

Elliott Laboratories www.elliottlabs.com 684 West Maude Avenue Sunnyvale, CA 94085-3518 408-245-7800 Phone 408-245-3499 Fax

Radio Test Report

FCC Part 95 MedRadio Transmitter

Model: SD2

- COMPANY: GE MDS LLC 175 Science Parkway Rochester, NY 14620
- TEST SITE(S): Elliott Laboratories 684 W. Maude Avenue Sunnyvale, CA 94085
- REPORT DATE: January 13, 2010

FINAL TEST DATES:

October 29, November 5, 9, 12, and January 5 and 7, 2010

AUTHORIZED SIGNATORY: avertu

David W. Bare Chief Engineer Elliott Laboratories

Testing Cert #2016.01

Elliott Laboratories is accredited by the A2LA, certificate number 2016.01, to perform the test(s) listed in this report, except where noted otherwise. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	January 13, 2010	First release	

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	5
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS	
FCC PART 95 – IVDS	
EXTREME CONDITIONS	
MEASUREMENT UNCERTAINTIES	7
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
OTHER EUT DETAILS	8
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TESTING	10
GENERAL INFORMATION	
RF PORT MEASUREMENT PROCEDURES	
OUTPUT POWER.	
BANDWIDTH MEASUREMENTS	
FREQUENCY STABILITY	
RADIATED EMISSIONS MEASUREMENTS	
INSTRUMENTATION FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
SAMPLE CALCULATIONS	
SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS	
SAMPLE CALCULATIONS –RADIATED FIELD STRENGTH	
SAMPLE CALCULATIONS – RADIATED POWER	16
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	17
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
APPENDIX C PHOTOGRAPHS	
APPENDIX D PROPOSED FCC ID LABEL & LABEL LOCATION	
APPENDIX E DETAILED PHOTOGRAPHS	
APPENDIX F OPERATOR'S MANUAL	
APPENDIX G BLOCK DIAGRAM	
APPENDIX H SCHEMATIC DIAGRAMS	
APPENDIX I THEORY OF OPERATION	
APPENDIX J TUNE-UP PROCEDURE	11
APPENDIX K PARTS LIST	12

SCOPE

Tests have been performed on the GE MDS LLC model SD2, pursuant to the relevant requirements of the following standard(s) in order to obtain device certification against the regulatory requirements of the Federal Communications Commission and Industry Canada.

- Code of Federal Regulations (CFR) Title 47 Part 2
- CFR 47 Part 95 (Medical Device Radiocommunication Service) Subpart I

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 ANSI TIA-603-C August 17, 2004

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the GE MDS LLC model SD2 and therefore apply only to the tested sample. The sample was selected and prepared by Dennis McCarthy of GE MDS LLC.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, the device requires certification. Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of GE MDS LLC model SD2 complied with the requirements of the standards and frequency bands declared in the scope of this test report.

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS

FCC Part 95 – IVDS

FCC	Description	Measured	Limit	Result	
Transmitter M	odulation, output power an		1	•	
§2.1033 (c) (5) § 95.853	Frequency ranges (Listed for each channel spacing)	25 kHz218-219 MHz12.5 kHz218-219 MHz6.25 kHz218-219 MHz	218-219 MHz	Complies	
<pre>\$2.1033 (c) (6) \$2.1033 (c) (7) \$2.1046 \$ 95.855</pre>	Total power (218-219 MHz) (Maximum for each channel spacing)	50 kHz - 5.0 W 25 kHz 5.0 W 12.5 kHz 5.0 W 6.25 kHz 5.0 W	20 Watts erp Fixed, 4 Watts erp Mobile ¹	Complies	
§2.1033 (c)	Emission types	F1D, F2D, F3D	Information only	-	
(4) §2.1047 § 95.857	Emission mask	Device complies with spectral masks – refer to test data	95.857	Complies	
§2.1049	Occupied (99%) Bandwidth	48.9 kHz – 218-219 MHz 16.8 kHz 216-220 MHz 9.32 kHz – 216-220 MHz 3.24 kHz – 216-220 MHz	Information only	-	
Transmitter sp	urious emissions	•			
§2.1051 §2.1057	At antenna terminal	-29.7 dBm	-13 dBm	Complies	
§95.857	Radiated (erp)	-48.5 dBm^2		Complies	
Receiver spurio	ous emissions	·			
15.111	At antenna terminal	-69.0 dBm	-57 dBm	Complies	
15.109	Field strength	33.4 dBuV/m	Refer to RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	Complies	
Other details	Γ		I	.	
§2.1055	Frequency stability	0.2 ppm	None specified for IVDS in Part 95, so must be maintained in the frequency segment	Complies	
§1.1307(b) §2.1093	RF Exposure	Although RF exposure compliance is addressed at the time of licensing an MPE calculation has been provided to demonstrate compliance with limits at distances of 1.5m or more from the antennas.			
§2.1033 (c) (8)	Final radio frequency amplifying circuit's dc voltages and currents for normal operation over the power range	13.8V, 2.2A	Information only	-	
-	Antenna Gain	This application is for anter	nas of 7.0 dBd (9.15 dBi) gain ¹ .	
	sures Fixed and Mobile units	limited to 20W and 4W ERP using free space propagation	respectively.	<u>, Built -</u>	

EXTREME CONDITIONS

Frequency stability is determined over extremes of temperature and voltage. The extremes of voltage were 85 to 115 percent of the nominal value.

The extremes of temperature were -30° C to $+50^{\circ}$ C as specified in FCC §2.1055(a)(1).

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2) and were calculated in accordance with NAMAS document NIS 81 and M3003.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF frequency	Hz	25 to 7,000 MHz	1.7 x 10 ⁻⁷
RF power, conducted	dBm	25 to 7,000 MHz	$\pm 0.52 \text{ dB}$
Conducted emission of transmitter	dBm	25 to 40,000 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of receiver	dBm	25 to 40,000 MHz	$\pm 0.7 \text{ dB}$
Radiated emission (substitution method)	dBm	25 to 40,000 MHz	± 2.5 dB
Radiated emission (field strength)	dBµV/m	25 to 1,000 MHz 1 to 40 GHz	$\begin{array}{c} \pm 3.6 \text{ dB} \\ \pm 6.0 \text{ dB} \end{array}$

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The GE MDS LLC model SD2 is a industrial radio operating in the 216-222 MHz band for FCC Parts 80, 90 and 95. Since the EUT could be placed anywhere in use, it was placed on a table top during testing to simulate the end-user environment. The electrical rating of the EUT is 10 - 30 Volts DC, 2.2 Amps.

The sample was received on October 29, 2009 and tested on October 29, November 5, 9, 12, and January 5 and 7, 2010. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
GE MDS LLC	SD2 Transceiver	Industrial Radio	999999	E5MDS-SD2-1

OTHER EUT DETAILS

The radio can operate on 5, 6.25, 12.5, 15, 25 and 50 KHz spaced channels using F1D, F2D and F3D modulations.

ENCLOSURE

The EUT enclosure is primarily constructed of aluminum. It measures approximately 16cm wide by 12cm deep by 4cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Winbook	Winbook XL	Computer	H1106677	-
Agilent	E3610A	Power Source	MY40011740	-

The following equipment was used as remote support equipment for emissions testing:

Company	Model	Description	Serial Number	FCC ID
Netgear	GS108	Ethernet Switch	GS16152CB035447	-

No support equipment was used during testing.

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected		Cable(s)	
FOIL	То	Description	Shielded or Unshielded	Length(m)
Ethernet	Switch	Cat 5	Shielded	10.0
COM1	Computer	Serial	Shielded	2.0
DC Power	Power Source	two wire	Unshielded	2.0

Note: The COM2 port was not connected during testing except as needed for configuration of the radio. This port is for diagnostic purposes and therefore would not normally be connected.

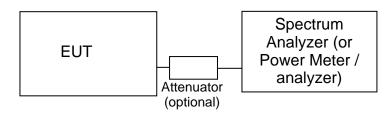
EUT OPERATION

During radio performance emissions testing the EUT was set to transmit at 37dBm with modulation on or off as needed for testing. During receiver and unintentional emissions testing, the radio was set for receive mode.

TESTING

GENERAL INFORMATION

Radiated spurious emissions measurements were taken at the Elliott Laboratories Anechoic Chambers and/or Open Area Test Site(s) listed below. The sites conform to the requirements of ANSI C63.4: 2003 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz and CISPR 16-1-4:2007 - Specification for radio disturbance and immunity measuring apparatus and methods Part 1-4: Radio disturbance and immunity measuring apparatus Ancillary equipment Radiated disturbances. They are on file with the FCC and industry Canada.


Site	Registration Numbers		Lastian
	FCC	Canada	Location
			684 West Maude Ave,
SVOATS #2	90593	2845A-2	Sunnyvale
			CA 94085-3518

In the case of Open Area Test Sites, ambient levels are at least 6 dB below the specification limits with the exception of predictable local TV, radio, and mobile communications traffic.

Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements.

RF PORT MEASUREMENT PROCEDURES

Conducted measurements are performed with the EUT's rf input/output connected to the input of a spectrum analyzer, power meter or modulation analyzer. When required an attenuator, filter and/or dc block is placed between the EUT and the spectrum analyzer to avoid overloading the front end of the measurement device. Measurements are corrected for the insertion loss of the attenuators and cables inserted between the rf port of the EUT and the measurement equipment.

Test Configuration for Antenna Port Measurements

OUTPUT POWER

Output power is measured using a power meter and an average sensor head, a spectrum analyzer or a power meter and peak power sensor head as required by the relevant rule part(s). Where necessary measurements are gated to ensure power is only measured over periods that the device is transmitting.

Power measurements made directly on the rf power port are, when appropriate, converted to an EIRP by adding the gain of the highest gain antenna that can be used with the device under test, as specified by the manufacturer.

For devices with an integral antenna the output power is measured as a field strength at a test distance of (typically) 3m and then converted to an eirp using far field equations as shown in SAMPLE CALCULATIONS –RADIATED POWER.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN. The measurement bandwidth is set to be at least 1% of the instrument's frequency span.

FREQUENCY STABILITY

The EUT is placed inside a temperature chamber with all support and test equipment located outside of the chamber. The temperature is varied across the specified frequency range in 10 degree increments with frequency measurements made at each temperature step. The EUT is allowed enough time to stabilize at each temperature variation.

The spectrum analyzer is configured to give a 5- or 6-digit display for the markerfrequency function. The spectrum analyzer's built-in frequency counter is used to measure the maximum deviation of the fundamental frequency at each temperature. Where possible the device is set to transmit an unmodulated signal. Where this is not possible the frequency drift is determined by finding a stable point on the signal (e.g. the null at the centre of an OFDM signal) or by calculating a centre frequency based on the upper and lower XdB points (where X is typically 6dB or 10dB) on the signal's skirts.

RADIATED EMISSIONS MEASUREMENTS

Receiver radiated spurious emissions measurements are made in accordance with ANSI ANSI C63.4:2003 by measuring the field strength of the emissions from the device at a specific test distance and comparing them to a field strength limit. Where the field strength limit is specified at a longer distance than the measurement distance the measurement is extrapolated to the limit distance.

Transmitter radiated spurious emissions are initially measured as a field strength. The eirp or erp limit as specified in the relevant rule part(s) is converted to a field strength at the test distance and the emissions from the EUT are then compared to that limit. Emissions within 20dB of this limit are the subjected to a substitution measurement.

All radiated emissions measurements are performed in two phases. A preliminary scan of emissions is conducted in either an anechoic chamber or on an OATS during which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed across the complete frequency range of interest and at each operating frequency identified in the reference standard. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode).

During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit. For transmitter spurious emissions, where the limit is expressed as an effective radiated power, the eirp or erp is converted to a field strength limit.

Final measurements are made on an OATS or in a semi-anechoic chamber at the significant frequencies observed during the preliminary scan(s) using the same process of rotating the EUT and raising/lowering the measurement antenna to find the highest level of the emission. The field strength is recorded and, for receiver spurious emissions, compared to the field strength limit. For the final measurement the appropriate detectors (average, peak, normal, sample, quasi-peak) are used. For receiver measurements below 1GHz the detector is a Quasi-Peak detector, above 1GHz a peak detector is used and the peak value (RB=VB=1MHz) and average value (RB=1MHz, VB=10Hz) are recorded.

For transmitter spurious emissions, the radiated power of all emissions within 20dB of the calculated field strength limit are determined using a substitution measurement. The substitution measurement is made by replacing the EUT with an antenna of known gain (typically a dipole antenna or a double-ridged horn antenna), connected to a signal source. The output power of the signal generator is adjusted until the maximum field strength from the substitution antenna is similar to the field strength recorded from the EUT. The erp of the EUT is then calculated.

INSTRUMENTATION

An EMI receiver as specified in CISPR 16-1-1 is used for radiated emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 7000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary.

For measurements above the frequency range of the receivers and for all conducted measurements a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis.

Measurement bandwidths for the test instruments are set in accordance with the requirements of the standards referenced in this document.

Software control is used to correct the measurements for transducer factors (e.g. antenna) and the insertion loss of cables, attenuators and other series elements to obtain the final measurement value. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are exported in a graphic and/or tabular format, as appropriate.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the EUT antenna port or receiving antenna and the test receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A combination of biconical, log periodic or bi-log antennas are used to cover the range from 30 MHz to 1000 MHz. Broadband antennas or tuned dipole antennas are used over the entire 25 to 1000 MHz frequency range as the reference antenna for substitution measurements.

Above 1000 MHz, a dual-ridge guide horn antenna or octave horn antenna are used as reference and measurement antennas.

The antenna calibration factors are included in site factors that are programmed into the test receivers and instrument control software when measuring the radiated field strength.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

Table mounted devices are placed on a non-conductive table at a height of 80 centimeters above the floor. Floor mounted equipment is placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. The EUT is positioned on a motorized turntable to allow it to be rotated during testing to determine the angel with the highest level of emissions.

SAMPLE CALCULATIONS

SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS

Measurements are compared directly to the conducted emissions specification limit (decibel form). The calculation is as follows:

 $R_r - S = M$

where:

 R_r = Measured value in dBm

S = Specification Limit in dBm

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS -RADIATED FIELD STRENGTH

Measurements of radiated field strength are compared directly to the specification limit (decibel form). The receiver and/or control software corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor is sued when measurements are made at a test distance that is different to the specified limit distance by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

- R_c = Corrected Reading in dBuV/m
- L_s = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS -RADIATED POWER

The erp/eirp limits for transmitter spurious measurements are converted to a field strength in free space using the following formula:

$$E = \frac{\sqrt{30 P G}}{d}$$

where:

E = Field Strength in V/m
 P = Power in Watts
 G = Gain of isotropic antenna (numeric gain) = 1
 D = measurement distance in meters

The field strength limit is then converted to decibel form (dBuV/m) and the margin of a given emission peak relative to the limit is calculated (refer to *SAMPLE CALCULATIONS –RADIATED FIELD STRENGTH*).

