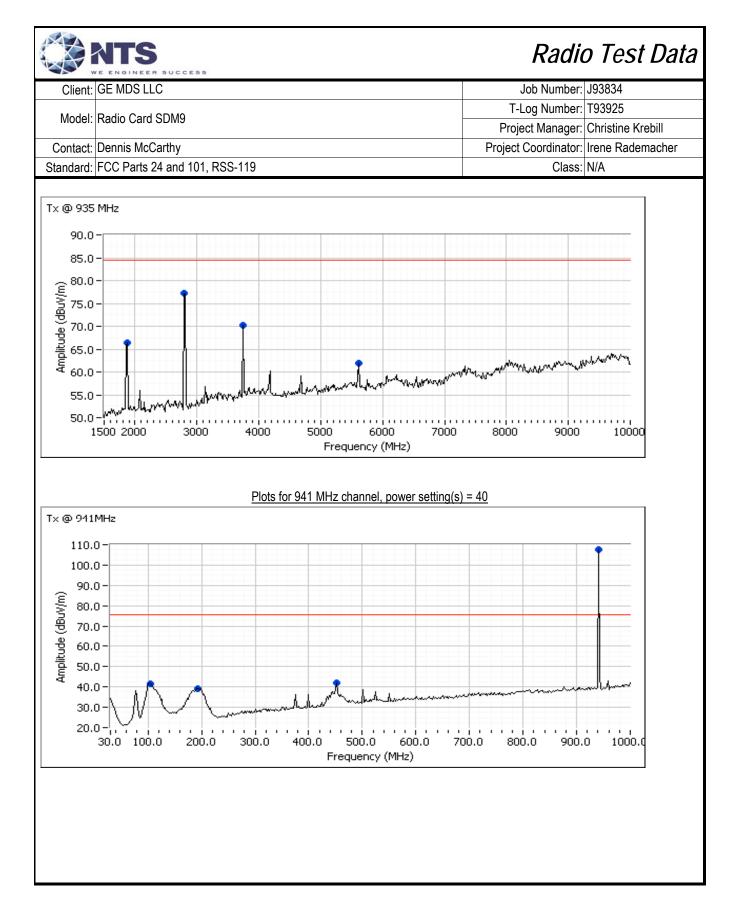


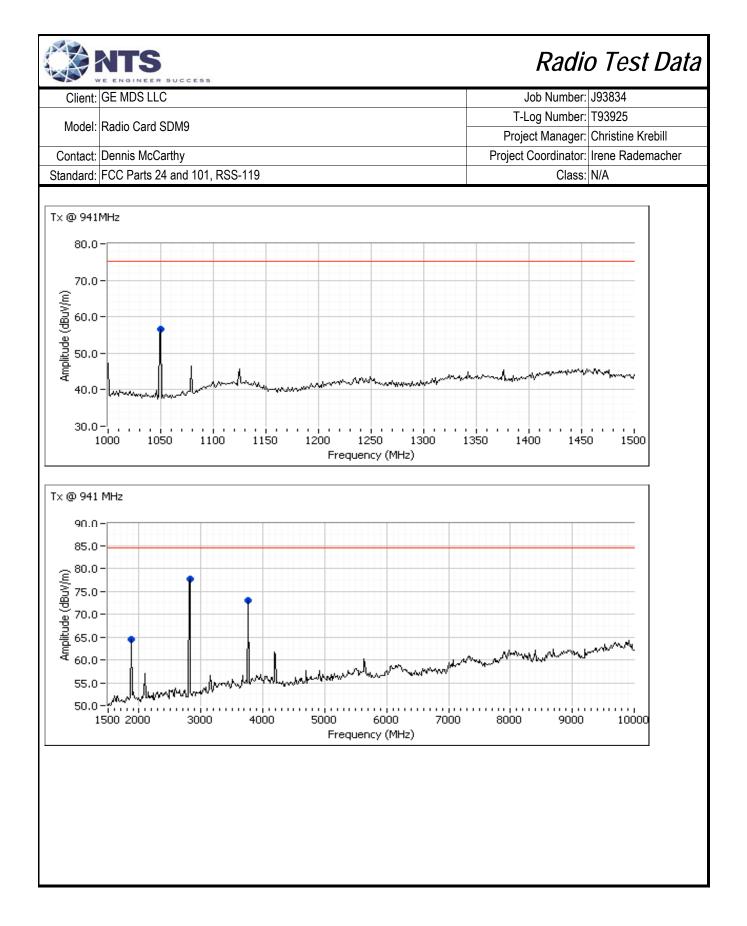


Client:	GE MDS LLC				Job Number: J93834		
N4. 1.1					T-Log Number: T93925		
Model:	Radio Card S	DM9	Project Manager: Christine Krebill				
Contact:	Dennis McCa	rthy			Project Coordinator: Irene Rademacher		
Standard:	FCC Parts 24	and 101, RSS-119			Class: N/A		
	gnal Bandwid						
	12/16/2013	Engineer:	Jack Liu	Location	n: FT Chamber # 4A		
6.25KHZ	Power	Deviation 1970	Resolution	Bandwidth (kHz)	7		
	Setting	Frequency (MHz)	Bandwidth	26dB 99%			
	40	930	240Hz	5.76	-		
12.5kHz		m Deviation 2000	210112	0.10			
	Power	Frequency (MHz)	Resolution	Bandwidth (kHz)	7		
	Setting		Bandwidth	26dB 99%			
	40	930	470Hz	7.12			
25kHz	Power	Deviation 4800	Resolution	Bandwidth (kHz)	7		
	Setting	Frequency (MHz)	Bandwidth	26dB 99%			
	40	930	620Hz	15.1	-		
50kHz	-	Om Deviation 9400					
	Power	Frequency (MHz)	Resolution	Bandwidth (kHz)			
	Setting		Bandwidth	26dB 99%			
	40	930	1kHz	25.3			
ote 1:	99% bandwid	th measured in accorda	ance with RSS	GEN, with RB > 1% of t	the span and VB > 3xRB		
				`	·		
40	.00	i			Analyzer Settings		
	.0-	<u>بر ا</u>	mon	W.	Agilent Technologies, E4446A CF: 930.000 MHz		
30		; / *			SPAN: 20.0 kHz		
					RB: 240 Hz		
	.0-						
20 10		m		Um	VB: 750 Hz Detector: POS		
20 10	.0-	m		ling	VB: 750 Hz Detector: POS Attn: 30 DB		
20 10 plitude 0	.0-	m		Uny	VB: 750 Hz Detector: POS Attn: 30 DB RL Offset: 30.6 DB Sweep Time: 0.3s		
20 පු ¹⁰	.0-	m		May	VB: 750 Hz Detector: POS Attn: 30 DB RL Offset: 30.6 DB		
20 10 plitude 0	.0- .0- .0-	m		May	VB: 750 Hz Detector: POS Attn: 30 DB RL Offset: 30.6 DB Sweep Time: 0.3s Ref LvI: 50.0 DBM		
20 10 0 4mbiltude -10 -20	.0- .0- .0-	m		May	VB: 750 Hz Detector: POS Attn: 30 DB RL Offset: 30.6 DB Sweep Time: 0.3s Ref LvI: 50.0 DBM		
20 10 0 4 10 4 -20 -30	.0- .0- .0- .0- .0-	m		May	VB: 750 Hz Detector: POS Attn: 30 DB RL Offset: 30.6 DB Sweep Time: 0.3s Ref LvI: 50.0 DBM		
20 900 9001 0 40 -20 -30 -40	.0 - .0 - .0 - .0 - .0 - .0 -		930,000		VB: 750 Hz Detector: POS Attn: 30 DB RL Offset: 30.6 DB Sweep Time: 0.3s Ref LvI: 50.0 DBM Comments 99% BW: 5.76 kHz 6.25kHz Modem 4800 & Dev 1970		
20 900 9001 0 40 -20 -30 -40	.0- .0- .0- .0- .0-	929.995	930.000 equency (MHz)	930.005	VB: 750 Hz Detector: POS Attn: 30 DB RL Offset: 30.6 DB Sweep Time: 0.3s Ref LvI: 50.0 DBM Comments 99% BW: 5.76 kHz 6.25kHz		
20 900 9001 900 900 900 900 900 900 900 9	.0 - .0 - .0 - .0 - .0 - .0 - .0 - .0 -	929.995 Fre	equency (MHz)	930.005	VB: 750 Hz Detector: POS Attn: 30 DB RL Offset: 30.6 DB Sweep Time: 0.3s Ref LvI: 50.0 DBM Comments 99% BW: 5.76 kHz 6.25kHz Modem 4800 & Dev 1970		






Client [.]	GE MDS LL	С						Job Number:	J93834
								Log Number:	
Model:	Radio Card	SDM9					Project Manager: Christine Krebill		
Contact.	Dennis McC	arthy					-	-	Irene Rademacher
	FCC Parts 24 and 101, RSS-119							Class:	
			00110					014001	
equency	Level	Port	FCC F	Part 24	Detector	Channel	Mode	Comments	
MHz	dBm		Limit	Margin					
'12.004	-29.4	RF Port	-20.0	-9.4	Peak	930MHz	Modem 960	0	
20.992	-33.7	RF Port	-20.0	-13.7	Peak	930MHz	Modem 960		
12.008	-33.2	RF Port	-20.0	-13.2	Peak	930MHz	Modem 960		
48.001	-26.0	RF Port	-20.0	-6.0	Peak	930MHz	Modem 960		
859.950	-27.9	RF Port	-20.0	-7.9	Peak	930MHz	Modem 960		
218.221	-28.0	RF Port	-20.0	-8.0	Peak	935MHz	Modem 960		
17.308	-24.0	RF Port	-20.0	-4.0	Peak	935MHz 935MHz	Modem 960		
)16.987)54.006	-30.8 -27.5	RF Port RF Port	-20.0 -20.0	-10.8 -7.5	Peak Peak	935MHZ 935MHZ	Modem 960 Modem 960		
865.380	-27.5	RF Port	-20.0	-6.0	Peak	935MHz	Modern 960		
218.221	-30.6	RF Port	-20.0	-10.6	Peak	941MHz	Modern 960		
22.917	-25.4	RF Port	-20.0	-5.4	Peak	941MHz	Modem 960		
23.718	-29.3	RF Port	-20.0	-9.3	Peak	941MHz	Modem 960		
59.615	-26.5	RF Port	-20.0	-6.5	Peak	941MHz	Modem 960		
884.620	-25.6	RF Port	-20.0	-5.6	Peak	941MHz	Modem 960)0	


