

Radio Test Report

FCC Part 90 (896-901 MHz and 935-940 MHz)

Model: SD9

COMPANY: GE MDS LLC 175 Science Parkway Rochester, NY 14620

TEST SITE(S): Elliott Laboratories 41039 Boyce Road. Fremont, CA. 94538-2435

REPORT DATE:

October 20, 2011

FINAL TEST DATES:

September 21 and 26, 2011

TOTAL NUMBER OF PAGES: 45

PROGRAM MGR / TECHNICAL REVIEWER

David W. Bare Chief Engineer QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

Elliott Laboratories is accredited by the A2LA, certificate number 2016.01, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

REVISION HISTORY

Rev#	Date	Comments	Modified By
1		First release	

TABLE OF CONTENTS

REVISION HISTORY	
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	5
STATEMENT OF COMPLIANCE	5
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS	
FCC PART 90	6
MEASUREMENT UNCERTAINTIES	7
EQUIPMENT UNDER TEST (EUT) DETAILS	8
GENERAL	
OTHER EUT DETAILS	
EUT ANTENNA	
ENCLOSURE	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TESTING	
GENERAL INFORMATION	
RF PORT MEASUREMENT PROCEDURES	.11
OUTPUT POWER	.11
BANDWIDTH MEASUREMENTS	
CONDUCTED SPURIOUS EMISSIONS	.12
TRANSMITTER MASK MEASUREMENTS	
FREQUENCY STABILITY TRANSIENT FREQUENCY BEHAVIOR:	
RADIATED EMISSIONS MEASUREMENTS	
INSTRUMENTATION	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	.14
SAMPLE CALCULATIONS	.15
SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS	
SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH	
SAMPLE CALCULATIONS –RADIATED POWER	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	.18
APPENDIX B TEST DATA	
END OF REPORT	.45

SCOPE

Tests have been performed on the GE MDS LLC model SD9, pursuant to the relevant requirements of the following standard(s) in order to obtain device certification against the regulatory requirements of the Federal Communications Commission and Industry Canada.

- Code of Federal Regulations (CFR) Title 47 Part 2
- CFR 47 Part 90 (Private Land Mobile Radio Service) Subpart S

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 ANSI TIA-603-C August 17, 2004

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the GE MDS LLC model SD9 and therefore apply only to the tested sample. The sample was selected and prepared by Dennis McCarthy of GE MDS LLC.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, the device requires certification. Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of GE MDS LLC model SD9 complied with the requirements of the standards and frequency bands declared in the scope of this test report.

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS

FCC Part 90

FCC	Description	Measured	Limit	Result
Transmitter Mo	dulation, output power and other charac	teristics		
§2.1033 (c) (5)	Frequency range(s)	896-901/935-	896-901/935-	Complias
§ 90.613	Frequency range(s)	940	940	Complies
§2.1033 (c) (6)				
§2.1033 (c) (7)	RF power output at the	20 dBm to 37	50 dBm	Complies
§2.1046	antenna terminals	dBm	JU UDIII	compiles
§ 90.635				
§2.1033 (c)	Emission types	F1D, F2D, F3D	-	-
(4)				~
§2.1047	Emission mask	Within Mask	Mask J	Complies
§ 90.210				
§2.1049	Occupied Bandwidth	10.2 kHz	11 kHz	Complies
§ 90.209	*			1
Transmitter spu	Irlous emissions			
§2.1051	At the antenna terminals	s $All > -20dBm$	-20dBm	Complies
§2.1057 §2.1053		All > 20dB		-
§2.1055 §2.1057	Field strength	below the limit	-20 dBm	Complies
Receiver spurio	us omissions	below the minit		
Receiver spurio		Same as		
15.109	Field strength	original	See limit table	Complies
15.109	i leid stieligti	certification	on page 17	Complies
Other details		••••••••••••••		
		Same as		
§2.1055	Frequency stability	original	0.17 ppm	Complies
§ 90.213	1 5 5	certification	11	1
		Same as		
§2.1093	RF Exposure	original	0.62 mW/cm^2	Complies
-		certification		_
	Final radio frequency			
	amplifying circuit's dc	Same as		
§2.1033 (c) (8)	voltages and currents fo		-	-
	normal operation over	certification		
	the power range			
_	- Antenna Gain	5, 10 or	_	
-		16.5 dBi	-	-
Notes				

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2) and were calculated in accordance with NAMAS document NIS 81 and M3003.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF frequency	Hz	25 to 7,000 MHz	1.7 x 10 ⁻⁷
RF power, conducted	dBm	25 to 7,000 MHz	$\pm 0.52 \text{ dB}$
Conducted emission of transmitter	dBm	25 to 40,000 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of receiver	dBm	25 to 40,000 MHz	$\pm 0.7 \text{ dB}$
Radiated emission (substitution method)	dBm	25 to 40,000 MHz	± 2.5 dB
Radiated emission (field strength)	dBµV/m	25 to 1,000 MHz 1 to 40 GHz	$\begin{array}{c} \pm 3.6 \text{ dB} \\ \pm 6.0 \text{ dB} \end{array}$

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The GE MDS LLC model SD9 is an industrial radio operating in the 896-901, 928-930 and 935-940 MHz bands under Part 90, 928-960 MHz bands under Part 101 and 901-902, 930-931 and 940-941 MHz bands under FCC Part 24. Since the EUT could be placed anywhere in use, it was placed on a table top during testing to simulate the end-user environment. The electrical rating of the EUT is 10 - 30 Volts DC, 2.2 Amps.

The samples were received on September 21, 2011 and tested on September 21 and 26, 2011. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
GE MDS LLC	SD9	Industrial Radio	2124579	E5MDS-SD9
GE MDS LLC	SD9	Industrial Radio	2127726	E5MDS-SD9

OTHER EUT DETAILS

The radio can operate on 6.25, 12.5, 25 or 50 kHz channels (F1D, F2D and F3D modulations) depending on the licensed operation in the specific rule part.

EUT ANTENNA

The EUT antenna is determined at the time of licensing.

ENCLOSURE

The EUT enclosure is primarily constructed of aluminum. It measures approximately 16 cm wide by 12 cm deep by 4 cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Winbook	Winbook XL	Computer	H1106677	-
Netgear	RP614v3	Network Switch	RP6114ADB03	-
			9891	

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected		Cable(s)	
Folt	То	Description	Shielded or Unshielded	Length(m)
Com2	Computer	Serial multiwire	Shielded	2
DC Power	Power Supply	Two wire	Unshielded	2
Ethernet	Network switch	Cat 5	Shielded	7

EUT OPERATION

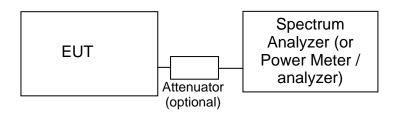
During testing, the EUT was set to transmit continuously at the maximum power.

TESTING

GENERAL INFORMATION

Antenna port measurements were taken at the Elliott Laboratories test site located at 41039 Boyce Road, Fremont, CA 94538-2435.

Radiated spurious emissions measurements were taken at the Elliott Laboratories Anechoic Chambers and/or Open Area Test Site(s) listed below. The sites conform to the requirements of ANSI C63.4: 2003 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz and CISPR 16-1-4:2007 - Specification for radio disturbance and immunity measuring apparatus and methods Part 1-4: Radio disturbance and immunity measuring apparatus Ancillary equipment Radiated disturbances. They are on file with the FCC and industry Canada.


Site	Registratio	n Numbers	Location
Site	FCC	Canada	Location
			41039 Boyce Road
Chamber 7	A2LA Accredited	IC 2845B-7	Fremont,
			CA 94538-2435

In the case of Open Area Test Sites, ambient levels are at least 6 dB below the specification limits with the exception of predictable local TV, radio, and mobile communications traffic.

Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements.

RF PORT MEASUREMENT PROCEDURES

Conducted measurements are performed with the EUT's rf input/output connected to the input of a spectrum analyzer, power meter or modulation analyzer. When required an attenuator, filter and/or dc block is placed between the EUT and the spectrum analyzer to avoid overloading the front end of the measurement device. Measurements are corrected for the insertion loss of the attenuators and cables inserted between the rf port of the EUT and the measurement equipment.

Test Configuration for Antenna Port Measurements

For devices with an integral antenna the output power and spurious emissions are measured as a field strength at a test distance of (typically) 3m and then converted to an eirp using a substitution measurement (refer to RADIATED EMISSIONS MEASUREMENTS). All other measurements are made as detailed below but with the test equipment connected to a measurement antenna directed at the EUT.

OUTPUT POWER

Output power is measured using a power meter and an average sensor head, a spectrum analyzer or a power meter and peak power sensor head as required by the relevant rule part(s). Where necessary measurements are gated to ensure power is only measured over periods that the device is transmitting.

Power measurements made directly on the rf power port are, when appropriate, converted to an EIRP by adding the gain of the highest gain antenna that can be used with the device under test, as specified by the manufacturer.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN. The measurement bandwidth is set to be at least 1% of the instrument's frequency span.

CONDUCTED SPURIOUS EMISSIONS

Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode measurements). Where the limits are expressed as an average power the spectrum analyzer is tunes to that frequency with a narrow span (wide enough to capture the emission and its sidebands) and the resolution and video bandwidths are adjusted as required by the reference measurement standards. For transmitter measurements the appropriate detector (average, peak, normal ,sample, quasi-peak) is used when making measurements for licensed devices. For receiver conducted spurious measurements the detector is set to peak.

TRANSMITTER MASK MEASUREMENTS

The transmitter mask measurements are made using resolution bandwidths as specified in the pertinent rule part(s). Where narrower bandwidths are used the measurement is corrected to account for the reduced bandwidth by either using the adjacent channel power function of the spectrum analyzer to sum the power across the required measurement bandwidth. The frequency span of the analyzer is set to ensure the fundamental signal and all significant sidebands are displayed.

The top of the mask may be set by the total output power of the signal, the power of the unmodulated signal or the peak value of the signal in the reference bandwidth being used for the mask measurement.

FREQUENCY STABILITY

The EUT is placed inside a temperature chamber with all support and test equipment located outside of the chamber. The temperature is varied across the specified frequency range in 10 degree increments with frequency measurements made at each temperature step. The EUT is allowed enough time to stabilize at each temperature variation.

The spectrum analyzer is configured to give a 5- or 6-digit display for the markerfrequency function. The spectrum analyzer's built-in frequency counter is used to measure the maximum deviation of the fundamental frequency at each temperature. Where possible the device is set to transmit an unmodulated signal. Where this is not possible the frequency drift is determined by finding a stable point on the signal (e.g. the null at the centre of an OFDM signal) or by calculating a centre frequency based on the upper and lower XdB points (where X is typically 6dB or 10dB) on the signal's skirts.

TRANSIENT FREQUENCY BEHAVIOR:

The TIA/EIA 603 procedure is used to determine compliance with transient frequency timing requirements as the radio is keyed on and off.

The EUTs rf output is connected via a combiner/splitter to the test receiver/spectrum analyzer and to a diode detector. The test receiver or spectrum analyzer video output is connected to an oscilloscope, which is triggered by the output from the diode detector.

Plots showing Ton, T1, and T2 are made when turning on the transmitter and showing T3 when turning off the transmitter.

RADIATED EMISSIONS MEASUREMENTS

Receiver radiated spurious emissions measurements are made in accordance with ANSI ANSI C63.4:2003 by measuring the field strength of the emissions from the device at a specific test distance and comparing them to a field strength limit. Where the field strength limit is specified at a longer distance than the measurement distance the measurement is extrapolated to the limit distance.

Transmitter radiated spurious emissions are initially measured as a field strength. The eirp or erp limit as specified in the relevant rule part(s) is converted to a field strength at the test distance and the emissions from the EUT are then compared to that limit. Emissions within 20dB of this limit are the subjected to a substitution measurement.

