

41039 Boyce Road Fremont, CA. 94538 510-578-3500 Phone

Radio Test Report

FCC Parts 24 and 101 and RSS-119 (930-941 MHz, 935-940 MHz and 928-960 MHz)

Model: Orbit SDM9-1 Module

IC CERTIFICATION #: FCC ID:	101D-SDM91 E5MDS-SDM9-1
COMPANY:	GE Digital Energy - MDS 175 Science Pkwy Rochester, NY 14620
TEST SITE(S):	NTS Labs LLC 41039 Boyce Road. Fremont, CA. 94538-2435
PROJECT NUMBER:	PR166351
TROJECT NOWIDER.	F K100331
REPORT DATE:	December 12, 2022
REPORT DATE:	December 12, 2022

This report and the information contained herein represent the results of testing of only those articles / products identified in this document and selected by the client. The tests were performed to specifications and/or procedures selected by the client. NTS Labs LLC makes no representations expressed or implied that such testing fully demonstrates efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS Labs LLC of the equipment tested, nor does it present any statement whatsoever as to its merchantability or fitness of the test article or similar products, for a particular purpose. This report shall not be reproduced except in full without written approval from NTS Labs LLC.

VALIDATING SIGNATORIES

PROGRAM MGR

David W. Bare Chief Engineer

TECHNICAL REVIEWER:

David W. Bare Chief Engineer

FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

QUALITY ASSURANCE DELEGATE

Gary Izard Senior Technical Writer

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	December 12, 2022	First release	
1	March 17, 2023	Updated ISED Certification Number, revised to remove FCC Part 90, add OOB plots, add missing ambient conditions	David Bare
2	March 20, 2023	Revised to remove FCC part 90 references	David Bare

TABLE OF CONTENTS

COVER PAGE	1
VALIDATING SIGNATORIES	2
REVISION HISTORY	
TABLE OF CONTENTS	
SCOPE	
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS	
RSS-119	
FCC PART 24D (BASE STATION))	
FCC PART 101 AND RSS-119.	
EXTREME CONDITIONS	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	11
GENERAL	11
OTHER EUT DETAILS	
ENCLOSURE	
MODIFICATIONS SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
SUPPORT EQUIPMENT INTERFACE PORTS	
EUT OPERATION	
TESTING	13
GENERAL INFORMATION	
RF PORT MEASUREMENT PROCEDURES	14
OUTPUT POWER	
BANDWIDTH MEASUREMENTS	
CONDUCTED SPURIOUS EMISSIONS	
TRANSMITTER MASK MEASUREMENTS	
FREQUENCY STABILITY	
RADIATED EMISSIONS MEASUREMENTS INSTRUMENTATION	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
SAMPLE CALCULATIONS	19
SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS	
SAMPLE CALCULATIONS – RADIATED FIELD STRENGTH	
SAMPLE CALCULATIONS – RADIATED POWER	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	21
APPENDIX B TEST DATA	22
END OF REPORT	68

SCOPE

Tests have been performed on the GE Digital Energy - MDS model Orbit SDM9-1 Module, pursuant to the relevant requirements of the following standard(s) in order to obtain device certification against the regulatory requirements of the Federal Communications Commission and Innovation Science and Economic Development Canada.

- Code of Federal Regulations (CFR) Title 47 Part 2
- RSS-Gen Issue 5, April 2018
- CFR 47 Part 24 Subpart E (Narrowband PCS)
- CFR 47 Part 101
- RSS-119, Issue 12, May 2015 (Land Mobile and Fixed Equipment Operating in the Frequency Range 27.41-960 MHz)

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in NTS Labs LLC test procedures:

ANSI C63.26:2015 FCC KDB 971168 Licensed Digital Transmitters

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Innovation Science and Economic Development Canada performance and procedural standards.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

NTS Labs LLC is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise.

The test results recorded herein are based on a single type test of the GE Digital Energy - MDS model Orbit SDM9-1 Module and therefore apply only to the tested sample. The sample was selected and prepared by Jonathan Vilagy of GE Digital Energy - MDS.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, the device requires certification. Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of GE Digital Energy - MDS model Orbit SDM9-1 Module complied with the requirements of the standards and frequency bands declared in the scope of this test report.

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS

RSS-119

	Canada	Description	Measured	Limit	Result		
Transmitter M	lodulation, output	power and other characte	ristics				
	RSS-119	Frequency range(s)	930-941 MHz	930-941 MHz	Complied		
	RSS-119	RF power output at the	30 dBm to 40.7	50 dBm	Complied		
	K55-119	antenna terminals	dBm	50 dBill	Complied		
	RSS-119	Emission types	F1D, F2D, F3D	-	-		
	K55-119	Emission mask	Mask G	Within Mask	Complied		
	RSS-GEN 6.7	Occupied Bandwidth	9.78 kHz, 15.2	13.6 kHz and	Complied		
	RSS-119	Occupied Baild width	kHz	20 kHz	complied		
		Occupied Bandwidth	9.78 kHz, 15.2	11.25 kHz and	Complied		
			kHz 20.0 kHz		compiled		
Transmitter spurious emissions							
	RSS-119	At the antenna terminals	-24.1 dBm	-20 dBm	Complied		
	RSS-119	Field strength	-35.6 dBm ERP	-20 dBm	Complied		
Other details	-	-					
	RSS-119	Frequency stability	0.5 ppm	Note 2	Complied		
	RSS-102	RF Exposure	See separate	MPE exhibit	Complied		
		Final radio frequency					
		amplifying circuit's dc					
		voltages and currents for		24Vdc, 2A			
		normal operation over					
		the power range					
-	-	Antenna Gain	J	Jp to 9.15 dBi			
		by standards listed above.					
		S LLC attestation concerning					
	Note 3 The measurement at the channel edge is made in a reference bandwidth of at least 1% the emission bandwidth is used and the measured power is integrated over 100 kHz. For measurements more than						
		e channel the measurement					
and 1MHz for emissions above 1 GHz.							

FCC Part 24D (Base Station))

FCC	Description	Measured	Limit	Result	
Transmitter Mo	dulation, output power and other charact	eristics		•	
§2.1033 (c) (5) §24.129	Frequency Range	930-931 MHz 940-941 MHz	930-931 MHz 940-941 MHz	Complied	
\$2.1033 (c) (6) \$2.1033 (c) (7) \$2.1046 \$24.132	RF power output at antenna terminals	30 dBm to 40.7 dBm	65.4 dBm ERP	Complied	
§2.1033 (c) (4)	Emission types	F1D, F2D, F3D	-	-	
§2.1047 §24.133(a)(1) and (a)(2)	Emissions Mask			Complied	
§2.1049 §24.131	Occupied Bandwidth	5.76 kHz 7.13 kHz 15.2 kHz 26.8 kHz	10 kHz 10 kHz 20 kHz 45 kHz	Complied	
Transmitter spu	rious emissions			•	
§2.1051 §2.1057 §24.133	At the antenna terminals	-24.1 dBm	-13 dBm	Complied	
\$2.1053 \$2.1057 \$24.133	Field strength	-35.6 dBm	-13 dBm	Complied	
Other details					
§2.1055 §24.135	Frequency stability	0.5 ppm	1.0 ppm	Complied	
§2.1093	RF Exposure	See separate	MPE exhibit	Complied	
§2.1033 (c) (8)	Final radio frequency amplifying circuit's dc voltages and currents for normal operation over the power range		24Vdc, 2A		
-	- Antenna Gain	Up to 9.15 dBi			
Note 1 Pass/Fa	I criteria defined by standards listed above.				

FCC Part 101 and RSS-119

FCC	Canada	Description	Measured	Limit	Result	
Transmitter M	odulation, output	power and other characte	ristics			
§2.1033 (c) (5) §101.101	RSP-100, SRSP-504, - 505, -506, -507	Frequency Range	928-960 MHz	928-960 MHz	Complied	
\$2.1033 (c) (6) \$2.1033 (c) (7) \$2.1046 \$101.113	RSS-119 5.4 SRSP-504, - 505, -506, -507	RF power output at antenna terminals	30 dBm to 40.7 dBm	47.0 dBm EIRP ¹	Complied	
§2.1033 (c) (4)	RSP-100	Emission Types	F1D, F2D, F3D	-	-	
§2.1047 §101.111(a)(5) & (a)(6)	RSS-119 5.8 (masks D and G)	Emission Mask	Within masks	Within masks	Complied	
	RSS-GEN 6.7 RSS-119 5.5	Occupied Bandwidth	9.78 kHz 15.2 kHz 26.8 kHz	11.25 kHz 20 kHz 50 kHz ²	Complied	
\$2.1049 \$101.109		Occupied Bandwidth	5.76 kHz 7.13 kHz 15.2 kHz 26.8 kHz	200 kHz	Complied	
Transmitter sp	urious emissions					
§2.1051 §2.1057 §101.111	RSS-119 5.8	At the antenna terminals	-24.1 dBm	-13 dBm	Complied	
\$2.1053 \$2.1057 \$101.111	RSS-119 5.8	Field strength	-35.5 dBm	-13 dBm eirp	Complied	
Other details	L	L			1	
§2.1055 §101.107	RSS-119 5.3	Frequency stability	0.5 ppm	1.5 ppm	Complied	
§2.1093	RSS-102	RF Exposure	See separate	MPE exhibit	Complied	
§2.1033 (c) (8)	RSP-100	Final radio frequency amplifying circuit's de voltages and currents for normal operation over the power range	24Vdc, 2A			
-	-	Antenna Gain	Up to 9.15 dBi			
Note 2 Aggreg	Note 1Power is adjusted to comply with 47 dBm EIRP limitation as needed depending on antenna gainNote 2Aggregate occupied bandwidth per RSS-119 clause 5.6					

EXTREME CONDITIONS

Frequency stability is determined over extremes of temperature and voltage. The extremes of voltage were 85 to 115 percent of the nominal value.

The extremes of temperature were -30° C to $+60^{\circ}$ C as specified in FCC §2.1055(a)(1) increased to $+60^{\circ}$ C.

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2) and were calculated in accordance with NAMAS document NIS 81 and M3003.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF frequency	Hz	25 to 7,000 MHz	1.7 x 10 ⁻⁷
RF power, conducted	dBm	25 to 7,000 MHz	$\pm 0.52 \text{ dB}$
Conducted emission of transmitter	dBm	25 to 40,000 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of receiver	dBm	25 to 40,000 MHz	$\pm 0.7 \text{ dB}$
Radiated emission (substitution method)	dBm	25 to 40,000 MHz	$\pm 2.5 \text{ dB}$
Radiated emission (field strength)	dBµV/m	25 to 1,000 MHz 1 to 40 GHz	$\begin{array}{c} \pm \ 3.6 \ dB \\ \pm \ 6.0 \ dB \end{array}$

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The GE Digital Energy - MDS model Orbit SDM9-1 Module is a radio module designed to be used in GE Digital Energy – MDS SD Master Station chassis. It operates in the 930-931 MHz and 940-941 MHz bands for FCC Part 24, 928-960 MHz band for FCC Part 101 and as allowed per RSS-119.

The sample was received on November 10, 2022 and tested on November 16 and 18, 2022. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID / ISED CN
GE Digital Energy - MDS	SDM9-1	Orbit Radio Module		E5MDS-SDM9-1 101D-SDM91

OTHER EUT DETAILS

The radio module can operate on 6.25, 12.5, 25 and 50 kHz channel spacings using F1D, F2D or F3D modulation depending on rule part and licensing.

ENCLOSURE

The EUT has no enclosure. It is designed to be installed within the enclosure of a host SD Master Station.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS Labs LLC.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
GE MDS LLC	-	Test Fixture	-	-
Нр	6024A	Power Supply	2430A-03013	-

The following equipment was used as remote support equipment for emissions testing:

Company	Model	Description	Serial Number	FCC ID
hp	HSN-124C-5	Laptop	5CG014D6TC	-

No support equipment was used during testing.

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected To		Cable(s)	
FOIL	Connected To	Description	Shielded or Unshielded	Length(m)
Card Edge Connector	Test Fixture	Direct connection	-	-

SUPPORT EQUIPMENT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected To		Cable(s)	
1 OIT	Oonneeded To	Description	Shielded or Unshielded	Length(m)
Test Fixture Power	Power Supply	Two wire	Unshielded	1.8
Test Fixture Serial	Laptop	Multiwire	Shielded	1.5

The serial cable was removed during testing after configuration of the EUT.

EUT OPERATION

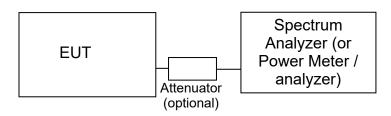
During emissions testing the EUT was configured to transmit on the selected channel at power setting of 40 (maximum) with or without modulation depending on the test.

TESTING

GENERAL INFORMATION

Antenna port measurements were taken at the NTS Labs LLC test site located at 41039 Boyce Road, Fremont, CA 94538-2435.

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 6.2 of RSS-GEN, NTS Labs LLC has been recognized as an accredited test laboratory by the Commission and Innovation, Science and Economic Development Canada. A description of the facilities employed for testing is maintained by NTS Labs LLC.


Sito	Company / Regi	stration Numbers	Location	
Site	FCC	Canada	Location	
Chamber 3	- <u>A</u>		11020 Davies Dead	
Chamber 4		2845B (Wireless test lab	41039 Boyce Road	
Chamber 5	US1031	#US0027)	Fremont,	
Chamber 7		,	CA 94538-2435	

ANSI C63.26 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Results from testing performed in this chamber have been correlated with results from an open area test site. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.26.

RF PORT MEASUREMENT PROCEDURES

Conducted measurements are performed with the EUT's rf input/output connected to the input of a spectrum analyzer, power meter or modulation analyzer. When required an attenuator, filter and/or dc block is placed between the EUT and the spectrum analyzer to avoid overloading the front end of the measurement device. Measurements are corrected for the insertion loss of the attenuators and cables inserted between the rf port of the EUT and the measurement equipment.

Test Configuration for Antenna Port Measurements

For devices with an integral antenna the output power and spurious emissions are measured as a field strength at a test distance of (typically) 3m and then converted to an eirp using a substitution measurement (refer to RADIATED EMISSIONS MEASUREMENTS). All other measurements are made as detailed below but with the test equipment connected to a measurement antenna directed at the EUT.

OUTPUT POWER

Output power is measured using a power meter and an average sensor head, a spectrum analyzer or a power meter and peak power sensor head as required by the relevant rule part(s). Where necessary measurements are gated to ensure power is only measured over periods that the device is transmitting.

Power measurements made directly on the rf power port are, when appropriate, converted to an EIRP by adding the gain of the highest gain antenna that can be used with the device under test, as specified by the manufacturer.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.26. When required, the 99% bandwidth is measured using the methods detailed in RSS-GEN. The measurement bandwidth is set to be at least 1% of the instrument's frequency span.

CONDUCTED SPURIOUS EMISSIONS

Initial scans are made using a peak detector (VBW = $3 \times RBW$) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode measurements). Where the limits are expressed as an average power the spectrum analyzer is tuned to that frequency with a narrow span (wide enough to capture the emission and its sidebands) and the resolution and video bandwidths are adjusted as required by the reference measurement standards. For transmitter measurements the appropriate detector (average, peak, normal ,sample, quasi-peak) is used when making measurements for licensed devices.

TRANSMITTER MASK MEASUREMENTS

The transmitter mask measurements are made using resolution bandwidths as specified in the pertinent rule part(s). Where narrower bandwidths are used the measurement is corrected to account for the reduced bandwidth by either using the adjacent channel power function of the spectrum analyzer to sum the power across the required measurement bandwidth. The frequency span of the analyzer is set to ensure the fundamental signal and all significant sidebands are displayed.

The top of the mask may be set by the total output power of the signal, the power of the unmodulated signal or the peak value of the signal in the reference bandwidth being used for the mask measurement.

FREQUENCY STABILITY

The EUT is placed inside a temperature chamber with all support and test equipment located outside of the chamber. The temperature is varied across the specified frequency range in 10 degree increments with frequency measurements made at each temperature step. The EUT is allowed enough time to stabilize at each temperature variation.

The spectrum analyzer is configured to give a 5- or 6-digit display for the markerfrequency function. The spectrum analyzer's built-in frequency counter is used to measure the maximum deviation of the fundamental frequency at each temperature. Where possible the device is set to transmit an unmodulated signal. Where this is not possible the frequency drift is determined by finding a stable point on the signal (e.g. the null at the centre of an OFDM signal) or by calculating a centre frequency based on the upper and lower XdB points (where X is typically 6dB or 10dB) on the signal's skirts. Report Date: December 12, 2022

RADIATED EMISSIONS MEASUREMENTS

Receiver radiated spurious emissions measurements are made in accordance with ANSI ANSI C63.26 by measuring the field strength of the emissions from the device at a specific test distance and comparing them to a field strength limit. Where the field strength limit is specified at a longer distance than the measurement distance the measurement is extrapolated to the limit distance.

Transmitter radiated spurious emissions are initially measured as a field strength. The eirp or erp limit as specified in the relevant rule part(s) is converted to a field strength at the test distance and the emissions from the EUT are then compared to that limit. Emissions within 20dB of this limit may then be subjected to a substitution measurement.

All radiated emissions measurements are performed in two phases. A preliminary scan of emissions is conducted in either an anechoic chamber or on an OATS during which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed across the complete frequency range of interest and at each operating frequency identified in the reference standard. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode).

During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit. For transmitter spurious emissions, where the limit is expressed as an effective radiated power, the eirp or erp is converted to a field strength limit.

Final measurements are made in a semi-anechoic chamber at the significant frequencies observed during the preliminary scan(s) using the same process of rotating the EUT and raising/lowering the measurement antenna to find the highest level of the emission. The field strength is recorded and, for receiver spurious emissions, compared to the field strength limit. For the final measurement the appropriate detectors (average, peak, normal, sample, quasi-peak) are used. For receiver measurements below 1GHz the detector is a Quasi-Peak detector, above 1GHz a peak detector is used and the peak value (RB=VB=1MHz) and average value (RB=1MHz, VB=10Hz) are recorded.