Client:	GE MDS LLC	C				Job Number:	J93834		
Madalı	Dadia Card (T-	Log Number:	T93925
Wodel:	Radio Card S	SDINI9					Proj	ect Manager:	Christine Krebill
Contact:	Dennis McCa	arthy					Project	Coordinator:	Irene Rademacher
	FCC Parts 24	-		,	Class:				
Run #5: Oເ	ut of Band Sp		issions, Rac d limit (dBm):		8				
	Approximate				ļ				
	aken from FC								
Run #5a - P	reliminary m	neasuremer	its - chambe		L .				
Date:	12/16/2013 12/19/2013		Engineer:	Rafael Vare Deniz Demi		Location:	FT Chambe	er #4	
	12/19/2013			Deniz Demi	Irci				
Frequency	Level	Pol	FCC	Part 24	Detector	Azimuth	Height	Comments	Chann
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		Low, 930M
101.924	42.4	Н	84.4	-42.0	Peak	238	2.5		Low, 930N
199.118	40.8	Н	84.4	-43.6	Peak	130	1.0		Low, 930N
444.048	42.9	Н	84.4	-41.5	Peak	135	2.0		Low, 930N
930.000	108.4	Н	-	-	Peak	317	1.5	Fundamenta	Low, 930N
1039.030	56.0	V	84.4	-28.4	Peak	85	1.0		Low, 930N
1860.050	67.1	Н	84.4	-17.3	PK	233	1.4		Low, 930N
2790.030	77.9	V	84.4	-6.5	PK	279	1.0		Low, 930N
3720.170	68.3	V	84.4	-16.1	PK	291	1.0		Low, 930N
5580.040	62.9	Н	84.4	-21.5	PK	243	1.5		Low, 930N
					_				
103.868	42.0	Н	84.4	-42.4	Peak	234	3.0		Center, 935M
193.287	39.8	Н	84.4	-44.6	Peak	124	1.5		Center, 935M
444.048	39.8	Н	84.4	-44.6	Peak	294	2.0		Center, 935M
935.000	107.6	H	-	-	Peak	317	1.5	Fundamenta	
1044.010	56.4	V	84.4	-28.0	Peak	91	1.0		Center, 935M
1870.090	67.5	V	84.4	-16.9	PK	268	1.3		Center, 935M
2805.030 3740.080	76.9	V V	84.4	-7.5	PK	148	1.0		Center, 935M
	70.2 63.0	H	84.4 84.4	-14.2 -21.4	PK PK	290 230	1.0 1.2		Center, 935M Center, 935M
5610.090			04.4	-21.4	ΓN	230	1.4	1	Center, 9351V

		SUCCESS						Radio	o Test Data
Client:	GE MDS LLC							Job Number:	J93834
Madal	Radio Card S						T-	Log Number:	T93925
		DIVIS					Proj	ect Manager:	Christine Krebill
Contact:	Dennis McCa	rthy					Project	Coordinator:	Irene Rademacher
Standard:	FCC Parts 24	and 101, R	SS-119					Class:	N/A
Run #5 con	tinued								
Frequency	Level	Pol	FCC F	Part 24	Detector	Azimuth	Height	Comments	Channel
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
103.868	41.7	Н	84.4	-42.7	Peak	234	3.0		High, 941MHz
193.287	39.1	Н	84.4	-45.3	Peak	139	1.5		High, 941MHz
451.824	42.0	Н	84.4	-42.4	Peak	274	2.0		High, 941MHz
941.000	107.6	Н	-	-	Peak	313	1.5	Fundamenta	
1050.010	56.5	V	84.4	-27.9	Peak	84	1.0		High, 941MHz
1882.060	64.7	V	84.4	-19.7	PK	263	1.7		High, 941MHz
2823.040	77.7	V	84.4	-6.7	PK	264	1.0		High, 941MHz
3764.090	73.0	V	84.4	-11.4	PK	288	1.2		High, 941MHz
	Measurement						- 40		
Tx @ 930	MHz		Plots 1	<u>for 930 MHz</u>	<u>channel, pov</u>	ver setting(s)	= 40		
_									
110.1									•
110.1 100.1 90.1	o – o –								•
110.1 100.1 90.1	0 - 0 - 0 - 0 - 0 -								
110.1 100.1 90.1 80.1 80.1 70.1 50.1 40.1 30.1				_hal_^	halmhadad	-4	لمبدرو		
110.1 100.1 90.1 80.1 70.1 50.1 50.1 30.1		· · · 200.0	· · · 300.0	- 400.0 - Fr			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		D' 1000.0

Client:	GE MDS LLC	;						Job Number:	J93834	
							T-	Log Number:	T93925	
Model:	Radio Card S	SDM9				-	Proj	ject Manager:	Christine Kre	oill
Contact:	Dennis McCa	arthy							Irene Radem	
	FCC Parts 24		RSS-119				,	Class:		
		,								
	inal Field Stre 12/19/2013 Strength	ength Meas	surements a Engineer:	nd Substitu David Bare			Fremont Cl	hamber #4		
requency	1 1	Pol	FCC I	Part 24	Detector	Azimuth	Height	Comments		Channe
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
860.050	67.1	Н	84.4	-17.3	PK	233	1.4		/B 3 MHz;Pea	93
2790.030	77.9	V	84.4	-6.5	PK	279	1.0		/B 3 MHz;Pea	93
3720.170	68.3	V	84.4	-16.1	PK	291	1.0	RB 1 MHz;V	/B 3 MHz;Pea	93
0-0				10.5				DD (1 ··· · · ·		
870.090	67.5	<u>V</u>	84.4	-16.9	PK	268	1.3	,	B 3 MHz;Pea	93
805.030	76.9	V	84.4	-7.5	PK	148	1.0	,	B 3 MHz;Pea	9:
740.080	70.2	V	84.4	-14.2	PK	290	1.0	KB 1 MHz;V	/B 3 MHz;Pea	9
882.060	64.7	V	84.4	-19.7	PK	263	1.7		/B 3 MHz;Pea	9
823.040	04.7 77.7	V V	84.4	-19.7	PK	263	1.7		B 3 MHz;Pea	9
							1.0	ND I WILLZ, V		
					PK Iculated from t conservative -			d in the standa		
3764.090	The field stren propagation e for erp limits,	ngth limit in equation: E= the dipole g	the tables at =√(30PG)/d. gain (2.2dBi)	oove was ca This limit is o has not bee	lculated from t conservative - n included. Th	he erp/eirp li it does not c ne erp or eirp	mit detailec onsider the for all sign	l in the standa presence of t	ird using the fi he ground pla	ee spac ne and,
	The field stren propagation e for erp limits,	ngth limit in equation: E= the dipole g s field strend	the tables at =√(30PG)/d. gain (2.2dBi) gth limit is de	pove was ca This limit is o has not bee termined us	lculated from t conservative - n included. Th ing substitutio	he erp/eirp li it does not c ne erp or eirp	mit detailec onsider the for all sign	l in the standa presence of t	ird using the fi he ground pla	ee spac ne and,
ote 1:	The field stren propagation e for erp limits, relative to this	ngth limit in equation: E= the dipole g s field strend	the tables at =√(30PG)/d. gain (2.2dBi) gth limit is de	pove was ca This limit is o has not bee termined us	lculated from t conservative - n included. Th ing substitutio	he erp/eirp li it does not c ne erp or eirp	mit detailec onsider the for all sign	l in the standa presence of t	ird using the fi he ground pla	ree spa ne and
ote 1:	The field stren propagation e for erp limits, relative to this	ngth limit in equation: E= the dipole g s field strend	the tables at =√(30PG)/d. gain (2.2dBi) gth limit is de	pove was ca This limit is o has not bee termined us	lculated from t conservative - n included. Th ing substitutio	he erp/eirp li it does not c ne erp or eirp	mit detailec onsider the for all sign	l in the standa presence of t	ird using the fi he ground pla	ee spa ne and
ote 1:	The field stren propagation e for erp limits, relative to this	ngth limit in equation: E= the dipole g s field strend	the tables at =√(30PG)/d. gain (2.2dBi) gth limit is de	pove was ca This limit is o has not bee termined us	lculated from t conservative - n included. Th ing substitutio	he erp/eirp li it does not c ne erp or eirp	mit detailec onsider the for all sign	l in the standa presence of t	ird using the fi he ground pla	ee spa ne and,
ote 1:	The field stren propagation e for erp limits, relative to this	ngth limit in equation: E= the dipole g s field strend	the tables at =√(30PG)/d. gain (2.2dBi) gth limit is de	pove was ca This limit is o has not bee termined us	lculated from t conservative - n included. Th ing substitutio	he erp/eirp li it does not c ne erp or eirp	mit detailec onsider the for all sign	l in the standa presence of t	ird using the fi he ground pla	ee spac ne and,
ote 1:	The field stren propagation e for erp limits, relative to this	ngth limit in equation: E= the dipole g s field strend	the tables at =√(30PG)/d. gain (2.2dBi) gth limit is de	pove was ca This limit is o has not bee termined us	lculated from t conservative - n included. Th ing substitutio	he erp/eirp li it does not c ne erp or eirp	mit detailec onsider the for all sign	l in the standa presence of t	ird using the fi he ground pla	ee spac ne and,
te 1:	The field stren propagation e for erp limits, relative to this	ngth limit in equation: E= the dipole g s field strend	the tables at =√(30PG)/d. gain (2.2dBi) gth limit is de	pove was ca This limit is o has not bee termined us	lculated from t conservative - n included. Th ing substitutio	he erp/eirp li it does not c ne erp or eirp	mit detailec onsider the for all sign	l in the standa presence of t	ird using the fi he ground pla	ee spac ne and,

