

EMC Test Data

Client:	GE MDS LLC	PR Number:	PR099808
Model:	CDM/ 1	T-Log Number:	TL099808-RA
	3DW4-1	Project Manager:	Christine Krebill
Contact:	Dennis McCarthy	Project Engineer:	David Bare
Standard:	FCC parts 22 & 90, RSS-119	Class:	N/A

Maximum Permissible Exposure / SAR Exclusion

Specific Details

Objective: Evaluate the RF Exposure requirements per FCC 1.1310, 2.1091, 2.1093 and RSS-102.

Date of Test: 8/12/2019 Test Engineer: David Bare

General Test Configuration

Calculation uses the free space transmission formula:

 $S = (PG)/(4 \pi d^2)$

Where: S is power density (W/m²), P is output power (W), G is antenna gain relative to isotropic, d is separation distance from the transmitting antenna (m).

SAR exclusion calculation formula is from FCC KDB 447498 D01 section 4.3:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f_{(GHz)}}]$

Where: f_(GHz) is the RF trasnmit channel frequency

Summary of Results

nplies with Power Density requirements at 20cm separation:	s/No
If not, required separation distance (in cm): 4	84

Deviations From The Standard

No deviations were made from the requirements of the standard.

EMC Test Data

Client:	GE MDS LLC	PR Number:	PR099808
Model:	CDM// 1	T-Log Number:	TL099808-RA
	SDIVI4-1	Project Manager:	Christine Krebill
Contact:	Dennis McCarthy	Project Engineer:	David Bare
Standard:	FCC parts 22 & 90, RSS-119	Class:	N/A

FCC MPE Calculation Use: General Antenna: 16.5 dBi

GE MDS statted that the output power is the maximum power given manufacturing tolerances/tune-up procedures.

	El	JT	Cable Loss	Ant	Power		Power Density (S)	MPE Limit
Freq.	Po	wer	Loss	Gain	at Ant	EIRP	at 20 cm	at 20 cm
MHz	dBm	mW*	dB	dBi	dBm	mW	mW/cm^2	mW/cm^2
406.1	40.2	10471.3	0	16.5	40.2	467735.14	93.053	0.271
406.1	40.2	10471.3	0	10	40.2	104712.85	20.832	0.271
406.1	40.2	10471.3	0	5	40.2	33113.11	6.588	0.271

For the cases where S > the MPE Limit

	Power Density (S)	MPE Limit	Distance where
Freq.	at 20 cm	at 20 cm	S <= MPE Limit
MHz	mW/cm^2	mW/cm^2	cm
406.1	93.053	0.271	370.8
406.1	20.832	0.271	175.4
406.1	6.588	0.271	98.7

Industry Canada MPE Calculation
Use: General or Controlled??

Antenna:

USE THIS FOR 300-6000 MHz single transmitters (General use)

The first of the f								
	El	JT	Cable Loss	Ant	Power		Power Density (S)	MPE Limit
Freq.	Po	wer	Loss	Gain	at Ant	EIRP	at 20 cm	at 20 cm
MHz	dBm	mW*	dB	dBi	dBm	mW	mW/cm^2	mW/cm^2
406.1	40.2	10471.3	0	16.5	40.2	467735.14	93.053	0.159
406.1	40.2	10471.3	0	10	40.2	104712.85	20.832	0.159
406.1	40.2	10471 3	0	5	40.2	33113 11	6.588	0.159

For the cases where S > the MPE Limit

	Power Density (S)	MPE Limit	Distance where
Freq.	at 20 cm	at 20 cm	S <= MPE Limit
MHz	mW/cm^2	mW/cm^2	cm
406.1	93.053	0.159	484.1
406.1	20.832	0.159	229.1
406.1	6.588	0.159	128.8

As all channels have the same power and antenna gain, the lowest frequency channel requires the greatest RF safety distance.