

# REGULATORY COMPLIANCE TEST REPORT

FCC CFR 47 Part 90 Subpart K & T ISED RSS-119

Report No.: GEMD02-U12 Rev A

Company: GE MDS, LLC

Model Name: OCR220



# REGULATORY COMPLIANCE TEST REPORT

Company Name: GE MDS, LLC

Model Name: OCR220

To: FCC CFR 47 Part 90 Subpart K & T ISED RSS-119

Test Report Serial No.: GEMD02-U12 Rev A

This report supersedes: NONE

Applicant: GE MDS, LLC

175 Science Parkway Rochester, NY 14620

**USA** 

Issue Date: 21st August 2023

# This Test Report is Issued Under the Authority of:

## MiCOM Labs, Inc.

575 Boulder Court Pleasanton California 94566 USA

Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com



MiCOM Labs is an ISO 17025 Accredited Testing Laboratory



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

## **Table of Contents**

| 1. | ACCREDITATION, LISTINGS & RECOGNITION                       | 4   |
|----|-------------------------------------------------------------|-----|
|    | 1.1. TESTING ACCREDITATION                                  | 4   |
|    | 1.2. RECOGNITION                                            | 5   |
|    | 1.3. PRODUCT CERTIFICATION                                  | 6   |
|    | DOCUMENT HISTORY                                            |     |
|    | TEST RESULT CERTIFICATE                                     |     |
| 4. | REFERENCES AND MEASUREMENT UNCERTAINTY                      |     |
|    | 4.1. Normative References                                   |     |
|    | 4.2. Test and Uncertainty Procedure                         | .10 |
| 5. | PRODUCT DETAILS AND TEST CONFIGURATIONS                     |     |
|    | 5.1. Technical Details                                      |     |
|    | 5.2. Scope Of Test Program                                  |     |
|    | 5.3. Equipment Model(s) and Serial Number(s)                |     |
|    | 5.4. Antenna Details                                        |     |
|    | 5.5. Cabling and I/O Ports                                  |     |
|    | 5.6. Test Configurations                                    |     |
|    | 5.7. Equipment Modifications                                |     |
| _  | 5.8. Deviations from the Test Standard                      |     |
|    | TEST SUMMARY                                                |     |
| 7. | TEST EQUIPMENT CONFIGURATION(S)                             |     |
| 0  | 7.1. Conducted  MEASUREMENT AND PRESENTATION OF TEST DATA   | 10  |
|    | TEST RESULTS                                                |     |
| 9. | 9.1. Conducted Output Power                                 |     |
|    | 9.2. 99% Bandwidth                                          |     |
|    | 9.3. Spectrum Emission Mask and Spurious Emissions          |     |
|    | 9.4. Frequency Stability                                    |     |
| Δ  | APPENDIX - GRAPHICAL IMAGES                                 | 32  |
| Λ. | A.1. 99% Bandwidth                                          |     |
|    | A.2. High Power Spectrum Emission Mask & Spurious Emissions |     |
|    | A 3 Low Power Spectrum Emission Mask & Spurious Emissions   |     |



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

# 1. ACCREDITATION, LISTINGS & RECOGNITION

## 1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2017. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <a href="https://www.a2la.org/scopepdf/2381-01.pdf">www.a2la.org/scopepdf/2381-01.pdf</a>



# **Accredited Laboratory**

A2LA has accredited

## MICOM LABS

Pleasanton, CA

for technical competence in the field of

## Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).



Presented this 14th day of January 2022.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2381.01 Valid to November 30, 2023

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

Issue Date: 21st August 2023

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, <a href="https://www.micomlabs.com">www.micomlabs.com</a>



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

## 1.2. RECOGNITION

MiCOM Labs, Inc is widely recognized for its wireless testing and certification capabilities. In addition to being recognized for Testing and Certification under Phase 2 Mutual Recognition Agreements (MRA) with Canada, Europe, United Kingdom and Japan, our international recognition includes Conformity Assessment Body (CAB) designation status under agreements with Asia Pacific (APEC) MRA Phase 1 countries giving acceptance of MiCOM Labs test reports. MiCOM Labs test reports are accepted globally.

| Country        | Recognition Body                                                                                                       | Status | MRA Phase       | Identification No.                          |
|----------------|------------------------------------------------------------------------------------------------------------------------|--------|-----------------|---------------------------------------------|
| USA            | Federal Communications<br>Commission (FCC)                                                                             | ТСВ    | -               | US0159<br>Test Firm<br>Designation#: US1084 |
| Canada         | Industry Canada (ISED)                                                                                                 | FCB    | APEC MRA 2      | US0159<br>ISED#: 4143A                      |
| Japan          | MIC (Ministry of Internal Affairs and Communication)  Japan Approvals Institute for Telecommunication Equipment (JATE) |        | Japan MRA 2     | RCB 210                                     |
|                | VCCI                                                                                                                   |        |                 | A-0012                                      |
| Europe         | European Commission                                                                                                    | NB     | EU MRA 2        | NB 2280                                     |
| United Kingdom | Department for Business, Energy & Industrial Strategy (BEIS)                                                           | AB     | UK MRA 2        | AB 2280                                     |
| Mexico         | Instituto Federal de<br>Telecomunicaciones (IFT)                                                                       | CAB    | Mexico MRA<br>1 | US0159                                      |
| Australia      | Australian Communications and Media Authority (ACMA)                                                                   |        |                 |                                             |
| Hong Kong      | Office of the Telecommunication Authority (OFTA)                                                                       |        |                 |                                             |
| Korea          | Ministry of Information and<br>Communication Radio Research<br>Laboratory (RRL)                                        | CAD    | ADEC MDA 4      | 1100450                                     |
| Singapore      | Infocomm Development Authority (IDA)                                                                                   | CAB    | APEC MRA 1      | US0159                                      |
| Taiwan         | National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)                          |        |                 |                                             |
| Vietnam        | Ministry of Communication (MIC)                                                                                        |        |                 |                                             |

TCB - Telecommunications Certification Bodies (TCB)

FCB - Foreign Certification Body

CAB - Conformity Assessment Body

NB - Notified Body

AB - Approved Body

MRA - Mutual Recognition Agreement

MRA Phase I - recognition for product testing

MRA Phase II – recognition for both product testing and certification

Issue Date: 21st August 2023

Page:

5 of 65



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

## 1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <a href="https://www.a2la.org">www.a2la.org</a> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <a href="http://www.a2la.org/scopepdf/2381-02.pdf">http://www.a2la.org/scopepdf/2381-02.pdf</a>





# **Accredited Product Certification Body**

A2LA has accredited

## MICOM LABS

Pleasanton, CA

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC 17065:2012 Requirements for bodies certifying products, processes and services. This product certification body also meets the A2LA R322 – Specific Requirements – Notified Body Accreditation Requirements and A2LA R308 - Specific Requirements - ISO-IEC 17065 - Telecommunication Certification Body Accreditation Program. This accreditation demonstrates technical competence for a defined scope and the operation of a management system.



Presented this 14th day of January 2022

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2381.02

Valid to November 30, 2023

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation.

United States of America – Telecommunication Certification Body (TCB) Industry Canada – Certification Body, CAB Identifier – US0159 Europe – Notified Body (NB), NB Identifier - 2280 UK – Approved Body (AB), AB Identifier - 2280 Japan – Recognized Certification Body (RCB), RCB Identifier - 210

Issue Date: 21st August 2023

Page: 6 of



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

# 2. DOCUMENT HISTORY

|          | Document History             |                                 |  |  |  |  |  |
|----------|------------------------------|---------------------------------|--|--|--|--|--|
| Revision | Date                         | Comments                        |  |  |  |  |  |
| Draft    | 26th June 2023               | Draft report for client review. |  |  |  |  |  |
| Rev A    | 21 <sup>st</sup> August 2023 | Initial release.                |  |  |  |  |  |
|          |                              |                                 |  |  |  |  |  |
|          |                              |                                 |  |  |  |  |  |
|          |                              |                                 |  |  |  |  |  |
|          |                              |                                 |  |  |  |  |  |
|          |                              |                                 |  |  |  |  |  |

In the above table the latest report revision will replace all earlier versions.