For transmitter spurious emissions, the radiated power of all emissions within 20dB of the calculated field strength limit may be determined using a substitution measurement. The substitution measurement is made by replacing the EUT with an antenna of known gain (typically a dipole antenna or a double-ridged horn antenna), connected to a signal source. The output power of the signal generator is adjusted until the maximum field strength from the substitution antenna is similar to the field strength recorded from the EUT. The erp of the EUT is then calculated.

INSTRUMENTATION

An EMI receiver as specified in CISPR 16-1-1 is used for radiated emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 7000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary.

For measurements above the frequency range of the receivers and for all conducted measurements a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis.

Measurement bandwidths for the test instruments are set in accordance with the requirements of the standards referenced in this document.

Software control is used to correct the measurements for transducer factors (e.g. antenna) and the insertion loss of cables, attenuators and other series elements to obtain the final measurement value. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are exported in a graphic and/or tabular format, as appropriate.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the EUT antenna port or receiving antenna and the test receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A combination of biconical, log periodic or bi-log antennas are used to cover the range from 30 MHz to 1000 MHz. Broadband antennas or tuned dipole antennas are used over the entire 30 to 1000 MHz frequency range as the reference antenna for substitution measurements.

Above 1000 MHz, a dual-ridge guide horn antenna or octave horn antenna are used as reference and measurement antennas.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

Table mounted devices are placed on a non-conductive table at a height of 80 centimeters above the floor. Floor mounted equipment is placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. The EUT is positioned on a motorized turntable to allow it to be rotated during testing to determine the angel with the highest level of emissions.

SAMPLE CALCULATIONS

SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS

Measurements are compared directly to the conducted emissions specification limit (decibel form). The calculation is as follows:

$$R_r - S = M$$

where:

 R_r = Measured value in dBm

S = Specification Limit in dBm

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS – RADIATED FIELD STRENGTH

Measurements of radiated field strength are compared directly to the specification limit (decibel form). The receiver and/or control software corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor is sued when measurements are made at a test distance that is different to the specified limit distance by using the following formula:

$$F_{d} = 20*LOG_{10} (D_{m}/D_{s})$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

Project number PR166351	
Re-Issued: March 20, 2023	

R	_	Receiver Reading in dBuV/m
Λŗ	_	Receiver Reading in abu v/iii

Report Date: December 12, 2022

- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS – RADIATED POWER

The erp/eirp limits for transmitter spurious measurements are converted to a field strength in free space using the following formula:

$$E = \frac{\sqrt{30 P G}}{d}$$

where:

E = Field Strength in V/m

- P = Power in Watts
- G = Gain of isotropic antenna (numeric gain) = 1
- D = measurement distance in meters

The field strength limit is then converted to decibel form (dBuV/m) and the margin of a given emission peak relative to the limit is calculated (refer to *SAMPLE CALCULATIONS – RADIATED FIELD STRENGTH*).

When substitution measurements are required (all signals with less than 20dB of margin relative to the calculated field strength limit) the eirp of the spurious emission is calculated using:

$$P_{EUT} = P_{S} - (E_{S} - E_{EUT})$$

and

 $P_s = G + P_{in}$

where:

- P_{S} = effective isotropic radiated power of the substitution antenna (dBm)
- P_{in} = power input to the substitution antenna (dBm)
- G = gain of the substitution antenna (dBi)
- E_s = field strength the substitution antenna (dBm) at eirp P_s
- E_{EUT} = field strength measured from the EUT

Where necessary the effective isotropic radiated power is converted to effective radiated power by subtracting the gain of a dipole (2.2dBi) from the eirp value.

Appendix A Test Equipment Calibration Data

Manufacturer Spurious Emissions	Description (30-10000MHz), 14, 15, 16-I	Model Nov-22	<u>Asset #</u>	<u>Calibrated</u>	<u>Cal Due</u>
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	WC022452	N/A	
Hewlett Packard EMCO	Spectrum Analyzer (Red) Antenna, Horn, 1 - 18 GHz (SA40-Red)	8564E (84125C) 3115	WC055584 WC064463	11/3/2021 7/9/2022	12/3/2022 7/9/2024
Sunol Sciences Com-Power	Èiconilog, 30 - 3000 MHz Preamplifier, 1 - 1000 MHz	JB3 PAM-103	WC064536 WC064733	1/29/2021 6/2/2022	3/23/2023 6/2/2023
Rohde & Schwarz	EMI Test Receiver, 20 Hz - 40 GHz	ESI	WC068000	7/21/2022	7/21/2023
MITEQ	Preamplifier, 1 - 18 GHz	AFS44	WC080962	7/18/2022	7/18/2023
Antenna port measu National Technical Systems	irements, 18-Nov-22 NTS EMI Software (rev 2.10)	N/A	WC022452	N/A	
National Technical Systems	NTS Mask Software (rev 3.9)	N/A	WC022701	N/A	
National Technical Systems	NTS Capture Analyzer Software (rev 4.0)	N/A	WC022706	N/A	
National Technical Systems	EMC Lab #4B	None	WC055575	N/A	
Agilent Technologies	PSA Spectrum Analyzer	E4446A	WC055670	10/24/2022	10/31/2023
Rohde & Schwarz Fluke	Power Meter, Single Fluke Multimeter, True RMS	NRVS 175	WC062570 WC064448	2/11/2022 10/9/2022	2/11/2023 10/31/2023
Hewlett Packard Rohde & Schwarz	High Pass filter, 1.5 GHz Peak Power Sensor 100 uW - 2 Watts use with 20 dB attenuator sn:1031.6959.00 only	84300-80037 NRV-Z32	WC064487 WC064862	11/15/2022 11/18/2021	11/15/2023 11/18/2022
Watlow	Environmental Chamber Controller	F4	WC066185	6/2/2022	6/2/2023
Unknown Watlow Envirotronics	20 dB Attenuator Limit Controller EMC Chamber #10 (Lab #3)	18n50w-20fm Limit 97 SH16C	WC068107 WC071533 WC071534	N/A N/A N/A	
Hewlett Packard	DC Power Supply	6024A	WC071548	N/A	

Appendix B Test Data

 $TL166351\text{-}RA \quad Pages \ 23-67$

EMC Test Data

Client:	GE MDS LLC	PR Number:	PR166351
Product	Orbit SDM9 Module	T-Log Number:	TL166351-RA
System Configuration:	-	Project Manager:	Christine Krebill
Contact:	Jonathan Vilagy	Project Engineer:	David Bare
Emissions Standard(s):	FCC Parts 24 and 101, RSS-119	Class:	-
Immunity Standard(s):	-	Environment:	Industrial Radio

EMC Test Data

For The

GE MDS LLC

Product

Orbit SDM9 Module

Date of Last Test: 3/15/2023

EMC Test Data

Client:	GE MDS LLC	PR Number:	PR166351
Model:	Orbit SDM9 Module	T-Log Number:	TL166351-RA
		Project Manager:	Christine Krebill
Contact:	Jonathan Vilagy	Project Engineer:	David Bare
Standard:	FCC Parts 24 and 101, RSS-119	Class:	N/A

RSS-119 and FCC Part 24D and Part 101C

Power, Occupied Bandwidth, Frequency Stability and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

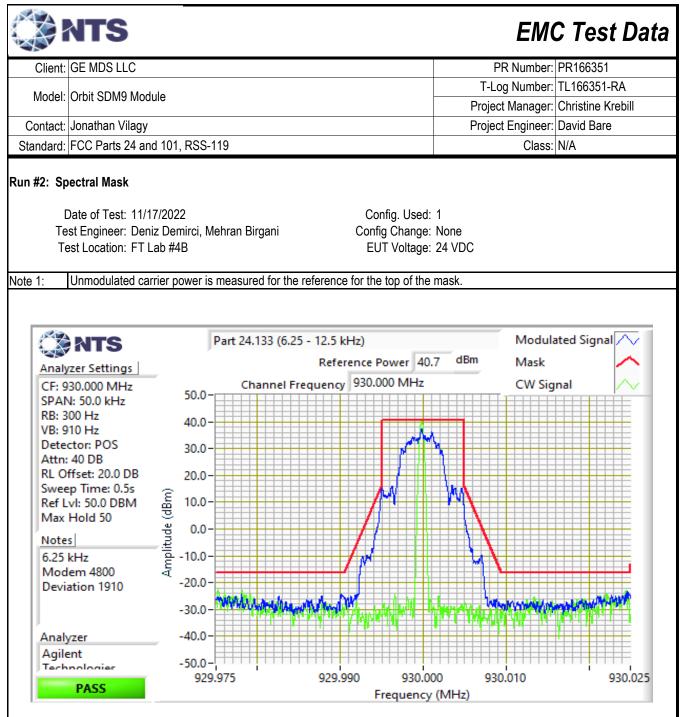
With the exception of the radiated spurious emissions tests, all measurements are made with the EUT's rf port connected to the measurement instrument via an attenuator or dc-block if necessary. All amplitude measurements are adjusted to account for the attenuation between EUT and measuring instrument. For frequency stability measurements the EUT was place inside an environmental chamber.

Radiated measurements are made with the EUT located on a non-conductive table, 3m from the measurement antenna.

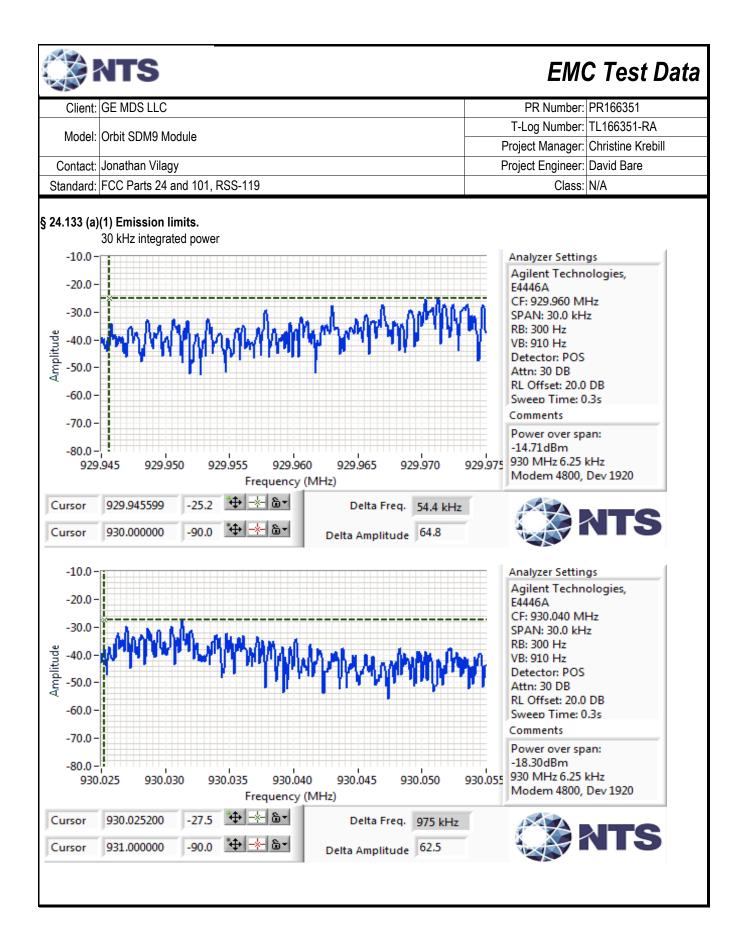
Ambient Conditions:	Temperature:	18-21 °C
	Rel. Humidity:	31-43 %

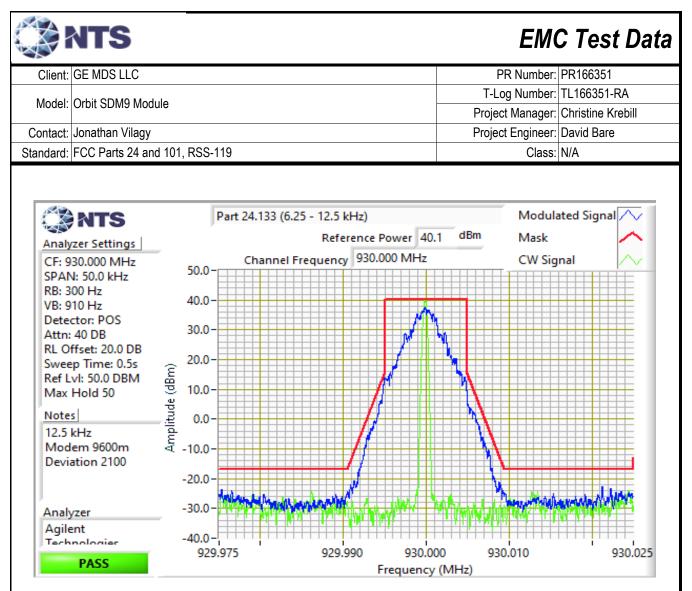
Summary of Results

Run #		Test Performed	Limit	Pass / Fail	Result / Margin
1		Output Power	None	Pass	Max 40.7 dBm
2	Spectral Mask		Within mask	Pass	Refer to plots
3		99% or Occupied Bandwidth	Per rule part	Pass	Refer to table
4		Spurious Emissions (conducted)	-20 dBm or -13 dBm	Pass	
6		Frequency Stability	Per rule part	Pass	Refer to table

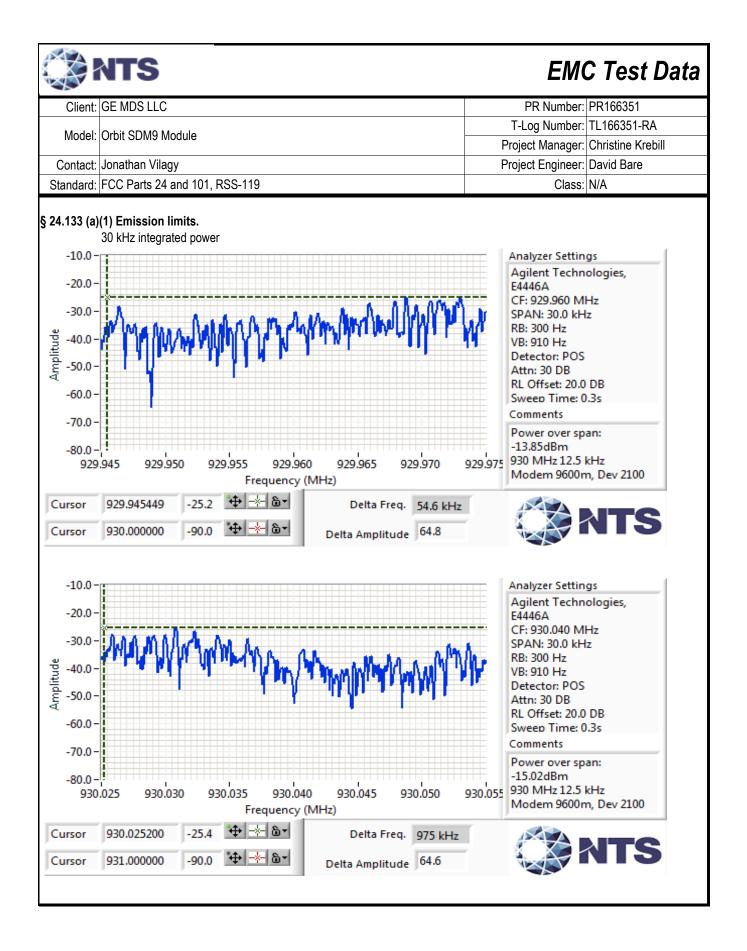

Modifications Made During Testing

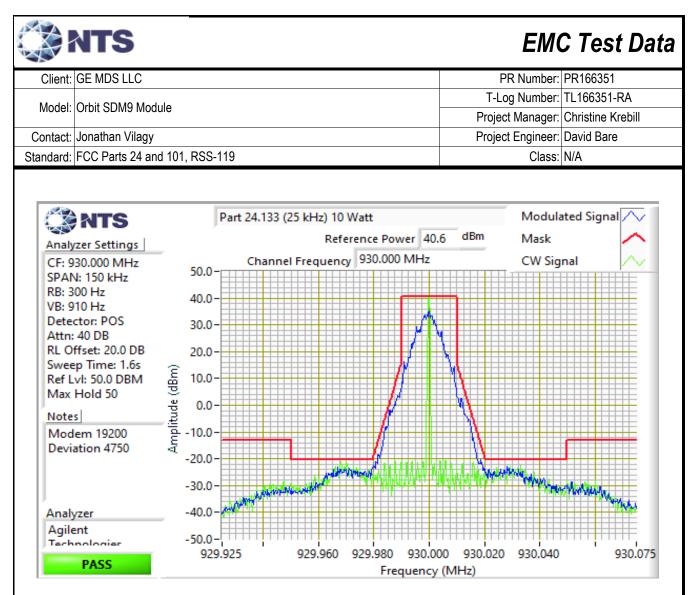
No modifications were made to the EUT during testing

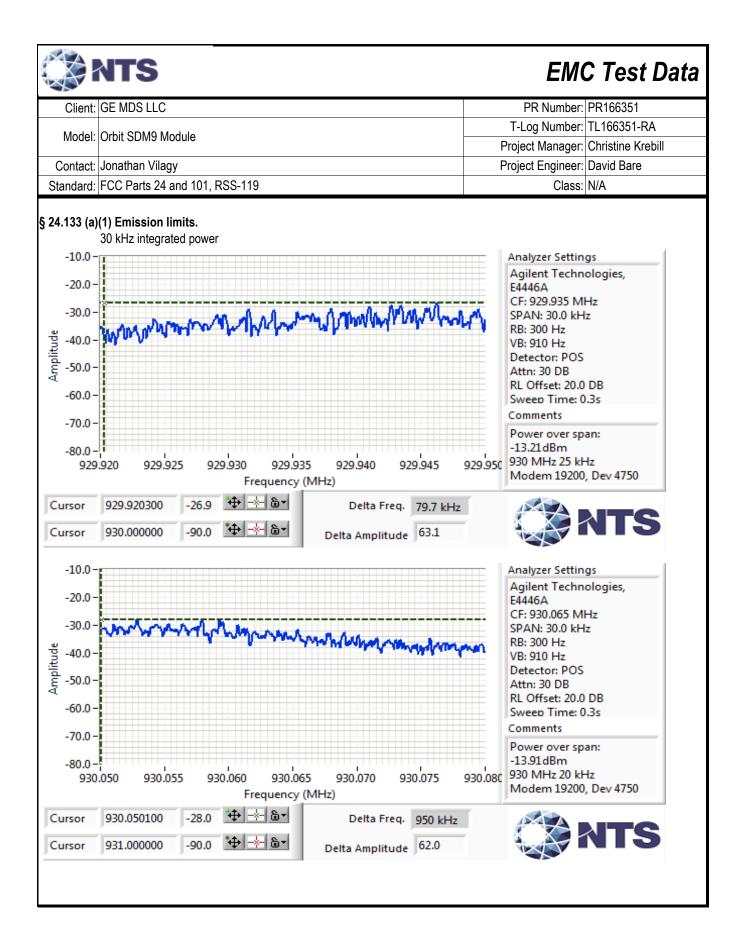

Deviations From The Standard

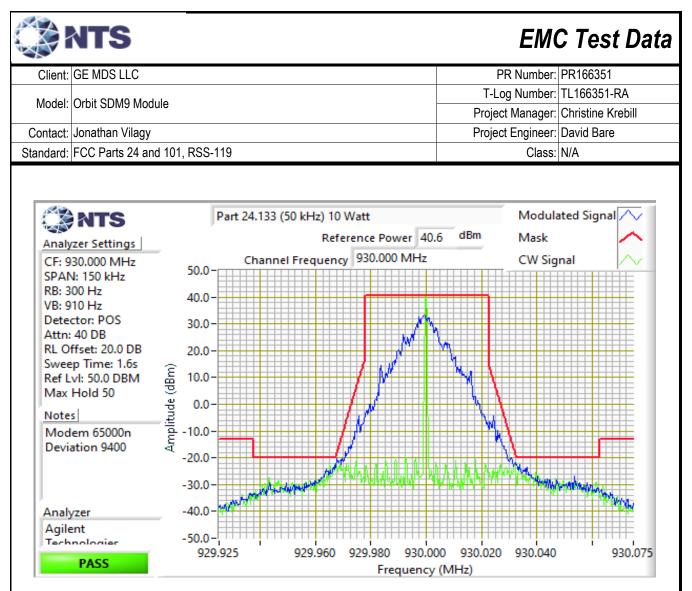

No deviations were made from the requirements of the standard.