All radiated emissions measurements are performed in two phases. A preliminary scan of emissions is conducted in either an anechoic chamber or on an OATS during which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed across the complete frequency range of interest and at each operating frequency identified in the reference standard. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode).

During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit. For transmitter spurious emissions, where the limit is expressed as an effective radiated power, the eirp or erp is converted to a field strength limit.

Final measurements are made on an OATS or in a semi-anechoic chamber at the significant frequencies observed during the preliminary scan(s) using the same process of rotating the EUT and raising/lowering the measurement antenna to find the highest level of the emission. The field strength is recorded and, for receiver spurious emissions, compared to the field strength limit. For the final measurement the appropriate detectors (average, peak, normal, sample, quasi-peak) are used. For receiver measurements below 1GHz the detector is a Quasi-Peak detector, above 1GHz a peak detector is used and the peak value (RB=VB=1MHz) and average value (RB=1MHz, VB=10Hz) are recorded.

For transmitter spurious emissions, the radiated power of all emissions within 20dB of the calculated field strength limit are determined using a substitution measurement. The substitution measurement is made by replacing the EUT with an antenna of known gain (typically a dipole antenna or a double-ridged horn antenna), connected to a signal source. The output power of the signal generator is adjusted until the maximum field strength from the substitution antenna is similar to the field strength recorded from the EUT. The erp of the EUT is then calculated.

INSTRUMENTATION

An EMI receiver as specified in CISPR 16-1-1 is used for radiated emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 7000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary.

For measurements above the frequency range of the receivers and for all conducted measurements a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis.

Measurement bandwidths for the test instruments are set in accordance with the requirements of the standards referenced in this document.

Software control is used to correct the measurements for transducer factors (e.g. antenna) and the insertion loss of cables, attenuators and other series elements to obtain the final measurement value. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are exported in a graphic and/or tabular format, as appropriate.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the EUT antenna port or receiving antenna and the test receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A combination of biconical, log periodic or bi-log antennas are used to cover the range from 30 MHz to 1000 MHz. Broadband antennas or tuned dipole antennas are used over the entire 25 to 1000 MHz frequency range as the reference antenna for substitution measurements.

Above 1000 MHz, a dual-ridge guide horn antenna or octave horn antenna are used as reference and measurement antennas.

The antenna calibration factors are included in site factors that are programmed into the test receivers and instrument control software when measuring the radiated field strength.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

Table mounted devices are placed on a non-conductive table at a height of 80 centimeters above the floor. Floor mounted equipment is placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. The EUT is positioned on a motorized turntable to allow it to be rotated during testing to determine the angel with the highest level of emissions.

SAMPLE CALCULATIONS

SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS

Measurements are compared directly to the conducted emissions specification limit (decibel form). The calculation is as follows:

$$R_r - S = M$$

where:

 R_r = Measured value in dBm

S = Specification Limit in dBm

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS -RADIATED FIELD STRENGTH

Measurements of radiated field strength are compared directly to the specification limit (decibel form). The receiver and/or control software corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor is sued when measurements are made at a test distance that is different to the specified limit distance by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

The margin of a given emission peak relative to the limit is calculated as follows:

 $R_c = R_r + F_d$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS -RADIATED POWER

The erp/eirp limits for transmitter spurious measurements are converted to a field strength in free space using the following formula:

$$E = \frac{\sqrt{30 P G}}{d}$$

where:

E = Field Strength in V/m
P = Power in Watts
G = Gain of isotropic antenna (numeric gain) = 1
D = measurement distance in meters

The field strength limit is then converted to decibel form (dBuV/m) and the margin of a given emission peak relative to the limit is calculated (refer to *SAMPLE CALCULATIONS –RADIATED FIELD STRENGTH*).

When substitution measurements are required (all signals with less than 20dB of margin relative to the calculated field strength limit) the eirp of the spurious emission is calculated using: $P_{EUT} = P_{S-(E_{S}-E_{EUT})}$

and

 $P_s = G + P_{in}$

where:

- P_S = effective isotropic radiated power of the substitution antenna (dBm)
- P_{in} = power input to the substitution antenna (dBm)
- G = gain of the substitution antenna (dBi)
- E_s = field strength the substitution antenna (dBm) at eirp P_s
- E_{EUT} = field strength measured from the EUT

Where necessary the effective isotropic radiated power is converted to effective radiated power by subtracting the gain of a dipole (2.2dBi) from the eirp value.

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

Appendix A Test Equipment Calibration Data

Radio Antenna Port (Power and Spurious Emissions), 21-Sep-11 Engineer: Mehran Birgani

Engineer: Mehran Birg	gani			
Manufacturer	Description	Model #	Asset #	Cal Due
Agilent	PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	E4446A	2139	26-Jan-12
Radiated Emissions, 3 Engineer: Mehran Birg	80 - 1,000 MHz, 26-Sep-11			
Manufacturer	Description	Model #	Asset #	Cal Due
Manufacturer	EMC Spectrum Analyzer, 9 KHz -		<u>A3361 #</u>	
Hewlett Packard	22 GHz	8593EM	1319	22-Nov-11
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1548	24-Jun-12
Com-Power Corp.	Preamplifier, 30-1000 MHz	PA-103	1632	29-Apr-12
Radiated Emissions, 3	30 - 10,000 MHz, 5-Oct-11			
Engineer: Mehran Birg	gani			
Manufacturer	Description	Model #	Asset #	Cal Due
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	15-Aug-12
Narda West	High Pass Filter 1.9 GHz	HPF-161	248	23-Mar-12
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	263	08-Dec-11
EMCO	Antenna, Horn, 1-18 GHz	3115	487	06-Jul-12

Appendix B Test Data

T84737 Pages 20 - 44

Elliott

EMC Test Data

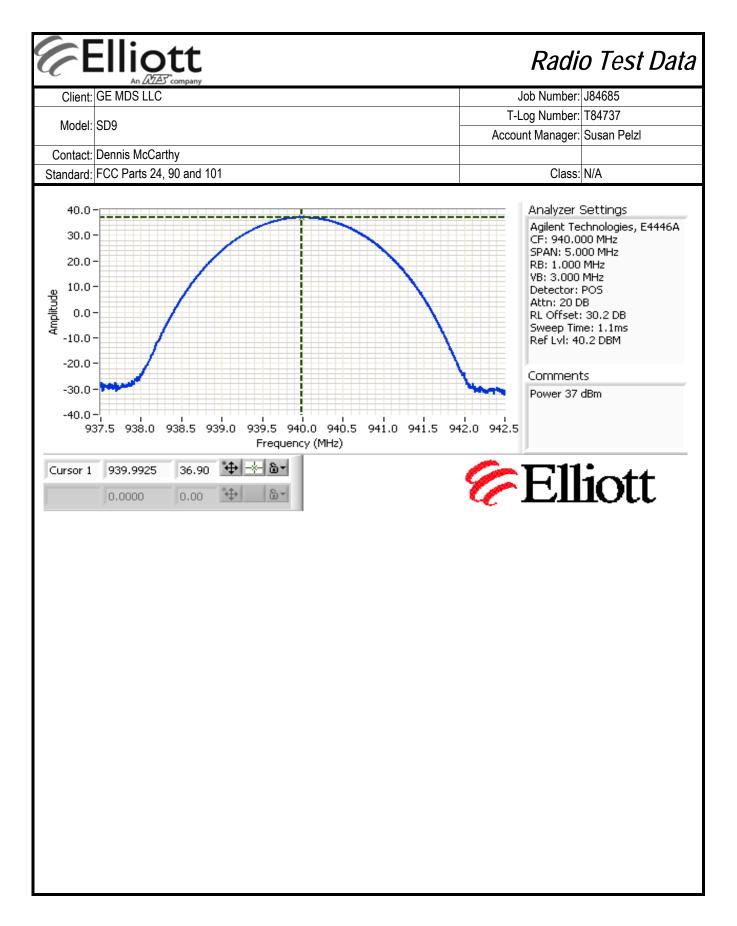
711 Anale	5 company		
Client:	GE MDS LLC	Job Number:	J84685
Model:	SD9	T-Log Number:	T84737
		Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		-
Emissions Standard(s):	FCC Parts 24, 90 and 101	Class:	-
Immunity Standard(s):	-	Environment:	Radio