GE MDS, LLC OCR220

FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

## 3. TEST RESULT CERTIFICATE

Manufacturer: GE MDS, LLC

175 Science Parkway Rochester, NY 14620

USA

Telephone: +1 925 462 0304

Tested By: MiCOM Labs, Inc.

Pleasanton

575 Boulder Court

California 94566 USA

Model(s): OCR220 Fax: +1 925 462 0306

Type Of Equipment: Module for Operator Control Unit

S/N's: OCR1

**Test Date(s):** 9<sup>th</sup> – 12<sup>th</sup> & 16<sup>th</sup> June 2023 Website: www.micomlabs.com

### STANDARD(S)

FCC CFR 47 Part 90 Subpart K & T **ISED RSS-119** 

#### **TEST RESULTS**

**EQUIPMENT COMPLIES** 

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

## Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

TESTING CERT #2381.01

Graeme Grieve

Quality Manager MiCOM Labs, Inc.

Gordon Hurs

President & CEO MiCOM Labs, Inc.

21st August 2023



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

# 4. REFERENCES AND MEASUREMENT UNCERTAINTY

## 4.1. Normative References

| REF. | PUBLICATION                                     | YEAR                  | TITLE                                                                                                                                                                |
|------|-------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I    | A2LA                                            | 22nd June 2022        | R105 - Requirement's When Making Reference to A2LA Accreditation Status                                                                                              |
| II   | II ANSI C63.4 2014  III ETSI TR 100 028 2001-12 |                       | American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz |
| III  |                                                 |                       | Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics             |
| IV   | FCC 47 CFR Part<br>90                           | June 2003             | Private Land Mobile Radio Services; Subpart K & T – Regulations Governing Licensing and Use of Frequencies in the 216.0 – 222.0 MHz Band                             |
| V    | M 3003                                          | EDITION 4 Oct<br>2019 | Expression of Uncertainty and Confidence in Measurements                                                                                                             |
| VI   | FCC 47 CFR Part<br>2.1033                       | May 2021              | FCC requirements and rules regarding photographs and test setup diagrams.                                                                                            |
| VII  | ISED RSS-119                                    | Issue 12 2015         | Land Mobile and Fixed Equipment Operating in the Frequency Range 27.41-960 MHz                                                                                       |
| VIII | ISED SRSP-512                                   | Issue 1 April 2006    | Technical Requirements for Land Mobile and Fixed Radio Services Operating in the Band 220–222 MHz                                                                    |
| IX   | ISED RSS GEN                                    | Issue 5 April 2018    | General Requirements for Compliance of Radio Apparatus                                                                                                               |

ssue Date: 21st August 2023

Page:

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, <a href="https://www.micomlabs.com">www.micomlabs.com</a>



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

# 4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

# 5. PRODUCT DETAILS AND TEST CONFIGURATIONS

# 5.1. Technical Details

| Details                          | Description                                                 |
|----------------------------------|-------------------------------------------------------------|
| Purpose:                         | Test of the GE MDS, LLC Model OCR220 to the requirements of |
|                                  | FCC CFR 47 Part 90 Subparts K & T; and                      |
|                                  | ISED RSS-119                                                |
| Applicant:                       | GE MDS, LLC                                                 |
|                                  | 175 Science Parkway                                         |
|                                  | Rochester, NY 14620                                         |
| Manufacture                      | USA                                                         |
|                                  | GE MDS, LLC                                                 |
| Laboratory performing the tests: |                                                             |
|                                  | 575 Boulder Court Pleasanton California 94566 USA           |
| Test report reference number:    |                                                             |
| Date EUT received:               | 6 <sup>th</sup> June 2023                                   |
|                                  |                                                             |
|                                  | FCC CFR 47 Part 90 Subpart K & T                            |
| Dates of test (from - to):       |                                                             |
| No of Units Tested:              |                                                             |
| Product Family Name:             |                                                             |
| Model(s):                        |                                                             |
| Location for use:                |                                                             |
| Declared Frequency Range(s):     |                                                             |
| Type of Modulation:              |                                                             |
| EUT Modes of Operation:          |                                                             |
| Declared Nominal Output Power:   |                                                             |
| Transmit/Receive Operation:      | Transceiver                                                 |
| Rated Input Voltage and Current: | 13.84 VDC 2A                                                |
| Operating Temperature Range:     | -40°C - 70°C                                                |
| ITU Emission Designator:         |                                                             |
| Equipment Dimensions:            | 3.75x1.75x1.25" in                                          |
| Weight:                          |                                                             |
| Hardware Rev:                    | 1                                                           |
| Software Rev:                    | 1                                                           |

ssue Date: 21st August 2023

**Page:** 11 of 65



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

## 5.2. Scope Of Test Program

## **GE MDS, LLC OCR220**

The scope of the test program was to test the GE MDS, LLC OCR220 radio transmitter configurations in the frequency ranges 216 - 222 MHz; for compliance against the following specifications:

## FCC CFR 47 Part 90 Subpart K & T

These subparts set out the regulations governing the use of equipment operating in the 216 to 220 MHz and 220 to 222 MHz bands including the eligibility requirements, and specific operational and technical standards for stations licensed in these bands.

### **ISED RSS-119**

General Requirements for Compliance of Radio Apparatus:

Testing was Limited to the band 217-220MHz for ISED RSS 119 using emission mask J.

Issue Date: 21st August 2023 Page: 12 of 65



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

# 5.3. Equipment Model(s) and Serial Number(s)

| Type<br>(EUT/<br>Support) | Equipment Description (Including Brand Name) | Manufacturer | Model No. | Serial No. |
|---------------------------|----------------------------------------------|--------------|-----------|------------|
| EUT                       | GE MDS MCR                                   | GE MDS, LLC  | OCR220    | OCR1       |
| Support                   | HP                                           | HP           |           | None       |

## 5.4. Antenna Details

| Туре | Manufacturer | Model                        | Family | Gain<br>(dBi) | BF Gain | Dir BW | X-Pol | Frequency<br>Band (MHz) |
|------|--------------|------------------------------|--------|---------------|---------|--------|-------|-------------------------|
| OMNI | PCTEL        | PCTEL<br>BMAXMFTS            | OMNI   | 0             |         | 1      |       | 118-940                 |
| OMNI | PCTEL        | PCTEL PCT-<br>RSA-220        | OMNI   | 2             |         |        |       | 217-220                 |
| OMNI | Sinclair     | Sinclair<br>ST221-<br>SF3SNF | OMNI   | 2             |         | 1      |       | 217-223                 |
| OMNI | Sinclair     | Stico HDLP-<br>NB-220        | OMNI   | 2             |         | 1      |       | 214-228                 |

BF Gain - Beamforming Gain Dir BW - Directional BeamWidth

X-Pol - Cross Polarization

## 5.5. Cabling and I/O Ports

The following is a description of the cable and input / output ports available on the EUT and its host during testing;

| Port Type                       | Port Description            | Qty | Screened<br>(Yes/ No) | Length |
|---------------------------------|-----------------------------|-----|-----------------------|--------|
| Pin interface to Host           | Multipin                    | 1   | N                     |        |
| RF Conn x3 (On EUT Host Device) | RF Conn for 220 MHz and LTE | 3   | N                     | < 3m   |