		SUCCESS						Radio	o Test	Data
Client:	GE MDS LLO	C						Job Number:	J93834	
							T-L	og Number:	T93925	
Model:	Radio Card S	SDM9						-	Christine Kr	ehill
Contact	Dennis McCa	arthy					-	-	Irene Rader	
			00 110				riojeci	Class:		
Standard:	FCC Parts 24	4 anu 101, R	22-113					Class.	N/A	
Substitutio Horizontal	n measurem	ents								
Frequency	Substitu	ution measur	ements	Site	EU	T measurem	ents	eirp Limit	erp Limit	Margin
MHz	Pin ¹	Gain ²	FS ³	Factor ⁴	FS⁵	eirp (dBm)	erp (dBm)	dBm	dBm	dB
1860.050	-10.1	8.2	94.0	95.9	67.1	-28.8	-31.0		-13.0	-18.0
Vertical										
Frequency	Substitu	ution measur	ements	Site	EU.	T measurem	ents	eirp Limit	erp Limit	Margin
MHz	Pin ¹	Gain ²	FS ³	Factor ⁴	FS⁵	eirp (dBm)	erp (dBm)	dBm	dBm	dB
2790.030	-10.1	10.0	94.4	94.5	77.9	-16.6	-18.8		-13.0	-5.8
3720.170	-9.9	9.4	94.8	95.3	68.3	-27.0	-29.2		-13.0	-16.2
1870.090	-10.1	8.2	93.8	95.7	67.5	-28.2	-30.4		-13.0	-17.4
2805.030	-10.1	10.0	94.3	94.4	76.9	-17.5	-19.7		-13.0	-6.7
3740.080	-9.9	9.4	94.2	94.7	70.2	-24.5	-26.7		-13.0	-13.7
1882.060	-10.1	8.2	94.1	96.0	64.7	-31.3	-33.5		-13.0	-20.5
2823.040	-10.1	10.0	94.4	94.5	77.7	-16.8	-19.0		-13.0	-6.0
3764.090	-9.9	9.4	94.1	94.6	73.0	-21.6	-23.8		-13.0	-10.8
	D' ' 4 '	1 (15								
Note 1:	Pin is the inp				enna					
Note 2:	Gain is the g									
Note 3: Note 4:	FS is the field Site Factor -						to on oirn in	dPm		
Note 5:	EUT field str				neiu strengt			udili.		
NOLE 5.		engin as mea		y miliar fun.						

	NTS			Radio	o Test Data
Client:	GE MDS LLC			Job Number:	J93834
				T-Log Number:	
Model:	Radio Card SDM9			Project Manager:	
Contact:	Dennis McCarthy			Project Coordinator:	
Standard:	FCC Parts 24 and 101, F	RSS-119		Class:	N/A
Run #6: Fre	equency Stability	B 1111 B			
Date:	12/17/2013	Engineer: David W. Ba R. Varelas	are Location:	Fremont Lab #6	
	Nominal Frequency:	929.99976 MHz			
The EUT wa	Stability Over Temperat is soaked at each temper d stabilized at that tempe	ature for a minimum of 30) minutes prior to making	the measurements to ens	ure the EUT and
Temperature	Frequency Measured	D	rift_		
(Celsius)	(MHz)	(Hz)	(ppm)		
-30	930.000160	400	0.4	1	
-20	930.000080	320	0.3		
-10	929.999920	160	0.2		
0	929.999760	0	0.0		
10	929.999679	-81	-0.1		
20	929.999760	0	0.0		
30	929.999599	-161	-0.2		
40	929.999519	-241	-0.3		
50	929.999439	-321	-0.3		
	Worst case:	400	0.4		
	Stability Over Input Vol Itage is 24Vdc.	age		_	
<u>Voltage</u>	Frequency Measured		<u>rift</u>		
(Dc)	(MHz)	(Hz)	(ppm)		
21.5	929.999519	-241	-0.3		
27.6	929.999519	-241	-0.3		
	Worst case:	-241	0.4		
Note 1:	Maximum drift of fundam	ental frequency before it	shut down at 21.3 Vdc wa	s 0 Hz.	

Radio Test Data

"	E ENGINEER BUCCEBB		
Client:	GE MDS LLC	Job Number:	J93834
Model	Radio Card SDM9	T-Log Number:	Т93925
wouer.	Raulo Card SDIN9	Project Manager:	Christine Krebill
Contact:	Dennis McCarthy	Project Coordinator:	Irene Rademacher
Standard:	FCC Parts 24 and 101, RSS-119	Class:	N/A

RSS 119 and FCC Part 101

Power, Occupied Bandwidth, Frequency Stability and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

ITS

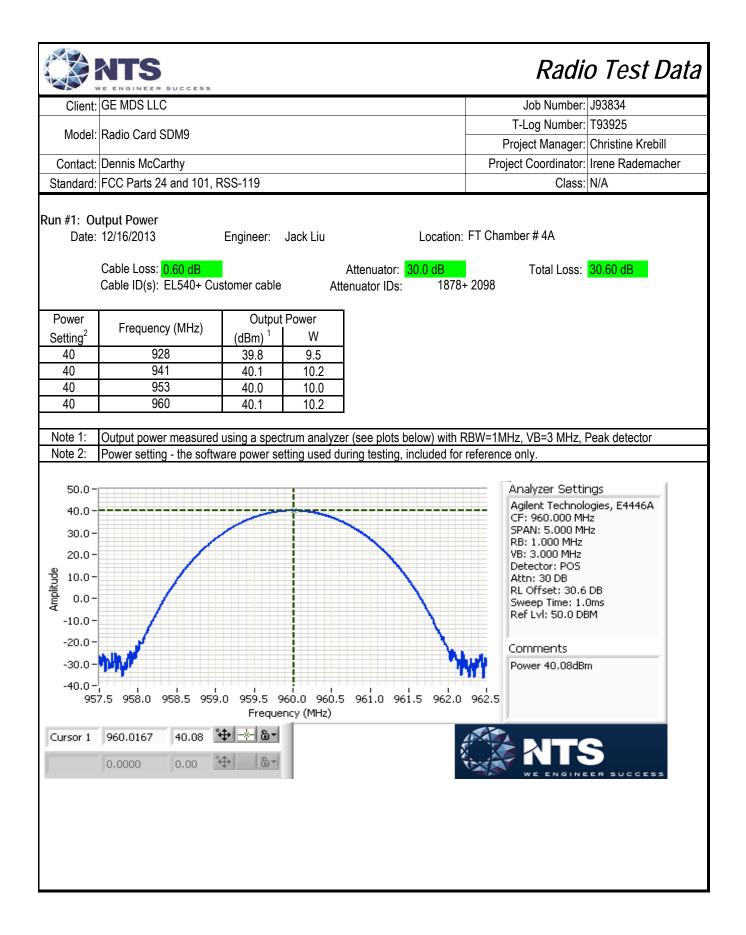
With the exception of the radiated spurious emissions tests, all measurements are made with the EUT's rf port connected to the measurement instrument via an attenuator or dc-block if necessary. All amplitude measurements are adjusted to account for the attenuation between EUT and measuring instrument. For frequency stability measurements the EUT was place inside an environmental chamber.

Radiated measurements are made with the EUT located on a non-conductive table, 3m from the measurement antenna.

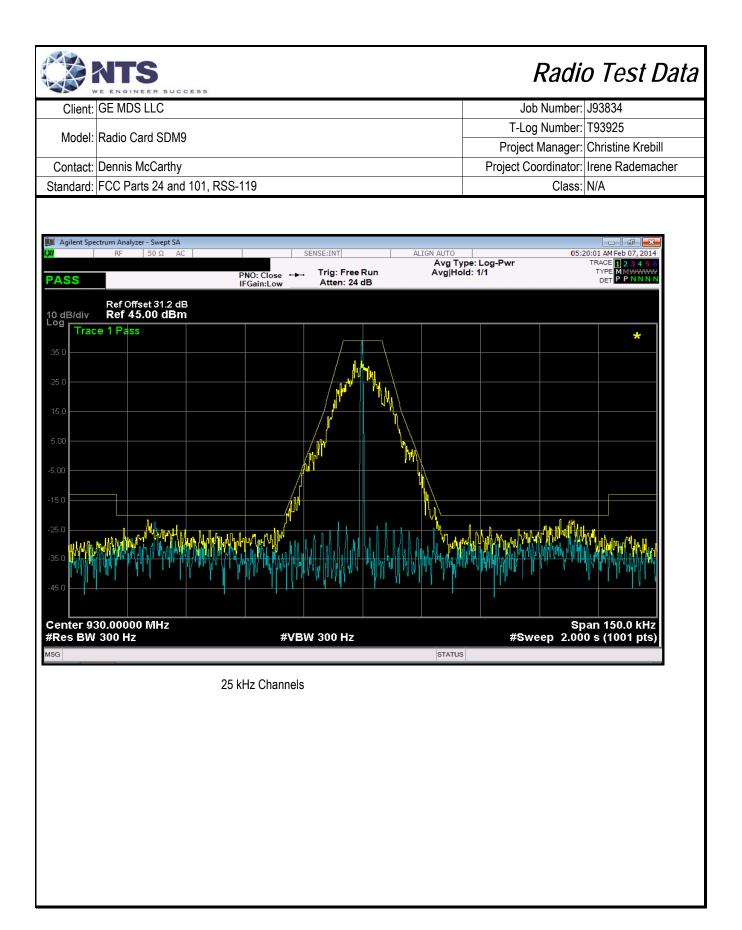
Ambient	Conditions:	
---------	-------------	--

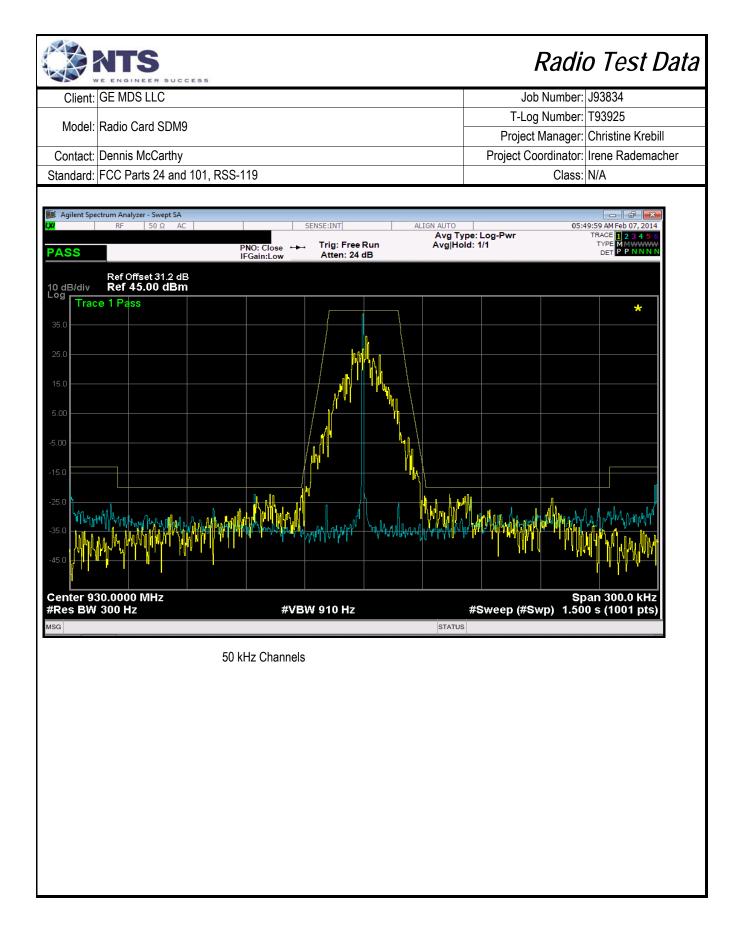
Temperature:	18-23 °C
Rel. Humidity:	30-40 %