When substitution measurements are required (all signals with less than 20dB of margin relative to the calculated field strength limit) the eirp of the spurious emission is calculated using:

 $P_{EUT} = P_{S} - (E_{S} - E_{EUT})$

and

 $P_s = G + P_{in}$

where:

 P_{S} = effective isotropic radiated power of the substitution antenna (dBm)

 P_{in} = power input to the substitution antenna (dBm)

G = gain of the substitution antenna (dBi)

 E_S = field strength the substitution antenna (dBm) at eirp P_S

 E_{EUT} = field strength measured from the EUT

Where necessary the effective isotropic radiated power is converted to effective radiated power by subtracting the gain of a dipole (2.2dBi) from the eirp value.

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109. Note that receivers operating outside of the frequency range 30 MHz - 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

For MedRadio, the above limits also apply to the transmitter per §95.635(d).

Appendix A Test Equipment Calibration Data

Conducted Emissi	ions - AC Power Ports, 28-Oct-09			
Engineer: Mehran				
<u>Manufacturer</u>	Description	Model #	Asset #	Cal Due
Elliott Laboratories	LISN, FCC / CISPR	LISN-3, OATS	304	15-Jul-10
Hewlett Packard	EMC Spectrum Analyzer, 9 kHz - 6.5 GHz	8595EM	780	30-Dec-09
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	812	23-Feb-10
Rohde & Schwarz	Test Receiver, 0.009-30 MHz	ESH3	1316	06-Nov-09
Radio Antenna Po Oct-09	rt (Power and Spurious Emissions), 29-			
Engineer: John Ca	aizzi			
Manufacturer	Description	Model #	Asset #	Cal Due
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1290	22-Oct-10
Rohde & Schwarz	Power Sensor 100 uW - 2 Watts (w/ 20 dB pad, SN BJ5155)	NRV-Z32	1536	02-Sep-10
Agilent	PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	E4446A	2139	30-Dec-09
Radiated Emission Nov-09	ns, 30 - 2,500 MHz Chamber Prescan, 02-			
Engineer: John Ca	aizzi			
Manufacturer	Description	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	19-Aug-10
Hewlett Packard	EMC Spectrum Analyzer, 9 KHz-26.5 GHz	8593EM	1141	29-Dec-09
EMCO	Log Periodic Antenna, 0.2-2 GHz	3148	1404	24-Feb-10
EMCO	Biconical Antenna, 30-300 MHz	3110B	1497	15-Sep-10
EMCO	Antenna, Horn, 1-18 GHz	3117	1662	11-Apr-10
Hewlett Packard	Preamplifier, 100 kHz - 1.3 GHz	8447D OPT 010	1826	26-May-10
	ns, 30 - 2,500 MHz, Final Data, 02-Nov-09			
Engineer: John Ca	<u>F</u>	. <i></i>		
Manufacturer	Description	Model #	Asset #	Cal Due
Rohde & Schwarz	Test Receiver, 20-1300 MHz	ESVP	213	02-Apr-10
EMCO	Log Periodic Antenna, 0.3-1 GHz	3146A	364	23-Dec-09
	ns, 30 - 2,300 MHz, 05-Nov-09			
Engineer: Mehran				
Manufacturer	Description	Model #	Asset #	Cal Due
Elliott Laboratories	Biconical Antenna, 30-300 MHz	EL30.300	54	03-Apr-11
Rohde & Schwarz	Test Receiver, 20-1300 MHz	ESVP	213	02-Apr-10
EMCO	Log Periodic Antenna, 0.3-1 GHz	3146A	364	23-Dec-09
EMCO	Biconical Antenna, 30-300 MHz	3110B	801	08-Sep-11
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	19-Aug-10
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	12-Mar-10
EMCO	Log Periodic Antenna, 0.2-2 GHz	3148	1404	24-Feb-10
Hewlett Packard	Preamplifier, 100 kHz - 1.3 GHz	8447D OPT 010	1826	26-May-10

Radiated Emission	ns, 30 - 2,300 MHz, 06-Nov-09			
Engineer: Mehran	Birgani			
Manufacturer	Description	Model #	Asset #	Cal Due
Elliott Laboratories	Biconical Antenna, 30-300 MHz	EL30.300	54	03-Apr-11
Rohde & Schwarz	Test Receiver, 20-1300 MHz	ESVP	213	02-Apr-10
EMCO	Log Periodic Antenna, 0.3-1 GHz	3146A	364	23-Dec-09
EMCO	Antenna, Horn, 1-18 GHz	3115	487	15-Jul-10
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	19-Aug-10
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	12-Mar-10
Frequency Stabilit	ty, 09-Nov-09			
Engineer: Mehran	Birgani			
Manufacturer	Description	Model #	Asset #	Cal Due
Agilent	PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	E4446A	2139	30-Dec-09
Thermotron	Temp Chamber (w/ F4 Watlow Controller)	S1.2	2170	29-Jun-10
Radiated Emissio	ns, 30 - 2,300 MHz, 05-Jan-10			
Engineer: Mehran	Birgani			
Manufacturer	Description	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	19-Aug-10
Hewlett Packard	EMC Spectrum Analyzer, 9 KHz-26.5 GHz	8593EM	1141	21-Dec-10
EMCO	Log Periodic Antenna, 0.2-2 GHz	3148	1404	24-Feb-10
EMCO	Biconical Antenna, 30-300 MHz	3110B	1497	15-Sep-10
EMCO	Antenna, Horn, 1-18 GHz	3117	1662	11-Apr-10
Hewlett Packard	Preamplifier, 100 kHz - 1.3 GHz	8447D OPT 010	1826	26-May-10
Radiated Emissio	ns, 30 - 2,300 MHz, Jan 05&07 of 2010			
Engineer: Mehran	Birgani			
Manufacturer	Description	Model #	Asset #	Cal Due
Elliott Laboratories	Biconical Antenna, 30-300 MHz	EL30.300	54	03-Apr-11
Elliott Laboratories	Log Periodic Antenna 300-1000 MHz	EL300.1000	55	03-Apr-10
Rohde & Schwarz	Test Receiver, 20-1300 MHz	ESVP	213	02-Apr-10

Appendix B Test Data

T77846 29 Pages

©Elliott

EMC Test Data

An LALC-	3 company		
Client:	GE MDS LLC	Job Number:	J77843
Model:	SD2 Transceiver	T-Log Number:	T77846
		Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy	Project Engineer:	David Bare
Emissions Standard(s):	FCC Parts 80, 90 & 95, RSS-119, FCC Part 15	Class:	A
Immunity Standard(s):	-	Environment:	Radio

EMC Test Data

For The

GE MDS LLC

Model

SD2 Transceiver

Date of Last Test: 1/12/2010

Client: GE MDS LLC Job Number: J77843 Model: SD2 Transceiver T-Log Number: T77846 Contact: Dennis McCarthy Account Manager: Susan Pelzl Standard: FCC Parts 80, 90 & 95, RSS-119, FCC Part 15 Class: N/A

Radiated Spurious Emissions RSS GEN, FCC Part 15

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

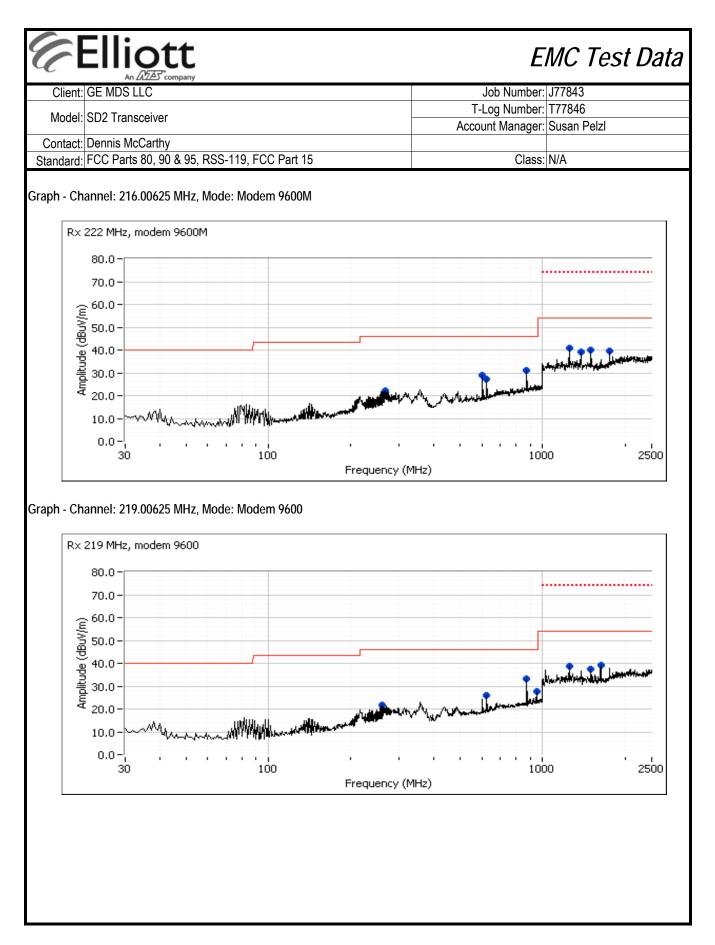
The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or routed in overhead in the GR-1089 test configuration.

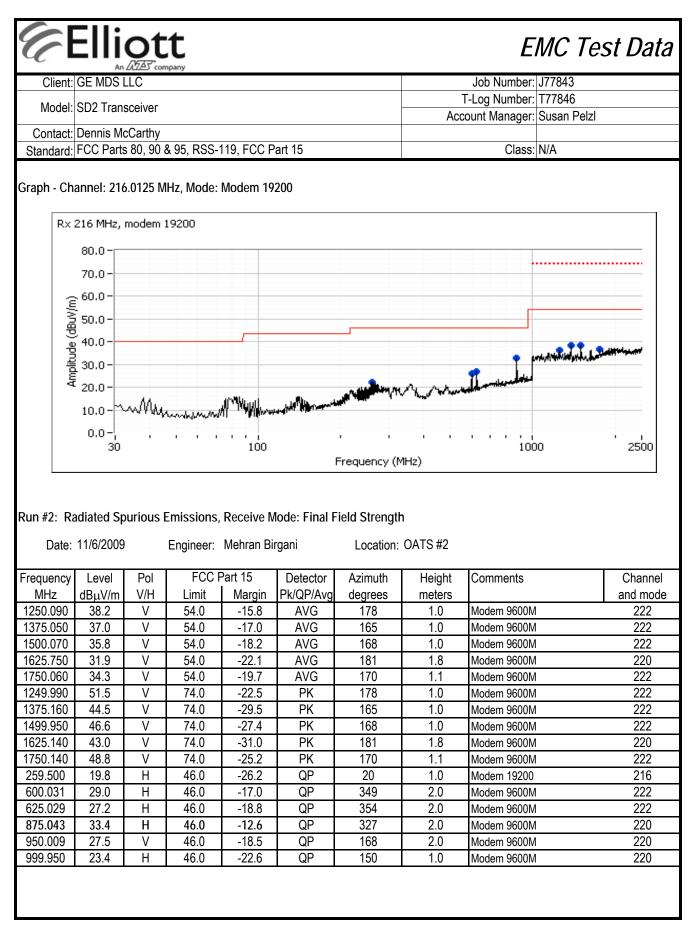
The measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	15-18	°C
	Rel. Humidity:	40-45	%

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
2	Spurious Emissions Receive/Stand-By Mode 30 - 2500 MHz	FCC 15 RSS GEN	Pass	33.4dBµV/m (46.8µV/m) @ 875.04MHz (-12.6dB)


Modifications Made During Testing


No modifications were made to the EUT during testing

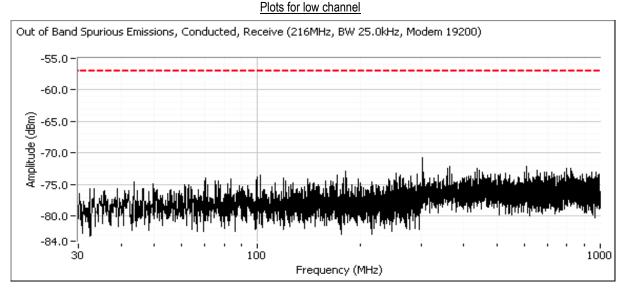
Deviations From The Standard

No deviations were made from the requirements of the standard.

Ć	Elli	ot						EMC Te	st Data	
Client:	GE MDS I		npany				Job Number: J77843			
							T-Log Number: T77846			
Wodel:	SD2 Trans	sceiver					Aco	count Manager: Susan Pelzl		
Contact:	Dennis Mo	cCarthy								
			& 95, RSS-´	119, FCC P	art 15			Class: N/A		
Run #1a - P	Preliminar	y measu	irements - o	chamber so			Oh ang han #0			
Date:	11/1/2009		Engineer:	John Caizz	21	Location:	Chamber #2			
Frequency	Level	Pol	F	00	Detector	Azimuth	Height	Comments	Channel	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		and mode	
259.500	21.6	Н	46.0	-24.4	Peak	148	1.7	Modem 9600M, PWR 37	220	
259.500	22.0	Н	46.0	-24.0	Peak	148	1.7	Modem 19200, PWR 33	216	
265.575	22.0	Н	46.0	-24.0	Peak	328	1.7	Modem 9600M, PWR 37	222	
600.031	29.0	Н	46.0	-17.0	Peak	349	1.7	Modem 9600M, PWR 37	222	
600.057	25.9	Н	46.0	-20.1	Peak	355	1.7	Modem 19200, PWR 33	216	
625.003	26.9	Н	46.0	-19.1	Peak	352	1.7	Modem 19200, PWR 33	216	
625.029	27.2	Н	46.0	-18.8	Peak	354	1.7	Modem 9600M, PWR 37	222	
625.029	25.9	Н	46.0	-20.1	Peak	344	1.7	Modem 9600M, PWR 37	220	
875.043	30.9	Н	46.0	-15.1	Peak	329	1.7	Modem 9600M, PWR 37	222	
875.043	33.4	Н	46.0	-12.6	Peak	327	1.7	Modem 9600M, PWR 37	220	
875.069	32.9	Н	46.0	-13.1	Peak	332	1.7	Modem 19200, PWR 33	216	
950.009	27.5	V	46.0	-18.5	Peak	168	1.7	Modem 9600M, PWR 37	220	
1000.000	27.5	Н	54.0	-26.5	Peak	122	1.7	Modem 9600M, PWR 37	220	
1249.960	36.3	V	54.0	-17.7	Peak	55	1.7	Modem 19200, PWR 33	216	
1250.070	40.9	V	54.0	-13.1	Peak	256	1.7	Modem 9600M, PWR 37	222	
1250.180	39.7	V	54.0	-14.3	Peak	263	1.7	Modem 9600M, PWR 37	220	
1374.990	38.5	V	54.0	-15.5	Peak	312	1.7	Modem 19200, PWR 33	216	
1375.050	39.2	V	54.0	-14.8	Peak	307	1.7	Modem 9600M, PWR 37	222	
1499.980	39.8	V	54.0	-14.2	Peak	353	1.7	Modem 9600M, PWR 37	222	
1499.980	38.1	V	54.0	-15.9	Peak	353	1.7	Modem 19200, PWR 33	216	
1500.090	38.2	V	54.0	-15.8	Peak	338	1.7	Modem 9600M, PWR 37	220	
1625.010	39.3	V	54.0	-14.7	Peak	190	1.7	Modem 9600M, PWR 37	220	
1749.990	36.7	V	54.0	-17.3	Peak	296	1.7	Modem 19200, PWR 33	216	
11 10.000					Peak	6	1.7	Modem 9600M, PWR 37	222	