Issue Date: 21st August 2023

Page: 13 of 6



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

# 5.6. Test Configurations

Results for the following configurations are provided in this report:

| Operational | Data Rate with<br>Highest Power | Channel Frequency (MHz)  Low Mid High |  |          |  |
|-------------|---------------------------------|---------------------------------------|--|----------|--|
| Mode(s)     | ingliost i ouo.                 |                                       |  |          |  |
|             |                                 | 216-222 MHz                           |  |          |  |
| 216-220MHz  | 9615 bps                        | 217.0125                              |  | 219.9875 |  |
| 220-222MHz  | 9615 bps                        | 220.0000                              |  | 222.0000 |  |

## 5.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

# 5.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

Issue Date: 21st August 2023 Page: 14 of 6



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

# 6. TEST SUMMARY

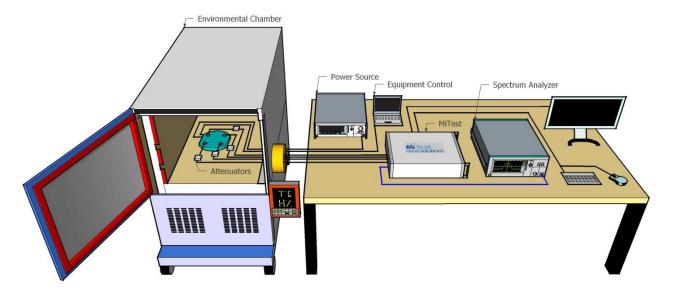
#### List of Measurements

| Test Header                                 | Result   | Data Link |
|---------------------------------------------|----------|-----------|
| Conducted Output Power                      | Complies | View Data |
| 99% Bandwidth                               | Complies | View Data |
| Spectrum Emission Mask & Spurious Emissions | Complies | View Data |
| Frequency Stability                         | Complies | View Data |

Note: Spurious Emissions 10MHz -6GHz ISED RSS-119 has the following limit for testing: 50 dBc however, observing the captures there is significant margin present and as such require no additional testing.



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119


Serial #: GEMD02-U12 Rev A

# 7. TEST EQUIPMENT CONFIGURATION(S)

## 7.1. Conducted

Conducted RF Emission Test Set-up(s) The following tests were performed using the conducted test setup shown in the diagram below.

## MiTest Automated Test System



A full system calibration was performed on the test station and any resulting system losses (or gains) were considered in the production of all final measurement data.

Issue Date: 21st August 2023

Page: 1



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

| Asset# | Description                           | Manufacturer            | Model#          | Serial#         | Calibration<br>Due Date |
|--------|---------------------------------------|-------------------------|-----------------|-----------------|-------------------------|
| #3 SA  | MiTest Box to SA                      | Fairview<br>Microwave   | SCA1814-0101-72 | #3 SA           | 23 Sep 2023             |
| #3P1   | EUT to MiTest box port 1              | Fairview<br>Microwave   | SCA1814-0101-72 | #3P1            | 23 Sep 2023             |
| #3P2   | EUT to MiTest box port 2              | Fairview<br>Microwave   | SCA1814-0101-72 | #3P2            | 23 Sep 2023             |
| #3P3   | EUT to MiTest box port 3              | Fairview<br>Microwave   | SCA1814-0101-72 | #3P3            | 23 Sep 2023             |
| #3P4   | EUT to MiTest box port 4              | Fairview<br>Microwave   | SCA1812-0101-72 | #3P4            | 23 Sep 2023             |
| 249    | Thermocouple; Resistance Thermometer  | Thermotronics           | GR2105-02       | 9340 #2         | 23 Sep 2023             |
| 398    | MiTest RF Conducted<br>Test Software  | MiCOM                   | MiTest ATS      | Version 4.2.3.0 | Not<br>Required         |
| 405    | DC Power Supply 0-60V                 | Agilent                 | 6654A           | MY4001826       | Cal when used           |
| 408    | USB to GPIB interface                 | National<br>Instruments | GPIB-USB HS     | 14C0DE9         | Not<br>Required         |
| 441    | USB Wideband Power<br>Sensor          | Boonton                 | 55006           | 9179            | 20 Sep 2023             |
| 442    | USB Wideband Power<br>Sensor          | Boonton                 | 55006           | 9181            | 19 Oct 2023             |
| 445    | PoE Injector                          | D-Link                  | DPE-101GL       | QTAH1E2000625   | Not<br>Required         |
| 461    | Spectrum Analyzer                     | Agilent                 | E4440A          | MY46185537      | 27 Sep 2023             |
| 493    | USB Wideband Power<br>Sensor          | Boonton                 | 55006           | 9634            | 8 Oct 2023              |
| 494    | USB Wideband Power<br>Sensor          | Boonton                 | 55006           | 9726            | 19 Oct 2023             |
| 510    | Barometer/Thermometer                 | Digi Sense              | 68000-49        | 170871375       | 4 Jan 2024              |
| 519    | MiTest Cloud Solutions<br>RF Test Box | MiCOM                   | 2nd Gen DFS     | 519             | 22 Sep 2023             |
| 75     | Environmental Chamber                 | Thermatron              | SE-300-2-2      | 27946           | 20 Feb 2024             |

ssue Date: 21st August 2023

**Page:** 17 of



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

## 8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using state-of-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.





The MiCOM Labs "MiTest" Automated Test System" (Patent Pending)

Issue Date: 21st August 2023

Page: 18 of 65



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

## 9. TEST RESULTS

## 9.1. Conducted Output Power

| Conducted Test Conditions for Maximum Conducted Output Power |                                                                         |                     |             |  |  |  |
|--------------------------------------------------------------|-------------------------------------------------------------------------|---------------------|-------------|--|--|--|
| Standard:                                                    | FCC CFR 47<br>ISED RSS-119                                              | Ambient Temp. (°C): | 24.0 - 27.5 |  |  |  |
| Test Heading:                                                | Maximum Conducted Output Power                                          | Rel. Humidity (%):  | 32 - 45     |  |  |  |
| Standard Section(s):                                         | 90.205(e)(f); 90.259<br>Section 5.4 <b>Pressure (mBars):</b> 999 - 1001 |                     |             |  |  |  |
| Reference Document(s):                                       | See Normative References                                                |                     |             |  |  |  |

#### Test Procedure for Maximum Conducted Output Power Measurement

Test configuration and setup used for the measurement was per the Conducted Test Set-up section specified in this document. Supporting Information

Calculated Power =  $A + G + Y + 10 \log (1/x) dBm$ 

A = Total Power [ $10*Log10 (10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})$ ]

G = Antenna Gain

Y = Beamforming Gain

x = Duty Cycle (average power measurements only)

## **Limits Maximum Conducted Output Power**

### 47 CFR 90.205

(E) 217-220 MHz. Limitations on power and antenna heights are specified in § 90.259.

(F) 220-222 MHz. Limitations on power and antenna heights are specified in § 90.729.

#### 47 CFR 90.259

- (a) 216-220 MHz band.
- (1) Frequencies in the 216–220 MHz band may be assigned to applicants that establish eligibility in the Industrial/Business Pool.
- (2) All operation is secondary to the fixed and mobile services, including the Low Power Radio Service.
- (3) In the 216-217 MHz band, no new assignments will be made after January 1, 2002.
- (4) In the 217–220 MHz band, the maximum transmitter output power is 2 watts. The maximum antenna height above average terrain (HAAT) is 152 m (500 feet).
- (5) In the 217-220 MHz band, base, mobile, and operational fixed operations are permitted.
- (6) Wide area operations will not be authorized. The area of normal day-to-day operations will be described in the application in terms of maximum distance from a geographical center (latitude and longitude).
- (7) Frequencies will be assigned with a 6.25 kHz, 12.5 kHz, 25 kHz or 50 kHz channel bandwidth. Frequencies may be assigned with a channel bandwidth exceeding 50 kHz only upon a showing of adequate justification.
- (8) Assignable 6.25 kHz channels will occur in increments of 6.25 kHz from 217.00625 MHz to 219.99375 MHz. Assignable 12.5 kHz channels will occur in increments of 12.5 kHz from 217.0125 MHz to 219.9875 MHz. Assignable 25 kHz channels will occur in increments of 25 kHz from 217.025 MHz to 219.975 MHz. Assignable 50 kHz channels will occur in increments of 50 kHz from 217.025 MHz to 219.975 MHz.