Summary of Results

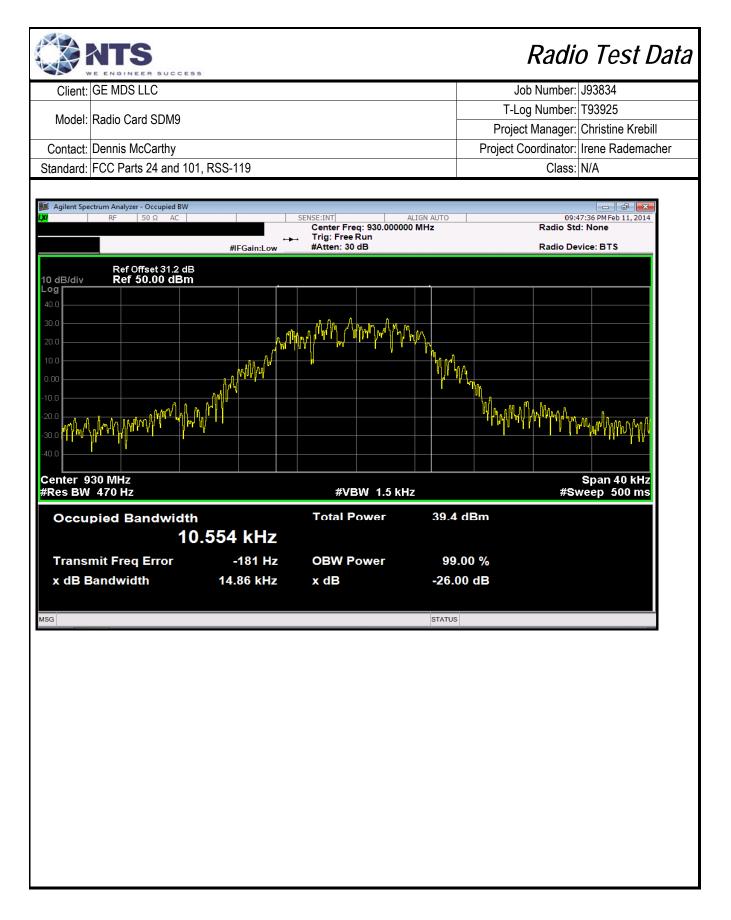

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power	None	Pass	40.1 dBm (10.2W)
2	Spectral Mask	Within Mask	Pass	Refer to table
3	99% or Occupied Bandwidth		-	Refer to table
4	Spurious Emissions (conducted)	-13 dBm	Pass	-24.8dBm @ 947.28
-		10 dBill	1 035	MHz (-4.8 dB)
5	Spurious emissions (radiated)	-13 dBm	Pass	in progress
6	Frequency Stability	1 ppm	Pass	0.4 ppm