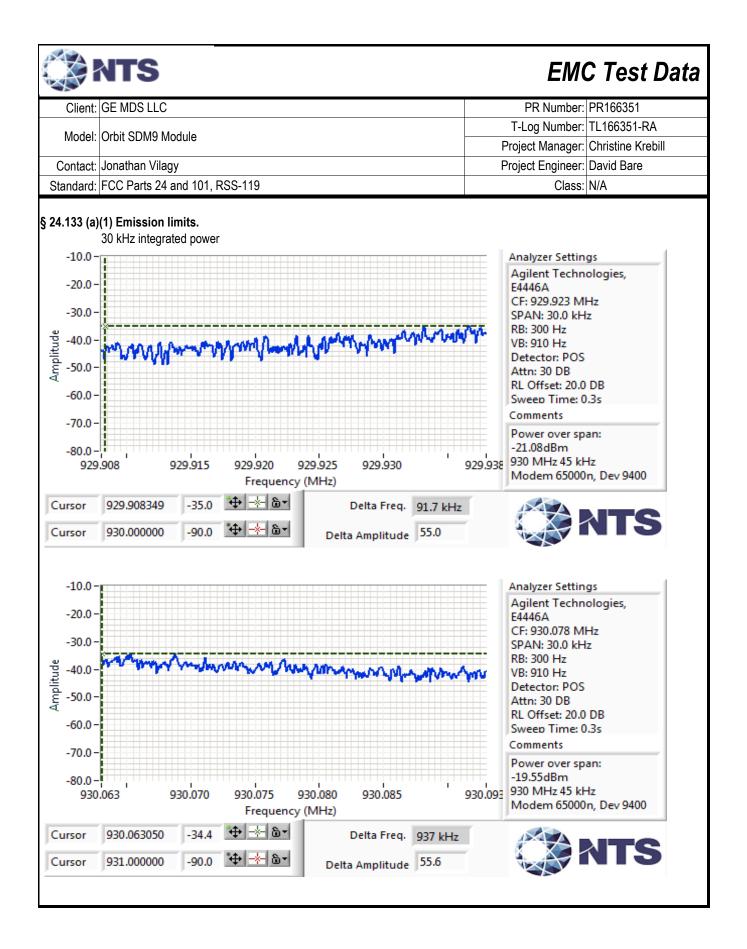
Client:	GE MDS LLC						PR Number:	PR166351
Madal	Orbit SDM9 Module					T-	Log Number:	TL166351-RA
wouel:						Proj	ect Manager:	Christine Krebill
Contact:	Jonathan Vilagy					Proje	ect Engineer:	David Bare
Standard:	FCC Parts 24 and 101, F	RSS-119					Class:	N/A
l Te	u tput Power Date of Test: 11/14/2022 est Engineer: David Bare est Location: Fremont Ch	amber #7		Cor	onfig. Used: ifig Change: UT Voltage:	None		
	Cable Loss: <mark>1.4 dB</mark> Cable ID(s): WC0	64538	Att	Attenuator: tenuator IDs:		68107	Total Loss:	21.4 dB
Power	Frequency (MHz)	Output	Power	Antenna	Result	E	RP	
Setting ²		(dBm) ¹	mW	Gain (dBi)		dBm	W	
40	928	40.2	10471.3	9.15	Pass	49.4	86.099	
40	930	40.7	11749.0	9.15	Pass	49.9	96.605	
40	935	40.6	11481.5	9.15	Pass	49.8	94.406	
40	940	40.2	10471.3	9.15	Pass	49.4	86.099	
40	941	40.2	10471.3	9.15	Pass	49.4	86.099	
40	953	40.3	10715.2	9.15	Pass	49.5	88.105	
40	960	40.2	10471.3	9.15	Pass	49.4	86.099	
Note 1: Note 2: 50.0- 40.0- 30.0- 20.0- 10.0- -10.0-						Reference of An Rc CF SP Re VE De At RL Sv Re		gs hrz,ESI Hz Hz DB 00.0ms
-20.0-	7.5 928.0 928.5 929		ncy (MHz)	5 931.0 93	31.5 932.0	932.5		

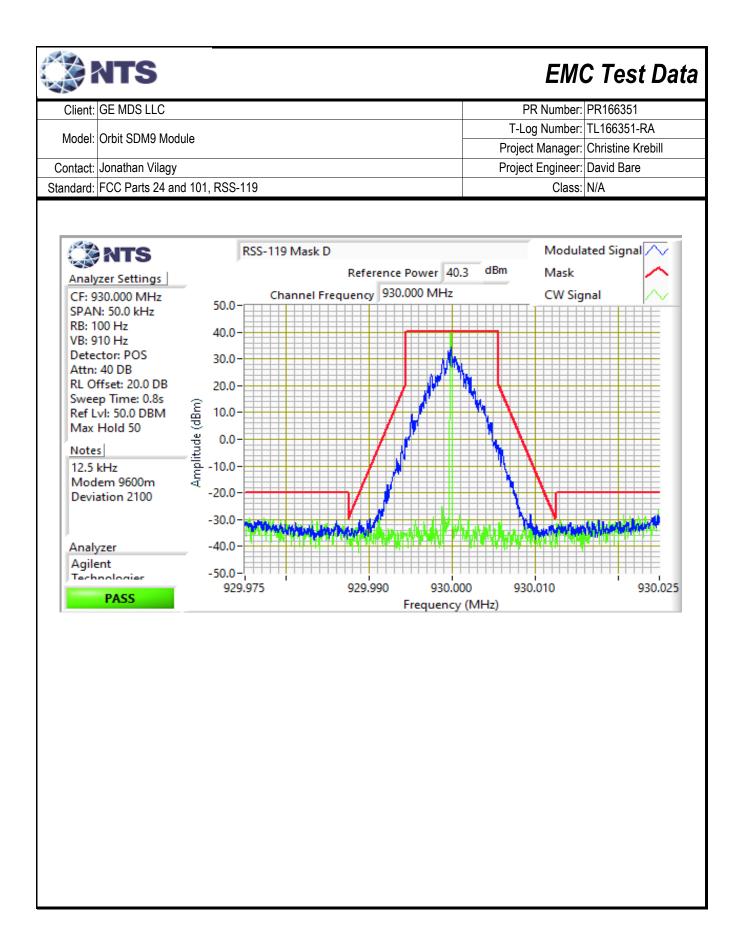


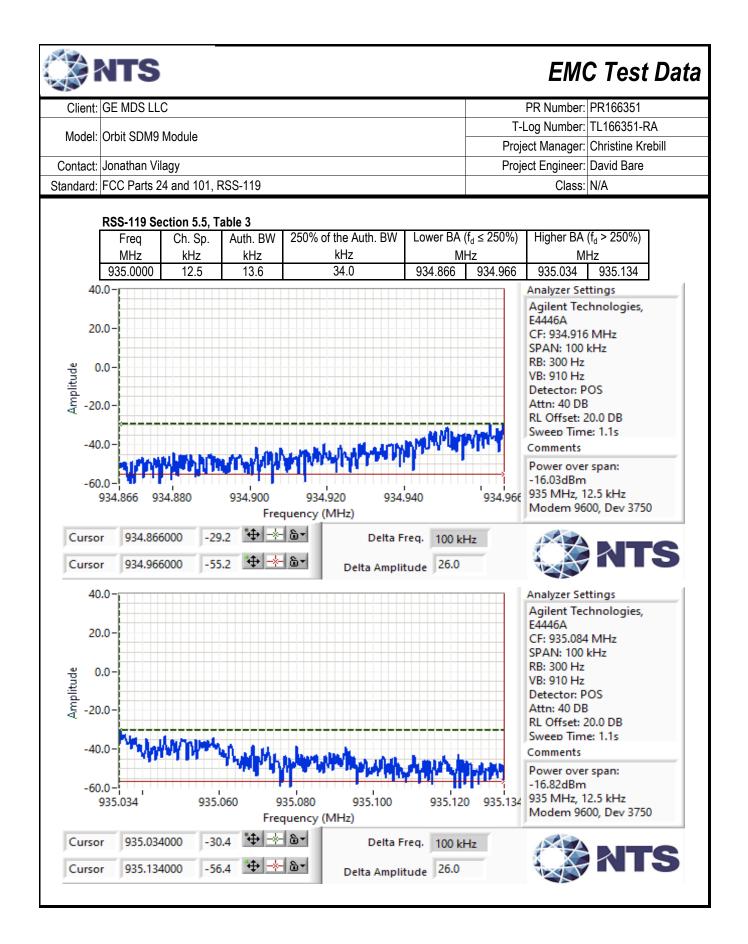

Freq	Ch. Sp.	Auth. BW	20 kHz displacement	Lower BA ($f_d \le 250\%$)		Lower BA ($f_d \le 250\%$)		Higher BA (f _d > 250%	
MHz	kHz	kHz	from the Auth. BW	MHz		М	MHz		
930.0000	6.25	10.0	25.0	929.945			930.055		

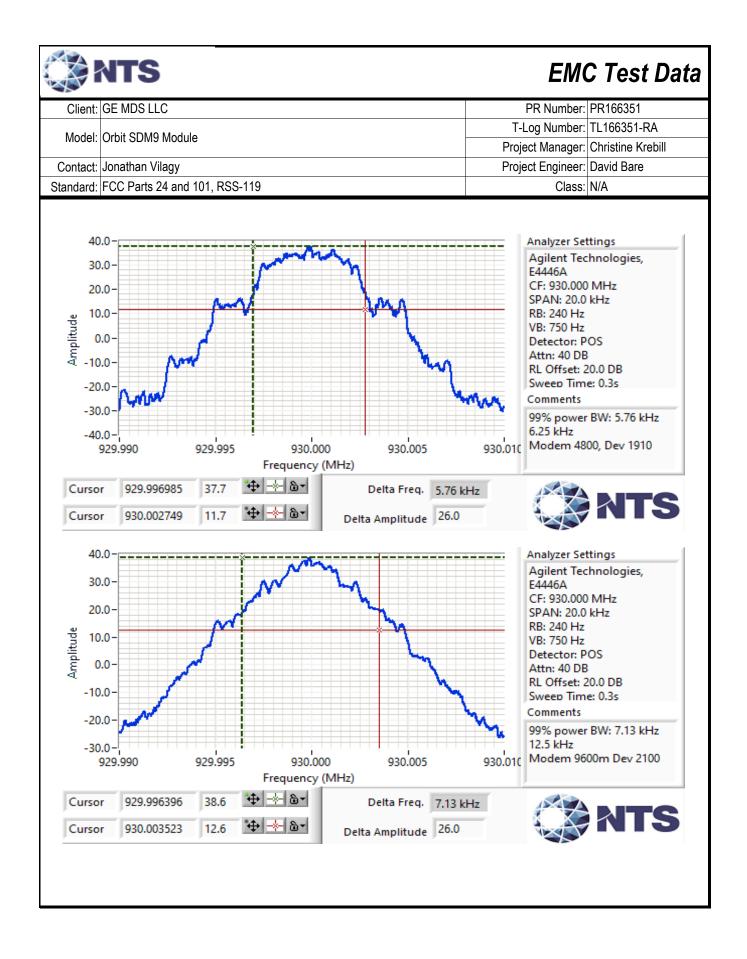


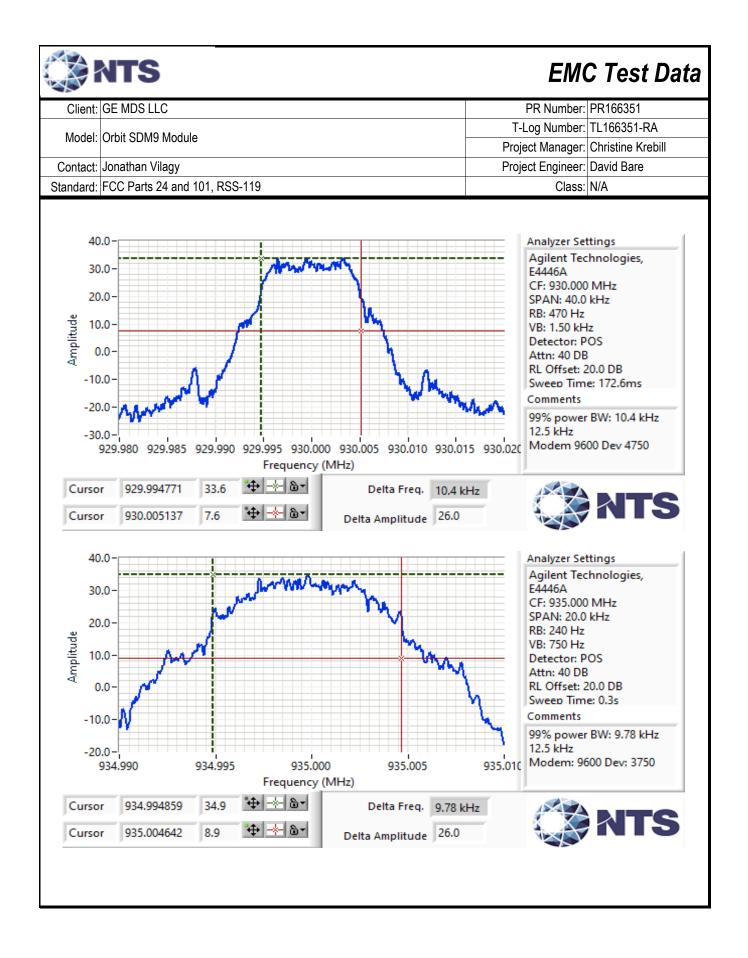

Freq	Ch. Sp.	Auth. BW	20 kHz displacement Lower BA ($f_d \le 250\%$) High		Lower BA ($f_d \le 250\%$)		(f _d > 250%)
MHz	kHz	kHz	from the Auth. BW	MHz		MHz	
930.0000	12.5	10.0	25.0	929.945	929.975	930.025	930.055