### ISED RSS-119

### 5.4 Transmitter Output Power

217-218 and 219-220 MHz : 110 / 30 W 220-222: SRSP-512 / 50 W/5kHz ERP

Issue Date: 21st August 2023



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

#### **Equipment Configuration for Conducted Output Power**

| Variant:                | 12.5KHz        | Duty Cycle (%):            | 99.0           |
|-------------------------|----------------|----------------------------|----------------|
| Data Rate:              | N/A            | Antenna Gain (dBi):        | N/A            |
| Modulation:             | GMSK           | Beam Forming Gain (Y)(dB): | Not Applicable |
| TPC:                    | Not Applicable | Tested By:                 | SB             |
| Engineering Test Notes: |                |                            |                |

| High Power | High Power Test Measurement Results |                                       |   |   |                          |       |        |                   |
|------------|-------------------------------------|---------------------------------------|---|---|--------------------------|-------|--------|-------------------|
| Test       | Measure                             | Measured Conducted Output Power (dBm) |   |   | - Calculated Total Power | 1     |        |                   |
| Frequency  |                                     | Port(s)                               |   |   | - Calculated Total Power | Limit | Margin | EUT Power Setting |
| MHz        | а                                   | b                                     | С | d | Σ Port(s) dBm            | dBm   | dB     | County            |
| 217.0125   | 32.88                               |                                       |   |   | 32.88                    | 33.00 | -0.12  | Н                 |
| 219.9875   | 32.93                               |                                       |   |   | 32.93                    | 33.00 | -0.07  | Н                 |
| 220.0000   | 32.93                               |                                       |   |   | 32.93                    | 33.00 | -0.07  | Н                 |
| 222.0000   | 32.97                               |                                       |   |   | 32.97                    | 33.00 | -0.03  | Н                 |

| Low Power Test Measurement Results |         |             |              |                        |                        |        |                   |   |
|------------------------------------|---------|-------------|--------------|------------------------|------------------------|--------|-------------------|---|
| Test                               | Measure | d Conducted | I Output Pow | /er (dBm)              | Coloulated Total Bours | 1 !!4  | Manain            |   |
| Frequency                          |         | Port(s)     |              | Calculated Total Power | Limit                  | Margin | EUT Power Setting |   |
| MHz                                | а       | b           | С            | d                      | Σ Port(s) dBm          | dBm    | dB                |   |
| 217.0125                           | 26.71   |             |              |                        | 26.71                  | 33.00  | -6.29             | L |
| 219.9875                           | 27.09   |             |              |                        | 27.09                  | 33.00  | -5.91             | L |
| 220.0000                           | 26.90   |             |              |                        | 26.90                  | 33.00  | -6.10             | L |
| 222.0000                           | 27.17   |             |              |                        | 27.17                  | 33.00  | -5.83             | L |

| Traceability to Industry Recognized Test Methodologies |                                 |  |
|--------------------------------------------------------|---------------------------------|--|
| Work Instruction:                                      | WI-01 MEASURING RF OUTPUT POWER |  |
| Measurement Uncertainty:                               | ±1.33 dB                        |  |

Issue Date: 21st August 2023 Page: 20 of 65



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

## 9.2. 99% Bandwidth

| Conducted Test Conditions for 99% Bandwidth |                                   |                     |             |  |
|---------------------------------------------|-----------------------------------|---------------------|-------------|--|
| Standard:                                   | FCC CFR 47:90.259<br>ISED RSS-119 | Ambient Temp. (°C): | 24.0 - 27.5 |  |
| Test Heading:                               | 26 dB and 99 % Bandwidth          | Rel. Humidity (%):  | 32 - 45     |  |
| Standard Section(s):                        | 90.209; 90.259(a)(7)(8)           |                     |             |  |
| Reference Document(s):                      | See Normative References          |                     |             |  |

#### Test Procedure for 99% Bandwidth Measurement

The bandwidth at 99 % is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Test configuration and setup used for the measurement was per the Conducted Test Set-up section specified in this document.

#### 90.209 Bandwidth limitations.

- (a) Each authorization issued to a station licensed under this part will show an emission designator representing the class of emission authorized. The designator will be prefixed by a specified necessary bandwidth. This number does not necessarily indicate the bandwidth occupied by the emission at any instant. In those cases where § 2.202 of this chapter does not provide a formula for the computation of necessary bandwidth, the occupied bandwidth, as defined in part 2 of this chapter, may be used in lieu of the necessary bandwidth.
- (b) The maximum authorized single channel bandwidth of emission corresponding to the type of emission specified in § 90.207 is as follows:
- (1) For A1B or A1B emissions, the maximum authorized bandwidth is 0.25 kHz. The maximum authorized bandwidth for type A3E emission is 8 kHz.
- (2) For operations below 25 MHz utilizing J3E emission, the bandwidth occupied by the emission shall not exceed 3000 Hz. The assigned frequency will be specified in the authorization. The authorized carrier frequency will be 1400 Hz lower in frequency than the assigned frequency. Only upper sideband emission may be used. In the case of regularly available double sideband radiotelephone channels, an assigned frequency for J3E emissions is available either 1600 Hz below or 1400 Hz above the double sideband radiotelephone assigned frequency.
- (3) For all other types of emissions, the maximum authorized bandwidth shall not be more than that normally authorized for voice operations.
- (4) Where a frequency is assigned exclusively to a single licensee, more than a single emission may be used within the authorized bandwidth. In such cases, the frequency stability requirements of § 90.213 must be met for each emission.
- (5) Unless specified elsewhere, channel spacings and bandwidths that will be authorized in the following frequency bands are given in the following table.

Table 1 to § 90.209(b)(5)—Standard Channel Spacing/Bandwidth

| Frequency band (MHz) | Channel spacing (kHz) | Authorized bandwidth (kHz) |  |
|----------------------|-----------------------|----------------------------|--|
| Below 25(2)          |                       |                            |  |
| 25–50                | 20                    | 20                         |  |
| 72–76                | 20                    | 20                         |  |
| 150–174              | 17.5                  | 1 3 20/11.25/6             |  |
| 216–220(5)           | 6.25                  | 20/11.25/6                 |  |
| 220–222              | 5                     | 4                          |  |
| 406-512(2)           | 1 6.25                | 1 3 6 20/11.25/6           |  |
| 806-809/851-854      | 12.5                  | 20                         |  |
| 809-817/854-862      | 12.5                  | 6 20/11.25                 |  |
| 817-824/862-869      | 25                    | 6 20                       |  |
| 896-901/935-940      | 12.5                  | 13.6                       |  |

Issue Date: 21st August 2023



FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

902-928(4)

929-930

25 12.5 20 12.5

1427–1432(5) 3 2450–2483.5(2)

Above 2500(2)