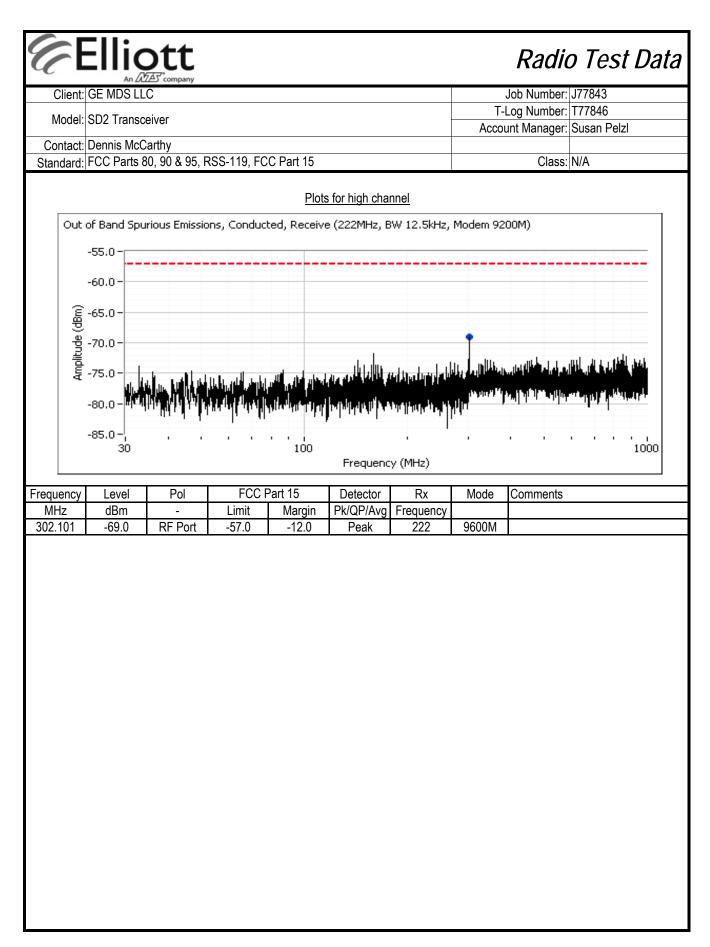
~	Ellic				Radio	o Test Data
Client:	GE MDS LL	C			Job Number:	J77843
Model:	SD2 Transc	eiver			T-Log Number:	
	Dennis McC			Ac	count Manager:	Susan Pelzl
			RSS-119, FCC Part 15		Class:	N/A
			RSS GEN and FC Receiver Spurious			
Test Spec	cific Detail	S				
		-	e of this test session is to perform final listed above.	qualification testing	of the EUT with	respect to the
Te	Date of Test: est Engineer: est Location:	J. Caizzu, M	. Birgani Con	onfig. Used: 1 fig Change: None JT Voltage: 13.8VD0	C	
attenuatio environme Radiated r	on between E ental chambe	UT and measer. Its are made	enuator or dc-block if necessary. All an suring instrument. For frequency stabi with the EUT located on a non-conduct Temperature: 17-22	ity measurements th tive table, 3m from th °C	e EUT was plac	e inside an
			Rel. Humidity: 30-40	%		
	of Result	S	Rel. Humidity: 30-40	%		
		S CH Spacing	Rel. Humidity: 30-40 Test Performed	%	Pass / Fail	Result / Margin
Summary		CH Spacing			Pass / Fail Pass	Result / Margin -69.0dBm (0.1nW) (302.10MHz (-12.0dE

Radio Test Data

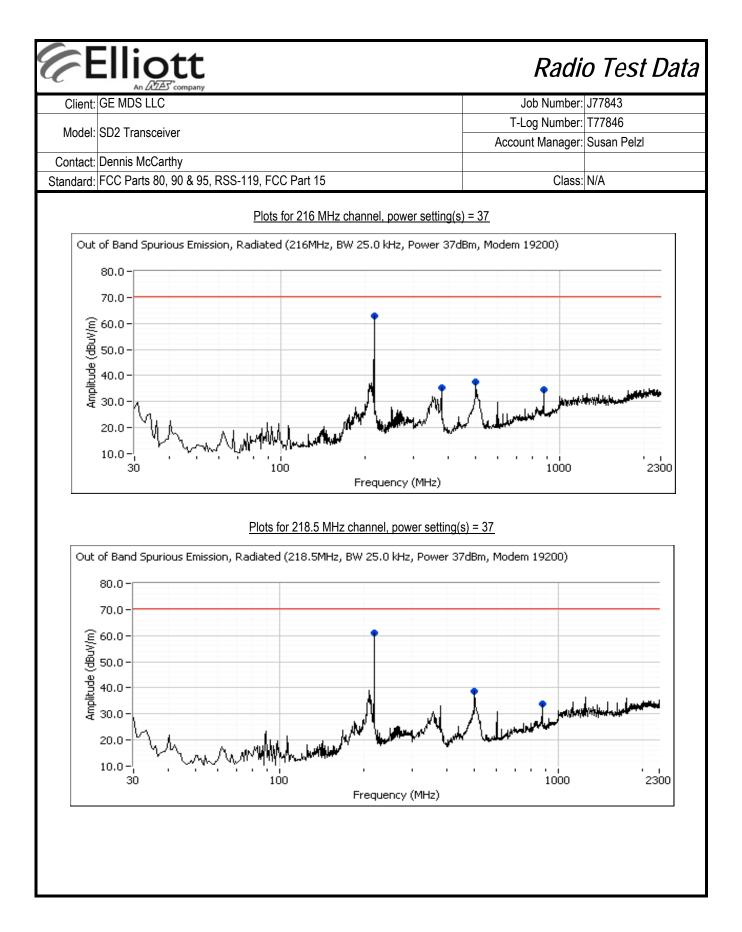

	An ATAS company		
Client:	GE MDS LLC	Job Number:	J77843
Model	SD2 Transceiver	T-Log Number:	T77846
wouer.		Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	FCC Parts 80, 90 & 95, RSS-119, FCC Part 15	Class:	N/A

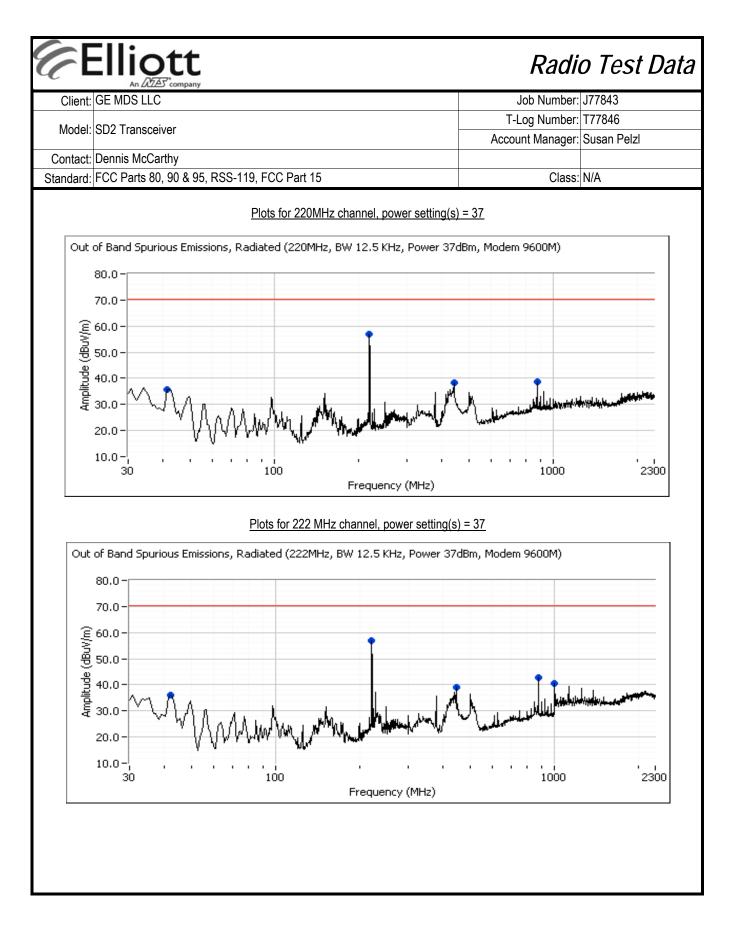
Run #1: Out of Band Spurious Emissions, Conducted

Elliott


Frequency (MHz)	Limit	Result
216	-57dBm	Pass
220	-57dBm	Pass
222	-57dBm	Pass

The limit is taken from FCC Part 15.111 and RSS-GEN


Plots for center channel



_						
6)tt			Radi	o Test Data
Client:	GE MDS LL	С			Job Number:	J77843
Model:	SD2 Transc	aiver			Log Number:	
				Αссоι	unt Manager:	Susan Pelzl
	Dennis McC	-			0	
Standard:	FCC Parts o	0, 90 & 95, R	RSS-119, FCC Part 15		Class:	N/A
			RSS 119 and FCC Radiated Spurious			
Test Spec	cific Detail	S				
		The objective	e of this test session is to perform fina listed above.	I qualification testing of th	ne EUT with n	espect to the
Te	-	See below Mehran Birga Refer to eacl	ani Cor	onfig. Used: 1 nfig Change: no laptop :UT Voltage: 13.8VDC		
General T	est Config	guration				
All amplitu	ide measure	ments are ad	e EUT's rf port connected to the meas justed to account for the attenuation b s place inside an environmental cham	etween EUT and measur		-
Radiated	measuremen	its are made	with the EUT located on a non-conduc	ctive table, 3m from the m	neasurement	antenna.
Ambient	Condition	5:	Temperature:13-18Rel. Humidity:30-40			
Summary	of Result	S				
Run #	Spacing	Data Rate	Test Performed	Limit	Pass / Fail	
1	-	-	Spurious emissions (radiated)	FCC 90.210	Pass	46.7dBµV/m @ 1000.1MHz (-23.5dB)
No modific Deviation	cations were s From Th	ne Standar	EUT during testing			