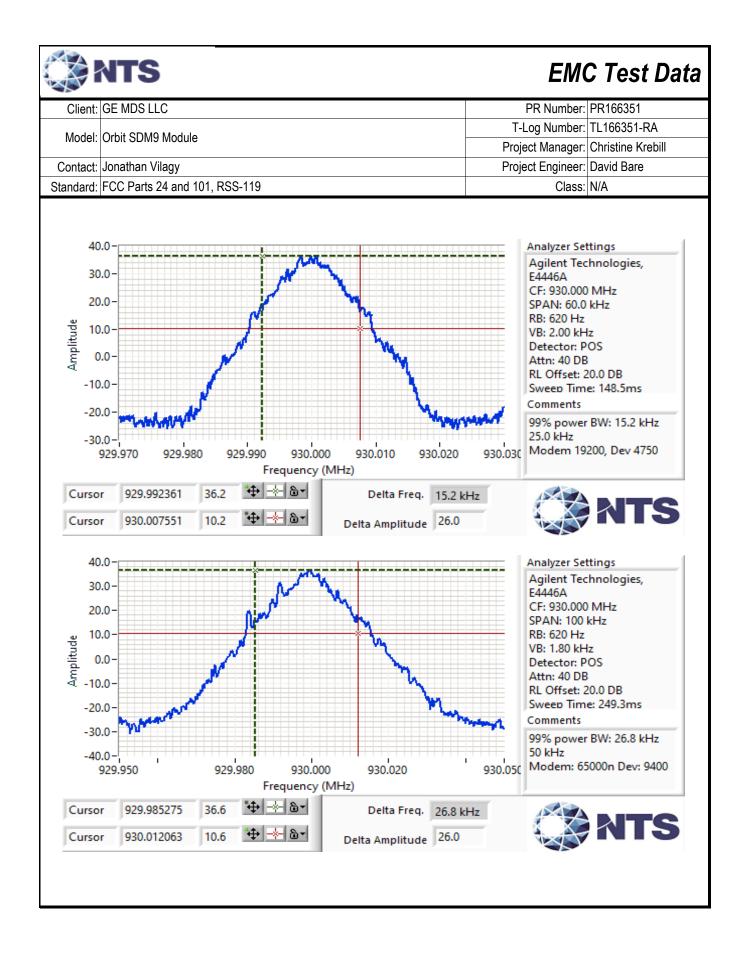


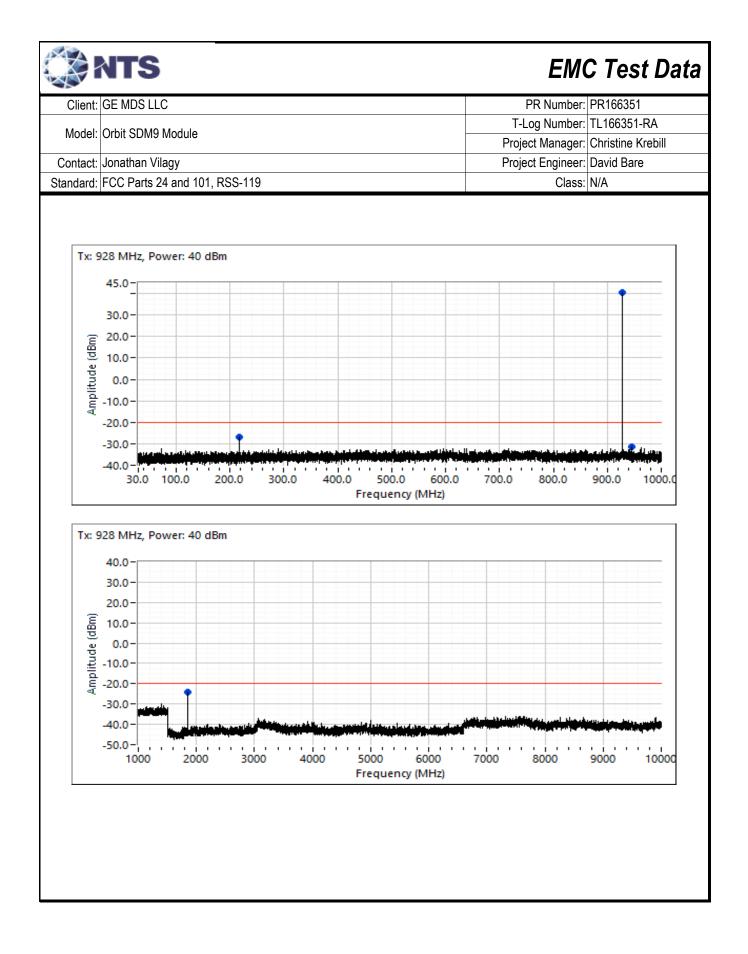

Freq	Ch. Sp.	Auth. BW	40 kHz displacement Lower BA ($f_d \le 250\%$) Higher BA (f_d		Lower BA ($f_d \le 250\%$)		(f _d > 250%)
MHz	kHz	kHz	from the Auth. BW	MHz		MHz	
930.0000	25	20.0	50.0	929.920	929.950	930.050	930.080

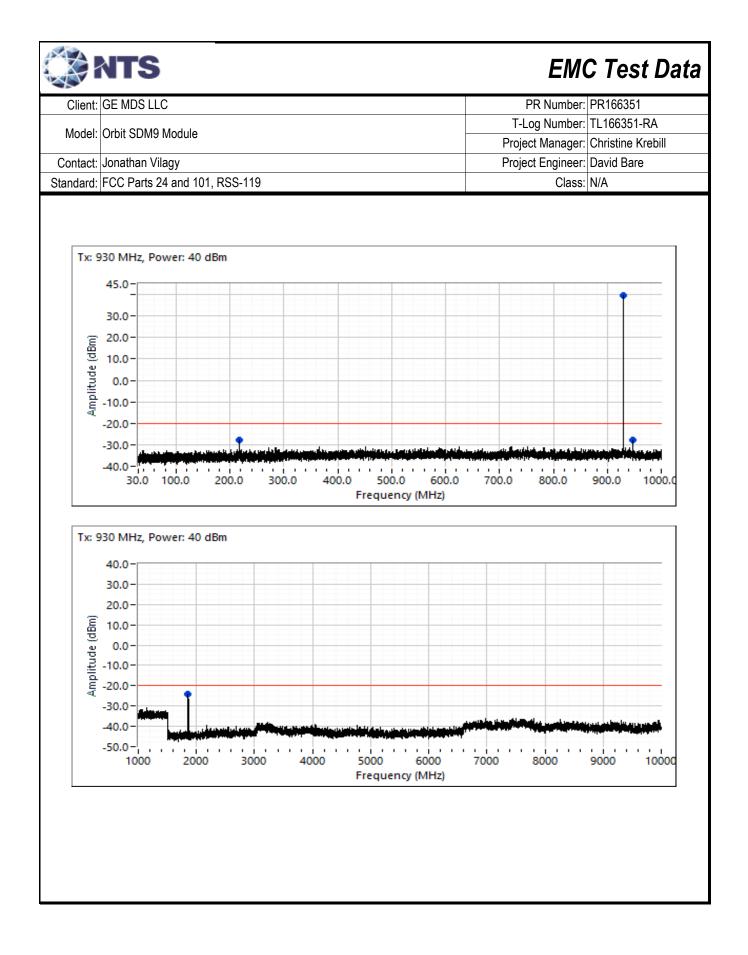


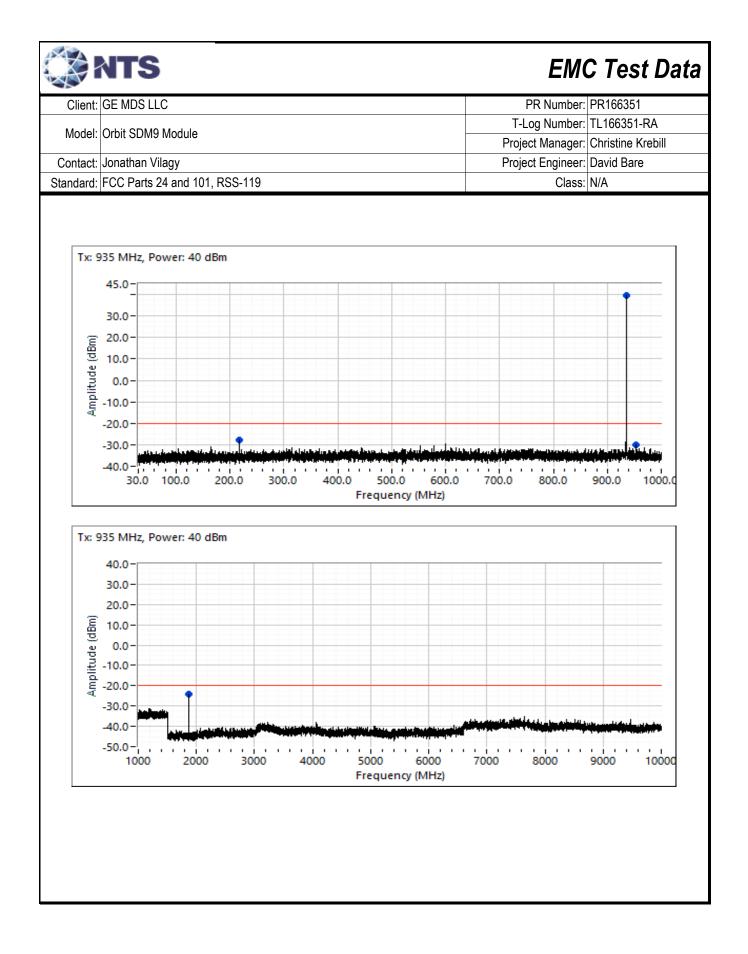

Freq	Ch. Sp.	Auth. BW	40 kHz displacement	Lower BA	(f _d ≤ 250%)	Higher BA	(f _d > 250%)	
MHz	kHz	kHz	from the Auth. BW	M	Hz	M	MHz	
930.0000	50	45.0	62.5	929.908	929.938	930.063	930.093	