1 For stations authorized on or after August 18, 1995.

- 2 Bandwidths for radiolocation stations in the 420–450 MHz band and for stations operating in bands subject to this footnote will be reviewed and authorized on a case-by-case basis.
- 3 Operations using equipment designed to operate with a 25 kHz channel bandwidth will be authorized a 20 kHz bandwidth. Operations using equipment designed to operate with a 12.5 kHz channel bandwidth will be authorized a 11.25 kHz bandwidth. Operations using equipment designed to operate with a 6.25 kHz channel bandwidth will be authorized a 6 kHz bandwidth. All stations must operate on channels with a bandwidth of 12.5 kHz or less beginning January 1, 2013, unless the operations meet the efficiency standard of § 90.203(j)(3).
- 4 The maximum authorized bandwidth shall be 12 MHz for non-multilateration LMS operations in the band 909.75–921.75 MHz and 2 MHz in the band 902.00–904.00 MHz. The maximum authorized bandwidth for multilateration LMS operations shall be 5.75 MHz in the 904.00–909.75 MHz band; 2 MHz in the 919.75–921.75 MHz band; 5.75 MHz in the 921.75–927.25 MHz band and its associated 927.25–927.50 MHz narrowband forward link; and 8.00 MHz if the 919.75–921.75 MHz and 921.75–927.25 MHz bands and their associated 927.25–927.50 MHz and 927.50–927.75 MHz narrowband forward links are aggregated.
- 5 See § 90.259.
- 6 Operations using equipment designed to operate with a 25 kilohertz channel bandwidth may be authorized up to a 20 kilohertz bandwidth unless the equipment meets the Adjacent Channel Power limits of § 90.221 in which case operations may be authorized up to a 22 kilohertz bandwidth. Operations using equipment designed to operate with a 12.5 kilohertz channel bandwidth may be authorized up to an 11.25 kilohertz bandwidth.

#### 47 CFR 90.259

- (a) 216-220 MHz band.
- (7) Frequencies will be assigned with a 6.25 kHz, 12.5 kHz, 25 kHz or 50 kHz channel bandwidth. Frequencies may be assigned with a channel bandwidth exceeding 50 kHz only upon a showing of adequate justification.
- (8) Assignable 6.25 kHz channels will occur in increments of 6.25 kHz from 217.00625 MHz to 219.99375 MHz. Assignable 12.5 kHz channels will occur in increments of 12.5 kHz from 217.0125 MHz to 219.9875 MHz. Assignable 25 kHz channels will occur in increments of 25 kHz from 217.025 MHz to 219.975 MHz. Assignable 50 kHz channels will occur in increments of 50 kHz from 217.025 MHz to 219.975 MHz.

#### 47 CFR 90.733 Permissible operations for 220- 222 MHz

In combining authorized, contiguous channels (including channels derived from multiple authorizations) to form channels wider than 5 kHz, the emission limits in § 90.210(f) must be met only at the outermost edges of the contiguous channels. Transmitters shall be tested to confirm compliance with this requirement with the transmission located as close to the band edges as permitted by the design of the transmitter. The frequency stability requirements in § 90.213 shall apply only to the outermost of the contiguous channels authorized to the licensee. However, the frequency stability employed for transmissions operating inside the outermost contiguous channels must be such that the emission limits in § 90.210(f) are met over the temperature and voltage variations prescribed in § 2.995 of this chapter.

Issue Date: 21st August 2023

Page:



Fo: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

## ISED RSS-119 Table 3

| Frequency<br>Band (MHz)    | Related<br>SRSP for<br>Channelling<br>Plan and<br>ERP | Channel<br>Bandwidth (kHz) | Authorized<br>Bandwidth (kHz) | Spectrum<br>Masks for<br>Equipment<br>With<br>Audio<br>Filter | Spectrum<br>Masks for<br>Equipment<br>Without<br>Audio<br>Filter |
|----------------------------|-------------------------------------------------------|----------------------------|-------------------------------|---------------------------------------------------------------|------------------------------------------------------------------|
| 217-218<br>and 219-<br>220 | N/A                                                   | 12.5                       | 11.25                         | D or I                                                        | D or J                                                           |
| 220-222                    | SRSP-512                                              | 5                          | 4                             | F                                                             | F                                                                |

ssue Date: 21st August 2023 Page: 23 of 6



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

#### **Equipment Configuration for 99% Occupied Bandwidth**

| Variant:                | 12.5KHz        | Duty Cycle (%):            | 99.0           |
|-------------------------|----------------|----------------------------|----------------|
| Data Rate:              | N/A            | Antenna Gain (dBi):        | N/A            |
| Modulation:             | GMSK           | Beam Forming Gain (Y)(dB): | Not Applicable |
| TPC:                    | Not Applicable | Tested By:                 | SB             |
| Engineering Test Notes: |                |                            |                |

| Test Measure | Test Measurement Results |               |               |     |                     |              |  |
|--------------|--------------------------|---------------|---------------|-----|---------------------|--------------|--|
| Test         | M                        | easured 99% I | Bandwidth (Kl | Hz) | 99% Bandwidth (KHz) |              |  |
| Frequency    |                          | Por           | rt(s)         |     | 99% Ballu           | widiii (KHZ) |  |
| MHz          | а                        | b             | С             | d   | Highest             | Lowest       |  |
| 217.0125     | <u>6.53</u>              |               |               |     | 6.53                | 6.53         |  |
| 219.9875     | 6.49                     |               |               |     | 6.49                | 6.49         |  |
| 220.0000     | <u>6.51</u>              |               |               |     | 6.51                | 6.51         |  |
| 222.0000     | <u>6.46</u>              |               |               |     | 6.46                | 6.46         |  |

| Traceability to Industry Recognized Test Methodologies |                                  |  |  |
|--------------------------------------------------------|----------------------------------|--|--|
| Work Instruction:                                      | WI-03 MEASURING RF SPECTRUM MASK |  |  |
| Measurement Uncertainty:                               | ±2.81 dB                         |  |  |

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 21st August 2023 Page: 24 of 6



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

## 9.3. Spectrum Emission Mask and Spurious Emissions

| Conducted Test Conditions for Spectrum Emission Mask |                                                 |                     |             |  |  |
|------------------------------------------------------|-------------------------------------------------|---------------------|-------------|--|--|
| Standard:                                            | FCC CFR 47:90.210<br>ISED RSS-119               | Ambient Temp. (°C): | 24.0 - 27.5 |  |  |
| Test Heading:                                        | Spectrum Emission Mask                          | Rel. Humidity (%):  | 32 - 45     |  |  |
| Standard Section(s):                                 | 90.210 (c)(f)<br>Section 5.8.3<br>Section 5.8.5 | Pressure (mBars):   | 999 - 1001  |  |  |
| Reference Document(s):                               | See Normative References                        |                     |             |  |  |

#### **Test Procedure for Emission Masks**

#### **Emission Mask Limits**

Except as indicated in this part, transmitters used in the radio services governed by this part must comply with the emission masks outlined in this section. Unless otherwise stated, per paragraphs (d)(4), (e)(4), and (o) of this section, measurements of emission power can be expressed in either peak or average values provided that emission powers are expressed with the same parameters used to specify the unmodulated transmitter carrier power. For transmitters that do not produce a full power unmodulated carrier, reference to the unmodulated transmitter carrier power refers to the total power contained in the channel bandwidth. Unless indicated elsewhere in this part, the table in this section specifies the emission masks for equipment operating under this part.

Emission Mask C. For transmitters that are not equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier output power (P) as follows:

- (1)On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5 kHz, but not more than 10 kHz: At least 83 log (fd/5) dB;
- (2)On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more
  than 10 kHz, but not more than 250 percent of the authorized bandwidth: At least 29 log (fd2/11) dB or 50 dB, whichever is
  the lesser attenuation:
- (3) On any frequency removed from the center of the authorized bandwidth by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB.
- (4) In the 1427–1432 MHz band, licensees are encouraged to take all reasonable steps to ensure that unwanted emissions power does not exceed the following levels in the 1400–1427 MHz band:
- (i)For stations of point-to-point systems in the fixed service: −45 dBW/27 MHz.
- (ii)For stations in the mobile service: -60 dBW/27 MHz.