Model: SD2 Transceiver T-Log Number: T77846 Contact: Dennis McCarthy Susan Pelzl Susan Pelzl Susan Pelzl Standard: FCC Parts 80, 90 & 95, RSS-119, FCC Part 15 Class: N/A unt #1: Out of Band Spurious Emissions, Radiated Date: 11/5/09 & 1/5/10 Engineer: Mehran Birgani Location: Chamber #2 Conducted limit (dBm): -25 Approximate field strength limit @ 3m: 70.2 he limit is taken from FCC Part 90 Mask B for 216-220 MHz operation and Mask F for 220-222 MHz operation Mask F for 220-222 MHz operation run #1a - Preliminary measurements - chamber scans T-1.0 Medem 9600M, PWR 37 220 75.023 35.1 V 70.2 -34.1 Peak 121 1.7 Modem 9600M, PWR 37 220 75.023 35.4 H 70.2 -34.5 Peak 129 1.7 Modem 9600M, PWR 37 220 75.023 35.4 H 70.2 -34.1 Peak 121 1.7 Modem 9600M, PWR 37 220 75.023 35.4 H </th <th>Model:</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Job Number:</th> <th>011040</th> <th></th>	Model:						Job Number:	011040			
Account Manager, Susan Peizi Contact: Dennis McCarthy Standard: FCC Parts 80, 90 & 95, RSS-119, FCC Part 15 Class: N/A Conducted limit (dBm): -25 Approximate field strength limit @ 3m: 70.2 he limit is taken from FCC Part 90 Mask B for 216-220 MHz operation and Mask F for 220-222 MHz operation turn #1 - Prelliminary measurements - chamber scans Frequency Level Pol FCC 90.210 Detector Azimuth Height Comments Tx Fre MHz dBju//m V/H Limit Margin Pwi/OP/Avg degrees meters MHz 42.983 36.1 V 70.2 -34.1 Peak 13.7 Modem 9600M, PWR 37 220 35.7 V 70.2 -34.5 Peak 13.7 Modem 9600M, PWR 37 220 35.7 V 70.2	Model:		•					T-	Log Number:	T77846	
Standard: FCC Parts 80, 90 & 95, RSS-119, FCC Part 15 Class: IV/A urn #1: Out of Band Spurious Emissions, Radiated Date: 11/5/09 & 1/5/10 Engineer: Mehran Birgani Location: Chamber #2 Conducted limit (dBm): -25 Approximate field strength limit @ 3m: 70.2 he limit is taken from FCC Part 90 Mask B for 216-220 MHz operation and Mask F for 220-222 MHz operation un #1a - Preliminary measurements - chamber scans Tx Free Frequency Level Pol FCC 90.210 Detector Azimuth Height Comments Tx Free MHz dBµV/m V/H Limit Margin PkQDP/Avg degrees meters MHz 42.983 36.1 V 70.2 -34.5 Peak 121 1.7 Modem 9600M, PWR 37 220 42.983 35.7 V 70.2 -34.8 Peak 165 1.7 Modem 9600M, PWR 37 220 444.002 38.4 H 70.2 -31.0 Peak 135 1.7 Modem 9600M, PWR 37 220 459.006 38.5 V 70.2 -31.6		SD2 Transce	eiver					Acco	unt Manager:	Susan Pelzl	
un #1: Out of Band Spurious Emissions, Radiated Date: 11/5/09 & 1/5/10 Engineer: Mehran Birgani Location: Chamber #2 Conducted limit (dBm): -25 Approximate field strength limit @ 3m: 70.2 he limit is taken from FCC Part 90 Mask B for 216-220 MHz operation and Mask F for 220-222 MHz operation un #1a - Preliminary measurements - chamber scans requency Level Pol FCC 90.210 Detector Azimuth Height Comments Tx Fre MHz dB ₁ V/m V/H Limit Margin Pk/QP/Avg degrees meters MHz 42.983 36.1 V 70.2 -34.1 Peak 121 1.7 Modem 9600M, PWR 37 222 42.983 36.1 V 70.2 -34.8 Peak 123 1.7 Modem 9600M, PWR 37 220 375.023 35.4 H 70.2 -34.8 Peak 135 1.7 Modem 9600M, PWR 37 220 444.006 39.2 H 70.2 -31.8 Peak 320 1.7 Modem 9600M, PWR 37 220 449.993 37.4 V 70.2 -31.7 Peak 135 1.7 Modem 9600M, PWR 37 2216 500.006 38.5 V 70.2 -31.7 Peak 136 1.7 Modem 9200, PWR 37 2216 575.004 42.8 H 70.2 -31.7 Peak 116 1.7 Modem 9200, PWR 37 2216 575.017 38.6 H 70.2 -36.2 Peak 116 1.7 Modem 9200, PWR 37 2220 875.017 38.6 H 70.2 -36.2 Peak 145 1.7 Modem 9200, PWR 37 2220 875.017 38.6 H 70.2 -36.2 Peak 146 1.7 Modem 9200, PWR 37 2220 875.017 38.6 H 70.2 -27.4 Peak 116 1.7 Modem 9200, PWR 37 2220 875.017 38.6 H 70.2 -28.9 Peak 145 1.7 Modem 9200, PWR 37 2220 875.017 38.6 H 70.2 -20.7 Peak 38 1.7 Modem 9200, PWR 37 2216 575.017 34.0 V 70.2 -36.2 Peak 145 1.7 Modem 9200, PWR 37 2216 575.017 34.0 V 70.2 -26.9 Peak 163 1.7 Modem 9200, PWR 37 2216 575.017 34.0 V 70.2 -26.9 Peak 163 1.7 Modem 9200, PWR 37 2216 216.002 62.8 H Peak 0 1.7 Modem 9200, PWR 37 2218.5 220.003 56.9 V Peak 0 1.7 Modem 9200, PWR 37 2218.5 220.003 56.9 V Peak 0 1.7 Modem 9200, PWR 37 2222 The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free spac propagation equation: E=√(30PG)/d. This limit is conservative - it dees not consider the presence of the ground plane and, for erp limits, the dipole gain (2.24B) has not been included. The erp or eirp for all signals with less than 20dB of mar	Contact:	Dennis McCa	arthy								
Date: 11/5/09 & 1/5/10 Engineer: Mehran Birgani Location: Chamber #2 Conducted limit (dBm): -25 Approximate field strength limit @ 3m: 70.2 he limit is taken from FCC Part 90 Mask B for 216-220 MHz operation and Mask F for 220-222 MHz operation un #1a - Preliminary measurements - chamber scans requency Level Pol FCC 90.210 Detector Azimuth Height Comments Tx Free MHz dB ₁ V/m V/H Limit Margin PkQP/Arg degrees meters MHz 42.983 36.1 V 70.2 -34.5 Peak 121 1.7 Modem 9600M, PWR 37 220 375.023 35.4 H 70.2 -34.8 Peak 135 1.7 Modem 9600M, PWR 37 220 444.006 39.2 H 70.2 -31.8 Peak 135 1.7 Modem 9600M, PWR 37 220 500.006 38.5 V 70.2 -31.7 Peak 136 1.7 Modem 9600M, PWR 37	Standard:	FCC Parts 8	, 90 & 95, F	RSS-119, FC	C Part 15				Class:	N/A	
Date: 11/5/09 & 1/5/10 Engineer: Mehran Birgani Location: Chamber #2 Conducted limit (dBm): -25 Approximate field strength limit @ 3m: 70.2 ne limit is taken from FCC Part 90 Mask B for 216-220 MHz operation and Mask F for 220-222 MHz operation un #1a - Preliminary measurements - chamber scans requency Level Pol FCC 90.210 Detector Azimuth Height Comments Tx Free MHz dB ₁ V/m V/H Limit Margin PK/QP/Arg degrees meters MHz 42.983 36.1 V 70.2 -34.1 Peak 121 1.7 Modem 9600M, PWR 37 220 375.023 35.4 H 70.2 -34.8 Peak 135 1.7 Modem 9600M, PWR 37 220 444.006 39.2 H 70.2 -32.8 Peak 136 1.7 Modem 9600M, PWR 37 220 500.006 38.5 V 70.2 -31.7 Peak 135 1.7 Modem 9600M,			, ,	,							
Conducted limit (dBm): -25 Approximate field strength limit @ 3m: 70.2 he limit is taken from FCC Part 90 Mask B for 216-220 MHz operation and Mask F for 220-222 MHz operation un #1a - Preliminary measurements - chamber scans Tx Free met is taken from FCC Part 90 Mask B for 216-220 MHz operation and Mask F for 220-222 MHz operation un #1a - Preliminary measurements - chamber scans Tx Free mHz dB _I U/m V/H Limit Margin Pk/QP/Avg degrees meters MHz 42.983 36.1 V 70.2 -34.5 Peak 121 1.7 Modem 9600M, PWR 37 220 375.023 35.4 H 70.2 -34.8 Peak 165 1.7 Modem 19200, PWR 37 220 440.022 38.4 H 70.2 -31.8 Peak 135 1.7 Modem 9600M, PWR 37 220 444.006 39.2 H 70.2 -31.8 Peak 136 1.7 Modem 19200, PWR 37 222 875.004 42.8 H 70.2 -31.7 Peak 116 1.7 Modem	un #1: Ou	it of Band Sp	ourious Emi	ssions, Rad	liated						
Approximate field strength limit @ 3m: 70.2 the limit is taken from FCC Part 90 Mask B for 216-220 MHz operation and Mask F for 220-222 MHz operation un #1a - Preliminary measurements - chamber scans Tx Free Image: Trequency Level Pol FCC 90.210 Detector Azimuth Height Comments Tx Free MHz dBµU/m V/H Limit Margin Pk/QP/Avg degrees meters MHz 42.983 36.1 V 70.2 -34.1 Peak 121 1.7 Modem 9600M, PWR 37 220 375.023 35.4 H 70.2 -34.5 Peak 129 1.7 Modem 9600M, PWR 37 220 444.006 39.2 H 70.2 -31.8 Peak 315 1.7 Modem 9600M, PWR 37 220 444.006 39.2 H 70.2 -31.7 Peak 135 1.7 Modem 9600M, PWR 37 220 600.006 38.5 V 70.2 -31.7 Peak 115 1.7 Modem 9600M, PWR 37 222	Date:	11/5/09 & 1/5	5/10	Engineer:	Mehran Birg	gani	Location:	Chamber #	2		
Approximate field strength limit @ 3m: 70.2 the limit is taken from FCC Part 90 Mask B for 216-220 MHz operation and Mask F for 220-222 MHz operation un #1a - Preliminary measurements - chamber scans Tx Free Image: Trequency Level Pol FCC 90.210 Detector Azimuth Height Comments Tx Free MHz dBµU/m V/H Limit Margin Pk/QP/Avg degrees meters MHz 42.983 36.1 V 70.2 -34.1 Peak 121 1.7 Modem 9600M, PWR 37 220 375.023 35.4 H 70.2 -34.5 Peak 129 1.7 Modem 9600M, PWR 37 220 444.006 39.2 H 70.2 -31.8 Peak 315 1.7 Modem 9600M, PWR 37 220 444.006 39.2 H 70.2 -31.7 Peak 135 1.7 Modem 9600M, PWR 37 220 600.006 38.5 V 70.2 -31.7 Peak 115 1.7 Modem 9600M, PWR 37 222											
he limit is taken from FCC Part 90 Mask B for 216-220 MHz operation and Mask F for 220-222 MHz operation un #1a - Preliminary measurements - chamber scans requency Level Pol FCC 90.210 Detector Azimuth Height Comments Tx Free MHz dBµ//m V/H Limit Margin Pk/QP/Avg degrees meters MHz d2.993 36.1 V 70.2 -34.1 Peak 121 1.7 Modem 9600M, PWR 37 220 375.023 35.4 H 70.2 -34.8 Peak 136 1.7 Modem 9600M, PWR 37 220 440.022 38.4 H 70.2 -31.8 Peak 315 1.7 Modem 9600M, PWR 37 220 444.006 39.2 H 70.2 -31.8 Peak 315 1.7 Modem 9600M, PWR 37 220 600.006 38.5 V 70.2 -32.8 Peak 136 1.7 Modem 9600M, PWR 37 220 875.004 42.8 H 70.2 -37.6 Peak 135 1.7 Modem 9600M, PWR 37 220 <	,	annovimata f		()							
un #1a - Preliminary measurements - chamber scans Irequency Level Pol FCC 90.210 Detector Azimuth Height Comments Tx Free MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters MHz 42.983 36.1 V 70.2 -34.1 Peak 121 1.7 Modem 9600M, PWR 37 220 375.023 35.4 H 70.2 -34.8 Peak 165 1.7 Modem 9600M, PWR 37 220 444.006 39.2 H 70.2 -31.8 Peak 315 1.7 Modem 9600M, PWR 37 220 444.006 39.2 H 70.2 -31.8 Peak 315 1.7 Modem 9600M, PWR 37 220 600.006 38.5 V 70.2 -31.7 Peak 155 1.7 Modem 9600M, PWR 37 222 875.004 42.8 H 70.2 -31.7 Peak 116 1.7 Modem 9600M, PWR 37	F	Approximate i	ieid strengtn	iinii @ sin.	70.2						
un #1a - Preliminary measurements - chamber scans irequency Level Pol FCC 90.210 Detector Azimuth Height Comments Tx Free MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters MHz 42.983 36.1 V 70.2 -34.1 Peak 121 1.7 Modem 9600M, PWR 37 220 375.023 35.4 H 70.2 -34.8 Peak 165 1.7 Modem 9600M, PWR 37 220 444.006 39.2 H 70.2 -31.8 Peak 315 1.7 Modem 9600M, PWR 37 220 444.006 39.2 H 70.2 -31.8 Peak 315 1.7 Modem 9600M, PWR 37 220 600.006 38.5 V 70.2 -31.7 Peak 155 1.7 Modem 9600M, PWR 37 222 875.004 42.8 H 70.2 -31.7 Peak 116 1.7 Modem 9600M, PWR 37	e limit is t	aken from FC	C Part 90 M	lask B for 21	6-220 MHz c	operation and	Mask F for 2	220-222 MH	z operation		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						-			1		
42.983 36.1 V 70.2 -34.1 Peak 121 1.7 Modem 9600M, PWR 37 222 42.983 35.7 V 70.2 -34.5 Peak 239 1.7 Modem 9600M, PWR 37 220 375.023 35.4 H 70.2 -34.8 Peak 165 1.7 Modem 19200, PWR 37 216 440.022 38.4 H 70.2 -31.8 Peak 320 1.7 Modem 9600M, PWR 37 220 444.006 39.2 H 70.2 -31.0 Peak 315 1.7 Modem 9600M, PWR 37 222 499.993 37.4 V 70.2 -32.8 Peak 136 1.7 Modem 19200, PWR 37 216 500.006 38.5 V 70.2 -31.7 Peak 1155 1.7 Modem 19200, PWR 37 222 875.017 38.6 H 70.2 -31.6 Peak 112 1.7 Modem 19200, PWR 37 216 875.017 34.7 H 70.2 -35.5 Peak 145 1.7									Comments		Tx Free
42.983 35.7 V 70.2 -34.5 Peak 239 1.7 Modem 9600M, PWR 37 220 375.023 35.4 H 70.2 -34.8 Peak 165 1.7 Modem 19200, PWR 37 216 440.022 38.4 H 70.2 -31.8 Peak 320 1.7 Modem 9600M, PWR 37 220 444.006 39.2 H 70.2 -31.0 Peak 315 1.7 Modem 9600M, PWR 37 222 499.993 37.4 V 70.2 -32.8 Peak 136 1.7 Modem 19200, PWR 37 216 500.006 38.5 V 70.2 -31.7 Peak 155 1.7 Modem 19200, PWR 37 218.5 875.017 38.6 H 70.2 -27.4 Peak 116 1.7 Modem 9600M, PWR 37 220 875.017 34.7 H 70.2 -35.5 Peak 145 1.7 Modem 9600M, PWR 37 216 875.017 34.0 V 70.2 -36.2 Peak 163 1.7 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>Ŭ</td><td>-</td><td></td><td></td><td></td><td></td></t<>						Ŭ	-				
375.023 35.4 H 70.2 -34.8 Peak 165 1.7 Modem 19200, PWR 37 216 440.022 38.4 H 70.2 -31.8 Peak 320 1.7 Modem 9600M, PWR 37 220 444.006 39.2 H 70.2 -31.0 Peak 315 1.7 Modem 9600M, PWR 37 222 499.993 37.4 V 70.2 -32.8 Peak 136 1.7 Modem 19200, PWR 37 216 500.006 38.5 V 70.2 -31.7 Peak 155 1.7 Modem 19200, PWR 37 218.5 375.017 38.6 H 70.2 -27.4 Peak 116 1.7 Modem 9600M, PWR 37 220 375.017 34.6 H 70.2 -31.6 Peak 145 1.7 Modem 9600M, PWR 37 220 375.017 34.0 V 70.2 -35.5 Peak 145 1.7 Modem 19200, PWR 37 216 375.017 34.0 V 70.2 -26.9 Peak 163 1.7 <											
440.02238.4H70.2-31.8Peak3201.7Modem 9600M, PWR 37220444.00639.2H70.2-31.0Peak3151.7Modem 9600M, PWR 37222499.99337.4V70.2-32.8Peak1361.7Modem 19200, PWR 37216500.00638.5V70.2-31.7Peak1551.7Modem 19200, PWR 37218.5507.00442.8H70.2-27.4Peak1161.7Modem 9600M, PWR 37222375.01738.6H70.2-31.6Peak1121.7Modem 9600M, PWR 37220375.01734.7H70.2-35.5Peak1451.7Modem 19200, PWR 37216.5375.01734.0V70.2-36.2Peak1841.7Modem 19200, PWR 37218.5000.06043.3H70.2-26.9Peak1631.7Modem 9600M, PWR 37220000.06040.5V70.2-29.7Peak381.7Modem 9600M, PWR 37222216.00262.8HPeak01.7Modem 19200, PWR 37218.5220.00356.9VPeak01.7Modem 9600M, PWR 37220222.00357.1HPeak1191.7Modem 9600M, PWR 37220222.00357.1HPeak <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
444.00639.2H70.2-31.0Peak3151.7Modem 9600M, PWR 37222499.99337.4V70.2-32.8Peak1361.7Modem 19200, PWR 37216500.00638.5V70.2-31.7Peak1551.7Modem 19200, PWR 37218.5375.00442.8H70.2-27.4Peak1161.7Modem 9600M, PWR 37222375.01738.6H70.2-31.6Peak1121.7Modem 9600M, PWR 37220375.01734.7H70.2-35.5Peak1451.7Modem 19200, PWR 37216.5375.01734.0V70.2-36.2Peak1841.7Modem 19200, PWR 37218.5000.06043.3H70.2-26.9Peak1631.7Modem 9600M, PWR 37220000.06040.5V70.2-29.7Peak381.7Modem 9600M, PWR 37222216.00262.8HPeak01.7Modem 19200, PWR 37218.5220.00356.9VPeak01.7Modem 19200, PWR 37222222.00357.1HPeak1191.7Modem 9600M, PWR 37222The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free spacrote replanting the tables above was calculated from											
199.99337.4V70.2-32.8Peak1361.7Modem 19200, PWR 37216500.00638.5V70.2-31.7Peak1551.7Modem 19200, PWR 37218.5375.00442.8H70.2-27.4Peak1161.7Modem 9600M, PWR 37222375.01738.6H70.2-31.6Peak1121.7Modem 9600M, PWR 37220375.01734.7H70.2-35.5Peak1451.7Modem 19200, PWR 37216375.01734.0V70.2-36.2Peak1841.7Modem 19200, PWR 37218.5000.06043.3H70.2-26.9Peak1631.7Modem 9600M, PWR 37220000.06040.5V70.2-29.7Peak381.7Modem 9600M, PWR 37222000.06040.5V70.2-29.7Peak381.7Modem 19200, PWR 37216216.00262.8HPeak01.7Modem 19200, PWR 37216220.00356.9VPeak01.7Modem 19200, PWR 37218.5220.00357.1HPeak1191.7Modem 9600M, PWR 37222The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free spacpropagation equation: E=√(30PG)/d. This limit is conser											
500.006 38.5 V 70.2 -31.7 Peak 155 1.7 Modem 19200, PWR 37 218.5 375.004 42.8 H 70.2 -27.4 Peak 116 1.7 Modem 19200, PWR 37 222 375.017 38.6 H 70.2 -31.6 Peak 112 1.7 Modem 9600M, PWR 37 220 375.017 34.7 H 70.2 -35.5 Peak 145 1.7 Modem 19200, PWR 37 216 375.017 34.0 V 70.2 -36.2 Peak 184 1.7 Modem 19200, PWR 37 218.5 000.060 43.3 H 70.2 -26.9 Peak 163 1.7 Modem 9600M, PWR 37 220 000.060 40.5 V 70.2 -29.7 Peak 38 1.7 Modem 9600M, PWR 37 222 216.002 62.8 H - - Peak 0 1.7 Modem 9600M, PWR 37 216 220.003 56.9 V - - Peak 0 1.7 Modem 9600M, P											
375.00442.8H70.2-27.4Peak1161.7Modem 9600M, PWR 37222375.01738.6H70.2-31.6Peak1121.7Modem 9600M, PWR 37220375.01734.7H70.2-35.5Peak1451.7Modem 19200, PWR 37216375.01734.0V70.2-36.2Peak1841.7Modem 19200, PWR 37218.5000.06043.3H70.2-26.9Peak1631.7Modem 9600M, PWR 37220000.06040.5V70.2-29.7Peak381.7Modem 9600M, PWR 37222216.00262.8HPeak01.7Modem 19200, PWR 37218.5220.00356.9VPeak01.7Modem 19200, PWR 37218.5222.00357.1HPeak01.7Modem 9600M, PWR 37220The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free spacepropagation equation: $E=\sqrt{(30PG)/d}$. This limit is conservative - it does not consider the presence of the ground plane and, for erp limits, the dipole gain (2.2dBi) has not been included. The erp or eirp for all signals with less than 20dB of margin relative to this field strength limit is determined using substitution measurements.											
875.01738.6H70.2-31.6Peak1121.7Modem 9600M, PWR 37220875.01734.7H70.2-35.5Peak1451.7Modem 19200, PWR 37216875.01734.0V70.2-36.2Peak1841.7Modem 19200, PWR 37218.5000.06043.3H70.2-26.9Peak1631.7Modem 9600M, PWR 37220000.06040.5V70.2-29.7Peak381.7Modem 9600M, PWR 37222216.00262.8HPeak01.7Modem 19200, PWR 37218.5218.50560.9HPeak01.7Modem 19200, PWR 37218.5220.00356.9VPeak2691.7Modem 9600M, PWR 37220222.00357.1HPeak1191.7Modem 9600M, PWR 37222The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free spaceropagation equation: $E=\sqrt{(30PG)/d}$. This limit is conservative - it does not consider the presence of the ground plane and, for erp limits, the dipole gain (2.2dBi) has not been included. The erp or eirp for all signals with less than 20dB of margin relative to this field strength limit is determined using substitution measurements.			=								
875.01734.7H70.2-35.5Peak1451.7Modem 19200, PWR 37216875.01734.0V70.2-36.2Peak1841.7Modem 19200, PWR 37218.5000.06043.3H70.2-26.9Peak1631.7Modem 9600M, PWR 37220000.06040.5V70.2-29.7Peak381.7Modem 9600M, PWR 37222216.00262.8HPeak01.7Modem 19200, PWR 37218.5218.50560.9HPeak01.7Modem 19200, PWR 37218.5220.00356.9VPeak2691.7Modem 9600M, PWR 37220222.00357.1HPeak2691.7Modem 9600M, PWR 37222Note 1:The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free spacepropagation equation: $E=\sqrt{(30PG)/d}$. This limit is conservative - it does not consider the presence of the ground plane and, for erp limits, the dipole gain (2.2dBi) has not been included. The erp or eirp for all signals with less than 20dB of margin relative to this field strength limit is determined using substitution measurements.											
875.017 34.0 V 70.2 -36.2 Peak 184 1.7 Modem 19200, PWR 37 218.5 000.060 43.3 H 70.2 -26.9 Peak 163 1.7 Modem 9600M, PWR 37 220 000.060 40.5 V 70.2 -29.7 Peak 38 1.7 Modem 9600M, PWR 37 222 216.002 62.8 H - - Peak 0 1.7 Modem 19200, PWR 37 218.5 218.505 60.9 H - - Peak 0 1.7 Modem 19200, PWR 37 218.5 220.003 56.9 V - - Peak 0 1.7 Modem 19200, PWR 37 218.5 222.003 57.1 H - - Peak 269 1.7 Modem 9600M, PWR 37 222 Note 1: for erp limits, the dipole gain (2.2dBi) has not been included. The erp/eirp limit detailed in the standard using the free space of the ground plane and, for erp limits, the dipole gain (2.2dBi) has not been included. The erp or eirp for all signals with less than 20dB of margin relative to this field strength limit is determined using substitution measurements.											
Note 1:HTO.2-26.9Peak1631.7Modem 9600M, PWR 37220000.06040.5V70.2-29.7Peak381.7Modem 9600M, PWR 37222216.00262.8HPeak01.7Modem 19200, PWR 37216218.50560.9HPeak01.7Modem 19200, PWR 37218.5220.00356.9VPeak2691.7Modem 9600M, PWR 37220222.00357.1HPeak2691.7Modem 9600M, PWR 37220222.00357.1HPeak1191.7Modem 9600M, PWR 37222Note 1:The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free spacepropagation equation: $E=\sqrt{(30PG)/d}$. This limit is conservative - it does not consider the presence of the ground plane and, for erp limits, the dipole gain (2.2dBi) has not been included. The erp or eirp for all signals with less than 20dB of margin relative to this field strength limit is determined using substitution measurements.											
000.06040.5V70.2-29.7Peak381.7Modem 9600M, PWR 37222216.00262.8HPeak01.7Modem 19200, PWR 37216218.50560.9HPeak01.7Modem 19200, PWR 37218.5220.00356.9VPeak2691.7Modem 9600M, PWR 37220222.00357.1HPeak1191.7Modem 9600M, PWR 37222The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free spacepropagation equation: $E=\sqrt{(30PG)/d}$. This limit is conservative - it does not consider the presence of the ground plane and, for erp limits, the dipole gain (2.2dBi) has not been included. The erp or eirp for all signals with less than 20dB of margin relative to this field strength limit is determined using substitution measurements.			-								
216.00262.8HPeak01.7Modem 19200, PWR 37216218.50560.9HPeak01.7Modem 19200, PWR 37218.5220.00356.9VPeak2691.7Modem 9600M, PWR 37220222.00357.1HPeak1191.7Modem 9600M, PWR 37222The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free spacepropagation equation: $E=\sqrt{(30PG)/d}$. This limit is conservative - it does not consider the presence of the ground plane and, for erp limits, the dipole gain (2.2dBi) has not been included. The erp or eirp for all signals with less than 20dB of margin relative to this field strength limit is determined using substitution measurements.											
218.50560.9HPeak01.7Modem 19200, PWR 37218.5220.00356.9VPeak2691.7Modem 9600M, PWR 37220222.00357.1HPeak1191.7Modem 9600M, PWR 37222The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free spacepropagation equation: $E=\sqrt{(30PG)/d}$. This limit is conservative - it does not consider the presence of the ground plane and, for erp limits, the dipole gain (2.2dBi) has not been included. The erp or eirp for all signals with less than 20dB of margin relative to this field strength limit is determined using substitution measurements.					-29.1				1		
220.00356.9VPeak2691.7Modem 9600M, PWR 37220222.00357.1HPeak1191.7Modem 9600M, PWR 37222The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free space propagation equation: $E=\sqrt{(30PG)/d}$. This limit is conservative - it does not consider the presence of the ground plane and, for erp limits, the dipole gain (2.2dBi) has not been included. The erp or eirp for all signals with less than 20dB of margin relative to this field strength limit is determined using substitution measurements.				-	-						
222.003 57.1 H - Peak 119 1.7 Modem 9600M, PWR 37 222 Note 1: The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free space propagation equation: $E=\sqrt{(30PG)/d}$. This limit is conservative - it does not consider the presence of the ground plane and, for erp limits, the dipole gain (2.2dBi) has not been included. The erp or eirp for all signals with less than 20dB of margin relative to this field strength limit is determined using substitution measurements.				-	-						
Note 1: The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free space propagation equation: E=√(30PG)/d. This limit is conservative - it does not consider the presence of the ground plane and, for erp limits, the dipole gain (2.2dBi) has not been included. The erp or eirp for all signals with less than 20dB of margin relative to this field strength limit is determined using substitution measurements.				-	-						
Note 1: propagation equation: $E=\sqrt{(30PG)/d}$. This limit is conservative - it does not consider the presence of the ground plane and, for erp limits, the dipole gain (2.2dBi) has not been included. The erp or eirp for all signals with less than 20dB of margin relative to this field strength limit is determined using substitution measurements.	.22.005	57.1	11			I Cak	113	1.7		WI, T WIX 07	
Note 1: propagation equation: $E=\sqrt{(30PG)/d}$. This limit is conservative - it does not consider the presence of the ground plane and, for erp limits, the dipole gain (2.2dBi) has not been included. The erp or eirp for all signals with less than 20dB of margin relative to this field strength limit is determined using substitution measurements.		The field stre	enath limit in	the tables at	oove was ca	Iculated from	the erp/eirp	imit detailed	l in the standa	rd using the f	free spac
Note 1: for erp limits, the dipole gain (2.2dBi) has not been included. The erp or eirp for all signals with less than 20dB of margin relative to this field strength limit is determined using substitution measurements.											
relative to this field strength limit is determined using substitution measurements.			•	· · ·					•	• •	
		•		,				-			
	Note 2:										