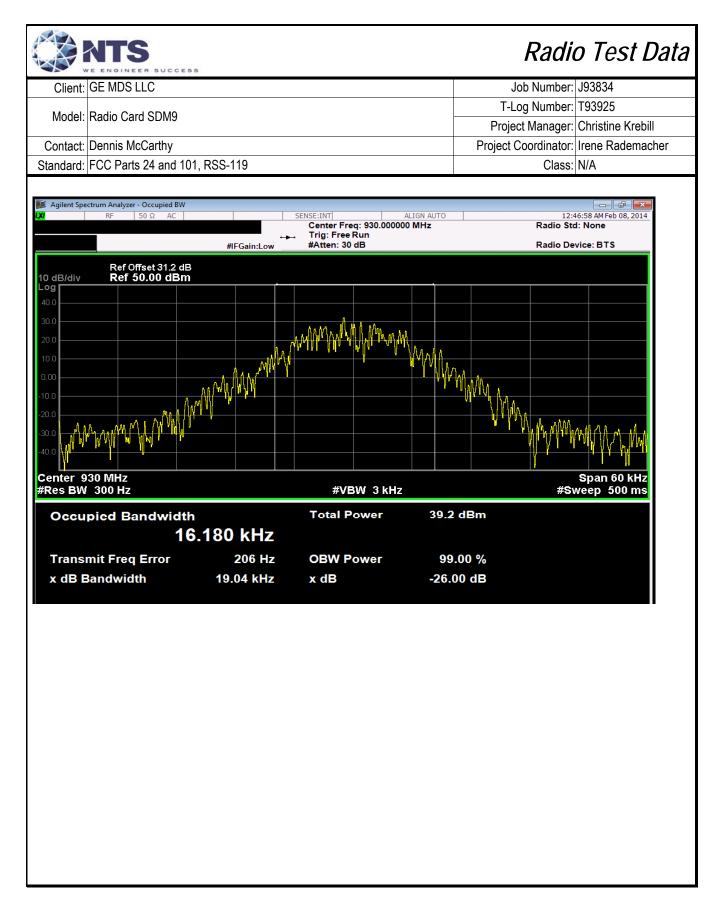
Modifications Made During Testing

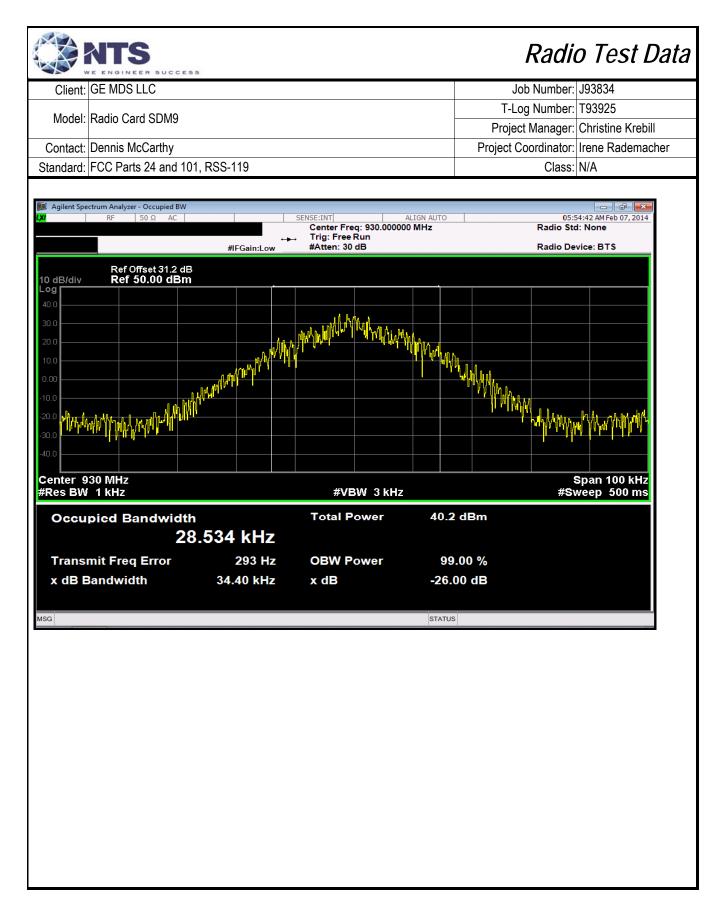

No modifications were made to the EUT during testing

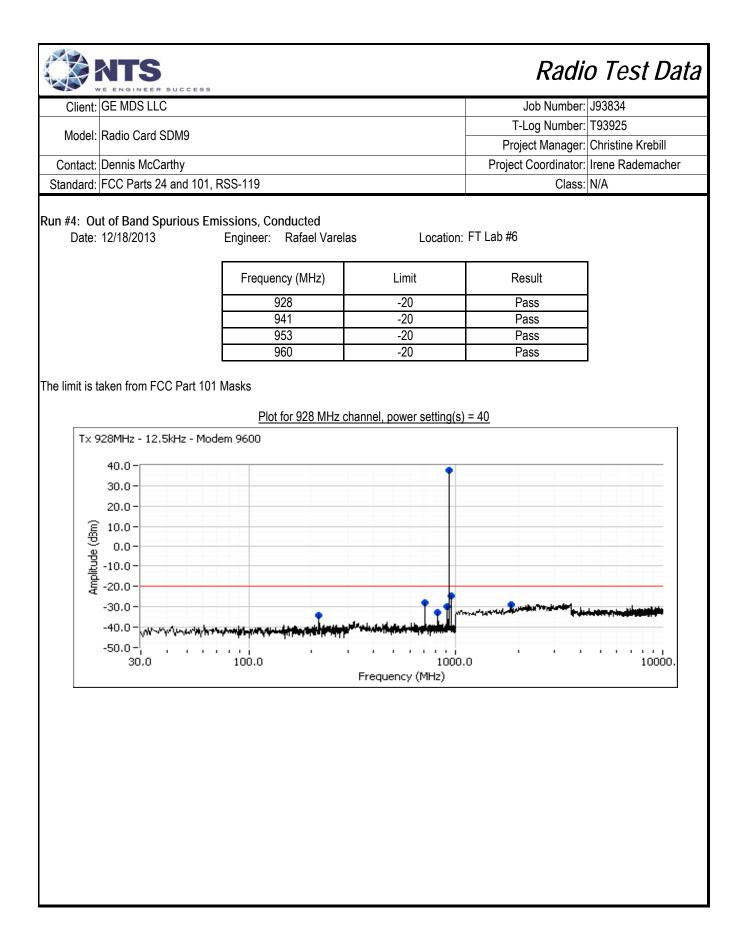

Deviations From The Standard

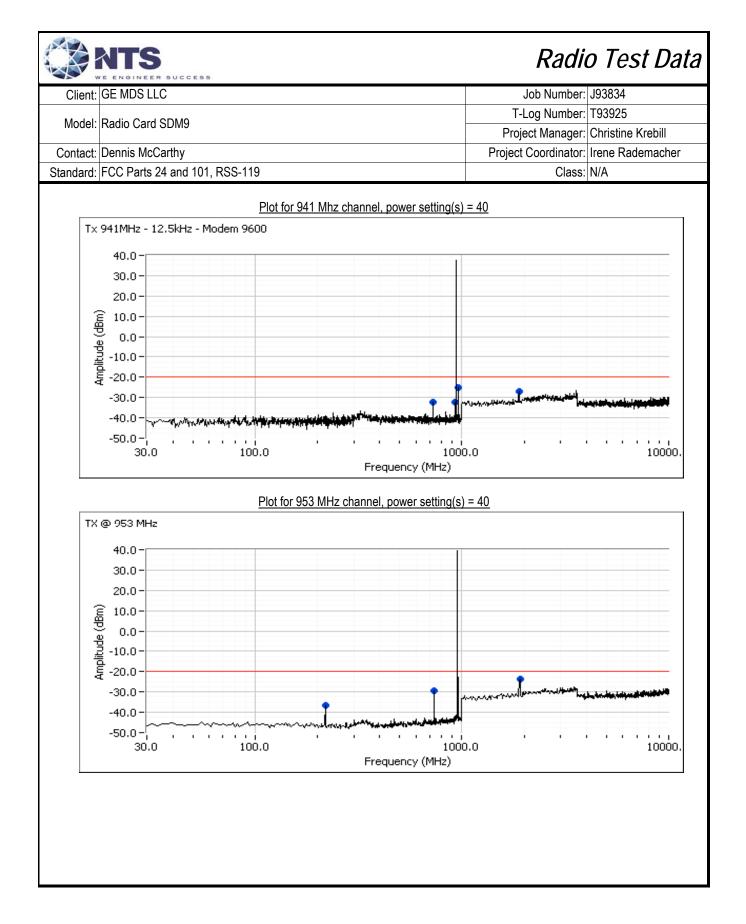
No deviations were made from the requirements of the standard.

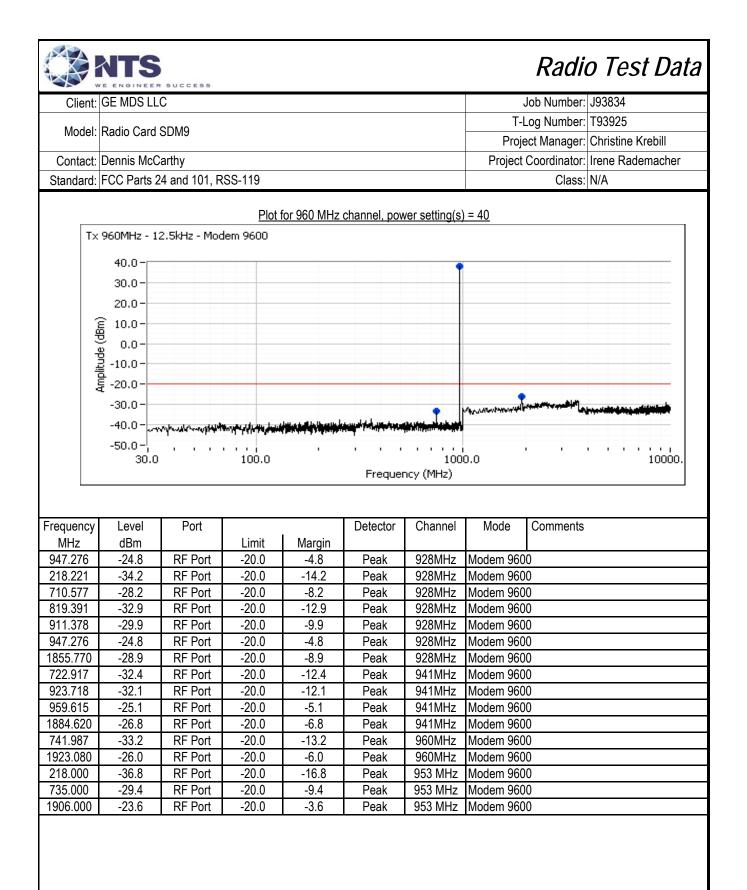


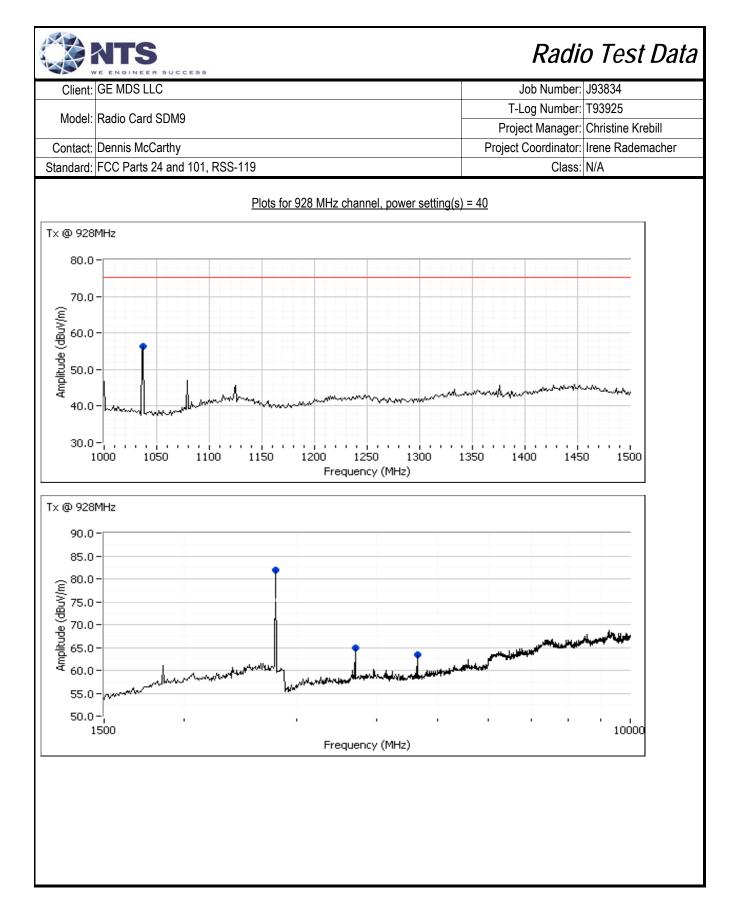

	Radio	o Test Data
Client: GE MDS LLC	Job Number:	J93834
	T-Log Number:	
Model: Radio Card SDM9	Project Manager:	
Contact: Dennis McCarthy	Project Coordinator:	
Standard: FCC Parts 24 and 101, RSS-119	Class:	
Run #2: Spectral Mask, FCC Part 101.111 Masks (a)(5) and (a)(6) Date: 2/7/2014 Engineer: Jon Vilagy Location: Note: These tests were performed by GE MDS at their facility in Rochester, Image: Agilent Spectrum Analyzer - Swept SA	New York.	
PASS PNO: Close Trig: Free Run Avg Ho PASS IFGain:Low Atten: 30 dB Avg Ho Ref Offset 31.2 dB Ref 50.00 dBm Atten: 30 dB Atten: 30 dB	pe: Log-Pwr	13:12 AM Feb 07, 2014 TRACE 1 2 3 4 5 6 TYPE M WWWWWW DET P P N N N N
Log Trace 1 Pass 40.0 30.0 20.0 20.0 Log Trace 1 Pass 40.0 20.0 Log Trace 1 Pass 40.0 10.		*
-30.0 -30.0 -40.0 Center 930.00000 MHz	Sp Sweep (#Swp) 800.0	an 50.00 kHz
12.5 kHz Channels		