**Emission Mask F.** For transmitters operating in the 220–222 MHz frequency band, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- (1)On any frequency from the center of the authorized bandwidth fo to the edge of the authorized bandwidth fe: Zero dB.
- (2)On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 2 kHz up to and including 3.75 kHz: 30 + 20(fd - 2) dB or 55 + 10 log (P), or 65 dB, whichever is the lesser attenuation.
- (3) On any frequency beyond 3.75 kHz removed from the center of the authorized bandwidth fd: At least 55 + 10 log (P) dB.

ssue Date: 21st August 2023 Page:



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

## ISED RSS-119 5.8.3Mask D

| Table 7 — Emission Mask D        |                                                       |                             |  |  |  |
|----------------------------------|-------------------------------------------------------|-----------------------------|--|--|--|
| Displacement Frequency, fd (kHz) | Minimum<br>Attenuation (dB)                           | Resolution Bandwidth (Hz)   |  |  |  |
| 5.625 < fd ≤ 12.5                | 7.27(fd-2.88)                                         | ISED RSS-119: Section:4.2.2 |  |  |  |
| fd > 12.5                        | Whichever is<br>the lesser: 70 or<br>50 + 10 log10(p) | ISED RSS-119: Section:4.2.2 |  |  |  |

## ISED RSS-119 5.8.8 Mask J

|                                     | Table 12 — Emission Mask J                                                    |                                                                                                                                               |  |  |  |
|-------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Displacement<br>Frequency, fd (kHz) | Minimum Attenuation (dB)                                                      | Resolution Bandwidth (Hz)                                                                                                                     |  |  |  |
| 2.5 < fd ≤ 6.25                     | 53 log10(fd/2.5)                                                              | 300                                                                                                                                           |  |  |  |
| 6.25 < fd ≤ 9.5                     | 103 log10(fd/3.9)                                                             | 300                                                                                                                                           |  |  |  |
| fd > 9.5                            | Whichever is the lesser:<br>70 or 157<br>log10(fd/5.3) or 50 + 10<br>log10(p) | 300 for emissions at fd ≤250% of the authorized bandwidth. Specified in Section 4.2.1 for emissions at fd > 250% of the authorized bandwidth. |  |  |  |

ssue Date: 21st August 2023

**Page:** 26 of 65



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

#### **Equipment Configuration for Spectrum Emission Mask High Power**

| Variant:                | 12.5KHz        | Duty Cycle (%):            | 99.0           |
|-------------------------|----------------|----------------------------|----------------|
| Data Rate:              | N/A            | Antenna Gain (dBi):        | N/A            |
| Modulation:             | GMSK           | Beam Forming Gain (Y)(dB): | Not Applicable |
| TPC:                    | Not Applicable | Tested By:                 | SB             |
| Engineering Test Notes: |                |                            |                |

| Test Measurement Results |                     |                                |  |                 |      |  |
|--------------------------|---------------------|--------------------------------|--|-----------------|------|--|
| Test                     |                     | Complies                       |  |                 |      |  |
| Frequency<br>MHz         | Fundamental         | Fundamental Spurious Emissions |  |                 |      |  |
| 217.0125                 | FCC Mask<br>IC Mask | <u>10MHz – 1GHz</u>            |  | <u>1 -6 GHz</u> | Pass |  |
| 219.9875                 | FCC Mask<br>IC Mask | <u>10MHz – 1GHz</u>            |  | <u>1 -6 GHz</u> | Pass |  |
|                          | Fundamental         | Spurious Emissions             |  |                 |      |  |
| 220.0000                 | Mask                | <u>10MHz – 1GHz</u>            |  | <u>1 -6 GHz</u> | Pass |  |
| 222.0000                 | Mask                | <u>10MHz – 1GHz</u>            |  | <u>1 -6 GHz</u> | Pass |  |

| Traceability to Industry Recognized Test Methodologies |                                  |  |
|--------------------------------------------------------|----------------------------------|--|
| Work Instruction:                                      | WI-03 MEASURING RF SPECTRUM MASK |  |
| Measurement Uncertainty:                               | ±2.81 dB                         |  |

Note: click the links in the above matrix to view the graphical image (plot).

Note2: Spurious Emissions 10MHz -6GHz ISED RSS-119 has the following limit for testing: 50 dBc however, observing the captures there is significant margin present and as such require no additional testing.

Issue Date: 21st August 2023 Page: 27 of 65



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

#### **Equipment Configuration for Spectrum Emission Low Power**

| Variant:                | 12.5KHz        | Duty Cycle (%):            | 99.0           |
|-------------------------|----------------|----------------------------|----------------|
| Data Rate:              | N/A            | Antenna Gain (dBi):        | N/A            |
| Modulation:             | GMSK           | Beam Forming Gain (Y)(dB): | Not Applicable |
| TPC:                    | Not Applicable | Tested By:                 | SB             |
| Engineering Test Notes: |                |                            |                |

| Test Measure      | Test Measurement Results |                              |                    |                 |           |  |
|-------------------|--------------------------|------------------------------|--------------------|-----------------|-----------|--|
| Test<br>Frequency |                          | Complies                     |                    |                 |           |  |
| MHz               | Fundamental              | ndamental Spurious Emissions |                    |                 | Pass/Fail |  |
| 217.0125          | FCC Mask<br>IC Mask      | <u>10MHz – 1GHz</u>          |                    | <u>1 -6 GHz</u> | Pass      |  |
| 219.9875          | FCC Mask<br>IC Mask      | <u>10MHz – 1GHz</u>          |                    | <u>1 -6 GHz</u> | Pass      |  |
|                   | Fundamental              |                              | Spurious Emissions |                 |           |  |
| 220.0000          | <u>Mask</u>              | <u>10MHz – 1GHz</u>          |                    | <u>1 -6 GHz</u> | Pass      |  |
| 222.0000          | <u>Mask</u>              | <u>10MHz – 1GHz</u>          |                    | <u>1 -6 GHz</u> | Pass      |  |

| Traceability to Industry Recognized Test Methodologies |                                  |  |
|--------------------------------------------------------|----------------------------------|--|
| Work Instruction:                                      | WI-03 MEASURING RF SPECTRUM MASK |  |
| Measurement Uncertainty:                               | ±2.81 dB                         |  |

Note: click the links in the above matrix to view the graphical image (plot).

Note2: Spurious Emissions 10MHz -6GHz ISED RSS-119 has the following limit for testing: 50 dBc however, observing the captures there is significant margin present and as such require no additional testing.

Issue Date: 21st August 2023 Page: 28 of 65



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

GEMD02-U12 Rev A

## 9.4. Frequency Stability

| Conducted Test Conditions for Frequency Stability |                                                            |                     |             |  |
|---------------------------------------------------|------------------------------------------------------------|---------------------|-------------|--|
| Standard:                                         | FCC CFR 47:90 (I)<br>RSS-GEN                               | Ambient Temp. (°C): | 24.0 - 27.5 |  |
| Test Heading:                                     | Frequency Stability                                        | Rel. Humidity (%):  | 32 - 45     |  |
| Standard Section(s):                              | 90.213<br>Section 6.11 <b>Pressure (mBars):</b> 999 - 1001 |                     |             |  |
| Reference Document(s):                            | See Normative References                                   |                     |             |  |

#### **Test Procedure for Frequency Stability**

The transmitter output was connected to a spectrum analyzer and the frequency stability was measured using the analyzers occupied bandwidth measurement capability, which reports the frequency delta from the center frequency in kHz. The values were recorded and ppm values calculated.

Frequency stability was measured through the extremes of temperature on the mid channel and a single operating mode only. Before measurements were taken at each temperature the equipment was allowed time to reach thermal equilibrium.

#### **Frequency Stability Limits**

Unless noted elsewhere, transmitters used in the services governed by this part must have a minimum frequency stability as described in the following table.