	-11.									
6		DCC ^{Company}						Radi	o Test	Data
Client:	GE MDS LLO	C						Job Number:	J77843	
							T-	Log Number:	T77846	
Model:	SD2 Transce	eiver					Acco	unt Manager:	Susan Pelzl	
Contact:	Dennis McCa	arthy								
Standard:	FCC Parts 8	0, 90 & 95, I	RSS-119, FC	C Part 15				Class:	N/A	
					ubstitution N					
Date:	11/5/09 & 1/5	5/10	Engineer:	Mehran Birg	jani	Location:	SVOATS #	2		
EUT Field S	strength									
Frequency	Level	Pol	FCC 9	90.210	Detector	Azimuth	Height	Comments		Channel
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters			
42.983	29.5	V	70.2	-40.7	PK	5	1.0	Modem 9600		222
375.023	31.4	Н	70.2	-38.8	PK	165	1.0	Modem 1920		216
440.022	35.2	H	70.2	-35.0	PK	200	1.0	Modem 9600		220
443.998	34.5	H	70.2	-35.7	PK	298	1.0	Modem 9600		222
500.006	41.2	<u>V</u>	70.2	-29.0	PK	155	1.7	Modem 1920		218.5
875.004	41.7	<u>Н</u> Н	70.2	-28.5	PK	309	1.0	Modem 9600		222
875.017 1000.060	40.4 46.7	<u>н</u> Н	70.2 70.2	-29.8 -23.5	PK PK	350 15	1.0 1.1	Modem 9600		220 220
1000.000	40.7	П	70.2	-23.5	۳N	15	1.1	Modem 9600	IVI, PWR 37	220
		-			culated from t	• •			-	•
	propagation for erp limits, relative to thi	equation: E , the dipole g is field stren	=√(30PG)/d. gain (2.2dBi) gth limit is de	This limit is o has not beer termined usi	conservative - n included. Th ing substitutio	it does not one erp or eirp	consider the o for all sign	presence of	the ground pl	ane and,
	propagation for erp limits, relative to thi	equation: E , the dipole g is field stren	=√(30PG)/d. gain (2.2dBi)	This limit is o has not beer termined usi	conservative - n included. Th ing substitutio	it does not one erp or eirp	consider the o for all sign	presence of	the ground pl	ane and,
	propagation for erp limits, relative to thi	equation: E , the dipole g is field stren	=√(30PG)/d. gain (2.2dBi) gth limit is de	This limit is o has not beer termined usi	conservative - n included. Th ing substitutio	it does not one erp or eirp	consider the o for all sign	presence of	the ground pl	ane and,
	propagation for erp limits, relative to thi	equation: E , the dipole g is field stren	=√(30PG)/d. gain (2.2dBi) gth limit is de	This limit is o has not beer termined usi	conservative - n included. Th ing substitutio	it does not one erp or eirp	consider the o for all sign	presence of	the ground pl	ane and,
	propagation for erp limits, relative to thi	equation: E , the dipole g is field stren	=√(30PG)/d. gain (2.2dBi) gth limit is de	This limit is o has not beer termined usi	conservative - n included. Th ing substitutio	it does not one erp or eirp	consider the o for all sign	presence of	the ground pl	ane and,
	propagation for erp limits, relative to thi	equation: E , the dipole g is field stren	=√(30PG)/d. gain (2.2dBi) gth limit is de	This limit is o has not beer termined usi	conservative - n included. Th ing substitutio	it does not one erp or eirp	consider the o for all sign	presence of	the ground pl	ane and,
	propagation for erp limits, relative to thi	equation: E , the dipole g is field stren	=√(30PG)/d. gain (2.2dBi) gth limit is de	This limit is o has not beer termined usi	conservative - n included. Th ing substitutio	it does not one erp or eirp	consider the o for all sign	presence of	the ground pl	ane and,
	propagation for erp limits, relative to thi	equation: E , the dipole g is field stren	=√(30PG)/d. gain (2.2dBi) gth limit is de	This limit is o has not beer termined usi	conservative - n included. Th ing substitutio	it does not one erp or eirp	consider the o for all sign	presence of	the ground pl	ane and,
	propagation for erp limits, relative to thi	equation: E , the dipole g is field stren	=√(30PG)/d. gain (2.2dBi) gth limit is de	This limit is o has not beer termined usi	conservative - n included. Th ing substitutio	it does not one erp or eirp	consider the o for all sign	presence of	the ground pl	ane and,
	propagation for erp limits, relative to thi	equation: E , the dipole g is field stren	=√(30PG)/d. gain (2.2dBi) gth limit is de	This limit is o has not beer termined usi	conservative - n included. Th ing substitutio	it does not one erp or eirp	consider the o for all sign	presence of	the ground pl	ane and,
	propagation for erp limits, relative to thi	equation: E , the dipole g is field stren	=√(30PG)/d. gain (2.2dBi) gth limit is de	This limit is o has not beer termined usi	conservative - n included. Th ing substitutio	it does not one erp or eirp	consider the o for all sign	presence of	the ground pl	ane and,
	propagation for erp limits, relative to thi	equation: E , the dipole g is field stren	=√(30PG)/d. gain (2.2dBi) gth limit is de	This limit is o has not beer termined usi	conservative - n included. Th ing substitutio	it does not one erp or eirp	consider the o for all sign	presence of	the ground pl	ane and,
	propagation for erp limits, relative to thi	equation: E , the dipole g is field stren	=√(30PG)/d. gain (2.2dBi) gth limit is de	This limit is o has not beer termined usi	conservative - n included. Th ing substitutio	it does not one erp or eirp	consider the o for all sign	presence of	the ground pl	ane and,
	propagation for erp limits, relative to thi	equation: E , the dipole g is field stren	=√(30PG)/d. gain (2.2dBi) gth limit is de	This limit is o has not beer termined usi	conservative - n included. Th ing substitutio	it does not one erp or eirp	consider the o for all sign	presence of	the ground pl	ane and,
	propagation for erp limits, relative to thi	equation: E , the dipole g is field stren	=√(30PG)/d. gain (2.2dBi) gth limit is de	This limit is o has not beer termined usi	conservative - n included. Th ing substitutio	it does not one erp or eirp	consider the o for all sign	presence of	the ground pl	ane and,
Note 1: Note 2:	propagation for erp limits, relative to thi	equation: E , the dipole g is field stren	=√(30PG)/d. gain (2.2dBi) gth limit is de	This limit is o has not beer termined usi	conservative - n included. Th ing substitutio	it does not one erp or eirp	consider the o for all sign	presence of	the ground pl	ane and,
Note 1: Note 2:	propagation for erp limits, relative to thi	equation: E , the dipole g is field stren	=√(30PG)/d. gain (2.2dBi) gth limit is de	This limit is o has not beer termined usi	conservative - n included. Th ing substitutio	it does not one erp or eirp	consider the o for all sign	presence of	the ground pl	ane and,
	propagation for erp limits, relative to thi	equation: E , the dipole g is field stren	=√(30PG)/d. gain (2.2dBi) gth limit is de	This limit is o has not beer termined usi	conservative - n included. Th ing substitutio	it does not one erp or eirp	consider the o for all sign	presence of	the ground pl	ane and,
	propagation for erp limits, relative to thi	equation: E , the dipole g is field stren	=√(30PG)/d. gain (2.2dBi) gth limit is de	This limit is o has not beer termined usi	conservative - n included. Th ing substitutio	it does not one erp or eirp	consider the o for all sign	presence of	the ground pl	ane and,
	propagation for erp limits, relative to thi	equation: E , the dipole g is field stren	=√(30PG)/d. gain (2.2dBi) gth limit is de	This limit is o has not beer termined usi	conservative - n included. Th ing substitutio	it does not one erp or eirp	consider the o for all sign	presence of	the ground pl	ane and,