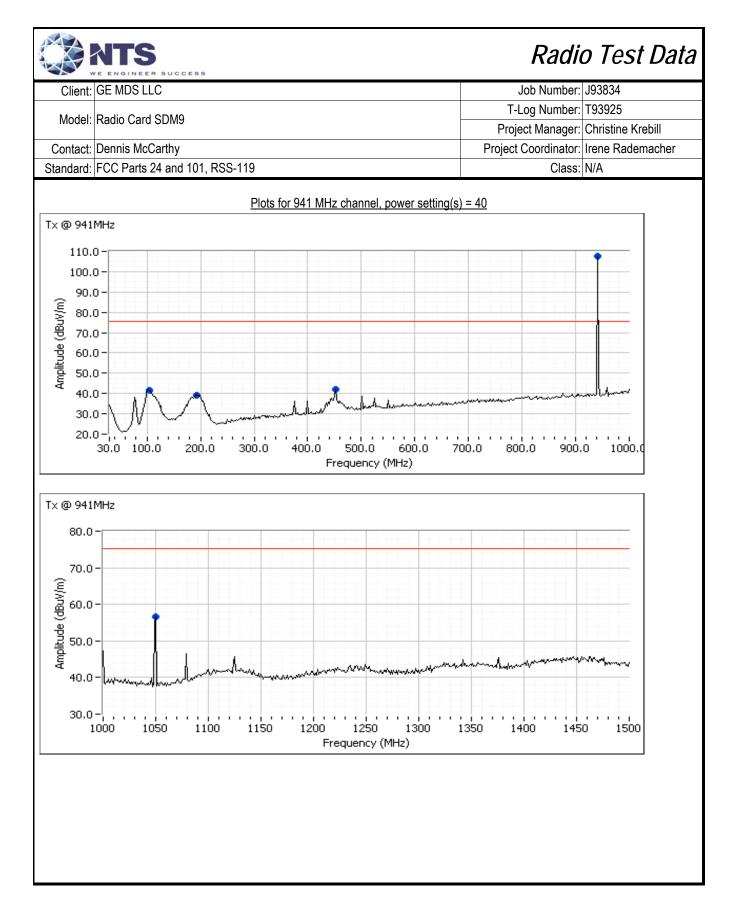


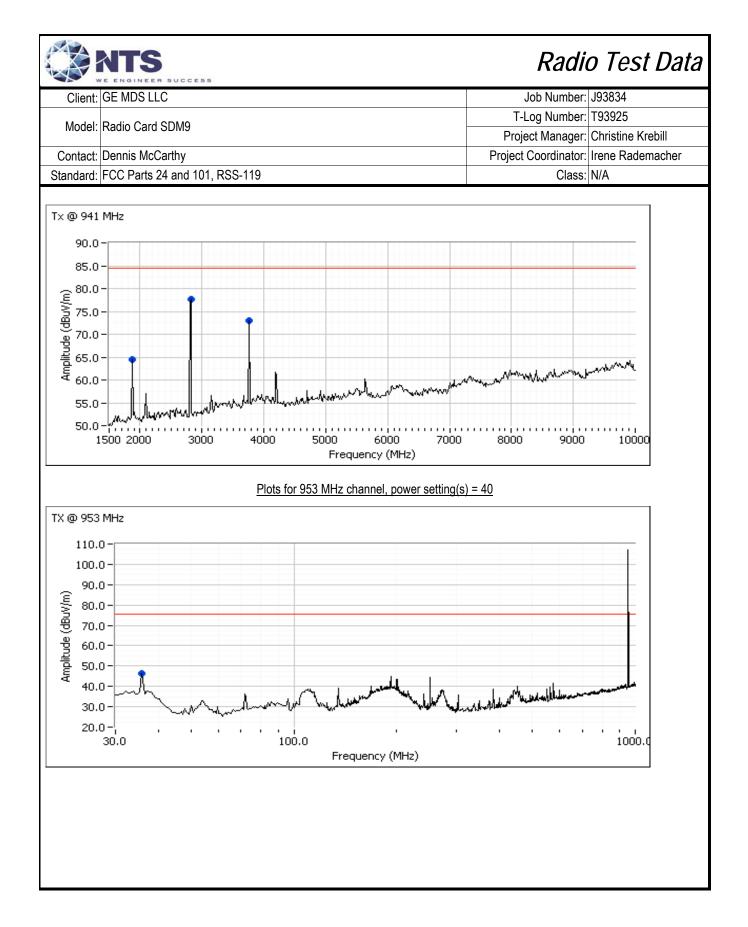


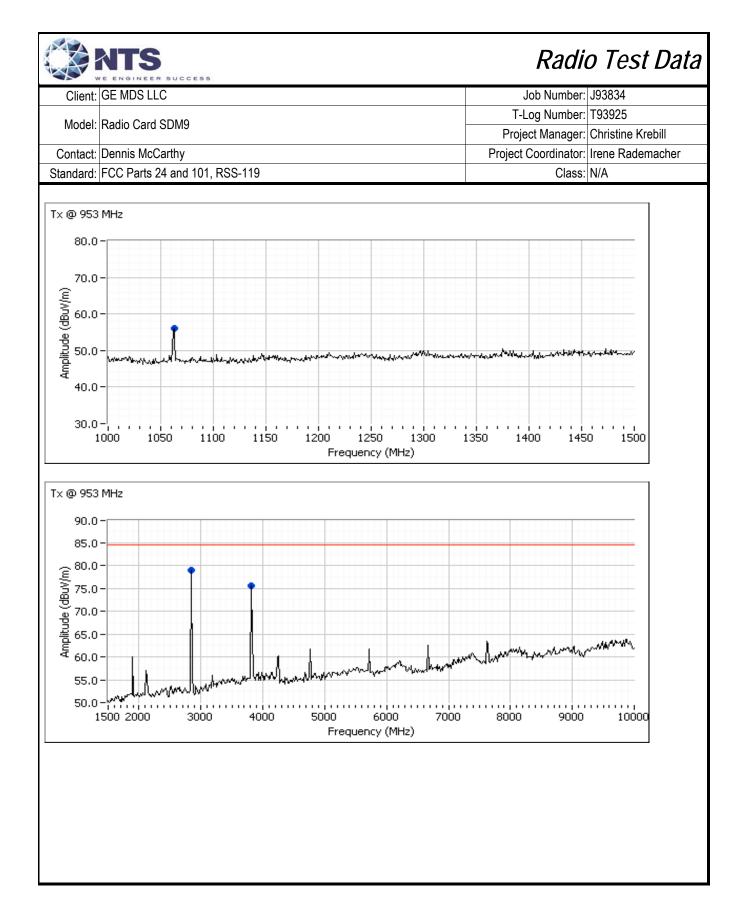

		SUCCESS				Radio	o Test Data
Client:	GE MDS LLC	- DAMEN CARD PY CONTR				Job Number:	J93834
						T-Log Number:	T93925
Model:	Radio Card S	SDM9				Project Manager:	Christine Krebill
Contact:	Dennis McCa	arthy				Project Coordinator:	Irene Rademacher
		4 and 101, RSS-119				Class:	
Date:		Engineer: tests were performed by	Jon Vilagy GE MDS at th	eir facility ir		GE MDS New York.	
12.5kHz		m Deviation 2000	Resolution	Dondurid	th (1/1-)	1	
	Power Setting	Frequency (MHz)	Bandwidth	Bandwid 26dB	tn (kHz) 99%		
	40	930	470 Hz	2008	10.6	1	
25kHz		0 Deviation 4800					
	Power	Frequency (MHz)	Resolution	Bandwid			
	Setting 40	930	Bandwidth 300 Hz	26dB	99% 16.2	•	
50kHz		00m Deviation 9400	300112		10.2	1	
	Power	Frequency (MHz)	Resolution	Bandwid	th (kHz)		
	Setting		Bandwidth	26dB	99%		
	40	930	1kHz		28.5	J	
Note 1:	99% bandwid	dth measured in accorda	ince with RSS	GEN. with F	RB > 1% of t	he span and VB > 3xRB	