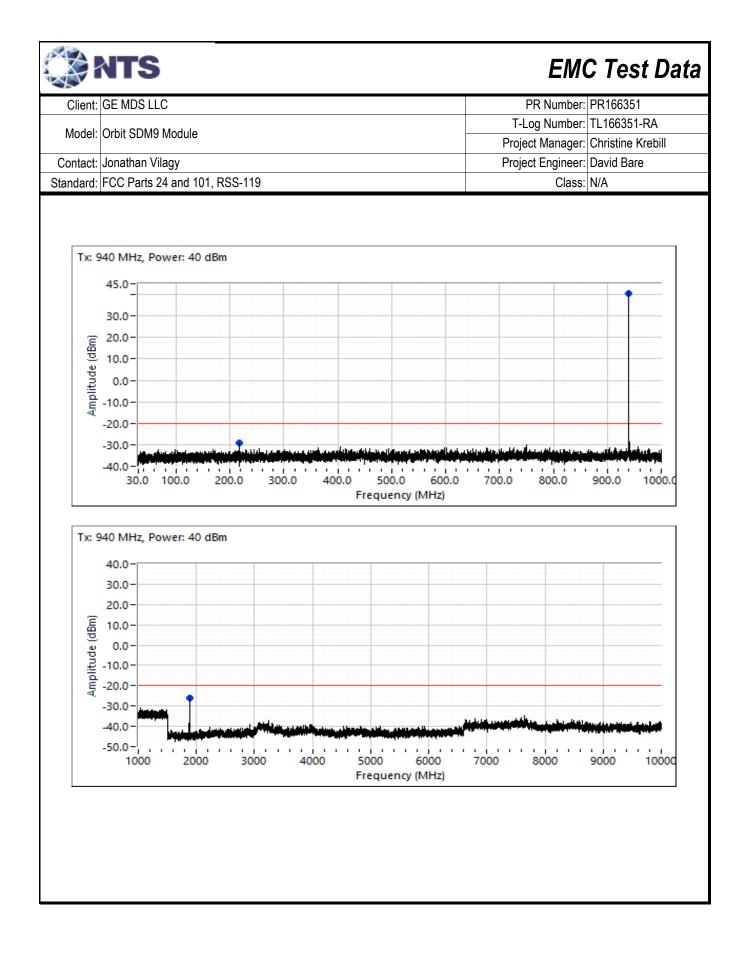


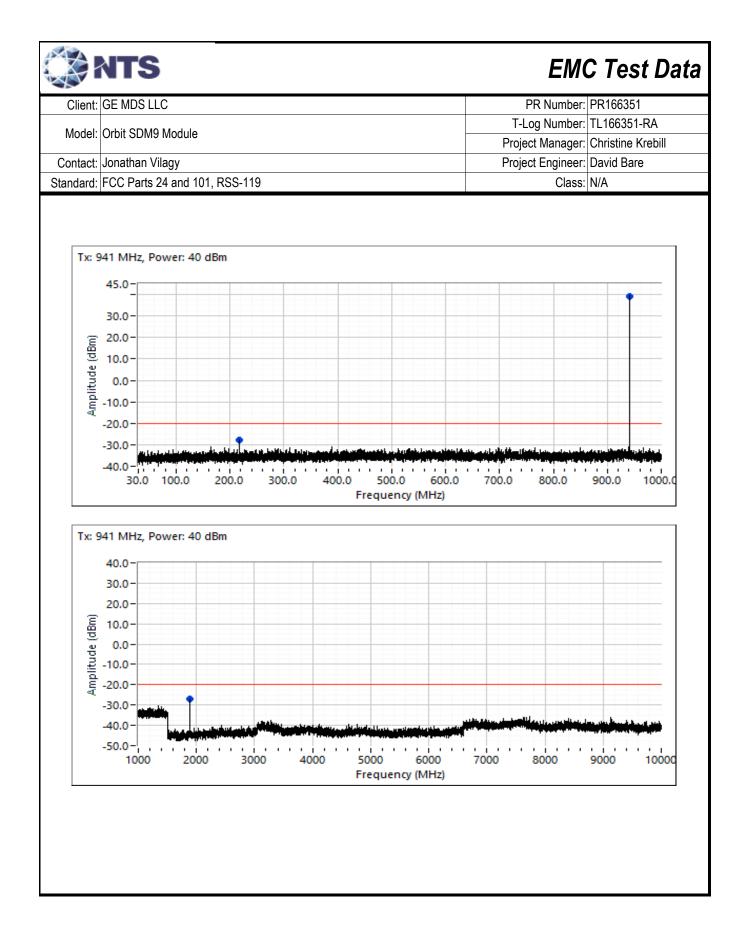


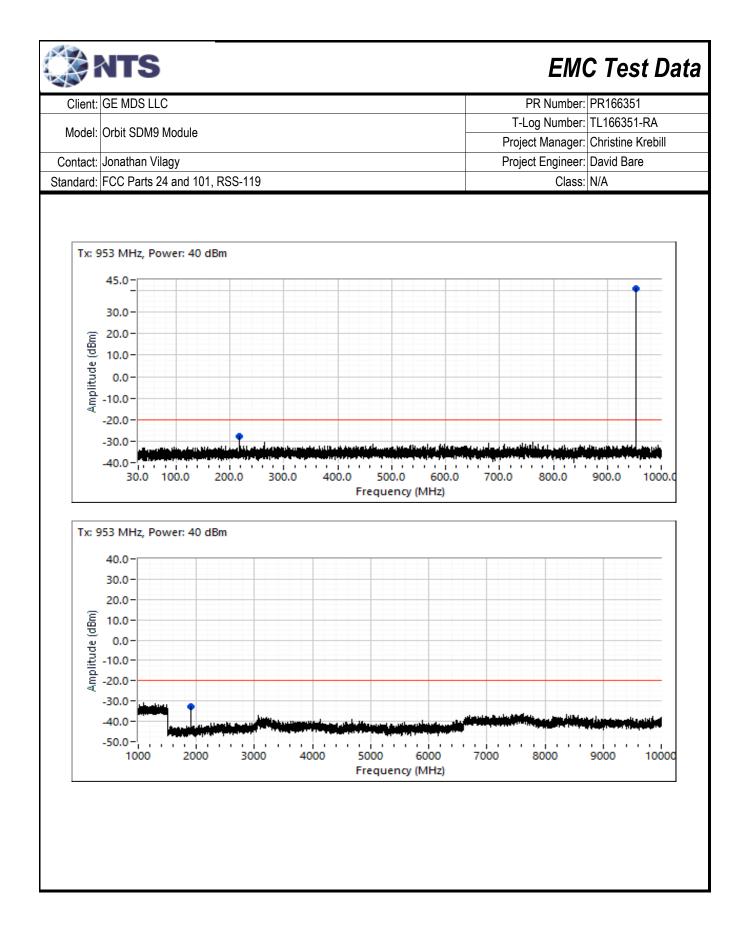

Client: GE MDS LLC PR Number: PR166351 Model: Orbit SDM9 Module T-Log Number: TL166351-RA Project Manager: Christine Krebil Project Manager: Christine Krebil Standard: FCC Parts 24 and 101, RSS-119 Class: N/A Num #3: Signal Bandwidth Class: N/A Aun #3: Signal Bandwidth Config: Used: 1 Class: N/A Test Engineer: Denirci, Mehran Birgani Config: Change: None EUT Voltage: 24 VDC 6.25 kHz Modem 4800 Deviation 1910 Bandwidth (kHz) 99% 40 930 240 Hz 5.76 12.5 kHz Modem 9600m Deviation 2100 Power Frequency (MHz) Bandwidth (kHz) 99% 40 930 240 Hz 7.13 12.5 kHz Modem 9600m Deviation 3750 Power Setting Frequency (MHz) Bandwidth (kHz) 99% 40 935 240 Hz 9.78 25.0 kHz Modem 19200 Deviation 4750 Bandwidth (Mz) 99% 40 930 620 Hz 15.20<		112					C Test Dat
Model: Project Manager: Christine Krebili Contact: Jonathan Vilagy Project Manager: Christine Krebili Standard: FCC Parts 24 and 101, RSS-119 Class: N/A un #3: Signal Bandwidth Class: N/A Date of Test: 11/17/2022 Config. Used: 1 Config. Change: None Test Engineer: Deniz Demirci, Mehran Birgani Config. Change: None Test Engineer: Date of Test: 11/17/2022 Config. Used: 1 Test Engineer: Deniz Demirci, Mehran Birgani Config. Used: 1 Test Engineer: Deriz Demirci, Mehran Birgani Config. Used: 1 Test Engineer: Preject Manager: Avid Setting Frequency (MHz) Resolution Bandwidth (kHz) Setting Frequency (MHz) Bandwidth 99%	Client:	GE MDS LLC					
Contact: Jonathan Vilagy Project Manager: Christine Krebill Standard: FCC Parts 24 and 101, RSS-119 Class: N/A an #3: Signal Bandwidth Config. Used: 1 Test Engineer: David Bare Date of Test: 11/17/2022 Config. Used: 1 Test Engineer: David Bare Test Engineer: Denirci, Mehran Birgani Config. Change: None EUT Voltage: 24 VDC S.25 kHz Modem 4800 Deviation 1910 EUT Voltage: 24 VDC Setting Power Frequency (MHz) Bandwidth 99% 40 930 240 Hz 5.76 12.5 kHz Modem 9600 Deviation 2100 Power Frequency (MHz) Bandwidth 99% 40 930 240 Hz 12.5 kHz Modem 9600 Deviation 3750 Power Frequency (MHz) Bandwidth Power Frequency (MHz) Resolution Bandwidth (kHz) 99% 25.0 kHz Modem 19200 Deviation 4750 Power Setting Frequency (MHz) Bandwidth 99% 40 930 620 Hz 15.20 50.0 kHz Modem 65000n Devia	Model:	Orbit SDM9 I	Vodule			-	
Standard: FCC Parts 24 and 101, RSS-119 Class: N/A un #3: Signal Bandwidth Date of Test: 11/17/2022 Config. Used: 1 Test Engineer: Deniz Demirci, Mehran Birgani Config Change: None Test Engineer: Deniz Demirci, Mehran Birgani Config Change: None Test Location: FT Lab #4B EUT Voltage: 24 VDC 6.25 kHz Modem 4800 Deviation 1910 Bandwidth 99% Power Frequency (MHz) Resolution Bandwidth (kHz) Setting Frequency (MHz) Besolution Bandwidth (kHz) Setting Frequency (MHz) Bandwidth (kHz) 99% 40 930 620 Hz 15.20 50.0 kHz Modem 65000n Dev							
tun #3: Signal Bandwidth Date of Test: 11/17/2022 Config. Used: 1 Test Engineer: Deniz Demirci, Mehran Birgani Config Change: None Test Location: FT Lab #4B EUT Voltage: 24 VDC 6.25 kHz Modem 4800 Deviation 1910 Power Frequency (MHz) Resolution Setting Frequency (MHz) Resolution Bandwidth 99% 40 930 240 Hz 5.76 1 12.5 kHz Modem 9600m Deviation 2100 Power Frequency (MHz) Resolution Bandwidth 99% 40 930 240 Hz 7.13 1 1 12.5 kHz Modem 9600 Deviation 3750 Power Frequency (MHz) Resolution Bandwidth 99% 40 935 240 Hz 9.78 25.0 kHz Modem 19200 Deviation 4750 Power Frequency (MHz) Resolution Bandwidth (kHz) 930 620 Hz 15.20 15.20 50.0 kHz Modem 65000n Deviation 9400 Bandwidth (kHz) 99%							
Date of Test: 11/17/2022 Config. Used: 1 Test Engineer: Deniz Demirci, Mehran Birgani Config Change: None Test Location: FT Lab #4B EUT Voltage: 24 VDC 6.25 kHz Modem 4800 Deviation 1910 Power Frequency (MHz) Bandwidth 99% 40 930 240 Hz 5.76 12.5 kHz Modem 9600m Deviation 2100 Power Frequency (MHz) Bandwidth 99% 40 930 240 Hz 5.76 12.5 kHz Modem 9600m Deviation 2100 Power Frequency (MHz) Bandwidth (kHz) Setting Frequency (MHz) Bandwidth (kHz) 99% 40 935 240 Hz 9.78 25.0 kHz Modem 19200 Deviation 4750 Power Frequency (MHz) Bandwidth (kHz) Setting Frequency (MHz) Bandwidth 99% 99% 40 930 620	Standard:	FCC Parts 24	4 and 101, RSS-119			Class:	N/A
Test Engineer: Deniz Demirci, Mehran Birgani Test Location: FT Lab #4B Config Change: None EUT Voltage: 24 VDC 6.25 kHz Modem 4800 Deviation 1910 EUT Voltage: 24 VDC 6.25 kHz Modem 4800 Deviation 1910 Bandwidth 99% 40 930 240 Hz 5.76 12.5 kHz Modem 9600m Deviation 2100 Resolution Bandwidth Bandwidth (kHz) 99% 40 930 240 Hz 7.13 12.5 kHz Modem 9600 Deviation 3750 Resolution Bandwidth Bandwidth (kHz) 99% 40 935 240 Hz 7.13 12.5 kHz Modem 9600 Deviation 3750 Bandwidth Bandwidth (kHz) 99% 40 935 240 Hz 9.78 25.0 kHz Modem 19200 Deviation 4750 Bandwidth (kHz) 99% 99% 40 930 620 Hz 15.20 50.0 kHz Modem 65000n Deviation 9400 Resolution Bandwidth Bandwidth (kHz) 99% 99% 50.0 kHz Modem 65000n Deviation 9400 Resolution Bandwidth Bandwidth (kHz) 99% 99%	lun #3: Sig	gnal Bandwid	dth				
EUT Voltage: 24 VDC 6.25 kHz Modem 4800 Deviation 1910 Power Frequency (MHz) Resolution Bandwidth (kHz) Setting Frequency (MHz) Bandwidth 99% 40 930 240 Hz 5.76 12.5 kHz Modem 9600m Deviation 2100 Bandwidth Bandwidth (kHz) Setting Frequency (MHz) Resolution Bandwidth (kHz) Setting Frequency (MHz) Bandwidth 99% 40 935 240 Hz 9.78 25.0 kHz Modem 19200 Deviation 4750 Power Frequency (MHz) Bandwidth 99% 40 930 620 Hz 15.20 50.0 kHz Modem 65000n Deviation 9400 Bandwidth 99% 99% 99% 15.20 50.0 kHz Freque	Γ	Date of Test:	11/17/2022		Config. Used:	1	
6.25 kHz Modem 4800 Deviation 1910 Power Frequency (MHz) Resolution Bandwidth (kHz) Bandwidth 40 930 240 Hz 5.76 12.5 kHz Modem 9600m Deviation 2100 Power Frequency (MHz) Resolution Bandwidth (kHz) Bandwidth 99% 40 930 240 Hz 7.13 12.5 kHz Modem 9600 Deviation 3750 Power Frequency (MHz) Resolution Bandwidth (kHz) Setting Frequency (MHz) Bandwidth 99% 40 935 240 Hz 9.78 25.0 kHz Modem 19200 Deviation 4750 Power Frequency (MHz) Resolution Bandwidth (kHz) Setting Frequency (MHz) Resolution Bandwidth (kHz) 99% 40 935 240 Hz 9.78 25.0 kHz Modem 19200 Deviation 4750 Power Frequency (MHz) Resolution Bandwidth (kHz) 99% 40 930 620 Hz 15.20 50.0 kHz Modem 65000n Deviation 9400 Power Frequency (MHz) Resolution Bandwidth (kHz) 99%				Birgani			
Power Setting Frequency (MHz) Resolution Bandwidth Bandwidth (kHz) 40 930 240 Hz 5.76 12.5 kHz Modem 9600m Deviation 2100 Resolution Bandwidth Bandwidth (kHz) 99% 40 930 240 Hz 5.76 12.5 kHz Modem 9600m Deviation 2100 Resolution Bandwidth Bandwidth (kHz) 99% 40 930 240 Hz 7.13 12.5 kHz Modem 9600 Deviation 3750 Bandwidth 99% 40 935 240 Hz 7.13 12.5 kHz Modem 9600 Deviation 3750 Bandwidth 99% 40 935 240 Hz 9.78 25.0 kHz Modem 19200 Deviation 4750 Bandwidth 99% 40 930 620 Hz 15.20 50.0 kHz Modem 65000n Deviation 9400 Bandwidth 99% 40 930 620 Hz 15.20 50.0 kHz Modem 65000n Deviation 9400 Bandwidth 99% 90wer Frequency (MHz) Resolution Bandwidth Bandwidth (kHz) 99% Bandwidth 99% 99%	Te	est Location:	FI Lab #4B		EUT Voltage:	24 VDC	
Setting Frequency (MHz) Bandwidth 99% 40 930 240 Hz 5.76 12.5 kHz Modem 9600m Deviation 2100 Bandwidth Bandwidth 99% 40 930 240 Hz 5.76 12.5 kHz Modem 9600 Deviation 2100 Resolution Bandwidth 99% 40 930 240 Hz 7.13 12.5 kHz Modem 9600 Deviation 3750 Bandwidth Bandwidth 99% 40 935 240 Hz 7.13 12.5 kHz Modem 9600 Deviation 3750 Bandwidth Bandwidth 99% 40 935 240 Hz 9.78 25.0 kHz Modem 19200 Deviation 4750 Bandwidth Bandwidth 99% 40 930 620 Hz 15.20 50.0 kHz Modem 65000n Deviation 9400 50.0 kHz Modem 65000n Deviation 9400 Bandwidth Bandwidth 99% 50.0 kHz Modem 65000n Deviation 9400 Bandwidth 99%	6.25 kHz	Modem 4800	Deviation 1910				
Setting Image: Constraint of the setting of the se			Frequency (MHz)				
12.5 kHz Modem 9600m Deviation 2100 Power Frequency (MHz) Resolution Bandwidth 99% 40 930 240 Hz 7.13 12.5 kHz Modem 9600 Deviation 3750 Power Frequency (MHz) Resolution Bandwidth 99% 40 935 240 Hz 7.13 12.5 kHz Modem 9600 Deviation 3750 Power Frequency (MHz) Bandwidth 99% 40 935 240 Hz 9.78 978 25.0 kHz Modem 19200 Deviation 4750 Power Frequency (MHz) Bandwidth 99% 40 930 620 Hz 15.20 15.20 50.0 kHz Modem 65000n Deviation 9400 Power Frequency (MHz) Resolution Bandwidth (kHz) Setting Frequency (MHz) Resolution Bandwidth (kHz) 99%							
Power Setting Frequency (MHz) Resolution Bandwidth Bandwidth (kHz) 99% 40 930 240 Hz 7.13 12.5 kHz Modem 9600 Deviation 3750 Resolution Power Setting Resolution (MHz) Resolution Bandwidth Bandwidth (kHz) 99% 40 935 240 Hz 9.78 25.0 kHz Modem 19200 Deviation 4750 Resolution Bandwidth Bandwidth (kHz) 99% 40 930 620 Hz 15.20 50.0 kHz Modem 65000n Deviation 9400 Resolution Bandwidth Bandwidth (kHz) 99%		40	930	240 Hz	5./6	l	
Setting Frequency (MHz) Bandwidth 99% 40 930 240 Hz 7.13 12.5 kHz Modem 9600 Deviation 3750 Power Frequency (MHz) Resolution Bandwidth (kHz) Setting Frequency (MHz) Resolution Bandwidth 99% 40 935 240 Hz 9.78 25.0 kHz Modem 19200 Deviation 4750 Power Frequency (MHz) Resolution Bandwidth (kHz) Setting Frequency (MHz) Resolution Bandwidth (kHz) 930 620 Hz 15.20 50.0 kHz Modem 65000n Deviation 9400 Power Frequency (MHz) Bandwidth (kHz) Bandwidth 99%	12.5 kHz	<u>Mod</u> em 9600	m Deviation 2100			_	
Setting Hole of the set of the			Frequency (MHz)		• • •		
12.5 kHz Modem 9600 Deviation 3750 Power Frequency (MHz) Resolution Bandwidth Bandwidth (kHz) 25.0 kHz Modem 19200 Deviation 4750 Power Frequency (MHz) Resolution Bandwidth Bandwidth (kHz) 25.0 kHz Modem 19200 Deviation 4750 Power Frequency (MHz) Resolution Bandwidth Bandwidth (kHz) Setting Frequency (MHz) Resolution Bandwidth Bandwidth (kHz) 50.0 kHz Modem 65000n Deviation 9400 Resolution Bandwidth Bandwidth (kHz) 99%		, v	,				
Power Setting Frequency (MHz) Resolution Bandwidth Bandwidth (kHz) 40 935 240 Hz 9.78 25.0 kHz Modem 19200 Deviation 4750 Resolution Bandwidth Bandwidth (kHz) 99% Power Setting Frequency (MHz) Resolution Bandwidth Bandwidth (kHz) 99% 50.0 kHz Modem 65000n Deviation 9400 Resolution 620 Hz Bandwidth (kHz) 15.20 Frequency (MHz) Resolution Bandwidth Bandwidth (kHz) 99%		40	930	240 HZ	7.13		
Setting Frequency (MHz) Bandwidth 99% 40 935 240 Hz 9.78 25.0 kHz Modem 19200 Deviation 4750 Resolution Bandwidth (kHz) Setting Frequency (MHz) Resolution Bandwidth (kHz) Setting Frequency (MHz) Resolution Bandwidth (kHz) 50.0 kHz Modem 65000n Deviation 9400 620 Hz 15.20 50.0 kHz Modem 65000n Deviation 9400 Resolution Bandwidth (kHz) Setting Frequency (MHz) Resolution Bandwidth (kHz) Bandwidth 99% 99% 99%	12.5 kHz	Modem 9600	Deviation 3750			_	
Setting Hold Hold Hold Hold Hold Hold Hold Hold			Frequency (MHz)				
25.0 kHz Modem 19200 Deviation 4750 Power Frequency (MHz) Resolution Setting Frequency (MHz) Bandwidth 40 930 620 Hz 15.20 50.0 kHz Modem 65000n Deviation 9400 Resolution Bandwidth (kHz) Setting Frequency (MHz) Resolution Bandwidth (kHz) Setting Frequency (MHz) Resolution Bandwidth (kHz) 99% 99% 15.20 15.20		, v	,				
Power Setting Frequency (MHz) Resolution Bandwidth Bandwidth (kHz) 40 930 620 Hz 15.20 50.0 kHz Modem 65000n Deviation 9400 Resolution Bandwidth Bandwidth (kHz) Setting Frequency (MHz) Resolution Bandwidth Bandwidth (kHz)		40	900	240 HZ	9.70	l	
Setting Frequency (MHZ) Bandwidth 99% 40 930 620 Hz 15.20 50.0 kHz Modem 65000n Deviation 9400 Resolution Bandwidth (kHz) Setting Frequency (MHz) Resolution Bandwidth (kHz)	25.0 kHz	Modem 1920	0 Deviation 4750				
Setting Bandwidth 99% 40 930 620 Hz 15.20 50.0 kHz Modem 65000n Deviation 9400 Power Frequency (MHz) Resolution Bandwidth 99%			Frequency (MHz)				
50.0 kHz Modem 65000n Deviation 9400 Power Power Setting Frequency (MHz) Bandwidth 99%		•	,				
Power Frequency (MHz) Resolution Bandwidth (kHz) Setting Frequency (MHz) Bandwidth 99%		40	330	020112	10.20	l	
Setting Frequency (MHz) Bandwidth 99%	50.0 kHz		00n Deviation 9400				
Setting Bandwidth 99%			Frequency (MHz)		• • •		
40 330 020112 20.80			,				
		40	550	020112	20.00	l	
\geq 3*RB and Span \geq 1.5% and \leq 5% of measured bandwidth.	lote 1:			-former and the second se	andwidth		

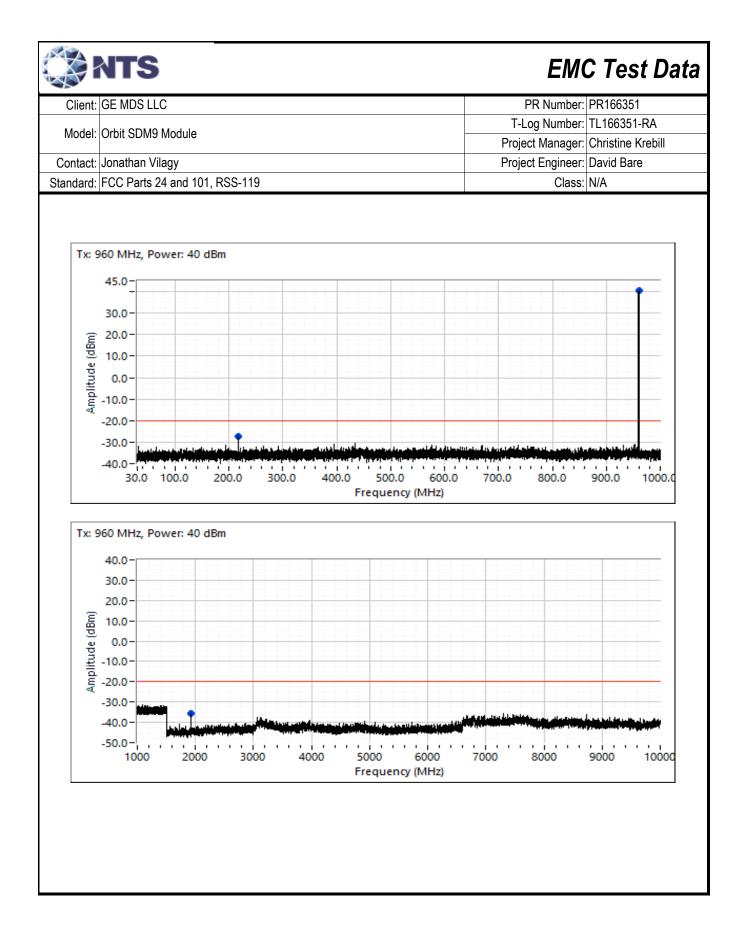







Client:	GE MDS LL	С						PR Number:	PR166351	
							T-	Log Number:		Ą
Model:	Orbit SDM9	Module						ect Manager:		
Contact	Jonathan V	ilaav						ect Engineer:		UIII
		24 and 101, R	CC 110				110j	-		
Standard:	FUC Parts	24 and 101, R	33-119					Class:	N/A	
	ut of Band S	Spurious Emi	ssions Co	nducted						
(uii #4. O		punous Lini	5510115, 00	nuucteu						
I	Date of Test:	11/17/2022			С	onfig. Used:	1			
Te	est Engineer:	Deniz Demir	ci		Cor	fig Change:	None			
T	est Location:	FT Lab #4B			E	UT Voltage:	24 VDC			
				00		A : 11				0
Frequency	Level	Pol		CC Marsin	Detector	Azimuth	Height	Comments		Channe
MHz	dBm	V/h	Limit	Margin	Pk/QP/Avg	degrees	meters	DD: 100 kU-	- 1/D: 200 LL	frequenc
217.885 927.998	-26.7 40.3	RF Port RF Port	-20.0	-6.7	PK PK	-	-	Fundamenta	<u>z, VB: 300 k⊦</u>	928 928
945.990	-31.2	RF Port	-20.0	-11.2	PK	-	-		ı z, VB: 300 k⊦	928
1855.990	-24.1	RF Port	-20.0	-11.2	PK	-	-	RB: 1 MHz		920
217.902	-27.8	RF Port	-20.0	-7.8	PK				z, VB: 300 kF	930
930.009	40.0	RF Port	-20.0	-7.0	PK	-	-	Fundamenta		930
947.870	-27.9	RF Port	-20.0	-7.9	PK	-	-		z, VB: 300 k⊦	930
1860.009	-24.3	RF Port	-20.0	-4.3	PK	-	-	RB: 1 MHz		930
217.902	-27.8	RF Port	-13.0	-14.8	PK	-	-		z, VB: 300 k⊦	935
934.995	40.1	RF Port	-	-	PK	-	-	Fundamenta		935
952.912	-30.2	RF Port	-13.0	-17.2	PK	-	-	RB: 100 kHz	z, VB: 300 k⊦	935
1869.990	-24.3	RF Port	-13.0	-11.3	PK	-	-	RB: 1 MHz \	/B: 3 MHz	935
217.902	-29.2	RF Port	-20.0	-9.2	PK	-	-	RB: 100 kHz	z, VB: 300 k⊦	940
939.992	40.5	RF Port	-	-	PK	-	-	Fundamenta	al	940
1879.998	-26.1	RF Port	-20.0	-6.1	PK	-	-	RB: 1 MHz \	/B: 3 MHz	940
217.962	-27.6	RF Port	-20.0	-7.6	PK	-	-	RB: 100 kHz	z, VB: 300 k⊦	941
940.997	40.0	RF Port	-	-	PK	-	-	Fundamenta	al	941
1881.994	-27.2	RF Port	-20.0	-7.2	PK	-	-	RB: 1 MHz \	/B: 3 MHz	941
217.902	-27.7	RF Port	-20.0	-7.7	PK	-	-	RB: 100 kHz	z, VB: 300 k⊦	953
952.997	40.8	RF Port	-	-	PK	-	-	Fundamenta	al	953
1905.987	-32.9	RF Port	-20.0	-12.9	PK	-	-	RB: 1 MHz V	/B: 3 MHz	953
218.022	-27.5	RF Port	-20.0	-7.5	PK	-	-	RB: 100 kHz	z, VB: 300 k⊦	960
960.005	40.6	RF Port	_	-	PK	-	-	Fundamenta	al	960
1920.008	-35.6	RF Port	-20.0	-15.6	PK	-	-	RB: 1 MHz	/B: 3 MHz	960