Minimum Frequency Stability - Parts per million (ppm)

|                 | ir i requerioy etabili |                 |                 |
|-----------------|------------------------|-----------------|-----------------|
| Frequency       | Fixed and base         | Mobile Stations |                 |
| Range (MHz)     | stations               | Over 2 watts    | 2 watts or less |
| italige (Willz) | Stations               | output power    | output power    |
| Below 25        | 100                    | 100             | 200             |
| 25-50           | 20                     | 20              | 50              |
| 72-76           | 5                      |                 | 50              |
| 150-174         | 5                      | 5               | 50              |
| 216-220         | 1.0                    |                 | 1.0             |
| 220-222         | 0.1                    | 1.5             | 1.5             |
| 421-512         | 2.5                    | 5               | 5               |
| 806-809         | 1.0                    | 1.5             | 1.5             |
| 809-824         | 1.5                    | 2.5             | 2.5             |
| 851-854         | 1.0                    | 1.5             | 1.5             |
| 854-869         | 1.5                    | 2.5             | 2.5             |
| 896-901         | 0.1                    | 1.5             | 1.5             |
| 902-928         | 2.5                    | 2.5             | 2.5             |
| 929-930         | 1.5                    |                 |                 |
| 935-940         | 0.1                    | 1.5             | 1.5             |
| 1427-1435       | 300                    | 300             | 300             |

Issue Date: 21st August 2023 Page: 29 of 6



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

#### **Equipment Configuration for Carrier Frequencies**

| Variant:                | 12.5 KHz       | Duty Cycle (%):        | 99.0           |
|-------------------------|----------------|------------------------|----------------|
| Data Rate:              | Not Applicable | Antenna Gain (dBi):    | Not Applicable |
| Modulation:             | GMSK           | Beam Forming Gain (Y): | Not Applicable |
| TPC:                    | Not Applicable | Tested By:             | SB             |
| Engineering Test Notes: |                |                        |                |

### **Test Measurement Results**

| Test frequency | 217.0125 MHz | Frequen  | ncy Error  | Limit | Margin     |
|----------------|--------------|----------|------------|-------|------------|
| Temperature    | Voltage      | kHz      | ppm        | ppm   | ppm        |
|                | 13.84 Vdc    | 1.5030   | 0.6925868  | ±1    | -0.3074132 |
| 25 °C          | 11.0 Vdc     | 1.503    | 0.6925868  | ±1    | -0.3074132 |
|                | 15.0 Vdc     | 1.62825  | 0.7503024  | ±1    | -0.2497    |
| 70 °C          |              | 1.37775  | 0.6348713  | ±1    | -0.36513   |
| 60 °C          |              | 0.7515   | 0.3462934  | ±1    | -0.65371   |
| 50 °C          |              | 1.503    | 0.6925868  | ±1    | -0.30741   |
| 40 °C          |              | 1.002    | 0.4617246  | ±1    | -0.53828   |
| 30 °C          |              | 1.002    | 0.4617246  | ±1    | -0.53828   |
| 20 °C          | 13.84 Vdc    | 1.12725  | 0.5194401  | ±1    | -0.48056   |
| 10 °C          | 13.04 VUC    | 1.503    | 0.6925868  | ±1    | -0.30741   |
| 0 °C           |              | 1.7535   | 0.808018   | ±1    | -0.19198   |
| -10 °C         |              | 1.12725  | 0.5194401  | ±1    | -0.48056   |
| -20 °C         |              | 2.004    | 0.9234491  | ±1    | -0.07655   |
| -30 °C         |              | 1.37775  | 0.6348713  | ±1    | -0.36513   |
| -40 °C         |              | -1.37775 | -0.6348713 | ±1    | -0.36513   |

| Traceability to Industry Recognized Test Methodologies |                           |  |
|--------------------------------------------------------|---------------------------|--|
| Work Instruction:                                      | WI-02 MEASURING FREQUENCY |  |
| Measurement Uncertainty:                               | ±0.86 ppm                 |  |

Issue Date: 21st August 2023



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

#### **Equipment Configuration for Carrier Frequencies**

| Variant:                | 12.5 KHz       | Duty Cycle (%):        | 99.0           |
|-------------------------|----------------|------------------------|----------------|
| Data Rate:              | Not Applicable | Antenna Gain (dBi):    | Not Applicable |
| Modulation:             | GMSK           | Beam Forming Gain (Y): | Not Applicable |
| TPC:                    | Not Applicable | Tested By:             | SB             |
| Engineering Test Notes: |                |                        |                |

#### **Test Measurement Results**

| Test frequency | 220.00 MHz  | Frequen  | cy Error   | Limit | Margin     |
|----------------|-------------|----------|------------|-------|------------|
| Temperature    | Voltage     | kHz      | ppm        | ppm   | ppm        |
| 25 °C 11.0     | 13.84 Vdc   | 1.12725  | 0.5123864  | ±1.5  | -0.9876136 |
|                | 11.0 Vdc    | 0.2505   | 0.1138636  | ±1.5  | -1.3861364 |
|                | 15.0 Vdc    | 0.501    | 0.2277273  | ±1.5  | -1.27227   |
| 70 °C          | - 13.84 Vdc | 1.2525   | 0.5693182  | ±1.5  | -0.93068   |
| 60 °C          |             | 0.7515   | 0.3415909  | ±1.5  | -1.15841   |
| 50 °C          |             | 2.004    | 0.9109091  | ±1.5  | -0.58909   |
| 40 °C          |             | 1.3778   | 0.6262727  | ±1.5  | -0.87373   |
| 30 °C          |             | 1.2525   | 0.5693182  | ±1.5  | -0.93068   |
| 20 °C          |             | 1.503    | 0.6831818  | ±1.5  | -0.81682   |
| 10 °C          |             | 1.87875  | 0.8539773  | ±1.5  | -0.64602   |
| 0 °C           |             | 1.503    | 0.6831818  | ±1.5  | -0.81682   |
| -10 °C         |             | 1.87875  | 0.8539773  | ±1.5  | -0.64602   |
| -20 °C         |             | 1.503    | 0.6831818  | ±1.5  | -0.81682   |
| -30 °C         |             | 1.503    | 0.6831818  | ±1.5  | -0.81682   |
| -40 °C         |             | -2.37975 | -1.0817045 | ±1.5  | -0.4183    |

| Traceability to Industry Recognized Test Methodologies |                           |  |  |  |
|--------------------------------------------------------|---------------------------|--|--|--|
| Work Instruction:                                      | WI-02 MEASURING FREQUENCY |  |  |  |
| Measurement Uncertainty:                               | ±0.86 ppm                 |  |  |  |

Issue Date: 21st August 2023 Page: 31 of



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

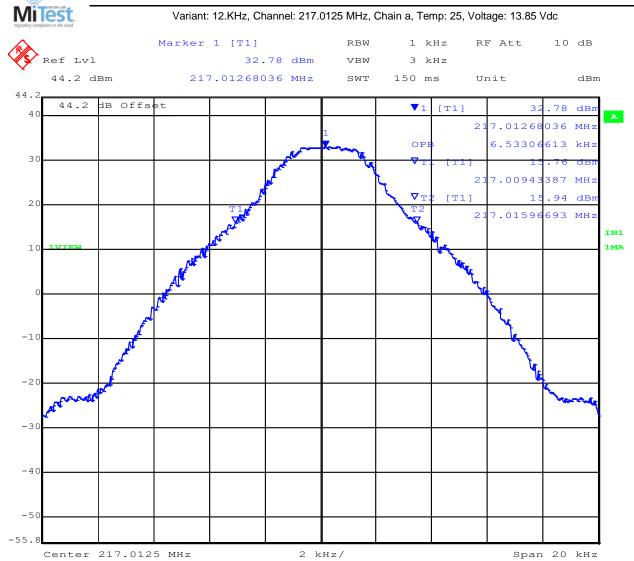
Serial #: GEMD02-U12 Rev A

# A. APPENDIX - GRAPHICAL IMAGES

ssue Date: 21st August 2023

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, <a href="https://www.micomlabs.com">www.micomlabs.com</a>