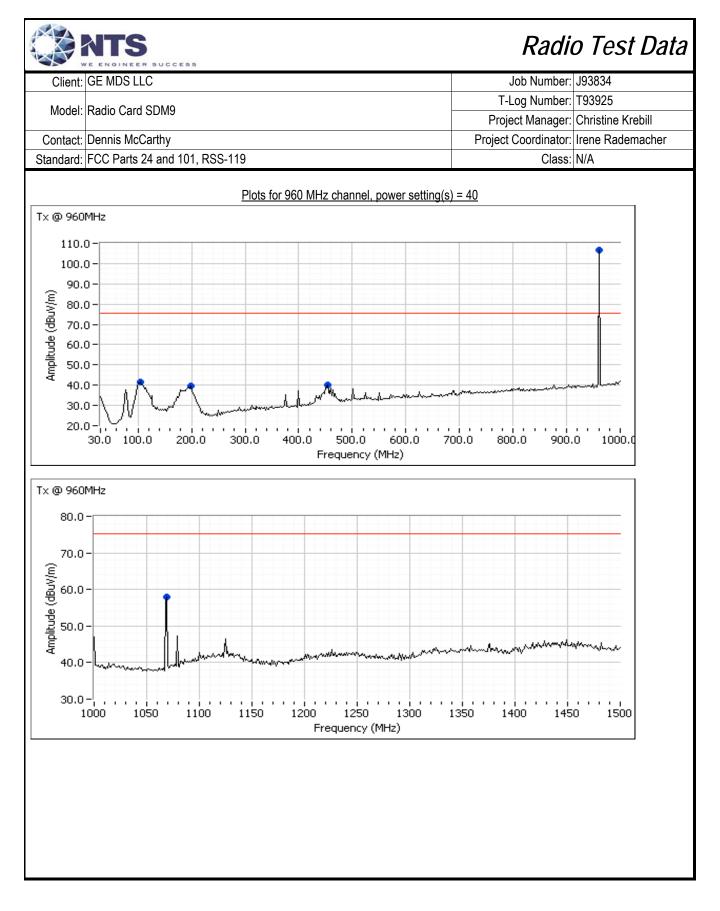


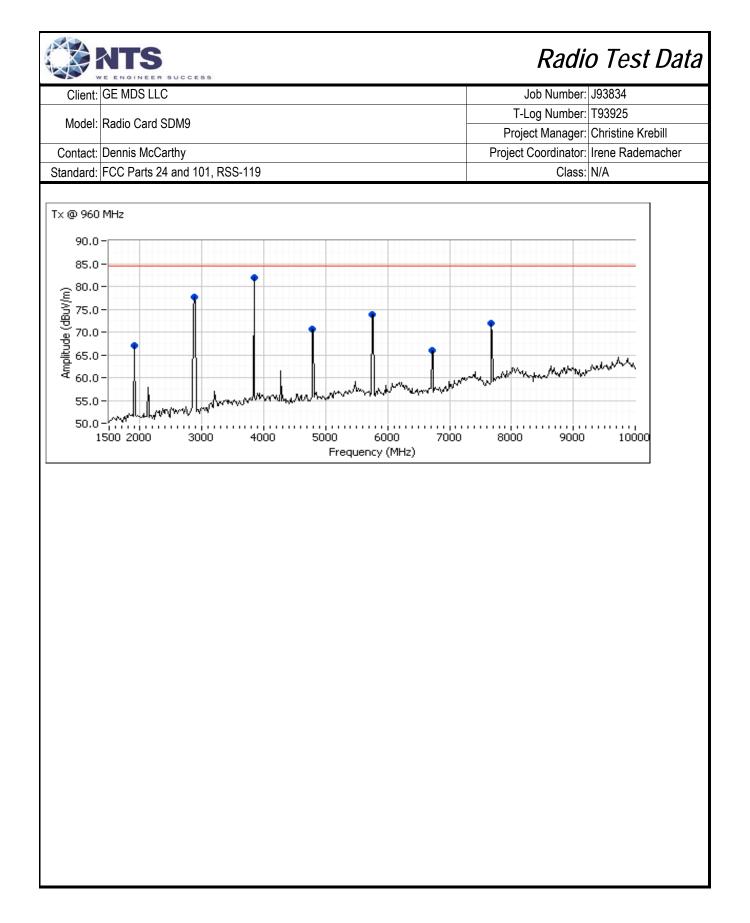







	ATS	SUCCESS						Radi	o Test Data
Client:	GE MDS LLO	C						Job Number:	J93834
							T-	Log Number:	T93925
Model:	Radio Card	SDM9						-	Christine Krebill
Contact	Dennis McCa	arthy							Irene Rademacher
	FCC Parts 2	•	000 110				Појесі	Class:	
Stanuaru.	FUC Fails 2	4 anu 101, r	100-119					Class.	IN/A
	ut of Band Sp Approximate f	Conducted field strength	d limit (dBm): n limit @ 3m:	-13					
un #5a - F	taken from FC Preliminary m : 12/19/2013			er scans David Bare		Location:	Fremont Ch	namber #4	
requency	Level	Pol	FCC F	Part 101	Detector	Azimuth	Height	Comments	Chann
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
101.924	41.5	Н	84.4	-42.9	Peak	239	3.0		Low, 928N
199.118	39.9	Н	84.4	-44.5	Peak	132	1.0		Low, 928N
455.711	39.3	Н	84.4	-45.1	Peak	120	2.0		Low, 928N
928.000	106.3	Н	-	-	Peak	317	1.5	Fundamenta	al Low, 928N
1037.020	56.4	V	84.4	-28.0	Peak	81	1.0		Low, 928N
2784.450	82.0	V	84.4	-2.4	Peak	40	1.0		Low, 928N
3711.230	64.9	Η	84.4	-19.5	Peak	46	1.3		Low, 928N
4640.180	63.5	V	84.4	-20.9	Peak	256	1.0		Low, 928N
103.868	41.7	Н	84.4	-42.7	Peak	234	3.0		Mid, 941N
10.3 000	39.1	H	84.4	-42.7	Peak	139	1.5		Mid, 941N Mid, 941N
	42.0	H	84.4	-43.3	Peak	274	2.0		Mid, 941N Mid, 941N
193.287	42.0	H	04.4	-42.4	Peak	313	1.5	Fundamenta	
193.287 451.824	107.6		_	-		84	1.0	i unuumente	Mid, 941N
193.287 451.824 941.000	107.6 56.5		84 4	-27 9	Peak I				1010, J+110
193.287 451.824 941.000 1050.010	56.5	V	84.4 84.4	-27.9 -19.7	Peak PK				Mid 941N
193.287 451.824 941.000 1050.010 1882.060	56.5 64.7	V V	84.4	-19.7	PK	263	1.7		,
193.287 451.824 941.000 1050.010 1882.060 2823.040	56.5 64.7 77.7	V V V	84.4 84.4	-19.7 -6.7	PK PK	263 264	1.7 1.0		Mid, 941N Mid, 941N Mid, 941N
193.287 451.824 941.000 1050.010 1882.060 2823.040 3764.090	56.5 64.7	V V	84.4	-19.7	PK	263	1.7		,
193.287 451.824 941.000 1050.010 1882.060 2823.040 3764.090	56.5 64.7 77.7 73.0	V V V V	84.4 84.4 84.4	-19.7 -6.7 -11.4	PK PK PK	263 264 288	1.7 1.0 1.2		Mid, 941N Mid, 941N
193.287 451.824 941.000 1050.010 1882.060 2823.040 3764.090 36.009	56.5 64.7 77.7 73.0 46.1	V V V V	84.4 84.4 84.4 83.4	-19.7 -6.7 -11.4 -37.3	PK PK PK Peak	263 264 288 342	1.7 1.0 1.2 1.0		Mid, 941N Mid, 941N Mid,/High, 953 N
193.287 451.824 941.000 1050.010 1882.060 2823.040 3764.090	56.5 64.7 77.7 73.0	V V V V	84.4 84.4 84.4	-19.7 -6.7 -11.4	PK PK PK	263 264 288	1.7 1.0 1.2		Mid, 941N Mid, 941N


	OF NOINEER	SUCCESS							~ /
Client:	GE MDS LLC	;						Job Number: J938	
Model:	Radio Card S	DM9						Log Number: T939	
								ect Manager: Chris	
Contact:	Dennis McCa	irthy					Project	Coordinator: Irene	Rademacher
Standard:	FCC Parts 24	and 101, F	RSS-119					Class: N/A	
Run #5 con	tinued								
Frequency	Level	Pol	FCC P	Part 101	Detector	Azimuth	Height	Comments	Channel
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
103.868	41.6	Н	84.4	-42.8	Peak	239	3.0		High, 960MHz
199.118	39.4	Н	84.4	-45.0	Peak	144	1.5		High, 960MHz
453.768	40.2	Н	84.4	-44.2	Peak	279	2.0		High, 960MH
961.122	106.5	Н	-	-	Peak	50	1.5	Fundamental	High, 960MHz
1068.990	57.9	V	84.4	-26.5	Peak	83	1.0		High, 960MHz
1920.020	67.0	V	84.4	-17.4	Peak	129	1.5		High, 960MHz
2879.830	77.7	V	84.4	-6.7	Peak	279	1.0		High, 960MHz
3840.050	82.0	H H	84.4 84.4	-2.4 -13.8	Peak	229 188	2.0		High, 960MHz
4800.010 5760.180	70.6 73.8	<u>п</u> V	84.4	-13.6	Peak Peak	100	<u>1.3</u> 1.3		High, 960MHz High, 960MHz
6720.210	65.9								
			8/1/1	_18.5	Poak		13		High GGOMH-
7680.160	71.9	H H ngth limit in	84.4 84.4 the tables at	-18.5 -12.5	Peak Peak	224 215 the erp/eirp li	1.3 1.3 imit detailed	l in the standard usi	High, 960MHz High, 960MHz ing the free space
7680.160 Note 1:	71.9 The field stren propagation e erp or eirp for measurement	H ngth limit in equation: E= all signals ts.	84.4 the tables at ≂√(30PG)/d. with less tha	-12.5 pove was ca This limit is o n 20dB of m	Peak Iculated from conservative - argin relative	215 the erp/eirp li it does not c	1.3 imit detailed consider the	d in the standard usi presence of the gro t is determined usin	High, 960MHz ing the free space bund plane. The
7680.160	71.9 The field stren propagation e erp or eirp for	H ngth limit in equation: E= all signals ts.	84.4 the tables at ≂√(30PG)/d. with less tha	-12.5 pove was ca This limit is o n 20dB of m	Peak Iculated from conservative - argin relative	215 the erp/eirp li it does not c	1.3 imit detailed consider the	presence of the gro	High, 960MHz ing the free space bund plane. The
7680.160 Note 1:	71.9 The field stren propagation e erp or eirp for measurement	H ngth limit in equation: E= all signals ts.	84.4 the tables at $\sqrt{(30PG)/d}$. with less tha	-12.5 bove was ca This limit is o n 20dB of m enna port te	Peak Iculated from conservative - argin relative	215 the erp/eirp li it does not c to this field s	1.3 imit detailed consider the trength limi	presence of the gro	High, 960MHz ing the free space bund plane. The
7680.160 Note 1:	71.9 The field stren propagation e erp or eirp for measurement Measurement	H ngth limit in equation: E= all signals ts.	84.4 the tables at $\sqrt{(30PG)/d}$. with less tha	-12.5 bove was ca This limit is o n 20dB of m enna port te	Peak Iculated from t conservative - argin relative rminated.	215 the erp/eirp li it does not c to this field s	1.3 imit detailed consider the trength limi	presence of the gro	High, 960MHz ing the free space bund plane. The
7680.160 Note 1: Note 2: Tx @ 928	71.9 The field stren propagation e erp or eirp for measurement Measurement	H ngth limit in equation: E= all signals ts.	84.4 the tables at $\sqrt{(30PG)/d}$. with less tha	-12.5 bove was ca This limit is o n 20dB of m enna port te	Peak Iculated from t conservative - argin relative rminated.	215 the erp/eirp li it does not c to this field s	1.3 imit detailed consider the trength limi	presence of the gro	High, 960MHz ing the free space bund plane. The
7680.160 Note 1: Note 2: Tx @ 928 110.	71.9 The field stren propagation e erp or eirp for measurement Measurement MHz	H ngth limit in equation: E= all signals ts.	84.4 the tables at $\sqrt{(30PG)/d}$. with less tha	-12.5 bove was ca This limit is o n 20dB of m enna port te	Peak Iculated from t conservative - argin relative rminated.	215 the erp/eirp li it does not c to this field s	1.3 imit detailed consider the trength limi	presence of the gro	High, 960MHz ing the free space bund plane. The
7680.160 Note 1: Note 2: Tx @ 928	71.9 The field stren propagation e erp or eirp for measurement Measurement MHz	H ngth limit in equation: E= all signals ts.	84.4 the tables at $\sqrt{(30PG)/d}$. with less tha	-12.5 bove was ca This limit is o n 20dB of m enna port te	Peak Iculated from t conservative - argin relative rminated.	215 the erp/eirp li it does not c to this field s	1.3 imit detailed consider the trength limi	presence of the gro	High, 960MH: ing the free space ound plane. The
7680.160 Note 1: Note 2: Tx @ 928 110, 100, 90,	71.9 The field stren propagation e erp or eirp for measurement Measurement MHz 0 -	H ngth limit in equation: E= all signals ts.	84.4 the tables at $\sqrt{(30PG)/d}$. with less tha	-12.5 bove was ca This limit is o n 20dB of m enna port te	Peak Iculated from t conservative - argin relative rminated.	215 the erp/eirp li it does not c to this field s	1.3 imit detailed consider the trength limi	presence of the gro	High, 960MH ing the free space ound plane. The
7680.160 Note 1: Note 2: Tx @ 928 110, 100, 90,	71.9 The field stren propagation e erp or eirp for measurement Measurement MHz 0 - 0 - 0 -	H ngth limit in equation: E= all signals ts.	84.4 the tables at $\sqrt{(30PG)/d}$. with less tha	-12.5 bove was ca This limit is o n 20dB of m enna port te	Peak Iculated from t conservative - argin relative rminated.	215 the erp/eirp li it does not c to this field s	1.3 imit detailed consider the trength limi	presence of the gro	High, 960MH ing the free space ound plane. The
7680.160 Note 1: Note 2: Tx @ 928 110, 100, 90,	71.9 The field stren propagation e erp or eirp for measurement MHz 0 - 0 - 0 - 0 - 0 -	H ngth limit in equation: E= all signals ts.	84.4 the tables at $\sqrt{(30PG)/d}$. with less tha	-12.5 bove was ca This limit is o n 20dB of m enna port te	Peak Iculated from t conservative - argin relative rminated.	215 the erp/eirp li it does not c to this field s	1.3 imit detailed consider the trength limi	presence of the gro	High, 960MH ing the free space ound plane. The
7680.160 Jote 1: Jote 2: Tx @ 928 110, 100, 90,	71.9 The field stren propagation e erp or eirp for measurement MHz 0 - 0 - 0 - 0 - 0 - 0 -	H ngth limit in equation: E= all signals ts.	84.4 the tables at $\sqrt{(30PG)/d}$. with less tha	-12.5 bove was ca This limit is o n 20dB of m enna port te	Peak Iculated from t conservative - argin relative rminated.	215 the erp/eirp li it does not c to this field s	1.3 imit detailed consider the trength limi	presence of the gro	High, 960MH ing the free space ound plane. The
7680.160 Note 1: Note 2: Tx @ 928 110, 100, 90,	71.9 The field stren propagation e erp or eirp for measurement Measurement MHz 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	H ngth limit in equation: E= all signals ts.	84.4 the tables at $\sqrt{(30PG)/d}$. with less tha	-12.5 bove was ca This limit is o n 20dB of m enna port te	Peak Iculated from t conservative - argin relative rminated.	215 the erp/eirp li it does not c to this field s	1.3 imit detailed consider the trength limi	presence of the gro	High, 960MH: ing the free space ound plane. The
7680.160 Note 1: Note 2: T× @ 928 110. 100. (@/\∩RP) 90. (@/\∩RP) 70. 90. 100. 50.	71.9 The field stren propagation e erp or eirp for measurement Measurement MHz 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	H ngth limit in equation: E= all signals ts.	84.4 the tables at $\sqrt{(30PG)/d}$. with less tha	-12.5 bove was ca This limit is o n 20dB of m enna port te	Peak Iculated from t conservative - argin relative rminated.	215 the erp/eirp li it does not c to this field s	1.3 imit detailed consider the trength limi	presence of the gro	High, 960MH ing the free space ound plane. The
7680.160 Jote 1: Jote 2: Tx @ 928 110. 000. 90. (u) NBP 90. 60. 91. 40.	71.9 The field strenge propagation elements for eirp for eirp for measurements Measurements MHz 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	H ngth limit in equation: E= all signals ts.	84.4 the tables at $\sqrt{(30PG)/d}$. with less tha	-12.5 bove was ca This limit is o n 20dB of m enna port te	Peak Iculated from t conservative - argin relative rminated.	215 the erp/eirp li it does not c to this field s	1.3 imit detailed consider the trength limi	presence of the gro	High, 960MH ing the free space ound plane. The
7680.160 Note 1: Note 2: T× @ 928 110. 100. (@/\∩RP) 90. (@/\∩RP) 70. 90. 100. 50.	71.9 The field strenge propagation elements for eirp for eirp for measurements Measurements MHz 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	H ngth limit in equation: E= all signals ts.	84.4 the tables at $\sqrt{(30PG)/d}$. with less tha	-12.5 bove was ca This limit is o n 20dB of m enna port te	Peak Iculated from t conservative - argin relative rminated.	215 the erp/eirp li it does not c to this field s	1.3 imit detailed consider the trength limi	presence of the gro	High, 960MH ing the free space ound plane. The