929.999708

Worst case:

27.6

FCC Part 24, 101

-0.3

-0.5

Page 48

000 000017			
929.999817	-183	-0.2	
929.999833	-167	-0.2	
929.999925	-75	-0.1	
929.999983	-17	0.0	
929.999992	-8	0.0	
930.000050	50	0.1	
930.000083	83	0.1	
930.000033	33	0.0	
929.999833	-167	-0.2	
Worst case:	-475	-0.5	
-	929.999925 929.999983 929.999992 930.000050 930.000083 930.000033 929.999833	929.999925 -75 929.999983 -17 929.999992 -8 930.000050 50 930.000083 83 930.000033 33 929.999833 -167	929.999925 -75 -0.1 929.999983 -17 0.0 929.999992 -8 0.0 930.000050 50 0.1 930.000083 83 0.1 930.000033 33 0.0 929.999833 -167 -0.2

-292

-292

Note 1: Maximum drift of fundamental frequency before it shut down at 20.3 Vdc was 0.2 ppm

Frequency Stability Over Temperature

chamber had stabilized at that temperature.

Temperature	Frequency Measured	D	<u>rift</u>	
(Celsius)	(MHz)	(Hz)	(ppm)	
-30	929.999525	-475	-0.5	
-20	929.999817	-183	-0.2	
-10	929.999833	-167	-0.2	
0	929.999925	-75	-0.1	
10	929.999983	-17	0.0	
20	929.999992	-8	0.0	
30	930.000050	50	0.1	
40	930.000083	83	0.1	
50	930.000033	33	0.0	
60	929.999833	-167	-0.2	
				-

Test performed with an unmodulated carrier signal

Test Location: FT Lab #4B

Nominal Frequency: 930.00000 MHz

115%

Config. Used: 1

The EUT was soaked at each temperature for a minimum of 30 minutes prior to making the measurements to ensure the EUT and

Config Change: None

EUT Voltage: 24 VDC

PR Number: PR166351 T-Log Number: TL166351-RA

Project Manager: Christine Krebill Project Engineer: David Bare

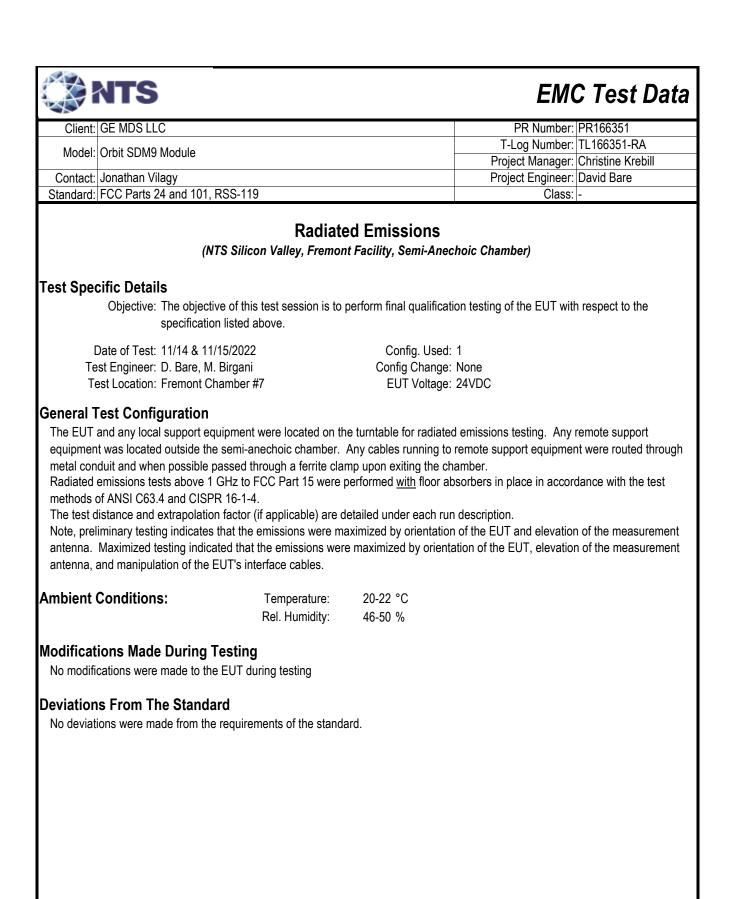
Class: N/A

EMC Test Data

NTS

Client: GE MDS LLC

Contact: Jonathan Vilagy


Run #5: Frequency Stability

Model: Orbit SDM9 Module

Standard: FCC Parts 24 and 101, RSS-119

Date of Test: 11/18/2022

Test Engineer: Mehran Birgani

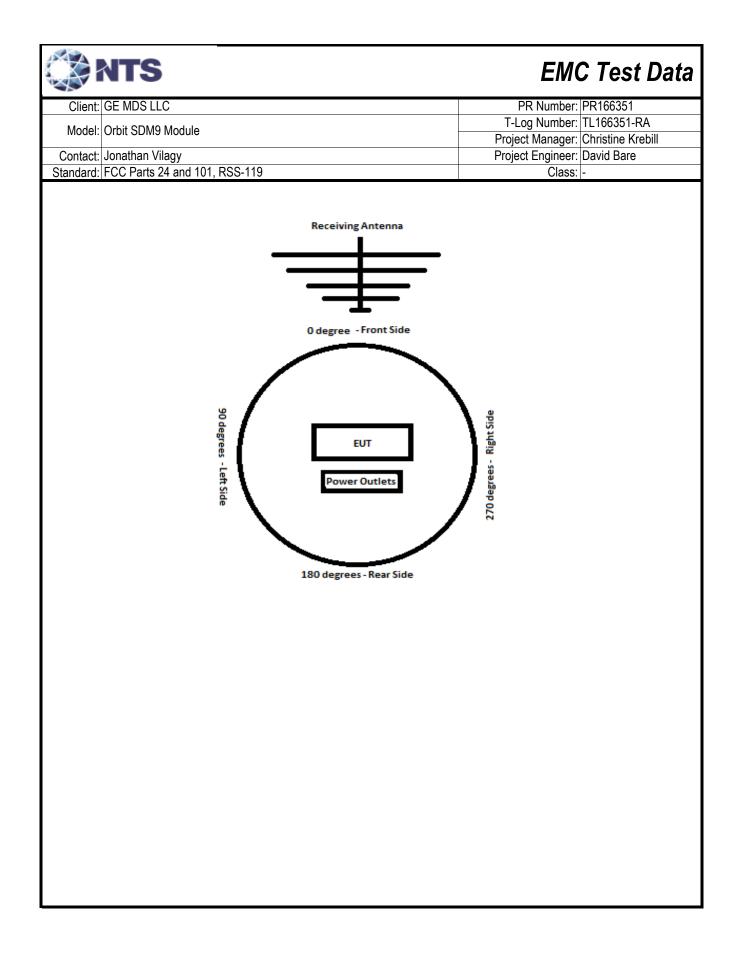
	NTS						EMC Test Da
Client:	GE MDS LL	C					PR Number: PR166351
						T-	Log Number: TL166351-RA
wodel:	Orbit SDM9	wodule			-	Proj	ect Manager: Christine Krebill
	Jonathan Vil					Proj	ect Engineer: David Bare
Standard:	FCC Parts 2	4 and 101, RSS-119					Class: -
ummary	/ of Result	S					
Ru	ın #	Test Performe	d	Lin	nit	Result	Margin (ERP calculated values)
	1	Transmitter Radiated	Spurious	RSS-	.119	Pass	-50.0 dBm @ 400.01 MHz
	MHz)	Emissions, 30 - 1,0		(-20 c		1 455	(-30.0 dB)
	2	Transmitter Radiated		RSS-		Pass	-35.6 dBm @ 7765.1 MHz
	MHz)	Emissions, 1,000 - 10		<u>(-20 c</u>			(-15.6 dB)
	3 MLI-)	Transmitter Radiated		RSS-		Pass	-50.1 dBm @ 400.02 MHz (-30.1 dB)
	MHz) 4	Emissions, 30 - 1,0 Transmitter Radiated		(-20 c RSS-	/		-36.3 dBm @ 7765.2 MHz
	т MHz)	Emissions, 1,000 - 10		(-20 c		Pass	(-16.3 dB)
	5	Transmitter Radiated		RSS-		_	-35.7 dB @ 7765.2 MHz
(930	MHz)	Emissions, 1,000 - 10		(-20 c		Pass	(-15.7 dB)
	6	Transmitter Radiated		FCC p		Deea	-35.7 dB @ 7765.2 MHz
(935	MHz)	Emissions, 1,000 - 10		(-13 c		Pass	(-22.7 dB)
	7	Transmitter Radiated		RSS-		Pass	-35.6 dBm @ 7765.2 MHz
	MHz)	Emissions, 1,000 - 10		(-20 c		1 000	(-15.6 dB)
	8	Transmitter Radiated		RSS-		Pass	-35.7 dBm @ 7765.2 MHz
	MHz) 9	Emissions, 1,000 - 10 Transmitter Radiated		<u>(-20 c</u> RSS-			(-15.7 dB) -35.5 dBm @ 7765.2 MHz
	•	Emissions, 1,000 - 10		(-20 c		Pass	(-15.5 dB)
(903	MHz)			(-20 0	IDIII)		(-15.5 ub)
	(ED RSS-119 Mask D Conducted limit (dBm): Id strength limit @ 3m:	-13 82.3				
		C Part 24, 101 Mask (a		2)			
		Conducted limit (dBm):					
Ар	proximate fie	ld strength limit @ 3m:	82.3				
			st Paramete				
	Fred	uency Range	Prescan D		Limit Di		Extrapolation Factor
		(MHz)	(mete		(met		(dB, applied to data)
		30 - 10,000	3		3		0.0

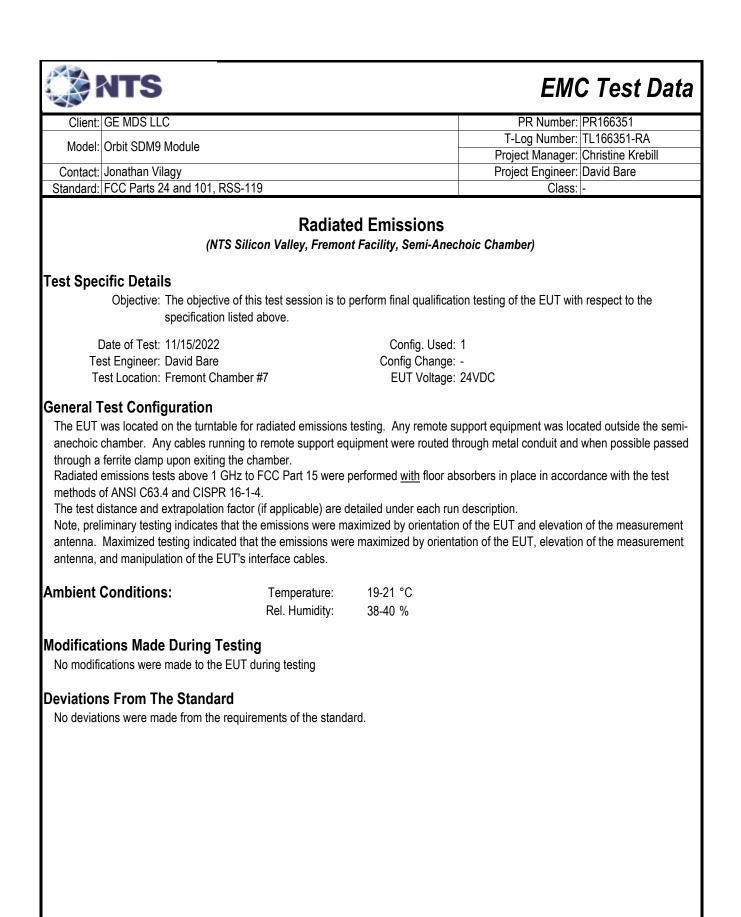
\$ - -	HTS GE MDS LL	С						PR Number: PR166351
							T-	Log Number: TL166351-RA
	Orbit SDM9						Proj	ect Manager: Christine Krebill
	Jonathan Vil						Proj	ect Engineer: David Bare
Standard:	FCC Parts 2	4 and 101	, RSS-119					Class: -
n #1: Ra 85.0 70.0 (July 60.0 (July 60.0 40.0 40.0 40.0 40.0		sions, 30	- 1000 MHz	@ 928 MHz	murtur	.Å.L.ma		MM Jelenstensteller
10.0 · 0.0 ·				100.0				1000.0
	0.0			F	requency (N	1Hz)		1000.0
Maximize	d readings o			F			Hoight	
Maximize equency	d readings o	Pol	RSS	F can -119	Detector	Azimuth	Height	Comments
laximize equency MHz	<mark>d readings</mark> o Level dBμV/m	Pol v/h	RSS Limit	F Scan S-119 Margin	Detector Pk/QP/Avg	Azimuth degrees	meters	Comments
laximize equency MHz 55.032	<mark>d readings</mark> d Level dBμV/m 29.1	Pol v/h V	RSS Limit 75.3	F S-119 Margin -46.2	Detector Pk/QP/Avg PK	Azimuth degrees 330	meters 1.0	Comments PK (0.10s)
laximize equency MHz 5.032 8.200	d readings of Level dBµV/m 29.1 34.8	Pol v/h	RSS Limit 75.3 75.3	F S-119 Margin -46.2 -40.5	Detector Pk/QP/Avg PK PK	Azimuth degrees 330 52	meters 1.0 1.0	Comments PK (0.10s) PK (0.10s)
laximize equency MHz 5.032 8.200 52.493	d readings of Level dBμV/m 29.1 34.8 29.5	Pol v/h V V	RSS Limit 75.3 75.3 75.3	F 5-119 -46.2 -40.5 -45.8	Detector Pk/QP/Avg PK PK PK	Azimuth degrees 330 52 167	meters 1.0 1.0 1.0	Comments PK (0.10s) PK (0.10s) PK (0.10s)
Iaximize equency MHz 5.032 8.200 52.493 24.996	d readings of Level dBµV/m 29.1 34.8	Pol v/h V V V	RSS Limit 75.3 75.3	F S-119 Margin -46.2 -40.5	Detector Pk/QP/Avg PK PK	Azimuth degrees 330 52	meters 1.0 1.0	Comments PK (0.10s) PK (0.10s)
	<mark>d readings of Level dBμV/m 29.1 34.8 29.5 34.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 2</mark>	Pol v/h V V V V	RSS Limit 75.3 75.3 75.3 75.3	F Can Margin -46.2 -40.5 -45.8 -40.5	Detector Pk/QP/Avg PK PK PK PK	Azimuth degrees 330 52 167 184	meters 1.0 1.0 1.0 2.0	Comments PK (0.10s) PK (0.10s) PK (0.10s) PK (0.10s)