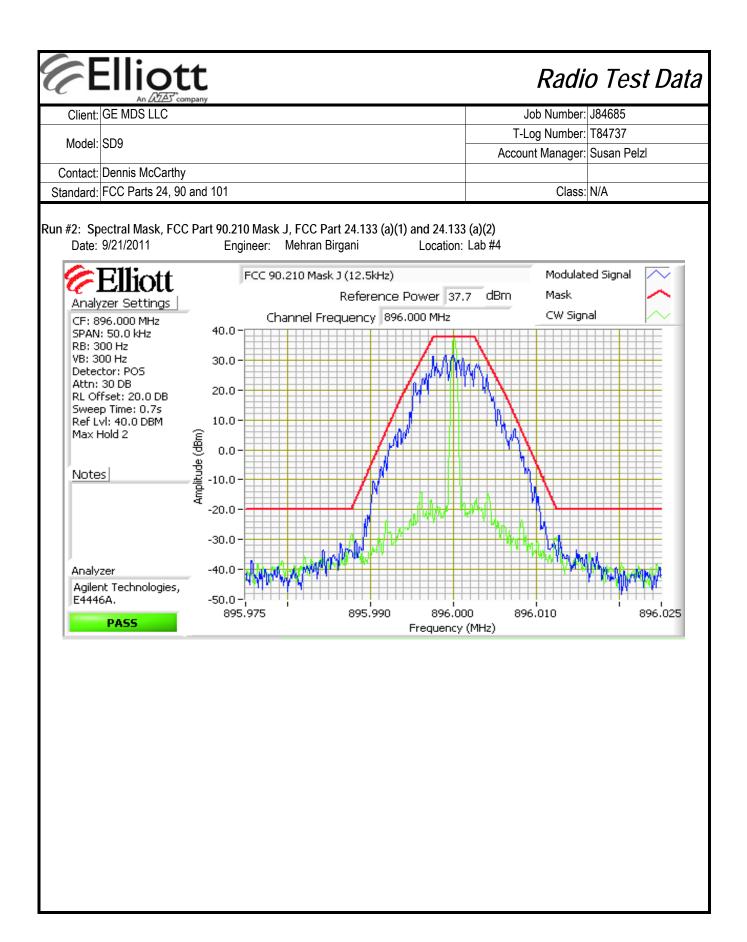
EMC Test Data

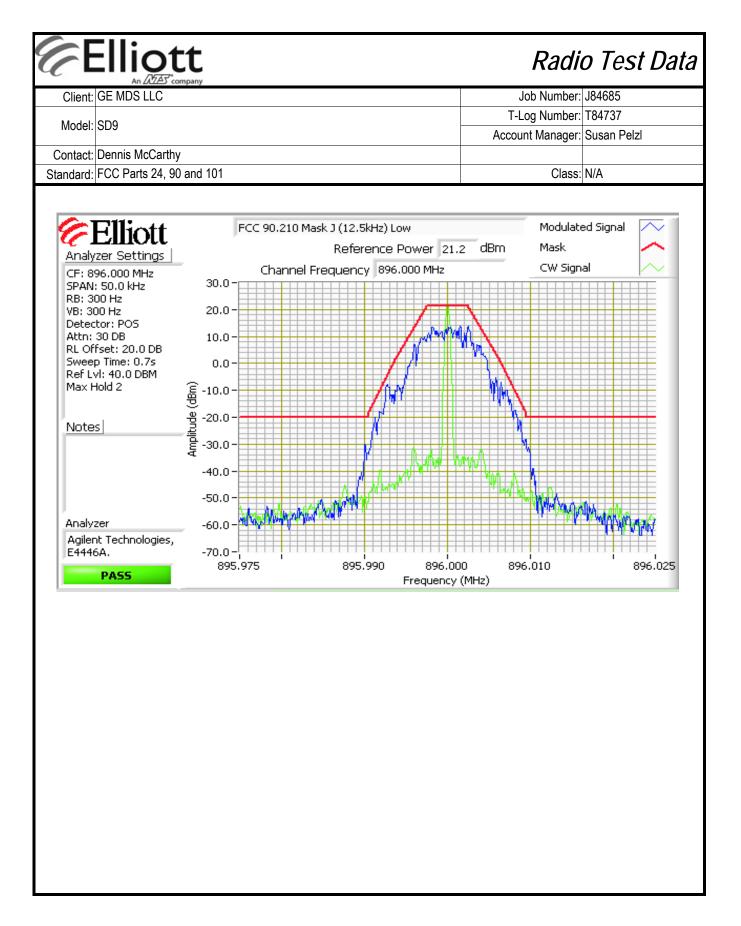
For The

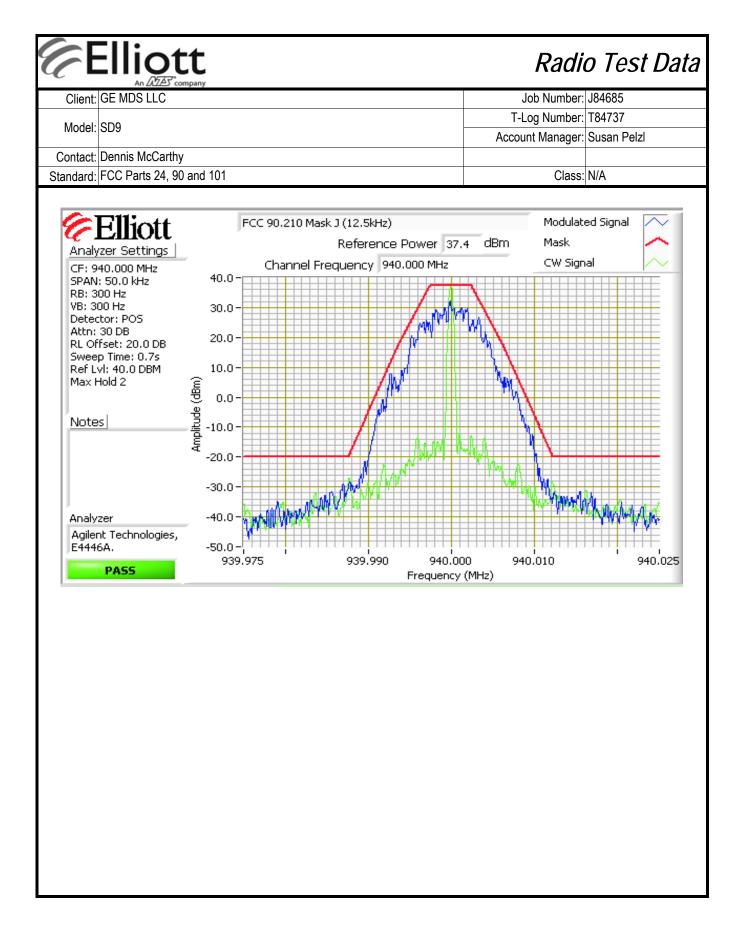
GE MDS LLC

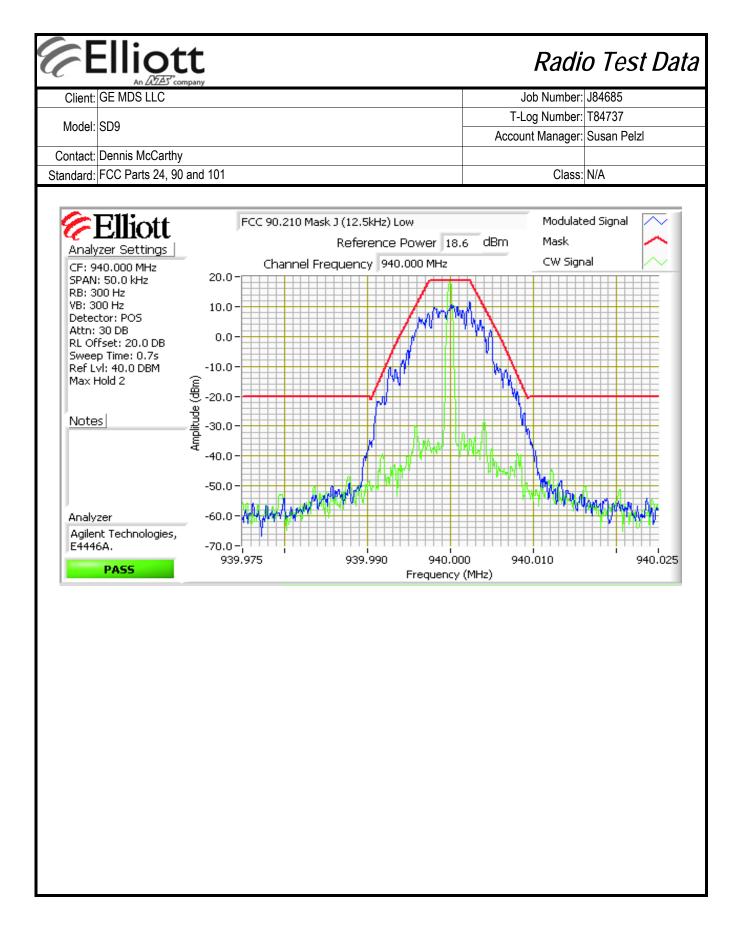
Model

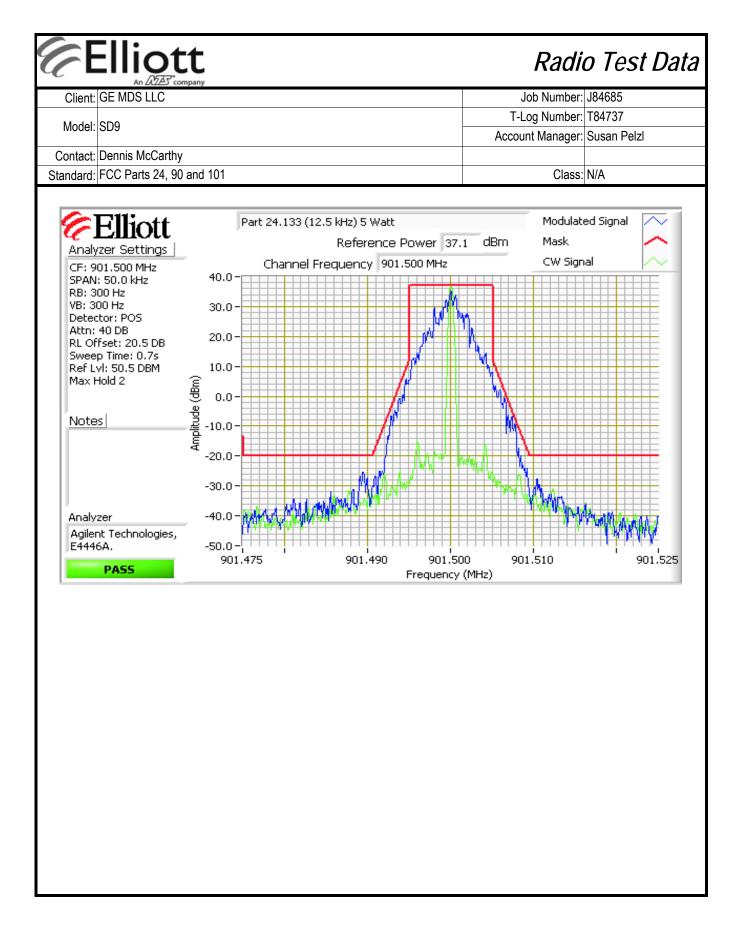

SD9

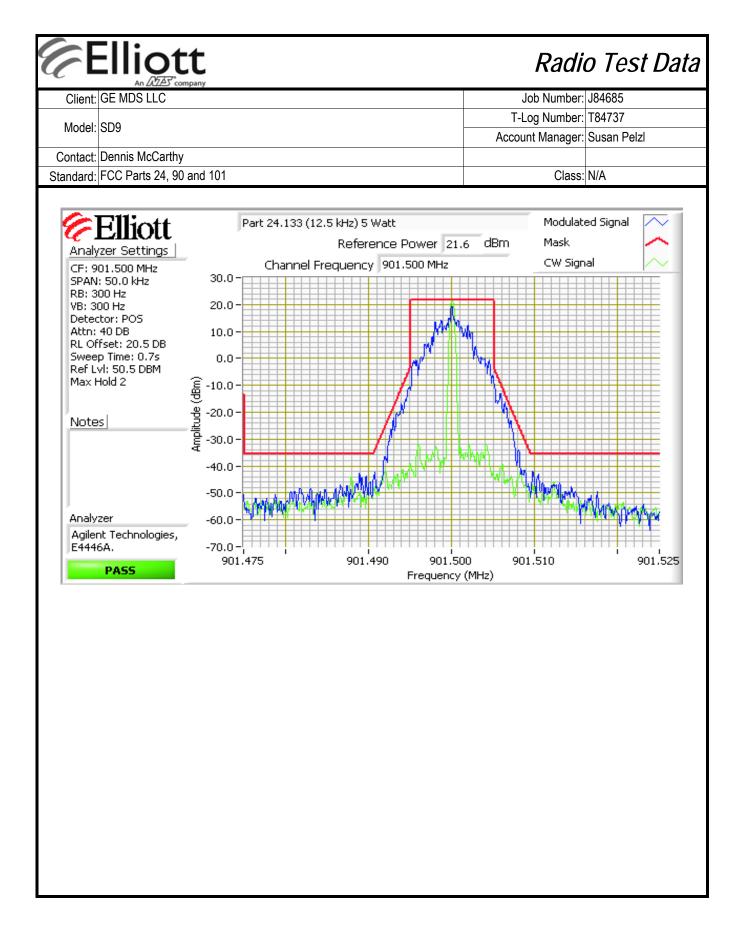

Date of Last Test: 10/5/2011

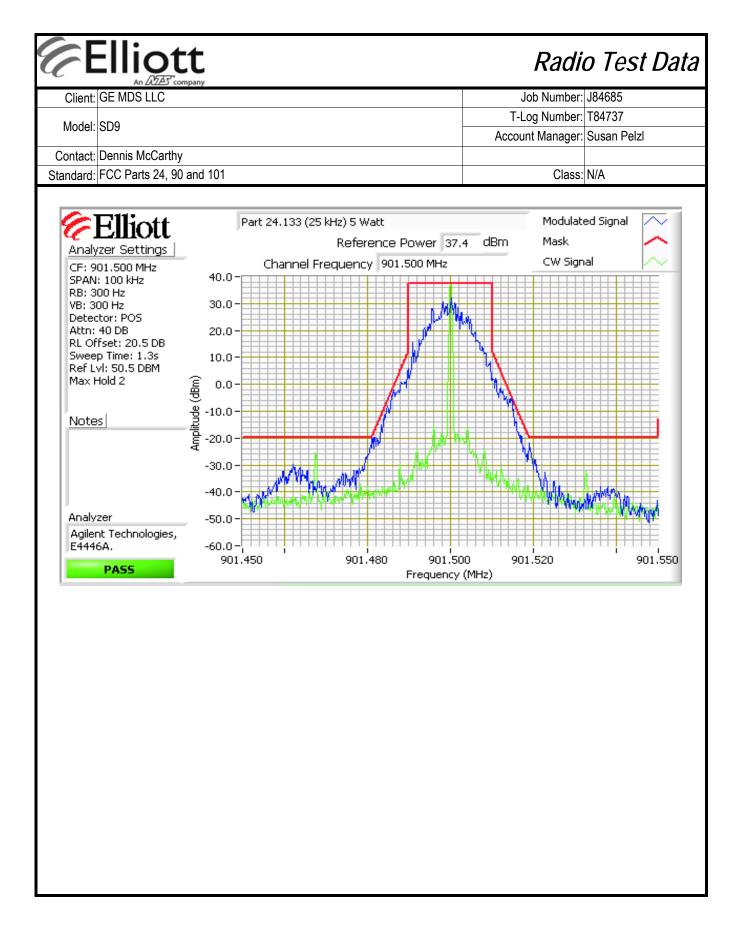

Radio Test Data

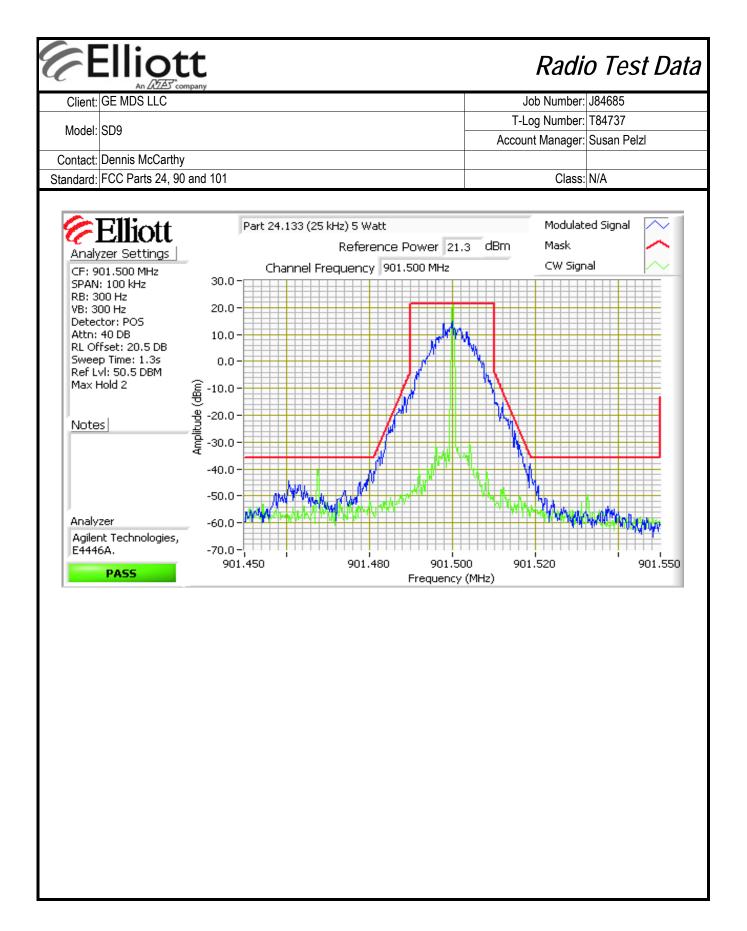

Model:	GE MDS LL					
Contact:		.C			Job Number:	J84685
Contact:	· SD9				T-Log Number:	Г84737
				Ad	ccount Manager: S	Susan Pelzl
Standard:	Dennis McC					
	FCC Parts 2	24, 90 and 10)1		Class: I	N/A
			FCC Part 24 an	d 90		
	Po	wer, Occu	pied Bandwidth, Frequency Sta	ability and Spur	rious Emissio	ns
Fest Spec	cific Detai	ls				
	Objective:		e of this test session is to perform final on listed above.	ualification testing	of the EUT with re	spect to the
With the e measurem attenuation	nent instrum	he radiated s ent via an att UT and mea	spurious emissions tests, all measureme enuator or dc-block if necessary. All am suring instrument. For frequency stabilit	plitude measureme	nts are adjusted to	o account for the
Radiated r	measuremer	nts are made	with the EUT located on a non-conduction	ve table, 3m from th	ne measurement a	intenna.
Ambient (Condition	S:	Temperature:18-23 °(Rel. Humidity:30-40 %			
Summarv	of Result	s				
Run #	Spacing	Data Rate	Test Performed	Limit	Pass / Fail	Result / Margin
	50kHz	65000N	Output Power		PASS	37.3dBm (5.4W)