Radio Test Data

	An 2022 company		
Client:	GE MDS LLC	Job Number:	J77843
Model	SD2 Transceiver	T-Log Number:	T77846
wouer.		Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	FCC Parts 80, 90 & 95, RSS-119, FCC Part 15	Class:	N/A

RSS 119 and FCC Part 80 & 90

Power, Occupied Bandwidth, Frequency Stability and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

All measurements are made with the EUT's rf port connected to the measurement instrument via an attenuator or dc-block if necessary. All amplitude measurements are adjusted to account for the attenuation between EUT and measuring instrument. For frequency stability measurements the EUT was place inside an environmental chamber.

Radiated measurements are made with the EUT located on a non-conductive table, 3m from the measurement antenna.

Ambient Conditions:	Temperature:	10-20 °C
	Rel. Humidity:	40-60 %

Summary of Results, serial #9999999

Run #	Spacing	Test Performed	Limit	Pass / Fail	Result / Margin	
1	50, 25, 15, 12.5, 6.25 and 5 kHz	Output Power	Determined at time of Licensing	-	37.0dBm (5Watts)	
2	50, 25, 15, 12.5, 6.25 and 5 kHz	Spectral Mask	Within Mask 90.210(b)/80.211(f) or 90.210(f)	Pass	See Plots	
3	50, 25, 15, 12.5, 6.25 and 5 kHz	99% or Occupied Bandwidth	50, 20, 11.25, 6 or 4 kHz	Pass	See Plots	
4	50, 25, 15, 12.5, 6.25 and 5 kHz	Spurious Emissions (conducted)	-13dBm or -25dBm	Pass	-29.7dBm @ 216.90MHz (-4.7dB)	

Modifications Made During Testing

No modifications were made to the EUT during testing

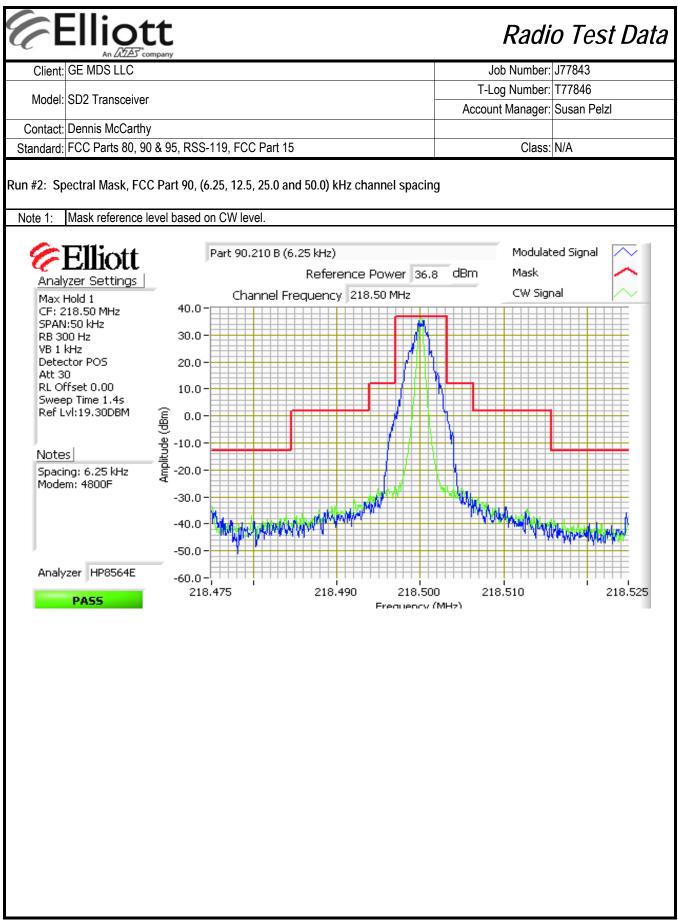
Deviations From The Standard

No deviations were made from the requirements of the standard.

Date of Test: 10/29/2009 & 1/7/2010 Test Engineer: John Caizzi & M. Birgani Test Location: Environmental Lab

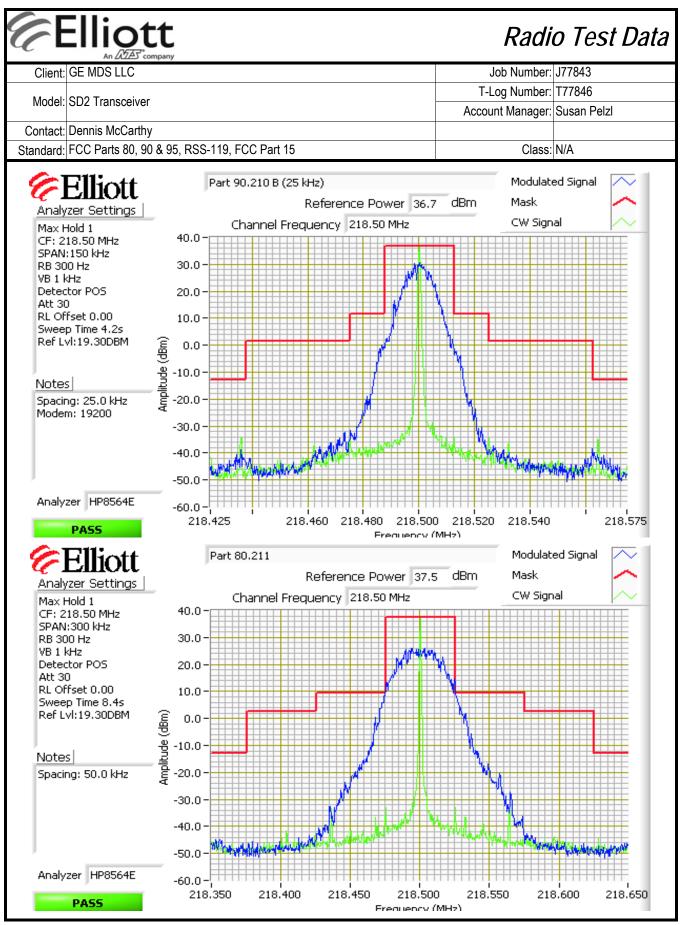
Radio Test Data

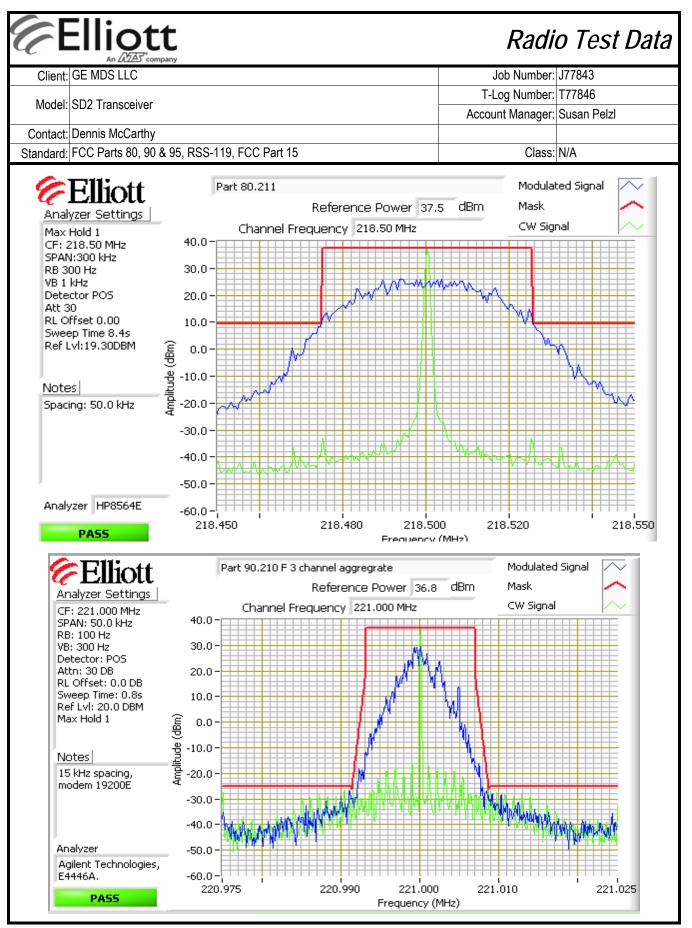
	An ZAZZAO company		
Client:	GE MDS LLC	Job Number:	J77843
Madal	SD2 Transceiver	T-Log Number:	T77846
MOUEI.	SD2 Transceiver	Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	FCC Parts 80, 90 & 95, RSS-119, FCC Part 15	Class:	N/A

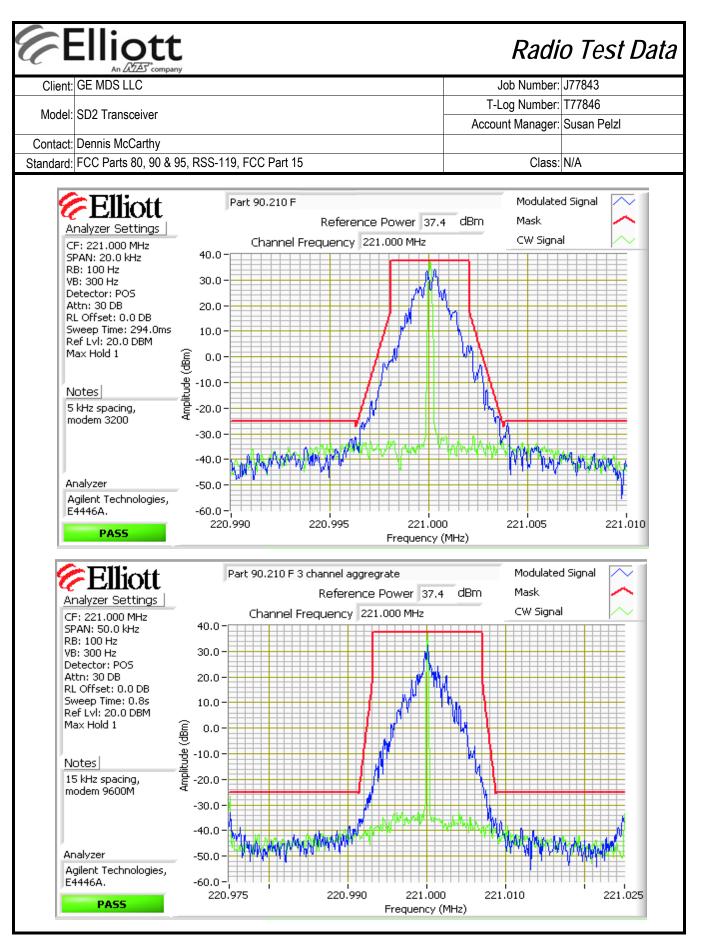

Run #1: Output Power

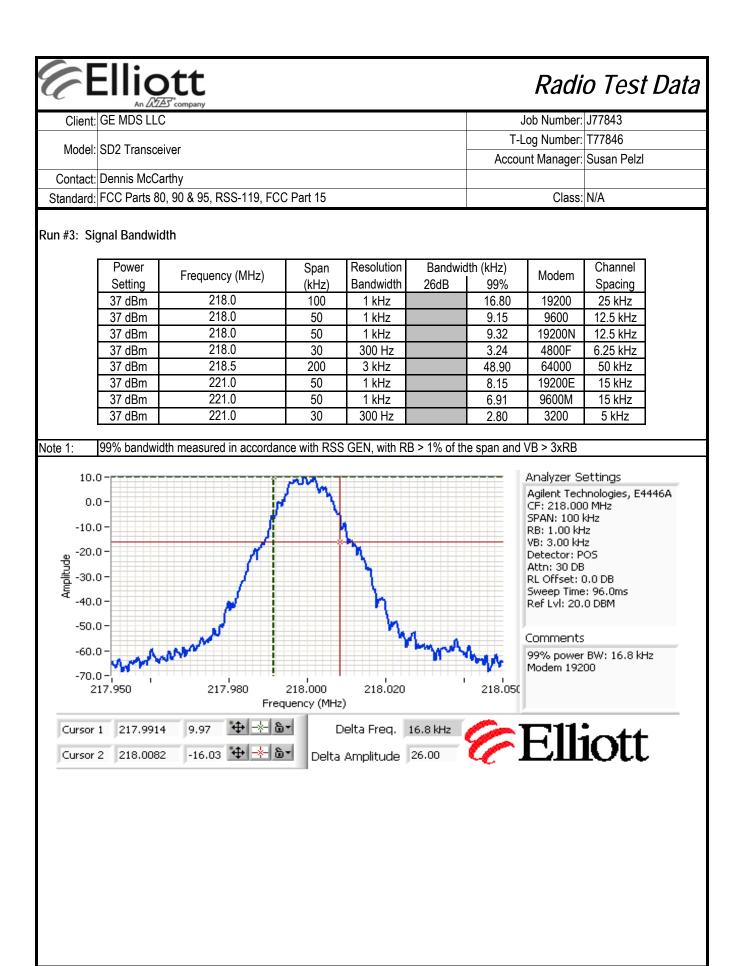
Power settings from 20 to 37 are available corresponding to 0.1 to 5 Watts for 216 - 222 MHz.