	ITS							EMC Test Data
Client: C	GE MDS LLO	С						PR Number: PR166351
Model: (Drbit SDM9	Module						Log Number: TL166351-RA
								ect Manager: Christine Krebill
Standard: F	Ionathan Vil		DCC 110				Proj	ect Engineer: David Bare Class: -
Stanuaru. r	CC Fails Z	4 anu 101,	NOO-119					Class
Run #2: Rac	liated Emis	sions, 1,0	00 - 10,000	MHz @ 928	MHz]
80	.0							
70	.0-							
(m//mplitude (dBu//m) 00 05 05	.0-							•
(dB)	0-		1			Î	•	•
la 50					1		•	
11 d 40	.0-		1 1 114	1				La L
Am	1	. h.	La LAN	MAA ANA A	البرانيا برا	بالياب اليهاد	had been and the second	
30	.º-l. Jh	MAM	VM . Vert	. THE MENTION AND A DECEMBER OF A DECEMB OF A DECEMBER OF	DA POIL AND			
20	.0-	4 100111						
20	1000			'	'			10000
					Frequence	y (MHz)		
	P P							
Frequency	Level	Pol	luring pre-s	<u>can</u> 5-119	Detector	Azimuth	Height	Comments
	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments
MHZ	ubμv/m	V/11	LIIII					
MHz 7765.110		V	75.3		Ŭ.			RB 1 MHz:VB 3 MHz:Peak
MHz 7765.110 3712.050	61.9 56.2	V V	75.3 75.3	-13.4 -19.1	PK PK	254 328	1.5 1.9	RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak
7765.110	61.9			-13.4	PK	254	1.5	RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak
7765.110 3712.050 1799.920 5568.190	61.9 56.2 55.2 54.4	V V V	75.3 75.3 75.3	-13.4 -19.1 -20.1 -20.9	PK PK PK PK	254 328 295 319	1.5 1.9	RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak
7765.110 3712.050 1799.920 5568.190 2784.040	61.9 56.2 55.2 54.4 51.0	V V V V	75.3 75.3 75.3 75.3	-13.4 -19.1 -20.1 -20.9 -24.3	PK PK PK PK PK	254 328 295 319 311	1.5 1.9 1.9 2.4 1.7	RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak
7765.110 3712.050 1799.920 5568.190 2784.040 1856.150	61.9 56.2 55.2 54.4 51.0 50.8	V V V V V	75.3 75.3 75.3 75.3 75.3 75.3	-13.4 -19.1 -20.1 -20.9 -24.3 -24.5	PK PK PK PK PK PK	254 328 295 319 311 326	1.5 1.9 1.9 2.4 1.7 1.5	RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak
7765.110 3712.050 1799.920 5568.190 2784.040 1856.150 4640.170	61.9 56.2 55.2 54.4 51.0 50.8 50.6	V V V V V V	75.3 75.3 75.3 75.3 75.3 75.3 75.3	-13.4 -19.1 -20.1 -20.9 -24.3 -24.5 -24.5 -24.7	РК РК РК РК РК РК РК	254 328 295 319 311 326 295	1.5 1.9 1.9 2.4 1.7 1.5 1.9	RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak
7765.110 3712.050 1799.920 5568.190 2784.040 1856.150	61.9 56.2 55.2 54.4 51.0 50.8	V V V V V	75.3 75.3 75.3 75.3 75.3 75.3	-13.4 -19.1 -20.1 -20.9 -24.3 -24.5	PK PK PK PK PK PK	254 328 295 319 311 326	1.5 1.9 1.9 2.4 1.7 1.5	RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak

Standard:	Jonathan Vila						Proj	Log Number: TL166351-RA ject Manager: Christine Krebill
	FCC Parts 24		RSS-119				Proj	ect Engineer: David Bare Class: -
	diated Emiss			@ 940 MHz				
85.	0							•
70.	0-							
િં 60.	o-							
(m 60. 50. 9 40. 30. 8 20	0-							
ੁੱਚ ਚ 40 .							1	
njin 30.			_	Å	. 8			
du 4 20.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	. A	A	and have	harl.	AL.	white	" " " " " " " " " " " " " " " " " " "
10.		my 1	Will Mark		N _a ,			
10.	0-		~					
0.	0- 30.0			100.0				1000.c
	o-	aptured d		can	Frequency	(MHz)		
Maximize requency	0 - , 30.0 d readings c Level	Pol	RSS	can -119	Detector	Azimuth	Height	
Maximize equency MHz	o- 30.0 d readings c Level dBμV/m	Pol v/h	RSS Limit	can -119 Margin	Detector Pk/QP/Avg	Azimuth degrees	meters	Comments
Maximize requency MHz 35.032	d readings c Level dBμV/m 29.0	Pol v/h V	RSS Limit 75.3	can -119 Margin -46.3	Detector Pk/QP/Avg PK	Azimuth degrees 350	meters 1.0	Comments PK (0.10s)
Maximize equency MHz 35.032 98.200	0-, 30.0 d readings c Level dBμV/m 29.0 34.6	Pol v/h	RSS Limit	can -119 Margin -46.3 -40.7	Detector Pk/QP/Avg PK PK	Azimuth degrees 350 167	meters 1.0 1.0	Comments PK (0.10s) PK (0.10s)
Maximize equency MHz 35.032 98.200 62.493	d readings c Level dBμV/m 29.0	Pol v/h V V	RSS Limit 75.3 75.3	can -119 Margin -46.3	Detector Pk/QP/Avg PK	Azimuth degrees 350	meters 1.0	Comments PK (0.10s)
Maximize equency MHz 35.032 98.200 62.493 225.000 250.000	d readings c Level dBμV/m 29.0 34.6 29.3 32.6 33.6	Pol v/h V V V V V H	RSS Limit 75.3 75.3 75.3 75.3 75.3 75.3	can -119 -46.3 -40.7 -46.0 -42.7 -41.7	Detector Pk/QP/Avg PK PK PK PK PK PK	Azimuth degrees 350 167 282 148 146	meters 1.0 1.0 1.0 2.1 1.0	Comments PK (0.10s) PK (0.10s) PK (0.10s) PK (0.10s) PK (0.10s) PK (0.10s) PK (0.10s)
Maximize equency MHz	d readings c Level dBμV/m 29.0 34.6 29.3 32.6	Pol v/h V V V V V	RSS Limit 75.3 75.3 75.3 75.3 75.3	can -119 -46.3 -40.7 -46.0 -42.7	Detector Pk/QP/Avg PK PK PK PK	Azimuth degrees 350 167 282 148	meters 1.0 1.0 1.0 2.1	Comments PK (0.10s) PK (0.10s) PK (0.10s) PK (0.10s) PK (0.10s)

	GE MDS LL						T.	PR Number: PR166351 Log Number: TL166351-RA
Model:	Orbit SDM9	Module						ject Manager: Christine Krebill
	Jonathan Vil							ect Engineer: David Bare
andard:	FCC Parts 2	4 and 101	, RSS-119					Class: -
8 (w/\ngp);	35.0 - 30.0 - 70.0 - 50.0 -			•	•	Ť		
3	10.0 - 10	white	John	MAAAAA			hillen standarder der	10000
1					Frequence	Ly (IVITIZ)		
aximize	d readings (captured o	during pre-s	can	Frequenc	Ly (IVITIZ)		
quency	Level	Pol	RSS	5-119	Detector	Azimuth	Height	Comments
uency 1Hz	Level dBµV/m	Pol v/h	RSS Limit	-119 Margin	Detector Pk/QP/Avg	Azimuth degrees	meters	
uency 1Hz 5.230	Level dBμV/m 61.2	Pol v/h V	RSS Limit 75.3	-119 Margin -14.1	Detector Pk/QP/Avg PK	Azimuth degrees 248	meters 2.4	RB 1 MHz;VB 3 MHz;Peak
uency IHz 5.230 0.130	Level dBμV/m 61.2 61.0	Pol v/h V V	RSS Limit 75.3 75.3	5-119 Margin -14.1 -14.3	Detector Pk/QP/Avg PK PK	Azimuth degrees 248 290	meters 2.4 2.5	RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak
uency 1Hz 5.230 0.130 0.150	Level dBμV/m 61.2 61.0 55.2	Pol v/h V	RSS Limit 75.3	-119 Margin -14.1 -14.3 -20.1	Detector Pk/QP/Avg PK PK PK	Azimuth degrees 248	meters 2.4	RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak
quency /Hz 5.230 0.130 0.150 0.100 9.990	Level dBμV/m 61.2 61.0 55.2 54.4 53.7	Pol v/h V V V V V V	RSS Limit 75.3 75.3 75.3 75.3 75.3 75.3	S-119 Margin -14.1 -14.3 -20.1 -20.9 -21.6	Detector Pk/QP/Avg PK PK PK PK PK	Azimuth degrees 248 290 290 318 296	meters 2.4 2.5 1.6	RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak
quency /Hz 5 5.230 0.130 0.150 0.100	Level dBμV/m 61.2 61.0 55.2 54.4	Pol v/h V V V V	RSS Limit 75.3 75.3 75.3 75.3	-119 Margin -14.1 -14.3 -20.1 -20.9	Detector Pk/QP/Avg PK PK PK PK	Azimuth degrees 248 290 290 318	meters 2.4 2.5 1.6 1.5	RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak


Client:	GE MDS LL	С					Ŧ	PR Number: PR166351
Model:	Orbit SDM9	Module					I- Proi	Log Number: TL166351-RA ject Manager: Christine Krebill
contact:	Jonathan Vil	agy					Proj	ect Engineer: David Bare
	FCC Parts 2		, RSS-119				,	Class: -
80 70 80 (dBu//m) 90 90	0.0 - 0.0 - 0.0 - 0.0 -		10,000				•	
20	0.0- 0.0- 1000	YTLANY			Frequenc	y (MHz)		10000
aximize			during pre-s	can -119	Detector	Azimuth	Hoight	Comments
	Level	Pol v/h	Limit	Margin	Detector Pk/QP/Avg	degrees	Height meters	Comments
quency	dBuV/m			-13.5	PK	249	2.1	RB 1 MHz;VB 3 MHz;Peak
quency /Hz	dBμV/m 61.8	V	/5.3					
quency /Hz 5.230	dBμV/m 61.8 57.6		75.3 75.3	-17.7	PK	330	2.3	RB 1 MHz;VB 3 MHz;Peak
Quency MHz 5.230 20.150 00.060	61.8 57.6 54.6	V V V	75.3 75.3	-17.7 -20.7	PK	303	1.3	RB 1 MHz;VB 3 MHz;Peak
quency /IHz 55.230 (0.150) (0.060) (0.010)	61.8 57.6 54.6 54.3	V V V V	75.3 75.3 75.3	-17.7 -20.7 -21.0	PK PK	303 288	1.3 2.2	RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak
quency //Hz 5.230 20.150 00.060 50.010 80.000	61.8 57.6 54.6 54.3 52.8	V V V V V	75.3 75.3 75.3 75.3	-17.7 -20.7 -21.0 -22.5	PK PK PK	303 288 336	1.3 2.2 2.4	RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak
quency //Hz 55.230 20.150 20.060 50.010 50.000 30.000 99.770	61.8 57.6 54.6 54.3	V V V V	75.3 75.3 75.3	-17.7 -20.7 -21.0	PK PK	303 288	1.3 2.2	RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak


								EMC Test Dat
	GE MDS LL						т	PR Number: PR166351 Log Number: TL166351-RA
Model:	Orbit SDM9	Module						ject Manager: Christine Krebill
Contact:	Jonathan Vil	agy						ect Engineer: David Bare
	FCC Parts 2		, RSS-119					Class: -
n #6: Ra 80.0		sions, 1,0	00 - 10,000	MHz @ 935	MHz			
70.0)-							
(m/ 60.(Amplitude (dBu//m) 90.0		un Marin						umhilither hutur and a second second
30.0	Samp.	IL AIY P	- Q· - 11	ትለ በህዝብላት	-Jart Polodi ee.	-		
20.0	1000				' Frequency (MHz)		10000
Maximize	d readings (captured o	during pre-s	can				
equency	Level	Pol	FCC	C 24	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
765.230	61.8	V	82.3	-20.5	PK	253	1.6	RB 1 MHz;VB 3 MHz;Peak
140.000	57.6	V	82.3	-24.7 -26.9	PK PK	299	2.1	RB 1 MHz;VB 3 MHz;Peak
				-26.9	I PK I	304	1.8	
300.010	55.4	V	82.3					RB 1 MHz;VB 3 MHz;Peak
300.010 375.080	53.2	V	82.3	-29.1	PK	304	2.5	RB 1 MHz;VB 3 MHz;Peak
740.090 800.010 675.080 314.140 805.110								

andard: FCC Parts 24 and 101, RSS-119 Class: - #7: Radiated Emissions, 1,000 - 10,000 MHz @ 940 MHz 80.0 - 70.0	n #7: Radiated Emissions, 1, 80.0 - 70.0 -		MHz			ect Engineer: David Bare
#7: Radiated Emissions, 1,000 - 10,000 MHz @ 940 MHz #7: Radiated Emissions, 1,000 - 10,000 MHz @ 940 MHz #0.0 70.0 70.0 90.0 <th>n #7: Radiated Emissions, 1, 80.0 - 70.0 -</th> <th></th> <th>MHz</th> <th></th> <th></th> <th>01000.</th>	n #7: Radiated Emissions, 1, 80.0 - 70.0 -		MHz			01000.
80.0 70.0 60.0 70.0 60.0 70.0	80.0 -					
70.0- 9 60.0- 9 60.120 60.3 V 75.3 -13.4 PK 252 1.6 RB 1 MHz;VB 3 MHz;Peak 80.120 60.120 60.3 V 75.3 -15.0 PK 31 1.2 RB 1 MHz;VB 3 MHz;Peak 60.120 60.3 V 75.3 -19.8 PK 300 1.8 RB 1 MHz;VB 3 MHz;Peak 40.050 53.3 V 75.3 -22.0 PK 323 2.2 RB 1 MHz;VB 3 MHz;Peak 00.120 51.7 V 75.3 -23.6 PK 302 2.4 RB 1 MHz;VB 3 MHz;Peak	70.0-					
Image: Second S						
30.0 30.0 30.0 30.0 30.0 10000 Intervieweine Presenter Pole Frequency (MHz) aximized readings captured during pre-scan quency Level Pol RSS-119 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 65.230 61.9 V 75.3 -13.4 PK 252 1.6 RB 1 MHz;VB 3 MHz;Peak 60.120 60.3 V 75.3 -15.0 PK 31 1.2 RB 1 MHz;VB 3 MHz;Peak 00.160 55.5 V 75.3 -19.8 PK 300 1.8 RB 1 MHz;VB 3 MHz;Peak 40.050 53.3 V 75.3 -22.0 PK 323 2.2 RB 1 MHz;VB 3 MHz;Peak 00.120 51.7 V 75.3 -23.6 PK 302 2.4 RB 1 MHz;VB 3 MHz;Peak						
30.0 30.0 30.0 30.0 30.0 10000 Intervieweine Presenter Pole Frequency (MHz) aximized readings captured during pre-scan quency Level Pol RSS-119 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 65.230 61.9 V 75.3 -13.4 PK 252 1.6 RB 1 MHz;VB 3 MHz;Peak 60.120 60.3 V 75.3 -15.0 PK 31 1.2 RB 1 MHz;VB 3 MHz;Peak 00.160 55.5 V 75.3 -19.8 PK 300 1.8 RB 1 MHz;VB 3 MHz;Peak 40.050 53.3 V 75.3 -22.0 PK 323 2.2 RB 1 MHz;VB 3 MHz;Peak 00.120 51.7 V 75.3 -23.6 PK 302 2.4 RB 1 MHz;VB 3 MHz;Peak	5 60.0-					
30.0 30.0 30.0 30.0 30.0 10000 Intervieweine Presenter Pole Frequency (MHz) aximized readings captured during pre-scan quency Level Pol RSS-119 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 65.230 61.9 V 75.3 -13.4 PK 252 1.6 RB 1 MHz;VB 3 MHz;Peak 60.120 60.3 V 75.3 -15.0 PK 31 1.2 RB 1 MHz;VB 3 MHz;Peak 00.160 55.5 V 75.3 -19.8 PK 300 1.8 RB 1 MHz;VB 3 MHz;Peak 40.050 53.3 V 75.3 -22.0 PK 323 2.2 RB 1 MHz;VB 3 MHz;Peak 00.120 51.7 V 75.3 -23.6 PK 302 2.4 RB 1 MHz;VB 3 MHz;Peak	(ngp)	•		1		
30.0 30.0 30.0 30.0 30.0 10000 Intervieweine Presenter Pole Frequency (MHz) aximized readings captured during pre-scan quency Level Pol RSS-119 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 65.230 61.9 V 75.3 -13.4 PK 252 1.6 RB 1 MHz;VB 3 MHz;Peak 60.120 60.3 V 75.3 -15.0 PK 31 1.2 RB 1 MHz;VB 3 MHz;Peak 00.160 55.5 V 75.3 -19.8 PK 300 1.8 RB 1 MHz;VB 3 MHz;Peak 40.050 53.3 V 75.3 -22.0 PK 323 2.2 RB 1 MHz;VB 3 MHz;Peak 00.120 51.7 V 75.3 -23.6 PK 302 2.4 RB 1 MHz;VB 3 MHz;Peak	မှ 50.0 -		• .		•	
30.0 30.0 30.0 30.0 30.0 10000 Intervieweine Presenter Pole Frequency (MHz) aximized readings captured during pre-scan quency Level Pol RSS-119 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 65.230 61.9 V 75.3 -13.4 PK 252 1.6 RB 1 MHz;VB 3 MHz;Peak 60.120 60.3 V 75.3 -15.0 PK 31 1.2 RB 1 MHz;VB 3 MHz;Peak 00.160 55.5 V 75.3 -19.8 PK 300 1.8 RB 1 MHz;VB 3 MHz;Peak 40.050 53.3 V 75.3 -22.0 PK 323 2.2 RB 1 MHz;VB 3 MHz;Peak 00.120 51.7 V 75.3 -23.6 PK 302 2.4 RB 1 MHz;VB 3 MHz;Peak	1 40.0-			1		I have been they are a second
20.0 - 10000 Image: Trequency (MHz) aximized readings captured during pre-scan quency Level Pol RSS-119 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 65.230 61.9 V 75.3 -13.4 PK 252 1.6 RB 1 MHz;VB 3 MHz;Peak 60.120 60.3 V 75.3 -15.0 PK 31 1.2 RB 1 MHz;VB 3 MHz;Peak 00.160 55.5 V 75.3 -19.8 PK 300 1.8 RB 1 MHz;VB 3 MHz;Peak 40.050 53.3 V 75.3 -22.0 PK 323 2.2 RB 1 MHz;VB 3 MHz;Peak 00.120 51.7 V 75.3 -23.6 PK 302 2.4 RB 1 MHz;VB 3 MHz;Peak	՝ Ուլելի Մեթ	Ar Alexan Manadadadada	Milleland	All and a full	Annald Star Ballion Party	A
1000 Frequency (MHz) aximized readings captured during pre-scan quency Level Pol RSS-119 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 35.230 61.9 V 75.3 -13.4 PK 252 1.6 RB 1 MHz;VB 3 MHz;Peak 30.120 60.3 V 75.3 -15.0 PK 31 1.2 RB 1 MHz;VB 3 MHz;Peak 40.050 55.5 V 75.3 -19.8 PK 300 1.8 RB 1 MHz;VB 3 MHz;Peak 40.050 53.3 V 75.3 -22.0 PK 323 2.2 RB 1 MHz;VB 3 MHz;Peak 00.120 51.7 V 75.3 -23.6 PK 302 2.4 RB 1 MHz;VB 3 MHz;Peak	Mar Mar Doll.					
Frequency (MHz) aximized readings captured during pre-scan quency Level Pol RSS-119 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 65.230 61.9 V 75.3 -13.4 PK 252 1.6 RB 1 MHz;VB 3 MHz;Peak 60.120 60.3 V 75.3 -15.0 PK 31 1.2 RB 1 MHz;VB 3 MHz;Peak 00.160 55.5 V 75.3 -19.8 PK 300 1.8 RB 1 MHz;VB 3 MHz;Peak 40.050 53.3 V 75.3 -22.0 PK 323 2.2 RB 1 MHz;VB 3 MHz;Peak 00.120 51.7 V 75.3 -23.6 PK 302 2.4 RB 1 MHz;VB 3 MHz;Peak						10000
quency Level Pol RSS-119 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 65.230 61.9 V 75.3 -13.4 PK 252 1.6 RB 1 MHz;VB 3 MHz;Peak 60.120 60.3 V 75.3 -15.0 PK 31 1.2 RB 1 MHz;VB 3 MHz;Peak 00.160 55.5 V 75.3 -19.8 PK 300 1.8 RB 1 MHz;VB 3 MHz;Peak 40.050 53.3 V 75.3 -22.0 PK 323 2.2 RB 1 MHz;VB 3 MHz;Peak 00.120 51.7 V 75.3 -23.6 PK 302 2.4 RB 1 MHz;VB 3 MHz;Peak			Frequency	(MHz)		
quency Level Pol RSS-119 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 65.230 61.9 V 75.3 -13.4 PK 252 1.6 RB 1 MHz;VB 3 MHz;Peak 60.120 60.3 V 75.3 -15.0 PK 31 1.2 RB 1 MHz;VB 3 MHz;Peak 00.160 55.5 V 75.3 -19.8 PK 300 1.8 RB 1 MHz;VB 3 MHz;Peak 40.050 53.3 V 75.3 -22.0 PK 323 2.2 RB 1 MHz;VB 3 MHz;Peak 00.120 51.7 V 75.3 -23.6 PK 302 2.4 RB 1 MHz;VB 3 MHz;Peak	lavimized readings cantured	during pre-scan				
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 65.230 61.9 V 75.3 -13.4 PK 252 1.6 RB 1 MHz;VB 3 MHz;Peak 60.120 60.3 V 75.3 -15.0 PK 31 1.2 RB 1 MHz;VB 3 MHz;Peak 00.160 55.5 V 75.3 -19.8 PK 300 1.8 RB 1 MHz;VB 3 MHz;Peak 40.050 53.3 V 75.3 -22.0 PK 323 2.2 RB 1 MHz;VB 3 MHz;Peak 00.120 51.7 V 75.3 -23.6 PK 302 2.4 RB 1 MHz;VB 3 MHz;Peak			Detector	Azimuth	Height	Comments
60.120 60.3 V 75.3 -15.0 PK 31 1.2 RB 1 MHz;VB 3 MHz;Peak 00.160 55.5 V 75.3 -19.8 PK 300 1.8 RB 1 MHz;VB 3 MHz;Peak 40.050 53.3 V 75.3 -22.0 PK 323 2.2 RB 1 MHz;VB 3 MHz;Peak 00.120 51.7 V 75.3 -23.6 PK 302 2.4 RB 1 MHz;VB 3 MHz;Peak	MHz dBµV/m v/h	¥				
00.160 55.5 V 75.3 -19.8 PK 300 1.8 RB 1 MHz;VB 3 MHz;Peak 40.050 53.3 V 75.3 -22.0 PK 323 2.2 RB 1 MHz;VB 3 MHz;Peak 00.120 51.7 V 75.3 -23.6 PK 302 2.4 RB 1 MHz;VB 3 MHz;Peak						
40.050 53.3 V 75.3 -22.0 PK 323 2.2 RB 1 MHz;VB 3 MHz;Peak 00.120 51.7 V 75.3 -23.6 PK 302 2.4 RB 1 MHz;VB 3 MHz;Peak						
00.120 51.7 V 75.3 -23.6 PK 302 2.4 RB 1 MHz;VB 3 MHz;Peak						
00.190 49.5 V 75.5 -25.0 FK 530 2.2 KB T MINZ, VB 5 MINZ, FEAK						
	<u>JU.190 49.5 V</u>	/5.3 -25.8	PK	330	2.2	RB 1 MHZ;VB 3 MHZ;Peak