1		-	Spectral Mask		PASS	Defende alete
2	-	-			FASS	Refer to plots
2 3	-	-	99% or Occupied Bandwidth		-	Refer to table
2	-		99% or Occupied Bandwidth Spurious Emissions (conducted) Spurious Emissions (Ratiated)		PASS - PASS PASS	

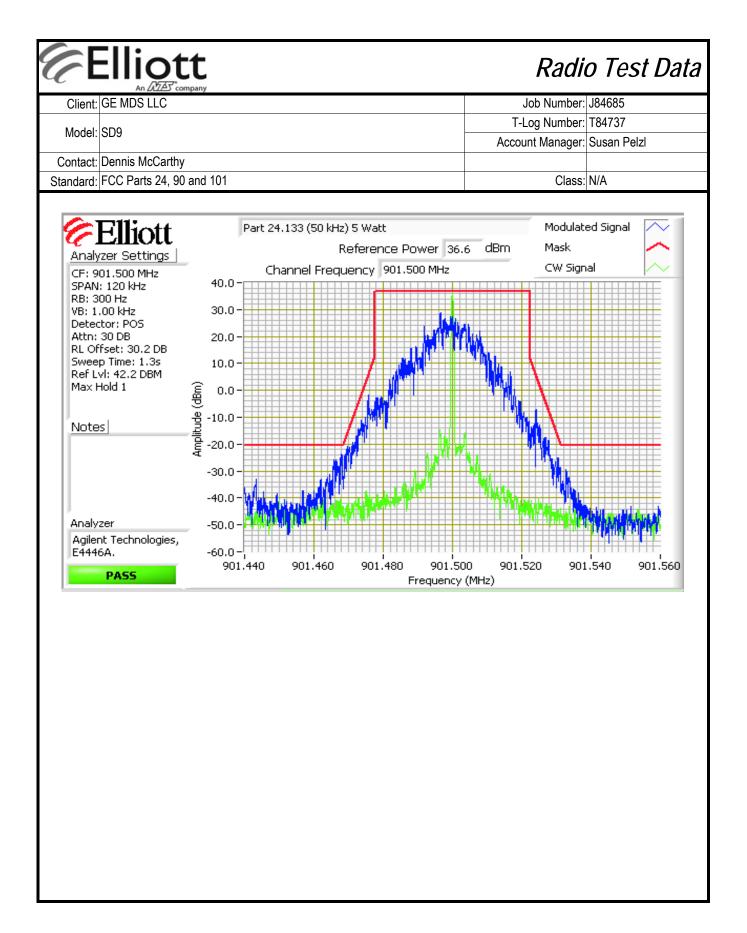

Client	GE MDS LLC					Job Number:	
Model	SD9		T-Log Number:				
					<i>F</i>	Account Manager:	Susan Pelzl
	Dennis McCarthy FCC Parts 24, 90 and 10	11				Class:	N/A
anuard	1 00 F atto 24, 30 attu 10	/1				01855.	IN/A
	utput Power						
Date:	9/21/2011	Engineer:	Mehran Birg	gani	Location: Lab #4		
	Cable Loss: 0.2 dB			Attenuator:	30.0 dB	Total Loss:	30.2 dB
	Cable ID(s):		Att	tenuator IDs:			
			Modom 040	0 for 12 56U-	,		
ower		Modem 9600 for 12.5kHz				Output	Power
Setting ²	Frequency (MHz)	(dBm) ¹	W	Setting ²	Frequency (MHz	z) (dBm) ¹	W
37	896.000	36.9	4.9	20	896.000	19.4	0.1
37	901.000	36.7	4.7	20	901.000	19.6	0.1
			Modem 960	0 for 12.5kHz	,		
Power	- (111)		t Power	Power		、 Output	Power
Setting ²	Frequency (MHz)	(dBm) ¹	W	Setting ²	Frequency (MHz	z) (dBm) ¹	W
37	935.000	37.0	5.0	20	935.000	19.0	0.1
37	940.000	36.9	4.9	20	940.000	18.3	0.1
			Modem 6500	OON for 50kH.	Z		
Power	Frequency (MHz)		t Power	Power	Frequency (MHz	7) .	Power
Setting ²		(dBm) ¹	W	Setting ²		(dBm) '	W
36	901.500	37.3	5.4	20	901.500	21.2	0.1
Note 1:	Output power measured	using a sper	ctrum analyze	er with RBW=	1MHz, VB=3MHz, F	Peak detector	
	Power setting - the softw						