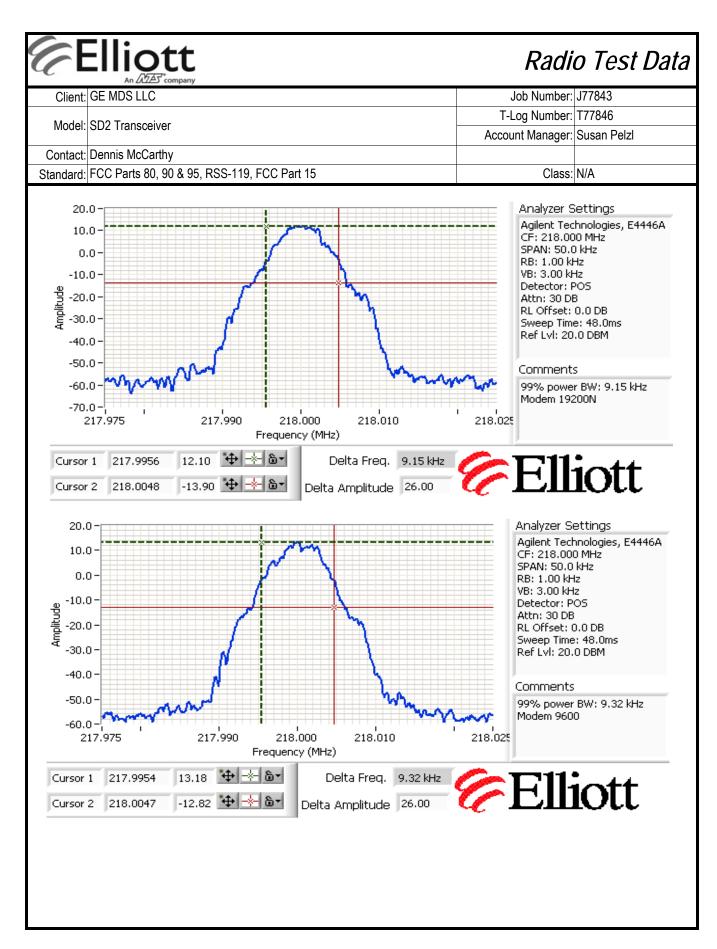
Power	Power Eroguopov (MU-)		Output Power		Antenna	ERP		Madara
Setting ²	Setting ² Frequency (MHz)	(dBm) ¹	W	Gain(dBd)	Result	dBm	W	Modem
36	216.0	37.0	5.0	7.0	Pass	44.0	25.119	19200
36	218.5	37.0	5.0	7.0	Pass	44.0	25.119	64000
36	220.0	36.7	4.7	7.0	Pass	43.7	23.442	19200
36	216.0	36.9	4.9	7.0	Pass	43.9	24.547	9600
36	218.5	36.5	4.5	7.0	Pass	43.5	22.387	64000
36	220.0	36.3	4.3	7.0	Pass	43.3	21.380	9600
36	216.0	36.7	4.7	7.0	Pass	43.7	23.442	19200N
36	218.5	36.6	4.6	7.0	Pass	43.6	22.909	64000
36	220.0	36.5	4.5	7.0	Pass	43.5	22.387	19200N
36	216.0	36.7	4.7	7.0	Pass	43.7	23.442	4800F
36	218.5	36.2	4.2	7.0	Pass	43.2	20.893	64000
36	220.0	36.5	4.5	7.0	Pass	43.5	22.387	4800F
37	220.0	37.0	5.0	7.0	Pass	44.0	25.119	19200E
37	222.0	36.6	4.6	7.0	Pass	43.6	22.909	19200E
37	220.0	36.5	4.5	7.0	Pass	43.5	22.387	9600M
37	222.0	37.0	5.0	7.0	Pass	44.0	25.119	9600M
37	220.0	36.6	4.6	7.0	Pass	43.6	22.909	3200
37	222.0	36.6	4.6	7.0	Pass	43.6	22.909	3200

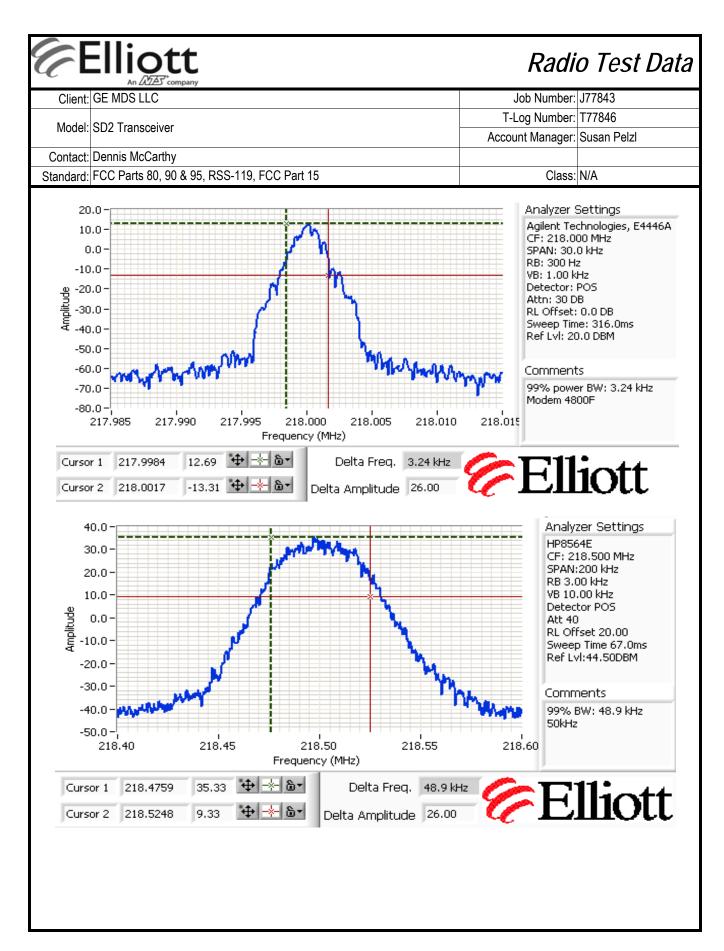

Note 1: Output power measured using a peak power meter

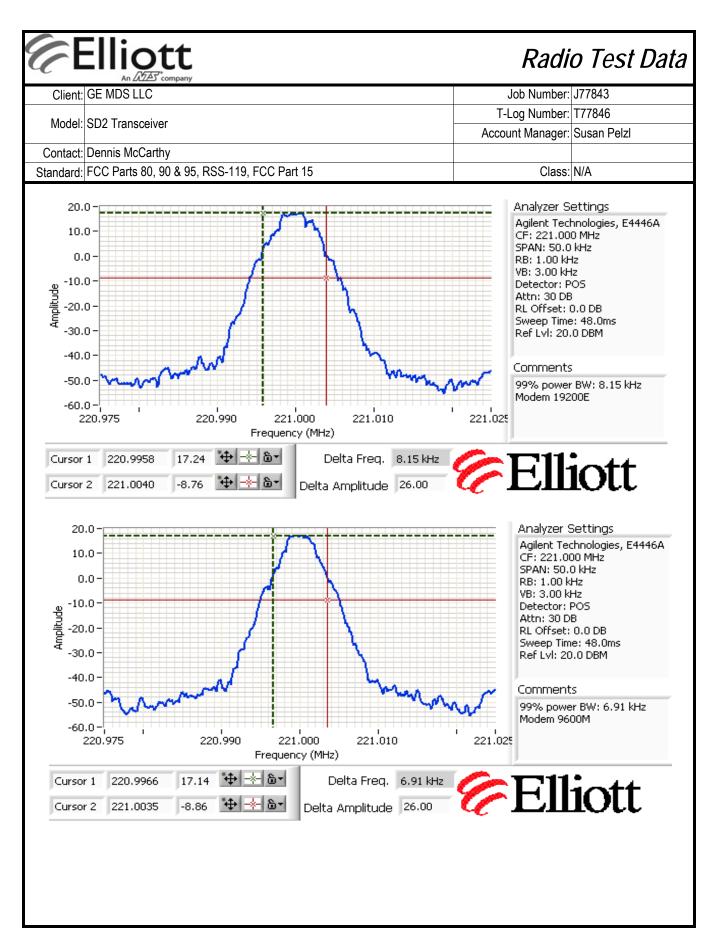

Note 2: Power setting - the software power setting used during testing, included for reference only.

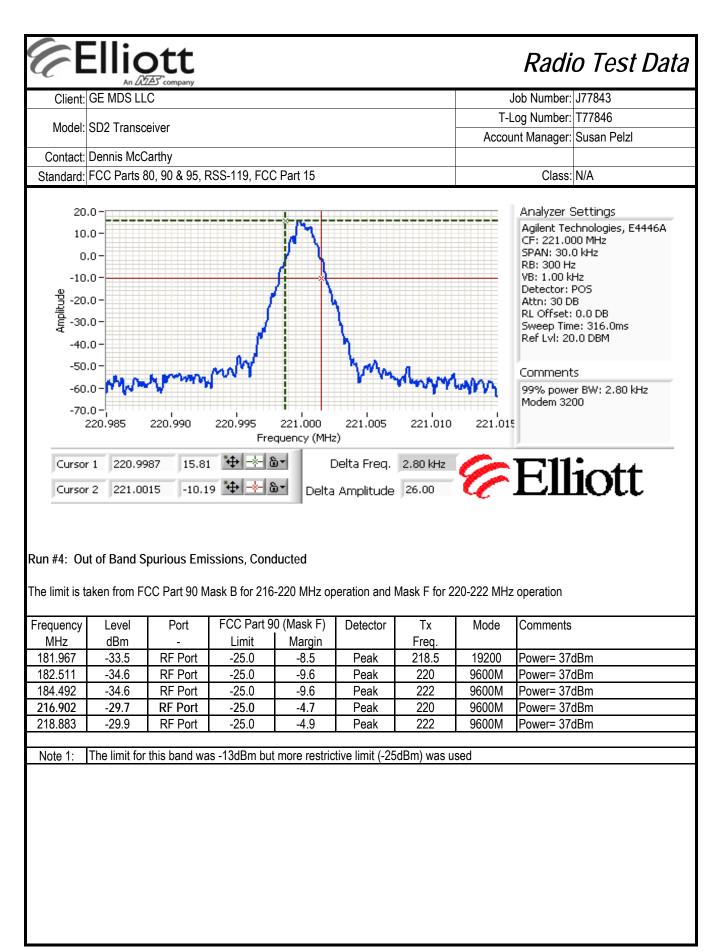


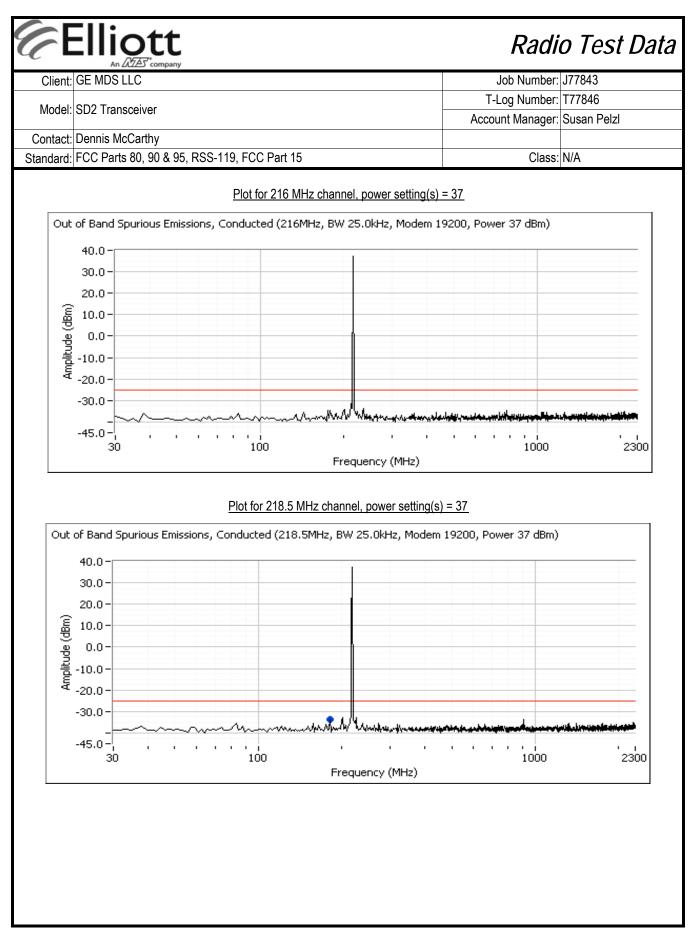


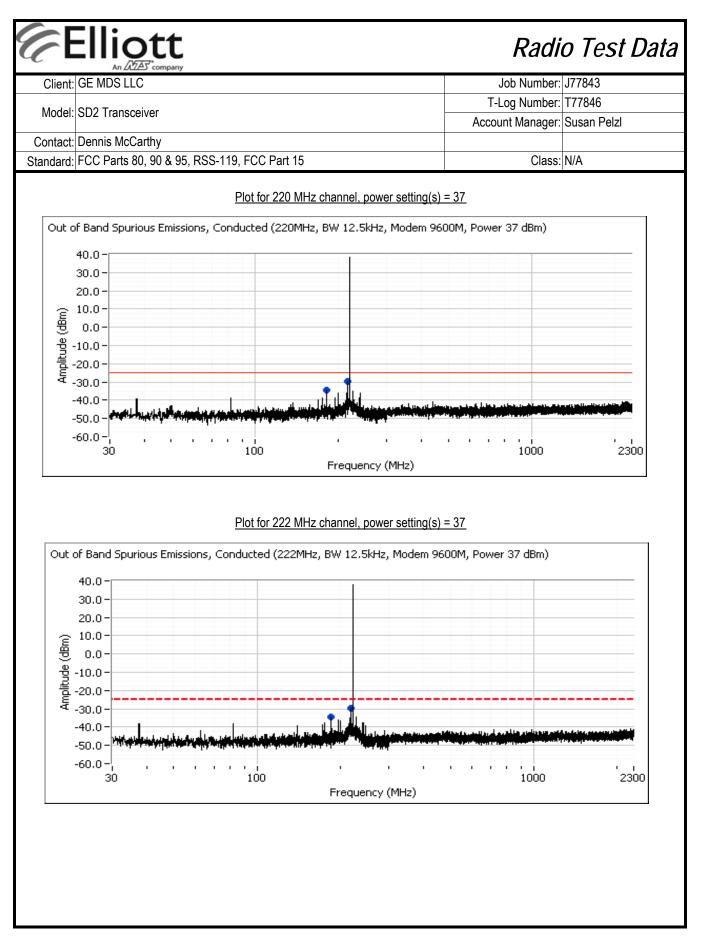

T77846 GE MDS











Ć	Elli	ott				EM	IC Test Data					
Client:	GE MDS LLC					Job Number:	J77843					
Model:	Model: SD2 Transceiver					T-Log Number: T77846						
							Susan Pelzl					
	Dennis M					01	N1/A					
Standard:	FUC Part	s 80, 90 & 95,	RSS-119, FCC Part 15			Class:	N/A					
RSS 119 and FCC Part 80 & 90 Frequency Stability												
Test Spe	cific Det	ails										
	Objective:	The objective specification	e of this test session is to perfor listed above.	m final qualifi	cation testi	ng of the EU	T with respect to the					
Test	Engineer:	11/9/2009 J. Caizzu, M. Radio Lab	Birgani Co	Config. Used: nfig Change: EUT Voltage:	None							
 General Test Configuration All measurements are made with the EUT's rf port connected to the measurement instrument via an attenuator or dc-block if necessary. All amplitude measurements are adjusted to account for the attenuation between EUT and measuring instrument. For frequency stability measurements the EUT was placed inside an environmental chamber. Radiated measurements are made with the EUT located on a non-conductive table, 3m from the measurement antenna. 												
Ambient	Ambient Conditions: Temperature: 17-22 °C Rel. Humidity: 30-40 %											
Summary of Results												
Run #		Data Rati	Test Performed	Lin		Pass / Fail						
1	12.5	9600M	Frequency Stability	Part 90 -	1.5ppm	Pass	0.17 ppm					
Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard No deviations were made from the requirements of the standard.												