Model.	GE MDS LLC Orbit SDM9 I							PR Number: PR166351 Log Number: TL166351-RA ect Manager: Christine Krebill
Contact [.]	Jonathan Vila	aav						ect Engineer: David Bare
	FCC Parts 24		, RSS-119					Class: -
litude (dBu//m) 5 9 2	15.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 -		, Ì,		₽	ţ	• .	
2	0.0- 0.0- 1000	What Ala	r, , ,	, 	Frequenc	y (MHz)		10000
laximize equency	d readings c Level	aptured c Pol		can -119	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments
65.190	61.8	V	75.3	-13.5	PK	252	1.6	RB 1 MHz;VB 3 MHz;Peak
64.070	59.1	V	75.3	-16.2	PK	30	1.5	RB 1 MHz;VB 3 MHz;Peak
99.960	54.6	V	75.3	-20.7	PK	295	1.9	RB 1 MHz;VB 3 MHz;Peak
46.070	52.9	V	75.3	-22.4	PK	318	2.3	RB 1 MHz;VB 3 MHz;Peak
05.060	50.4	V	75.3	-24.9	PK	308	1.8	RB 1 MHz;VB 3 MHz;Peak
	49.5	V	75.3	-25.8	PK	335	2.0	RB 1 MHz;VB 3 MHz;Peak
080.00								

	GE MDS LLO						T-	PR Number: Log Number:	PR166351 TL166351-RA
Model:	Orbit SDM9 I	Nodule							Christine Krebill
	Jonathan Vila						Proj	ect Engineer:	
standard:	FCC Parts 24	4 and 101	, RSS-119					Class:	-
litude (dBuV/m) 00 20 20 20 20	diated Emiss								under and instants
	0.0- 0.0- 1000	WLANY ^V	i hi na ₁ .	, 	Frequency	(MHz)			10000
	d readings c				Detector	A —:th	Llaight	Commonto	
equency MHz	Level dBµV/m	Pol v/h	Limit	-119 Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments	
765.200	62.0	V	75.3	-13.3	PK	253	1.4	RB 1 MHz:\	/B 3 MHz;Peak
312.120	58.2	V	75.3	-17.1	PK	28	1.0		/B 3 MHz;Peak
300.030	54.7	V	75.3	-20.6	PK	300	1.8		/B 3 MHz;Peak
05.990	51.7	V	75.3	-23.6	PK	292	1.5		/B 3 MHz;Peak
359.040	51.6	V	75.3	-23.7	PK	304	1.6		/B 3 MHz;Peak
	50.3	V	75.3	-25.0	PK	325	1.4	RB 1 MHz;\	/B 3 MHz;Peak
313.980									ious emissions tests, .4 and substitution

NTS			EMC Test Data			
Client: GE MDS LLC			PR Number: PR166351			
Model: Orbit SDM9 Module	T-	T-Log Number: TL166351-RA				
		Project Manager: Christine Krebill				
Contact: Jonathan Vilagy	Proj	Project Engineer: David Bare				
Standard: FCC Parts 24 and 101, RSS-119			Class: -			
ummary of Results						
Run # Test Performed	Limit	Result	Margin			
1 (Upright) Transmitter Radiated Spurious	RSS-119	Pass	47.2 dBμV/m (229.1 μV/m) @			
(940 MHz) Emissions, 30 - 1,000 MHz	(-20 dBm)	1 400	250.00 MHz			
2 (Flat) Transmitter Radiated Spurious	RSS-119	Pass	47.1 dBμV/m (226.5 μV/m) @			
(940 MHz) Emissions, 30 - 1,000 MHz	(-20 dBm)		250.00 MHz			
3 (Upright) Transmitter Radiated Spurious	RSS-119	Pass	61.8 dBμV/m (1230.3 μV/m) @ 7765.3 MHz			
(940 MHz) Emissions, 1- 10 GHz 4 (Flat) Transmitter Radiated Spurious	(-20 dBm) RSS-119		60.8 dBµV/m (1096.5 µV/m) @			
(940 MHz) Emissions, 1- 10 GHz	(-20 dBm)	Pass	7765.3 MHz			
he limit is taken from ISED RSS-119 Mask D Conducted limit (dBm): -20 Approximate field strength limit @ 3m: 75.3 he limit is taken from FCC Part 24, 101 Mask (a)(1) and (a)(2) Conducted limit (dBm): -13 Approximate field strength limit @ 3m: 82.3	Low Chan	nels = 928 an nnels = 930 ar				

Т	Test Parameters for Preliminary Scan(s)								
Frequency Range	Frequency Range Prescan Distance Limit Distance Extrapolation Fac								
(MHz)	(meters)	(meters)	(dB, applied to data)						
30 - 10,000	3	3	0.0						

NTS	EMC Test Da
Client: GE MDS LLC	PR Number: PR166351
Model: Orbit SDM9 Module	T-Log Number: TL166351-RA
	Project Manager: Christine Krebill
Contact: Jonathan Vilagy	Project Engineer: David Bare
tandard: FCC Parts 24 and 101, RSS-119	Class: -
70.0- (W, 60.0- M, 60.0- BD at 40.0- at 40.0- UM 20.0- W 20.0-	
5 40.0-	• Linetari .
	Land the state of
< 20.0 - my har ment have be	Mush of the way way and the second
10.0-	
0.0-	
30.0 100.0	100.0
Fre	quency (MHz)

Level	Pol	RSS	-119	Detector	Azimuth	Height	Comments
dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
47.2	V	75.3	-28.1	PK	245	1.9	PK (0.10s)
42.9	V	75.3	-32.4	PK	72	1.0	PK (0.10s)
40.7	V	75.3	-34.6	PK	4	1.0	PK (0.10s)
36.8	Н	75.3	-38.5	PK	279	2.4	PK (0.10s)
32.9	V	75.3	-42.4	PK	160	1.0	PK (0.10s)
82.6	Н	N/A	N/A	PK	315	2.5	PK (0.10s)
	dBμV/m 47.2 42.9 40.7 36.8 32.9	dBμV/m v/h 47.2 V 42.9 V 40.7 V 36.8 H 32.9 V	dBμV/m v/h Limit 47.2 V 75.3 42.9 V 75.3 40.7 V 75.3 36.8 H 75.3 32.9 V 75.3	dBμV/m v/h Limit Margin 47.2 V 75.3 -28.1 42.9 V 75.3 -32.4 40.7 V 75.3 -34.6 36.8 H 75.3 -38.5 32.9 V 75.3 -42.4	dBμV/m v/h Limit Margin Pk/QP/Avg 47.2 V 75.3 -28.1 PK 42.9 V 75.3 -32.4 PK 40.7 V 75.3 -34.6 PK 36.8 H 75.3 -38.5 PK 32.9 V 75.3 -42.4 PK	dBμV/m v/h Limit Margin Pk/QP/Avg degrees 47.2 V 75.3 -28.1 PK 245 42.9 V 75.3 -32.4 PK 72 40.7 V 75.3 -34.6 PK 4 36.8 H 75.3 -38.5 PK 279 32.9 V 75.3 -42.4 PK 160	dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 47.2 V 75.3 -28.1 PK 245 1.9 42.9 V 75.3 -32.4 PK 72 1.0 40.7 V 75.3 -34.6 PK 4 1.0 36.8 H 75.3 -38.5 PK 279 2.4 32.9 V 75.3 -42.4 PK 160 1.0

NTS		EMC Test D
Client: GE MDS LLC		PR Number: PR166351
lodel: Orbit SDM9 Module		T-Log Number: TL166351-RA
		Project Manager: Christine Krebill
ntact: Jonathan Vilagy		Project Engineer: David Bare
dard: FCC Parts 24 and 10	1, RSS-119	Class: -
70.0- () 60.0- 80.0- 50.0-		
70.0- () 60.0- 9 50.0- 9 40.0-		• •
70.0- (0.0- Mg) 50.0- 9 40.0- 30.0-		
70.0- 60.0- 50.0- 90.0- 40.0- 30.0- 20.0-	n Ant in	Land Land Land
(W 60.0- 50.0- 9 pp 40.0- 30.0- 20.0-	mmuluu	And Marked Marked Land and Marked
70.0- 60.0- 50.0- 9pntlidme 40.0- 20.0- 10.0-	m Muturet Mu	July Marshall Marshall Marshall

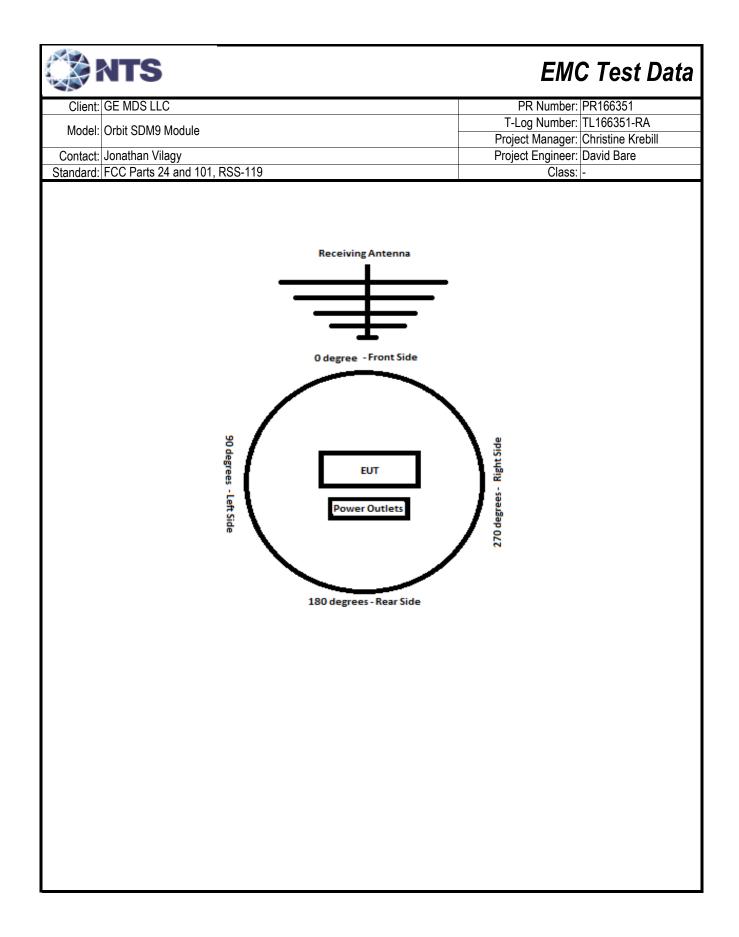
Frequency	Level	Pol	RSS	-119	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
250.000	47.1	Н	75.3	-28.2	PK	133	1.0	PK (0.10s)		
400.000	45.0	Н	75.3	-30.3	PK	316	2.3	PK (0.10s)		
35.578	37.5	V	75.3	-37.8	PK	329	1.0	PK (0.10s)		
125.000	31.2	Н	75.3	-44.1	PK	282	3.5	PK (0.10s)		
99.623	30.4	V	75.3	-44.9	PK	202	1.0	PK (0.10s)		
940.000	80.6	Н	N/A	N/A	PK	314	1.4	PK (0.10s)		

	NTS	EMC Test Dat
Client:	GE MDS LLC	PR Number: PR166351
Model.	Orbit SDM9 Module	T-Log Number: TL166351-RA
		Project Manager: Christine Krebill
	Jonathan Vilagy	Project Engineer: David Bare
Standard:	FCC Parts 24 and 101, RSS-119	Class: -
Uprig	-	Jht
Uprig		Jht
Uprig	ght	Jht
Uprig (w/\/	ght 80.0-	Jht

40.0-

30.0-|| 1000

Maximized readings captured during pre-scan										
Frequency	Level	Pol	RSS	-119	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
7765.250	61.8	Н	75.3	-13.5	PK	296	1.2	RB 1 MHz;VB 3 MHz;Peak		
3760.040	60.2	Н	75.3	-15.1	PK	43	2.5	RB 1 MHz;VB 3 MHz;Peak		
1625.160	52.2	Н	75.3	-23.1	PK	360	1.7	RB 1 MHz;VB 3 MHz;Peak		
2400.000	51.2	Н	75.3	-24.1	PK	308	2.1	RB 1 MHz;VB 3 MHz;Peak		
1124.990	42.9	V	75.3	-32.4	PK	186	1.8	RB 1 MHz;VB 3 MHz;Peak		


Frequency (MHz)

10000 i.

Client: GE M		PR Number:	PR166351
		T-Log Number:	
Iodel: Orbit	SDM9 Module	Project Manager:	
ntact: Jonat	an Vilagy	Project Engineer:	
	Parts 24 and 101, RSS-119	Class:	
Flat 80.0-			
			•

Frequency	Level	Pol	RSS	-119	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
7765.320	60.8	V	75.3	-14.5	PK	253	1.0	RB 1 MHz;VB 3 MHz;Peak		
3759.970	57.0	Н	75.3	-18.3	PK	40	2.0	RB 1 MHz;VB 3 MHz;Peak		
1800.100	51.5	Н	75.3	-23.8	PK	72	1.0	RB 1 MHz;VB 3 MHz;Peak		
5640.080	50.3	V	75.3	-25.0	PK	53	1.2	RB 1 MHz;VB 3 MHz;Peak		
4388.230	42.7	Н	75.3	-32.6	PK	327	1.0	RB 1 MHz;VB 3 MHz;Peak		

Frequency (MHz)

End of Report

This page is intentionally blank and marks the last page of this test report.