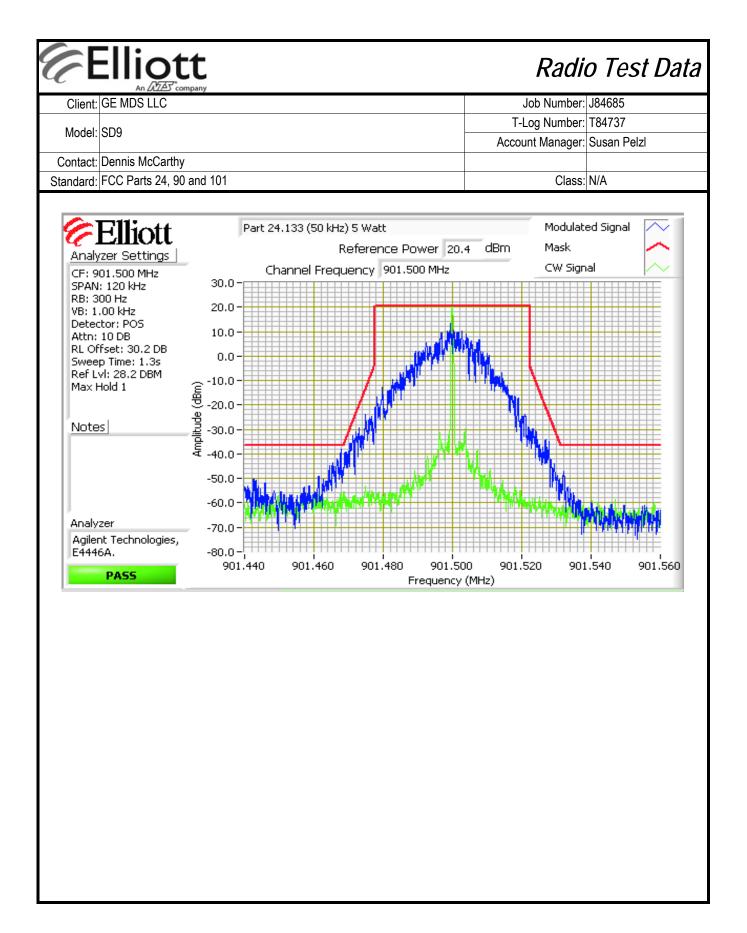


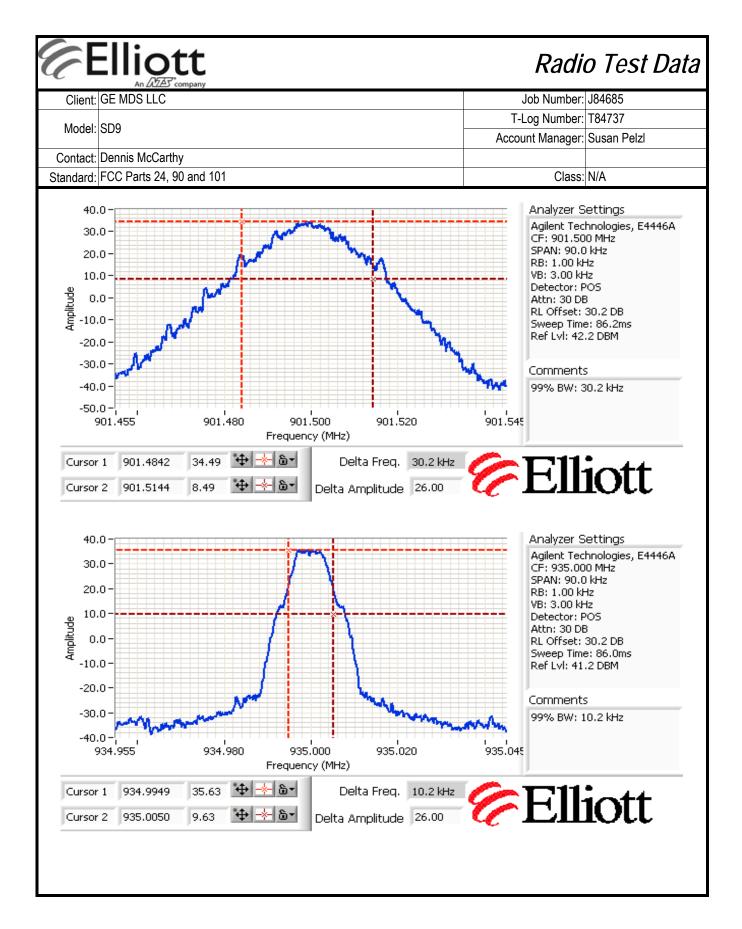


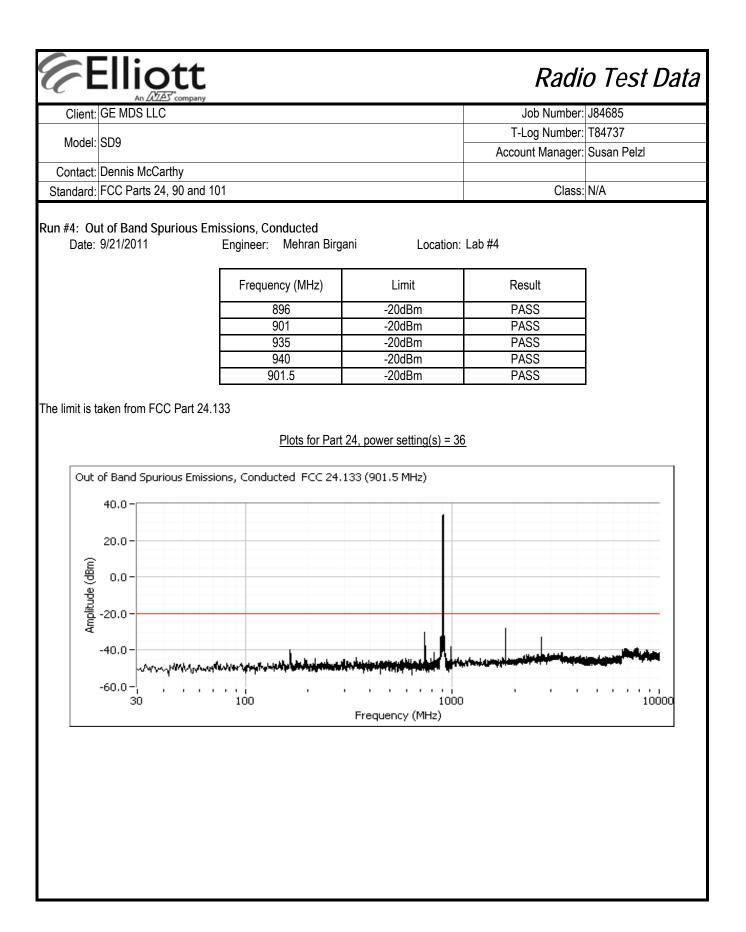


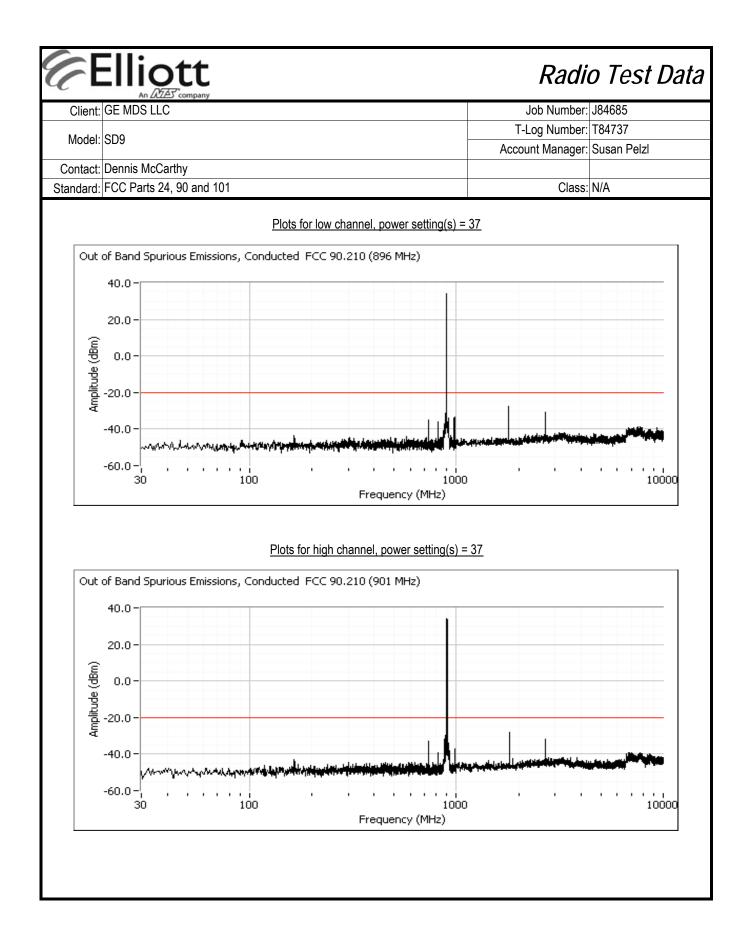


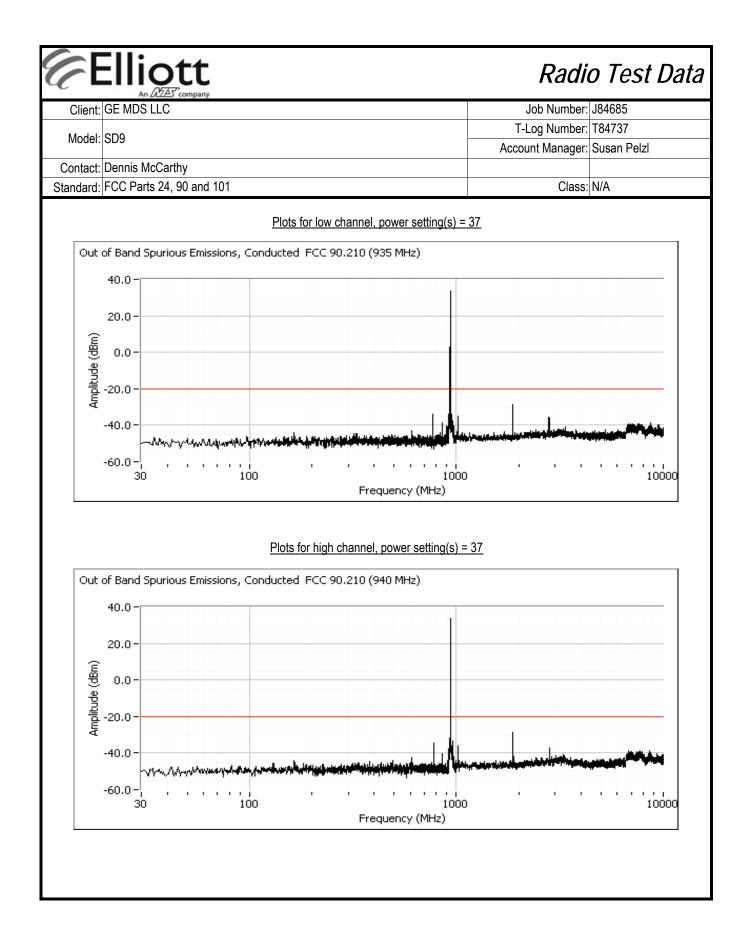




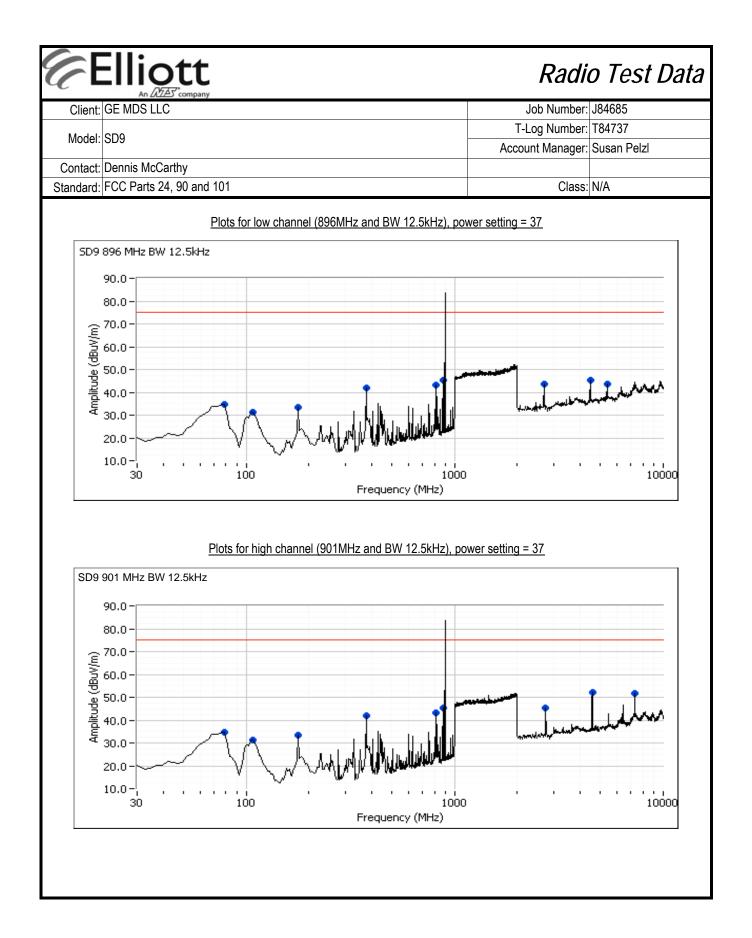


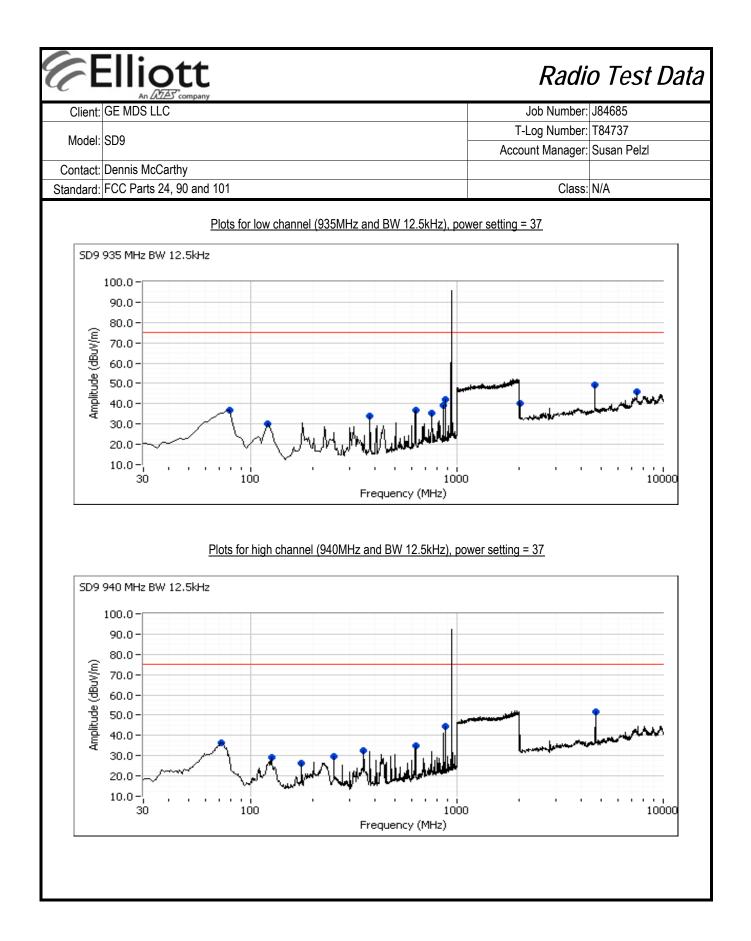


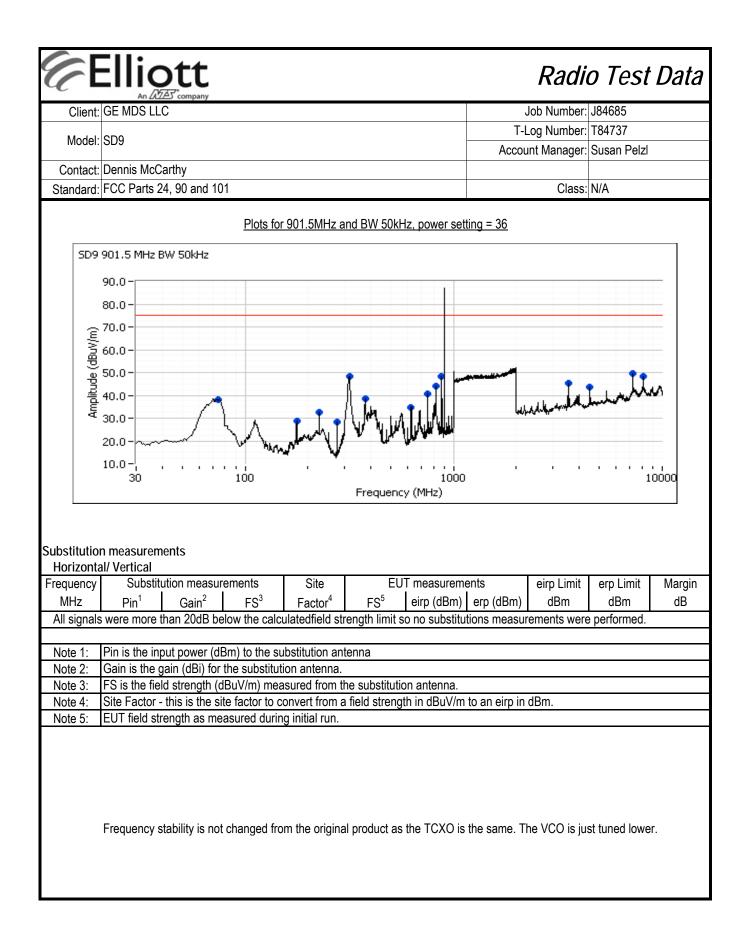




(CE						Radi	o Test Data
Client:	GE MDS LLC)				Job Number:	J84685
						T-Log Number:	
Model:	SD9					Account Manager:	
	Dennis McCa						
Standard:	FCC Parts 24	4, 90 and 101				Class:	N/A
Date:	gnal Bandwid 9/21/2011 ignal Bandw	dth Engineer: idth (12.5 kHz channel	Mehran Birgar s)	ni	Location:	Lab #4	
				<u> </u>		1	
	Power	Frequency (MHz)	Resolution	Bandwidth			
	Setting 37	896	Bandwidth 1 kHz	26dB	<u>99%</u> 9.8	1	
	37	901	1 kHz		9.0	1	
	37	935	1 kHz		10.2		
	37	940	1 kHz		10.1		
	36	901.5	1 kHz		7.2]	
Run #3b: S	ignal Bandw Power Setting 36	vidth (25 kHz channels) Frequency (MHz) 901.5	Resolution Bandwidth 1 kHz	Bandwidth 26dB	n (kHz) 99% 16.2]	
Run #3c: S	ignal Bandw	idth (50 kHz channels)					
	Power	Frequency (MHz)	Resolution	Bandwidth	ı (kHz)		
	Setting		Bandwidth	26dB	99%		
	36	901.5	1 kHz		30.2	J	
Note 1:	99% bandwid	dth measured in accorda	ance with RSS C	GEN, with RE	3 > 1% of t	he span and VB > 3xRB	






GE MDS LL	С			Job Number: J84685					
000						T-	Log Number:	T84737	
209						Acco	unt Manager:	Susan Pelzl	
Dennis McC	arthy								
FCC Parts 2	4, 90 and 10)1					Class:	N/A	
Approximate f e limit is tak	Conducted ield strength en from FC	l limit (dBm): 1 limit @ 3m: C Part 90.21	-20 75.3 0 Mask J	}					
ength Measu 9/26/11 10/5/11	rements an	d Substituti Engineer:	on Measure M. Birgani D. Bare	ements	Location:	FT Chambe	er #7		
Level	Pol	FCC	90.210	Detector	Azimuth	Height	Comments		Channe
	V/H	Limit		Pk/QP/Avg		meters			
34.6	V	75.3	-40.7	Peak	88	1.0	BW 12.5BW	1	896
31.2	V	75.3	-44.1	Peak	0	1.0	BW 12.5BW	1	896
33.6	Н	75.3	-41.7	Peak	310	1.5	BW 12.5BW	1	896
					122	1.0			896
									896
									896
									896
									896
									896
									901
									901
									901
									901
37.1	H	75.3	-38.2	Peak	296	1.0	BW 12.5BW		901
46.6	Н	75.3	-28.7	Peak	120	1.0	BW 12.5BW		901
	H	75.3	-23.8	Peak	168	1.6	BW 12.5BW		901
51.5		75.3	-23.3	Peak	169	1.0	BW 12.5BW		901
51.5 52.0	V	10.0							
	FCC Parts 2 ut of Band Sp Approximate f e limit is take 9/26/11 10/5/11 Level dBμV/m 34.6 31.2 33.6 41.9 43.1 45.5 43.6 45.3 43.5 36.5 31.8 32.6 43.3	Dennis McCarthyFCC Parts 24, 90 and 10FCC Parts 24, 90 and 10Approximate field StrengthConductedApproximate field strengthength Measurements an9/26/119/26/1110/5/110Level PoldB μ V/mV/H34.6V31.2V33.6H41.9H43.1H45.5H43.6V43.5V36.5V31.8V32.6H43.3H	Dennis McCarthy FCC Parts 24, 90 and 101 At of Band Spurious Emissions, Rac Conducted limit (dBm): Approximate field strength limit @ 3m: e limit is taken from FCC Part 90.21 ength Measurements and Substituti 9/26/11 10/5/11 Level Pol FCC 9 dB μ V/m V/H Limit 34.6 V 75.3 31.2 V 75.3 31.2 V 75.3 31.2 V 75.3 31.2 V 75.3 34.6 V 75.3 43.6 V 75.3 43.6 V 75.3 43.5 V 75.3 43.5 V 75.3 36.5 V 75.3 31.8 V 75.3 32.6 H 75.3	Dennis McCarthy FCC Parts 24, 90 and 101 At of Band Spurious Emissions, Radiated Conducted limit (dBm): -20 Approximate field strength limit @ 3m: 75.3 e limit is taken from FCC Part 90.210 Mask J ength Measurements and Substitution Measure 9/26/11 Engineer: M. Birgani 10/5/11 Engineer: M. Birgani D. Bare Level Pol FCC 90.210 dB μ V/m V/H Limit Margin 34.6 V 75.3 -40.7 31.2 V 75.3 -41.7 41.9 H 75.3 -31.7 45.5 H 75.3 43.6 V 75.3 43.5<	Dennis McCarthyFCC Parts 24, 90 and 101At of Band Spurious Emissions, Radiated Conducted limit (dBm): -20Approximate