Ide M Substrate Client GE MDS LLC Job Number: J77843 Model: SD2 Transceiver T-Log Number: T77846 Contact: Dennis McCarthy Image: Susan Pelzl Standard: FCC Parts 80, 90 & 95, RSS-119, FCC Part 15 Class; N/A Run #8: Frequency Stability Image: N/A Nominal Frequency: 220 MHz 220 MHz Image: Frequency Stability Over Temperature The EUT was soaked at each temperature for a minimum of 30 minutes prior to making the measurements to ensure the EUT and chamber had stabilized at that temperature. Image: Temperature requency Measure Drift Image: (Celsius) (MHz) (Hz) (ppm) -30 219.999968 -32 0.15 -10 219.999981 -19 0.09 20 219.999981 -19 0.05 30 219.999981 -19 0.05 30 219.999981 -19 0.05 30 219.999981 -19 0.05 30	6	Elliott			EM	IC Test Data
Model: SD2 Transceiver T-Log Number: T77846 Account Manager: Susan Pelzl Su		An 24725 compan	у			
Model: SU2 Transceiver Account Manager: Susan Pelzl Contact: Dennis McCarthy Image: Susan Pelzl Image: Susan Pelzl Standard: FCC Parts 80, 90 & 95, RSS-119, FCC Part 15 Class: N/A Run #8: Frequency Stability Image: Z20 MHz Frequency Stability Over Temperature The EUT was soaked at each temperature for a minimum of 30 minutes prior to making the measurements to ensure the EU and chamber had stabilized at that temperature. Temperature requency Measure Drift (Celsius) (MHz) (Hz) (ppm) -30 219.999968 -32 0.15 -10 219.999968 -12 0.05 -20 219.999988 -12 0.05 -30 219.999988 -12 0.05 -30 219.999988 -12 0.05 -30 219.999988 -12 0.05 -30 219.999988 -12 0.05 -30 220.000035 35 0.16 Worst case: -37 0.17 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Standard: FCC Parts 80. 90 & 95, RSS-119, FCC Part 15 Class: N/A Run #8: Frequency Stability Nominal Frequency: 220 MHz Frequency Stability Over Temperature The EUT was soaked at each temperature for a minimum of 30 minutes prior to making the measurements to ensure the EU' and chamber had stabilized at that temperature. Temperature Requency Measure Drift (Celsius) (MHz) (Hz) (ppm) -30 219.999968 -32 0.15 -10 219.999968 -32 0.15 -10 219.999968 -37 0.17 10 219.999981 -19 0.09 20 219.999988 -12 0.05 30 219.999988 -12 0.05 30 219.999988 -12 0.05 30 219.999930 -10 0.05 30 219.999930 -10 0.05 30 219.999930 -37 0.17 Frequency Stability Over Input Voltage	Model:	SD2 Transceiver			-	
Run #8: Frequency Stability Nominal Frequency: 220 MHz Frequency Stability Over Temperature The EUT was soaked at each temperature for a minimum of 30 minutes prior to making the measurements to ensure the EUT and chamber had stabilized at that temperature. Temperature requency Measure Temperature requency Measure Drift (Celsius) (MHz) (Hz) (ppm) -30 219.999971 -29 0.13 -20 219.999981 -19 0.09 0 219.999981 -19 0.09 0 219.999981 -19 0.09 20 219.9999981 -19 0.09 20 219.999990 -10 0.05 30 219.999990 -10 0.05 30 219.999990 -10 0.05 30 219.999990 -10 0.05 30 219.99990 -10 0.17 Worst case: -37 0.17 Frequency Measure Dri	Contact:	Dennis McCarthy				
Nominal Frequency: 220 MHz Frequency Stability Over Temperature The EUT was soaked at each temperature for a minimum of 30 minutes prior to making the measurements to ensure the EUT and chamber had stabilized at that temperature. Temperature frequency Measure Drift (Celsius) (MHz) (Hz) (Hz) (ppm) -30 219.999968 -32 0.15 -10 219.999968 -32 0.15 -10 219.999988 -19 0.09 0 219.999988 -19 0.09 20 219.999988 -12 0.05 30 219.999988 -12 0.05 30 219.999988 -12 0.05 30 219.999988 -12 0.05 30 219.999988 -12 0.05 Stability Over Input Voltage Frequency Stability Over Input Voltage Nominal Voltage: 13.8 Vdc	Standard:	FCC Parts 80, 90 & 9	5, RSS-119, FCC F	Part 15	Class:	N/A
Frequency Stability Over Temperature The EUT was soaked at each temperature for a minimum of 30 minutes prior to making the measurements to ensure the EUT and chamber had stabilized at that temperature. Temperature fequency Measure Drift (Celsius) (MHz) (Hz) (ppm) -30 219.999971 -29 0.13 -20 219.999986 -32 0.15 -10 219.999981 -19 0.09 0 219.999981 -19 0.09 20 219.999983 -37 0.17 10 219.999984 -12 0.05 30 219.999988 -12 0.05 30 219.99990 -10 0.05 40 220.00003 3 0.01 50 220.000035 35 0.16 Worst case: -37 0.17 Frequency Stability Over Input Voltage Nominal Voltage 13.8 Vdc 15 0.07 11.7 219.999984 -16 0.07 15.9 219.999985	Run #8: Fr	equency Stability				
The EUT was soaked at each temperature for a minimum of 30 minutes prior to making the measurements to ensure the EU and chamber had stabilized at that temperature. Temperature frequency Measure Temperature requency Measure Drift (Celsius) (MHz) (Hz) (ppm) -30 219.999971 -29 0.13 -20 219.399968 -32 0.15 -10 219.999963 -37 0.17 10 219.999981 -19 0.09 20 219.999988 -12 0.05 30 219.999990 -10 0.05 30 219.999990 -10 0.05 30 219.999990 -10 0.05 30 219.999990 -10 0.05 30 219.999983 -12 0.05 30 220.00003 3 0.01 50 220.00003 3 0.01 Frequency Stability Over Input Voltage Nominal Voltage: 13.8 Vdc Voltage requery Measure Drift 0.07 0.07 15.9	N	ominal Frequency:	220 MHz			
The EUT was soaked at each temperature for a minimum of 30 minutes prior to making the measurements to ensure the EU and chamber had stabilized at that temperature. Temperature frequency Measure Temperature requency Measure Drift (Celsius) (MHz) (Hz) (ppm) -30 219.999971 -29 0.13 -20 219.399968 -32 0.15 -10 219.999963 -37 0.17 10 219.999981 -19 0.09 20 219.999988 -12 0.05 30 219.999990 -10 0.05 30 219.999990 -10 0.05 30 219.999990 -10 0.05 30 219.999990 -10 0.05 30 219.999983 -12 0.05 30 220.00003 3 0.01 50 220.00003 3 0.01 Frequency Stability Over Input Voltage Nominal Voltage: 13.8 Vdc Voltage requery Measure Drift 0.07 0.07 15.9						
and chamber had stabilized at that temperature. Immerature (requency Measure Drift (Celsius) (MHz) (Hz) (ppm) -30 219.999961 -29 0.13 -20 219.999968 -32 0.15 -10 219.999963 -37 0.17 10 219.999963 -37 0.17 10 219.999988 -12 0.05 30 219.999988 -12 0.05 30 219.999988 -12 0.05 30 219.999988 -12 0.05 30 219.999983 -10 0.05 40 220.00003 3 0.01 50 220.000035 35 0.16 Worst case: -37 0.17					to method the model inc	
Temperature requency Measure Drift (Celsius) (MHz) (Hz) (ppm) -30 219.999971 -29 0.13 -20 219.999988 -32 0.15 -10 219.999981 -19 0.09 0 219.999981 -19 0.09 0 219.999981 -19 0.09 20 219.999988 -12 0.05 30 219.999988 -12 0.05 30 219.999990 -10 0.05 40 220.00003 3 0.01 50 220.000035 35 0.16 Worst case: -37 0.17				nimum of 30 minutes prior	to making the measure	ments to ensure the EUI
(Celsius) (MHz) (Hz) (ppm) -30 219.999971 -29 0.13 -20 219.999968 -32 0.15 -10 219.999963 -37 0.17 10 219.999981 -19 0.09 0 219.999981 -19 0.09 20 219.999981 -19 0.05 30 219.999988 -12 0.05 30 219.999990 -10 0.05 40 220.00003 3 0.01 50 220.00003 35 0.16 Worst case: -37 0.17 Frequency Stability Over Input Voltage Nominal Voltage: 13.8 Vdc V////>Voltage Prift (DC) (MHz) (Hz) (ppm) 11.7 219.999984 -16 0.07 15.9 219.999985 -15 0.07 15.9 219.999985 -15 0.07	anu cham	iber nad stadilized at i	nat temperature.			
(Celsius) (MHz) (Hz) (ppm) -30 219.999971 -29 0.13 -20 219.999968 -32 0.15 -10 219.999963 -37 0.17 10 219.999981 -19 0.09 0 219.999981 -19 0.09 20 219.999981 -19 0.05 30 219.999988 -12 0.05 30 219.999990 -10 0.05 40 220.00003 3 0.01 50 220.00003 35 0.16 Worst case: -37 0.17 Frequency Stability Over Input Voltage Nominal Voltage: 13.8 Vdc V////>Voltage Prift (DC) (MHz) (Hz) (ppm) 11.7 219.999984 -16 0.07 15.9 219.999985 -15 0.07 15.9 219.999985 -15 0.07	Temperature	requency Measure		Drift	1	
-30 219.999971 -29 0.13 -20 219.999968 -32 0.15 -10 219.999981 -19 0.09 0 219.999963 -37 0.17 10 219.999981 -19 0.09 20 219.999988 -12 0.05 30 219.999990 -10 0.05 40 220.00003 3 0.01 50 220.00003 35 0.16 Worst case: -37 0.17					4	
-20 219.999968 -32 0.15 -10 219.999963 -37 0.17 10 219.999963 -37 0.17 10 219.999981 -19 0.09 20 219.999988 -12 0.05 30 219.999990 -10 0.05 40 220.00003 3 0.01 50 220.00035 35 0.16 Worst case: -37 0.17					4	
-10 219.999981 -19 0.09 0 219.999963 -37 0.17 10 219.999981 -19 0.09 20 219.999988 -12 0.05 30 219.999990 -10 0.05 40 220.00003 3 0.01 50 220.000035 35 0.16 Worst case: -37 0.17					1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1	
10 219.999981 -19 0.09 20 219.999988 -12 0.05 30 219.999990 -10 0.05 40 220.00003 3 0.01 50 220.00035 35 0.16 Worst case: -37 0.17 Frequency Stability Over Input Voltage Wominal Voltage: 13.8 Vdc Voltage requency Measure Drift (DC) (MHz) (Hz) (ppm) 11.7 219.999984 -16 0.07 15.9 219.999985 -15 0.07 Worst case: -16 0.07					1	
20 219.999988 -12 0.05 30 219.999990 -10 0.05 40 220.00003 3 0.01 50 220.00035 35 0.16 Worst case: -37 0.17 Frequency Stability Over Input Voltage Nominal Voltage: 13.8 Vdc Vdc Voltage requency Measure Drift (DC) (MHz) (Hz) (ppm) 11.7 219.999984 -16 0.07 15.9 219.999985 -15 0.07 Worst case: -16 0.07					1	
30 219.999990 -10 0.05 40 220.00003 3 0.01 50 220.000035 35 0.16 Worst case: -37 0.17 Frequency Stability Over Input Voltage Nominal Voltage: 13.8 Vdc Voltage requency Measure Drift (DC) (MHz) (Hz) (ppm) 11.7 219.999984 -16 0.07 15.9 219.999985 -15 0.07 Worst case: -16					1	
40 220.00003 3 0.01 50 220.000035 35 0.16 Worst case: -37 0.17 Frequency Stability Over Input Voltage Nominal Voltage: 13.8 Vdc Voltage requency Measure Drift (DC) (MHz) (Hz) (ppm) 11.7 219.999984 -16 0.07 15.9 219.999985 -15 0.07 Worst case: -16					1	
50 220.000035 35 0.16 Worst case: -37 0.17 Frequency Stability Over Input Voltage Nominal Voltage: 13.8 Vdc Voltage requency Measure Drift (DC) (MHz) (Hz) (ppm) 11.7 219.999984 -16 0.07 15.9 219.999985 -15 0.07 Worst case: -16 0.07		220.000003	3		1	
Voltage: 13.8 Vdc Voltage requency Measure Drift (DC) (MHz) (Hz) (ppm) 11.7 219.999984 -16 0.07 15.9 219.999985 -15 0.07 Worst case:					1	
Nominal Voltage: 13.8 Vdc Voltage requency Measure Drift (DC) (MHz) (Hz) (ppm) 11.7 219.999984 -16 0.07 15.9 219.999985 -15 0.07 Worst case: -16 0.07		Worst case:	-37	0.17	1	
(DC) (MHz) (Hz) (ppm) 11.7 219.999984 -16 0.07 15.9 219.999985 -15 0.07 Worst case: -16 0.07	Nominal Vo	oltage: 13.8 Vc	dc		۹.	
11.7 219.999984 -16 0.07 15.9 219.999985 -15 0.07 Worst case: -16 0.07					4	
15.9 219.999985 -15 0.07 Worst case: -16 0.07			()		4	
Worst case: -16 0.07					4	
	10.9				4	
		WUISI Case.	- 10	0.07	J	
	Note 1:	Maximum drift of func		hafara it abut down at 0.6		

Appendix C Photographs

Appendix D Proposed FCC ID Label & Label Location

Appendix E Detailed Photographs

Appendix F Operator's Manual

Appendix G Block Diagram

Appendix H Schematic Diagrams

Appendix I Theory of Operation

Appendix J Tune-up Procedure

Appendix K Parts List