Client:	GE MDS LLC							Job Number:	J93834		
Madal	/lodel: Radio Card SDM9						T-	Log Number:	T93925		
Model:								Project Manager:		Christine Krebill	
Contact:	Dennis McCa	rthy				Irene Radem					
	: FCC Parts 24 and 101, RSS-119							Class:			
Date:	Final Field St 12/19/2013	rength Mea		and Substi David Bare			Frement Cł	namber #4			
UT Field S	<u> </u>										
requency	Level	Pol		art 101	Detector	Azimuth	Height	Comments		Channe	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
1037.020	61.5	V	84.4	-22.9	PK	82	1.0	PK (0.10s)		92	
2784.070	82.7	<u>V</u>	84.4	-1.7	PK	43	1.0		B 3 MHz;Pe	9	
3712.010	71.6	H V	84.4	-12.8	PK	39 256	1.0		B 3 MHz;Pe	9	
4640.280	71.7	V	84.4	-12.7	PK	256	1.1	KB I MHZ;\	/B 3 MHz;Pe	9	
1050.010	61.0	V	84.4	-23.4	PK	67	1.0	PK (0.10s)		9	
1882.060	64.7	V	84.4	-19.7	PK	263	1.7		/B 3 MHz;Pe	9	
2823.040	77.7	V	84.4	-6.7	PK	264	1.0		/B 3 MHz;Pe	9	
3764.090	73.0	V	84.4	-11.4	PK	288	1.2		/B 3 MHz;Pe	9	
		-						, ,,			
2859.030	81.2	V	84.4	-3.2	PK	268	1.0	RB 1 MHz;\	/B 3 MHz;Pe	9	
3812.100	79.9	Н	84.4	-4.5	PK	238	1.4		/B 3 MHz;Pe	9	
1068.990	62.8	V	84.4	-21.6	PK	79	1.0	PK (0.10s)		9	
1919.980	68.5	V	84.4	-15.9	Peak	134	1.5	RB 1 MHz;\	/B 3 MHz;Pe	9	
2880.000	82.6	V	84.4	-1.8	PK	262	1.0	RB 1 MHz;\	/B 3 MHz;Pe	9	
3840.050	82.5	Н	84.4	-1.9	PK	231	1.9	RB 1 MHz;\	/B 3 MHz;Pe	9	
4799.960	73.4	Н	84.4	-11.0	PK	238	1.4	RB 1 MHz;\	/B 3 MHz;Pe	9	
5760.160	74.2	V	84.4	-10.2	PK	232	1.3		/B 3 MHz;Pe	9	
6720.210	68.0	Н	84.4	-16.4	Peak	260	1.2		/B 3 MHz;Pe	9	
7679.990	74.4	Н	84.4	-10.0	PK	224	1.6	RB 1 MHz;\	/B 3 MHz;Pe	9	
ote 1: ote 2:	propagation e	equation: E= all signals ts.	√(30PG)/d. with less tha	This limit is n 20dB of m	Iculated from the conservative - the transformation of the conservative - the transformation of transforma	it does not c	onsider the	presence of	the ground pla	ane. The	

Client [.]	GE MDS LL	С					L	lob Number:	J93834		
Onorit.	Radio Card SDM9							T-Log Number: Project Manager:		Т93925	
Model:											
Contact	Donnis McC	arthy		-	ect Coordinator: Irene Rademacher						
	ECC Parts 24 and 101 RSS 110							Class: N/A			
Standard:	EFCC Parts 24 and 101, RSS-119							Class.	N/A		
Substitutio Iorizontal	n measurem	ients									
Frequency	Substit	ution measur	ements	Site	EU.	T measurem	ents	eirp Limit	erp Limit	Margin	
MHz	Pin ¹	Gain ²	FS ³	Factor ⁴	FS ⁵	eirp (dBm)		dBm	dBm	dB	
3712.010	-9.9	9.4	94.8	95.3	71.6	-23.7	-25.9		-13.0	-12.9	
3812.100	-9.9	9.4	94.6	95.1	79.9	-15.2	-17.4		-13.0	-4.4	
3840.050	-9.9	9.4	94.0	94.5	82.5	-12.0	-14.2		-13.0	-1.2	
4799.960	-9.8	10.8	94.4	93.4	73.4	-20.0	-22.2		-13.0	-9.2	
5760.160	-9.7	11.4	94.1	92.4	74.2	-18.2	-20.4		-13.0	-7.4	
/ertical						_					
Frequency		ution measur	-	Site		T measurem	1	eirp Limit	erp Limit	Margin	
MHz	Pin ¹	Gain ²	FS ³	Factor ⁴	FS⁵	eirp (dBm)	erp (dBm)	dBm	dBm	dB	
2784.070	-10.1	10.0	94.4	94.5	82.7	-11.8	-14.0		-13.0	-1.0	
4640.280	-9.8	11.0	94.2	93.0	71.7	-21.3	-23.5		-13.0	-10.5	
1882.060	-10.1	8.2	94.1	96.0	64.7	-31.3	-33.5		-13.0	-20.5	
2823.040	-10.1	10.0	94.1	90.0	77.7	-16.8	-33.5		-13.0	-20.5	
3764.090	-9.9	9.4	94.1	94.6	73.0	-21.6	-23.8		-13.0	-10.8	
	0.0		•	••							
2859.030	-10.1	10.0	94.5	94.6	81.2	-13.4	-15.6		-13.0	-2.6	
1919.980	-10.1	8.2	93.1	95.0	68.5	-26.5	-28.7		-13.0	-15.7	
2880.000	-10.1	10.0	94.4	94.5	82.6	-11.9	-14.1		-13.0	-1.1	
lata ().	Dia ia tha iau			h = 1 ² 1 - 1 ² =							
lote 1: lote 2:				bstitution ant	enna						
lote 3:		jain (dBi) for		sured from th		n antenna					
lote 4:							to an eirn in	dBm			
Note 5:	Site Factor - this is the site factor to convert from a field strength in dBuV/m to an eirp in dBm.										
Noto 5.	EUT field strength as measured during initial run.										

				Radi	o Test Data			
Client:	GE MDS LLC		Job Number:	J93834				
			T-Log Number:	T93925				
Model:	Radio Card SDM9		Project Manager:					
Contact:	Dennis McCarthy		Project Coordinator:					
	FCC Parts 24 and 101, I	RSS-119	Class:					
Run #6: Fr	equency Stability	– . David W. Ba						
Date:	12/17/2013	Engineer: R. Varelas	Location:	Fremont Lab #6				
	Nominal Frequency	929.99976 MHz						
The EUT wa	Stability Over Tempera as soaked at each tempe d stabilized at that tempe	rature for a minimum of 30) minutes prior to making	the measurements to ens	sure the EUT and			
Temperature	Frequency Measured	D	<u>rift</u>					
(Celsius)	(MHz)	(Hz)	(ppm)					
-30	930.000160	400	0.4					
-20	930.000080	320	0.3					
-10	929.999920	160	0.2					
0	929.999760	0	0.0	0.0				
10	929.999679	-81	-0.1					
20	929.999760	0	0.0					
30	929.999599	-161	-0.2					
40	929.999519	-241	-0.3					
50	929.999439	-321	-0.3					
	Worst case:	400	0.4					
Nominal Vo	Stability Over Input Vol Itage is 24Vdc.							
<u>Voltage</u>	Frequency Measured	-	<u>rift</u>					
(Dc)	(MHz)	(Hz)	(ppm)					
21.5	929.999519	-241	-0.3					
27.6	929.999519	-241	-0.3					
	Worst case:	-241	0.4					
Note 1: Maximum drift of fundamental frequency before it shut down at 21.3 Vdc was 0 Hz.								

End of Report

This page is intentionally blank and marks the last page of this test report.