field strength limit @ 3m: 75.3 e limit is taken from FCC Part 90.210 Mask Jength Measurements and Substitution Measurements $9/26/11$ $10/5/11$ M. Birgani D. BareD. BareLevel Pol FCC 90.210 Detector $dB\muV/m$ V/HLimit Margin Pk/QP/Avg34.6V75.3-40.79/26/11 $10/5/11$ PolFCC 90.210DetectordB $\mu V/m$ V/HLimitMargin Pk/QP/Avg34.6V75.3-40.7Peak31.2V75.3-41.7Peak33.6H75.3-33.4Peak41.9H75.3-32.2Peak45.5H75.3-31.7Peak43.1H75.3-31.7Peak43.5V75.3-31.8Peak43.5V75.3-31.8Peak36.5V75.3-31.8Peak31.8V75.3-43.5Peak36.5V75.3-32.0Peak31.8V75.3-32.0Peak43.3H75.3-32.0Peak	Dennis McCarthyFCC Parts 24, 90 and 101At of Band Spurious Emissions, Radiated Conducted limit (dBm): -20Approximate field strength limit @ 3m: 75.3 e limit is taken from FCC Part 90.210 Mask JPart of Measurements9/26/11 10/5/11Engineer: M. Birgani D. BareLocation:Location:Location:Use of FCC 90.210DetectorAzimuthdB μ V/mV/HLimitMarginPk/QP/Avgdegrees34.6V75.3-40.7Peak8831.2V75.3-40.79/26/11 0.33.6H75.3-41.7Peak8831.2V75.3-33.4Peak1033.6H75.3-33.4Peak12243.1H75.3-31.7Peak16745.5H75.3-31.8Peak12943.5V75.3-31.8Peak22636.5V75.3-43.5Peak21031.8V75.3-32.0Peak24843.3H75.3-32.0Peak268	SD9 Acco Dennis McCarthy FCC Parts 24, 90 and 101 Acco At of Band Spurious Emissions, Radiated Conducted limit (dBm): -20 -20 Approximate field strength limit @ 3m: 75.3 relimit is taken from FCC Part 90.210 Mask J ength Measurements and Substitution Measurements 9/26/11 10/5/11 Engineer: M. Birgani D. Bare Location: FT Chambe Level Pol FCC 90.210 Detector Azimuth Height dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 34.6 V 75.3 -40.7 Peak 88 1.0 31.2 V 75.3 -41.7 Peak 21.0 1.5 41.9 H 75.3 -33.4 Peak 122 1.0 43.6 V 75.3 -31.7 Peak 10 1.5 41.9 H 75.3 -31.7 Peak 167 1.0 43.6 V 75.3 -31.8 Peak 129 1.0 43.5 V	SD9 Account Manager: Dennis McCarthy FCC Parts 24, 90 and 101 Class: At of Band Spurious Emissions, Radiated Conducted limit (dBm): -20 Conducted limit (dBm): -20 Approximate field strength limit @ 3m: 75.3 respective field strength limit @ 3m: 75.3 e limit is taken from FCC Part 90.210 Mask J Detector Part Pol FCC 90.210 Detector Account Height Comments 9/26/11 Engineer: M. Birgani D. Bare Location: FT Chamber #7 Level Pol FCC 90.210 Detector Azimuth Height Comments 34.6 V 75.3 -40.7 Peak 88 1.0 BW 12.5BW 31.2 V 75.3 -41.7 Peak 310 1.5 BW 12.5BW 33.6 H 75.3 -32.2 Peak 10.0 BW 12.5BW 43.1 H 75.3 -31.7 Peak 10.0 BW 12.5BW 43.6 V 75.3 -31.7 Peak 167 1.0 BW 12.5BW </td <td>SD9 Account Manager: Susan Pelzl Dennis McCarthy FCC Parts 24, 90 and 101 Class: N/A FCC Parts 24, 90 and 101 Class: N/A at of Band Spurious Emissions, Radiated Conducted limit (dBm): -20 Approximate field strength limit @ 3m: 75.3 e limit is taken from FCC Part 90.210 Mask J ength Measurements and Substitution Measurements 9/26/11 Engineer: 0.Bare Location: FT Chamber #7 10/5/11 Engineer: M. Birgani D. Bare Location: Level Pol FCC 90.210 Detector Azimuth Height Comments dBµ/Vm V/H Limit Margin Pk/QP/Avg degrees 33.6 H 75.3 -44.1 Peak 310 1.5 BW 12.5BW 33.6 H 75.3 -32.2 Peak 122 1.0 BW 12.5BW 43.5</td>	SD9 Account Manager: Susan Pelzl Dennis McCarthy FCC Parts 24, 90 and 101 Class: N/A FCC Parts 24, 90 and 101 Class: N/A at of Band Spurious Emissions, Radiated Conducted limit (dBm): -20 Approximate field strength limit @ 3m: 75.3 e limit is taken from FCC Part 90.210 Mask J ength Measurements and Substitution Measurements 9/26/11 Engineer: 0.Bare Location: FT Chamber #7 10/5/11 Engineer: M. Birgani D. Bare Location: Level Pol FCC 90.210 Detector Azimuth Height Comments dBµ/Vm V/H Limit Margin Pk/QP/Avg degrees 33.6 H 75.3 -44.1 Peak 310 1.5 BW 12.5BW 33.6 H 75.3 -32.2 Peak 122 1.0 BW 12.5BW 43.5

Client:		2						Job Number:	184685
Onorit.		0					т	Log Number:	
Model:	SD9							unt Manager:	
0 1 1	D M.O						ACCO	uni manager.	Susan Peizi
	Dennis McCa								
Standard:	FCC Parts 2	4, 90 and 10	1					Class:	N/A
requency	Level	Pol	FCC	90.210	Detector	Azimuth	Height	Comments	Chanr
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	1	
878.750	42.0	V	75.3	-33.3	Peak	352	1.5	BW 12.5BW	935
854.500	39.4	Н	75.3	-35.9	Peak	111	1.0	BW 12.5BW	935
752.650	35.3	V	75.3	-40.0	Peak	231	1.5	BW 12.5BW	935
628.975	36.9	Н	75.3	-38.4	Peak	126	1.5	BW 12.5BW	
78.500	36.8	V	75.3	-38.5	Peak	133	1.0	BW 12.5BW	935
376.775	33.7	Н	75.3	-41.6	Peak	257	1.0	BW 12.5BW	
119.725	30.3	V	75.3	-45.0	Peak	117	1.0	BW 12.5BW	935
4666.670	49.3	V	75.3	-26.0	Peak	152	1.3	BW 12.5BW	935
2013.330	40.2	V	75.3	-35.1	Peak	164	1.3	BW 12.5BW	935
7480.000	45.8	V	75.3	-29.5	Peak	160	1.9	BW 12.5BW	935
73.789	36.5	V	75.3	-38.8	Peak	135	1.0	BW 12.5BW	940
127.516	29.2	V	75.3	-46.1	Peak	28	1.0	BW 12.5BW	940
249.996	29.4	V	75.3	-45.9	Peak	16	1.5	BW 12.5BW	/ 940
175.012	26.4	V	75.3	-48.9	Peak	251	1.0	BW 12.5BW	940
350.043	32.6	Н	75.3	-42.7	Peak	252	1.0	BW 12.5BW	940
625.024	34.8	Н	75.3	-40.5	Peak	88	3.0	BW 12.5BW	940
875.017	44.5	Н	75.3	-30.8	Peak	1	1.0	BW 12.5BW	/ 940
1000.000	49.5	Н	75.3	-25.8	Peak	240	1.5	BW 12.5BW	940
4693.330	51.7	V	75.3	-23.6	Peak	165	1.6	BW 12.5BW	/ 940

HzdBμV/mV/HLimitMarginPk/QP/Avgdegreesmeters176.47528.7H75.3-46.6Peak2612.0BW 50BW9226.42532.7V75.3-42.6Peak3471.0BW 50BW9276.37528.1V75.3-47.2Peak1631.0BW 50BW973.87538.1V75.3-37.2Peak1121.0BW 50BW91000.00049.3H75.3-26.0Peak2341.5BW 50BW9875.75048.2H75.3-27.1Peak1131.0BW 50BW9819.75044.1H75.3-31.2Peak2421.0BW 50BW9625.50034.7H75.3-34.5Peak2421.0BW 50BW9315.75048.2H75.3-37.1Peak2421.0BW 50BW9625.50034.7H75.3-34.5Peak2421.0BW 50BW9315.75048.2H75.3-36.7Peak1641.5BW 50BW9377.00038.6H75.3-30.1Peak41.0BW 50BW93546.67045.2H75.3-31.8Peak1491.9BW 50BW97213.33049.4V75.3-25.9Peak1491.9BW 50BW	Client:)						Job Number:	J84685
Contact: Dennis McCarthy Susan Pelzl Standard: FCC Parts 24, 90 and 101 Class: N/A Frequency Level Pol FCC 90.210 Detector Azimuth Height Comments Ch MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters Ch 76.475 28.7 H 75.3 -46.6 Peak 261 2.0 BW 50BW 9 226.425 32.7 V 75.3 -42.6 Peak 163 1.0 BW 50BW 9 276.375 28.1 V 75.3 -37.2 Peak 112 1.0 BW 50BW 9 73.875 38.1 V 75.3 -27.1 Peak 113 1.0 BW 50BW 9 987.750 48.2 H 75.3 -37.2 Peak 242 1.0 BW 50BW 9 925.500 34.7 H 75.3 -31.2 Pea		0.00						T-	Log Number:	T84737
Standard: FCC Parts 24, 90 and 101 Class: N/A Frequency Level Pol FCC 90.210 Detector Azimuth Height Comments Ch MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 176.475 28.7 H 75.3 -46.6 Peak 261 2.0 BW 50BW 99 226.425 32.7 V 75.3 -42.6 Peak 347 1.0 BW 50BW 99 276.375 28.1 V 75.3 -47.2 Peak 163 1.0 BW 50BW 99 1000.000 49.3 H 75.3 -27.1 Peak 113 1.0 BW 50BW 99 875.750 48.2 H 75.3 -31.2 Peak 242 1.0 BW 50BW 99 751.500 40.8 H 75.3 -31.2 Peak 242 1.0 BW 50BW 99	Model:	SD9			Acco	unt Manager:	Susan Pelzl			
Frequency Level Pol FCC 90.210 Detector Azimuth Height Comments Ch MHz dB _µ V/m V/H Limit Margin Pk/QP/Avg degrees meters 176.475 28.7 H 75.3 -46.6 Peak 261 2.0 BW 50BW 99 226.425 32.7 V 75.3 -42.6 Peak 347 1.0 BW 50BW 99 276.375 28.1 V 75.3 -47.2 Peak 163 1.0 BW 50BW 99 73.875 38.1 V 75.3 -37.2 Peak 112 1.0 BW 50BW 99 1000.000 49.3 H 75.3 -27.1 Peak 234 1.5 BW 50BW 99 817.50 44.1 H 75.3 -31.2 Peak 242 1.0 BW 50BW 99 71.500 40.8 H 75.3 -27.1 Peak 242 1.0 <td>Contact:</td> <td>Dennis McCa</td> <td>arthy</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Contact:	Dennis McCa	arthy							
HHzdBµV/mV/HLimitMarginPk/QP/Avgdegreesmeters176.47528.7H75.3-46.6Peak2612.0BW 50BW9226.42532.7V75.3-42.6Peak3471.0BW 50BW9276.37528.1V75.3-47.2Peak1631.0BW 50BW973.87538.1V75.3-37.2Peak1121.0BW 50BW91000.00049.3H75.3-26.0Peak2341.5BW 50BW9875.75048.2H75.3-27.1Peak1131.0BW 50BW9819.75044.1H75.3-31.2Peak2421.0BW 50BW9951.50040.8H75.3-34.5Peak2421.0BW 50BW9315.75048.2H75.3-27.1Peak1641.5BW 50BW9315.75048.2H75.3-34.5Peak2421.0BW 50BW9315.75048.2H75.3-30.7Peak1641.5BW 50BW9315.75048.2H75.3-30.7Peak1641.0BW 50BW9315.75048.2H75.3-36.7Peak1681.0BW 50BW9315.75048.2H75.3-32.9Peak1681.0BW 50	Standard:	FCC Parts 24	1, 90 and 10	1					Class:	N/A
HHzdBµV/mV/HLimitMarginPk/QP/Avgdegreesmeters176.47528.7H75.3-46.6Peak2612.0BW 50BW9226.42532.7V75.3-42.6Peak3471.0BW 50BW9276.37528.1V75.3-47.2Peak1631.0BW 50BW973.87538.1V75.3-37.2Peak1121.0BW 50BW91000.00049.3H75.3-26.0Peak2341.5BW 50BW9875.75048.2H75.3-27.1Peak1131.0BW 50BW9819.75044.1H75.3-31.2Peak2421.0BW 50BW9951.50040.8H75.3-34.5Peak2421.0BW 50BW9915.75048.2H75.3-27.1Peak1641.5BW 50BW9915.75048.2H75.3-34.5Peak2421.0BW 50BW9315.75048.2H75.3-27.1Peak1641.5BW 50BW9315.75048.2H75.3-30.7Peak1641.0BW 50BW9315.75048.2H75.3-30.1Peak1681.0BW 50BW9315.75048.2H75.3-32.7Peak1681.0BW 5				1					•	
176.47528.7H75.3-46.6Peak2612.0BW 50BW9226.42532.7V75.3-42.6Peak3471.0BW 50BW9276.37528.1V75.3-47.2Peak1631.0BW 50BW973.87538.1V75.3-37.2Peak1121.0BW 50BW91000.00049.3H75.3-26.0Peak2341.5BW 50BW9875.75048.2H75.3-27.1Peak1131.0BW 50BW9819.75044.1H75.3-31.2Peak2421.0BW 50BW9625.50034.7H75.3-34.5Peak2421.0BW 50BW9315.75048.2H75.3-27.1Peak2421.0BW 50BW9315.75048.2H75.3-31.2Peak2421.0BW 50BW9315.75048.2H75.3-30.1Peak1641.5BW 50BW9315.75048.2H75.3-30.1Peak10BW 50BW9315.75048.2H75.3-30.1Peak10BW 50BW9315.75048.2H75.3-27.1Peak10BW 50BW9315.75048.2H75.3-26.9Peak1681.0BW 50BW9<									Comments	Channe
226.42532.7V75.3-42.6Peak3471.0BW 50BW9276.37528.1V75.3-47.2Peak1631.0BW 50BW973.87538.1V75.3-37.2Peak1121.0BW 50BW91000.00049.3H75.3-26.0Peak2341.5BW 50BW9875.75048.2H75.3-27.1Peak1131.0BW 50BW9819.75044.1H75.3-27.1Peak2421.0BW 50BW9751.50040.8H75.3-34.5Peak2421.0BW 50BW9625.50034.7H75.3-27.1Peak2421.0BW 50BW9315.75048.2H75.3-27.1Peak1641.5BW 50BW9315.75048.2H75.3-27.1Peak601.0BW 50BW9377.00038.6H75.3-27.1Peak601.0BW 50BW93546.67045.2H75.3-30.1Peak1681.0BW 50BW97213.33043.5V75.3-31.8Peak1491.9BW 50BW98120.00048.4V75.3-26.9Peak1411.6BW 50BW9The field strength limit in the tables above was calculated from the erp/eirp limit										
276.37528.1V75.3-47.2Peak1631.0BW 50BW973.87538.1V75.3-37.2Peak1121.0BW 50BW91000.00049.3H75.3-26.0Peak2341.5BW 50BW9875.75048.2H75.3-27.1Peak1131.0BW 50BW9819.75044.1H75.3-31.2Peak2421.0BW 50BW9751.50040.8H75.3-34.5Peak2421.0BW 50BW9625.50034.7H75.3-27.1Peak1641.5BW 50BW9315.75048.2H75.3-27.1Peak601.0BW 50BW9377.00038.6H75.3-36.7Peak1681.0BW 50BW93546.67045.2H75.3-30.1Peak41.0BW 50BW97213.33043.5V75.3-31.8Peak1491.9BW 50BW98120.00048.4V75.3-26.9Peak1411.6BW 50BW9The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free spropagation equation: E=√(30PG)/d. This limit is conservative - it does not consider the presence of the ground plane approximation of the standard using the free spropagation equation: E=√(30PG)/d. This limit is conservative - it does										901.5
73.87538.1V75.3-37.2Peak1121.0BW 50BW91000.00049.3H75.3-26.0Peak2341.5BW 50BW9875.75048.2H75.3-27.1Peak1131.0BW 50BW9819.75044.1H75.3-31.2Peak2421.0BW 50BW9751.50040.8H75.3-34.5Peak2421.0BW 50BW9625.50034.7H75.3-40.6Peak1641.5BW 50BW9315.75048.2H75.3-27.1Peak601.0BW 50BW9315.75048.2H75.3-27.1Peak601.0BW 50BW9377.00038.6H75.3-36.7Peak1681.0BW 50BW93546.67045.2H75.3-30.1Peak441.0BW 50BW94493.33043.5V75.3-31.8Peak1491.9BW 50BW98120.00048.4V75.3-26.9Peak1491.9BW 50BW9The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free spropagation equation: E=√(30PG)/d. This limit is conservative - it does not consider the presence of the ground plane approximation of the standard using the free spropagation equation: E=√(30PG)/d. This limit is conservative - it does						-				901.5
1000.00049.3H75.3-26.0Peak2341.5BW 50BW9875.75048.2H75.3-27.1Peak1131.0BW 50BW9819.75044.1H75.3-31.2Peak2421.0BW 50BW9751.50040.8H75.3-34.5Peak2421.0BW 50BW9625.50034.7H75.3-40.6Peak1641.5BW 50BW9315.75048.2H75.3-27.1Peak601.0BW 50BW9377.00038.6H75.3-36.7Peak1681.0BW 50BW93546.67045.2H75.3-30.1Peak41.0BW 50BW94493.33043.5V75.3-31.8Peak1491.9BW 50BW93120.00048.4V75.3-26.9Peak1411.6BW 50BW9Note 1:The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free spropagation equation: E=√(30PG)/d. This limit is conservative - it does not consider the presence of the ground plane and propagation equation: E=√(30PG)/d. This limit is conservative - it does not consider the presence of the ground plane and propagation equation: E=√(30PG)/d. This limit is conservative - it does not consider the presence of the ground plane and propagation equation: E=√(30PG)/d. This limit is conservative - it does not consider the presence of the ground plane and propagation equati										901.5
875.75048.2H75.3-27.1Peak1131.0BW 50BW9819.75044.1H75.3-31.2Peak2421.0BW 50BW9751.50040.8H75.3-34.5Peak2421.0BW 50BW9625.50034.7H75.3-40.6Peak1641.5BW 50BW9315.75048.2H75.3-27.1Peak601.0BW 50BW9377.00038.6H75.3-36.7Peak1681.0BW 50BW93546.67045.2H75.3-30.1Peak41.0BW 50BW94493.33043.5V75.3-31.8Peak1491.9BW 50BW97213.33049.4V75.3-25.9Peak1491.9BW 50BW93120.00048.4V75.3-26.9Peak1411.6BW 50BW9The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free spropagation equation: E=√(30PG)/d. This limit is conservative - it does not consider the presence of the ground plane and propagation equation: E=√(30PG)/d. This limit is conservative - it does not consider the presence of the ground plane and propagation equation: E=√(30PG)/d. This limit is conservative - it does not consider the presence of the ground plane and propagation equation: E=√(30PG)/d. This limit is conservative - it does not consider the presence of the ground plane and propagation equation:										901.5
819.75044.1H75.3-31.2Peak2421.0BW 50BW9751.50040.8H75.3-34.5Peak2421.0BW 50BW9625.50034.7H75.3-40.6Peak1641.5BW 50BW9315.75048.2H75.3-27.1Peak601.0BW 50BW9377.00038.6H75.3-36.7Peak1681.0BW 50BW9377.00038.6H75.3-30.1Peak41.0BW 50BW93546.67045.2H75.3-30.1Peak41.0BW 50BW94493.33043.5V75.3-31.8Peak1491.9BW 50BW93120.00048.4V75.3-26.9Peak1411.6BW 50BW9The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free spropagation equation: E=√(30PG)/d. This limit is conservative - it does not consider the presence of the ground plane and propagation equation: E=√(30PG)/d. This limit is conservative - it does not consider the presence of the ground plane and propagation equation: E=√(30PG)/d. This limit is conservative - it does not consider the presence of the ground plane and propagation equation: E=√(30PG)/d. This limit is conservative - it does not consider the presence of the ground plane and propagation equation: E=√(30PG)/d. This limit is conservative - it does not consider the presence of the ground plane and propagation equation: E=√(30PG)/d. This l										901.5
751.50040.8H75.3-34.5Peak2421.0BW 50BW9625.50034.7H75.3-40.6Peak1641.5BW 50BW9315.75048.2H75.3-27.1Peak601.0BW 50BW9377.00038.6H75.3-36.7Peak1681.0BW 50BW93546.67045.2H75.3-30.1Peak41.0BW 50BW93546.67045.2H75.3-31.8Peak1491.9BW 50BW9323043.5V75.3-25.9Peak1491.9BW 50BW93120.00048.4V75.3-26.9Peak1411.6BW 50BW9The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free standard is conservative - it does not consider the presence of the ground plane at propagation equation: E=√(30PG)/d. This limit is conservative - it does not consider the presence of the ground plane at the propagation equation: E=√(30PG)/d. This limit is conservative - it does not consider the presence of the ground plane at the propagation equation: E=√(30PG)/d. This limit is conservative - it does not consider the presence of the ground plane at the propagation equation: E=√(30PG)/d. This limit is conservative - it does not consider the presence of the ground plane at the propagation equation: E=√(30PG)/d. This limit is conservative - it does not consider the presence of the ground plane at the propagation equation: E=√(30PG)/d. This limit is conservative - it does not consid										<u> </u>
625.50034.7H75.3-40.6Peak1641.5BW 50BW9315.75048.2H75.3-27.1Peak601.0BW 50BW9377.00038.6H75.3-36.7Peak1681.0BW 50BW93546.67045.2H75.3-30.1Peak41.0BW 50BW94493.33043.5V75.3-31.8Peak1491.9BW 50BW97213.33049.4V75.3-25.9Peak1491.9BW 50BW93120.00048.4V75.3-26.9Peak1411.6BW 50BW9The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free standard usin										901.5
315.750 48.2 H 75.3 -27.1 Peak 60 1.0 BW 50BW 90 377.000 38.6 H 75.3 -36.7 Peak 168 1.0 BW 50BW 90 3546.670 45.2 H 75.3 -30.1 Peak 4 1.0 BW 50BW 90 493.330 43.5 V 75.3 -31.8 Peak 149 1.9 BW 50BW 90 7213.330 49.4 V 75.3 -25.9 Peak 149 1.9 BW 50BW 90 3120.000 48.4 V 75.3 -26.9 Peak 141 1.6 BW 50BW 90 The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free spropagation equation: E= $\sqrt{(30PG)/d}$. This limit is conservative - it does not consider the presence of the ground plane and propagation equation: E= $\sqrt{(30PG)/d}$. This limit is conservative - it does not consider the presence of the ground plane and										901.5
377.000 38.6 H 75.3 -36.7 Peak 168 1.0 BW 50BW 9 3546.670 45.2 H 75.3 -30.1 Peak 4 1.0 BW 50BW 9 1493.330 43.5 V 75.3 -31.8 Peak 149 1.9 BW 50BW 9 7213.330 49.4 V 75.3 -25.9 Peak 149 1.9 BW 50BW 9 3120.000 48.4 V 75.3 -26.9 Peak 141 1.6 BW 50BW 9 The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free spropagation equation: E= $\sqrt{(30PG)/d}$. This limit is conservative - it does not consider the presence of the ground plane and the standard using the free spropagation equation: E= $\sqrt{(30PG)/d}$. This limit is conservative - it does not consider the presence of the ground plane and the standard using the free spropagation equation: E= $\sqrt{(30PG)/d}$. This limit is conservative - it does not consider the presence of the ground plane and the standard using the free spropagation equation: E= $\sqrt{(30PG)/d}$. This limit is conservative - it does not consider the presence of the ground plane and the standard using the free spropagation equation: E= $\sqrt{(30PG)/d}$. This limit is conservative - it does not consider the presence of the ground plane and the standard using the free spropagati										901.5
3546.670 45.2 H 75.3 -30.1 Peak 4 1.0 BW 50BW 9 1493.330 43.5 V 75.3 -31.8 Peak 149 1.9 BW 50BW 9 7213.330 49.4 V 75.3 -25.9 Peak 149 1.9 BW 50BW 9 3120.000 48.4 V 75.3 -26.9 Peak 141 1.6 BW 50BW 9 The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free strong agation equation: $E=\sqrt{(30PG)/d}$. This limit is conservative - it does not consider the presence of the ground plane at the standard strong plane at the st										901.5
1493.33043.5V75.3-31.8Peak1491.9BW 50BW9 7213.330 49.4V75.3-25.9Peak1491.9BW 50BW9 8120.000 48.4V75.3-26.9Peak1411.6BW 50BW9The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free spropagation equation: $E=\sqrt{(30PG)/d}$. This limit is conservative - it does not consider the presence of the ground plane and the standard standard standard standard plane and the standard standard standard standard plane and the standard sta										901.5
7213.330 49.4 V 75.3 -25.9 Peak 149 1.9 BW 50BW 99 3120.000 48.4 V 75.3 -26.9 Peak 141 1.6 BW 50BW 99 The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free spropagation equation: $E=\sqrt{(30PG)/d}$. This limit is conservative - it does not consider the presence of the ground plane and the standard standard standard plane and the standard standard plane and the standard standard standard plane and the standard standard standard plane and the standard standard standard standard standard plane and the standard standa										901.5
B120.000 48.4 V 75.3 -26.9 Peak 141 1.6 BW 50BW 9 The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free spropagation equation: $E=\sqrt{(30PG)/d}$. This limit is conservative - it does not consider the presence of the ground plane and the standard using the free spropagation equation: $E=\sqrt{(30PG)/d}$. This limit is conservative - it does not consider the presence of the ground plane and the standard using the free spropagation equation: $E=\sqrt{(30PG)/d}$. This limit is conservative - it does not consider the presence of the ground plane and the standard using the free spropagation equation: $E=\sqrt{(30PG)/d}$. This limit is conservative - it does not consider the presence of the ground plane and the standard using the free spropagation equation is the standard using the free spropagation equation equation is the standard using the standard using the free spropagation equation equati										901.5
The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free s propagation equation: $E=\sqrt{(30PG)/d}$. This limit is conservative - it does not consider the presence of the ground plane at the propagation equation is the propagation equation is the propagation equation is the propagation equation is the propagation equation equation is the propagation equation equ										901.5
Note 2: Measurements are made with the antenna port terminated. Note 3: From 30 MHz to 10GHz RB=VB= 1 MHz, and 1-2 GHz no amplifier and no filter was used.	Note 1: 1 Note 2: 1	propagation e for erp limits, relative to this Measuremen	equation: E= the dipole g s field streng ts are made	=√(30PG)/d. jain (2.2dBi) gth limit is de with the ant	This limit is has not bee termined us enna port te	conservative - n included. Th ing substitutio rminated.	it does not o he erp or eirp n measurem	consider the o for all sign ents.	presence of t als with less t	the ground plane and,

End of Report

This page is intentionally blank and marks the last page of this test report.