To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

# A.1. 99% Bandwidth

#### 99% BANDWIDTH

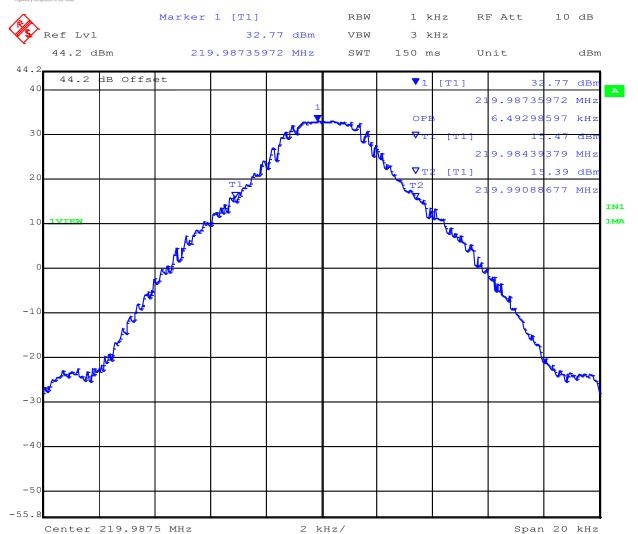


Date: 12.JUN.2023 09:43:17

back to matrix

ssue Date: 21st August 2023




FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

#### 99% BANDWIDTH

**MiTest** 

Variant: 12.KHz, Channel: 219.9875 MHz, Chain a, Temp: 25, Voltage: 13.85 Vdc



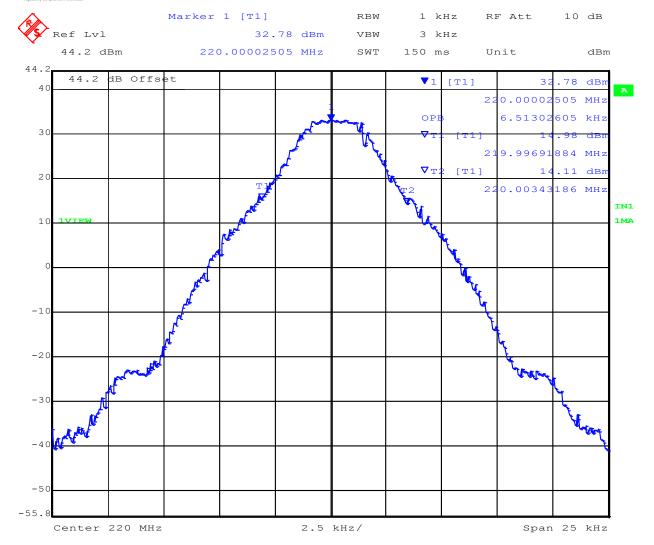
Date: 12.JUN.2023 09:42:05

back to matrix

Issue Date: 21st August 2023

Page:




o: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

### 99% BANDWIDTH

MiTest.

Variant: 12.KHz, Channel: 220.00 MHz, Chain a, Temp: 25, Voltage: 13.85 Vdc

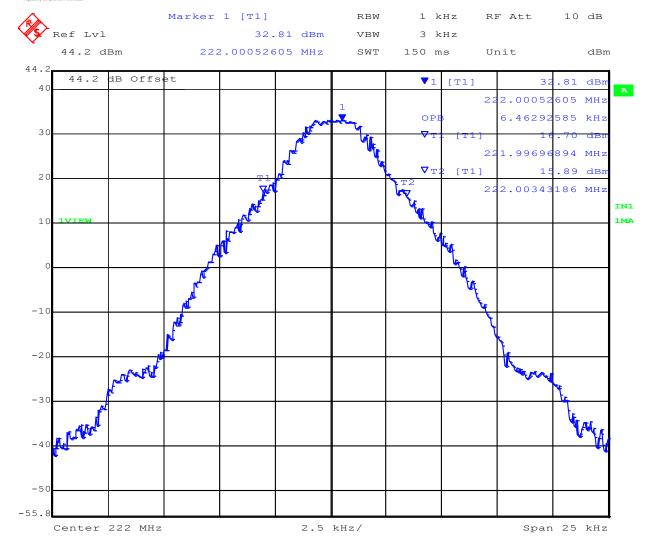


Date: 12.JUN.2023 14:02:59

back to matrix

Issue Date: 21st August 2023




To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

### 99% BANDWIDTH

MiTest.

Variant: 12.KHz, Channel: 222.00 MHz, Chain a, Temp: 25, Voltage: 13.85 Vdc



Date: 12.JUN.2023 14:01:54

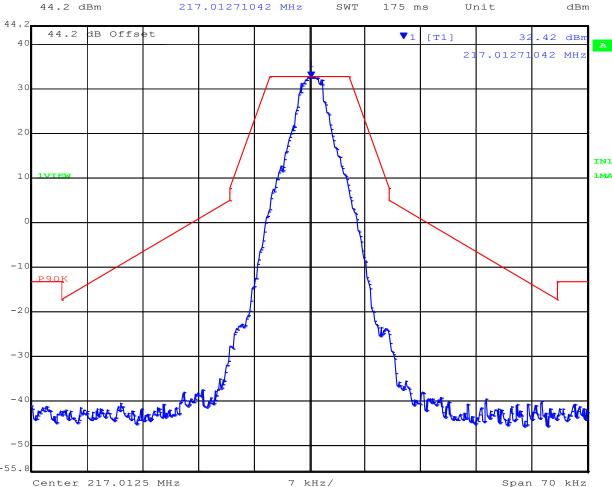
back to matrix

Issue Date: 21st August 2023 Page: 36 o



FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A


## A.2. High Power Spectrum Emission Mask & Spurious Emissions

## SPECTRUM EMISSION MASK

MiTest Variant: 12.5KHz, Channel: 217.0125 MHz, Chain a, Temp: 20, Voltage: 13.84 Vdc



44.2 dBm 217.01271042 MHz SWT 175 ms Unit



12.JUN.2023 08:33:08 Date:

| Analyzer Setup      | Test Results |
|---------------------|--------------|
| Detector = Max Peak | Pass         |
| Sweep Count = 0     |              |
| RF Atten (dB) = 10  |              |
| Trace Mode - CLRWR  |              |

back to matrix

21st August 2023



Fo: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

A

Serial #: GEMD02-U12 Rev A

#### SPECTRUM EMISSION MASK ISED

MiTest

Variant: 12.5KHz, Channel: 217.0125 MHz, Chain a, Temp: 20, Voltage: 13.84 Vdc

| regulatory con | phance in the cloud |         |        |          |                                           |              |      |      |     |         |     |               |
|----------------|---------------------|---------|--------|----------|-------------------------------------------|--------------|------|------|-----|---------|-----|---------------|
| R              |                     |         | Marker | 1 [T1]   |                                           | RBW          | 300  | Ηz   | RF  | Att     | 30  | dВ            |
| <b>V</b>       | Ref Lvl             |         |        | 31.      | .30 dBm                                   | VBW          | 300  | Ηz   |     |         |     |               |
|                | 42.2 di             | 3m      | 217    | 7.012860 | 72 MHz                                    | SWT          | 2.25 | s    | Un  | it      |     | dBm           |
| 42.2           |                     | dB Offs | s.+    |          |                                           |              |      | T .  |     |         |     | $\overline{}$ |
|                |                     |         |        |          |                                           |              | V 1  | [T1] |     | 31      |     |               |
|                |                     |         |        |          |                                           | 1            |      |      | 21  | 7.01286 | 072 | MHz           |
| 30             |                     |         |        |          |                                           |              |      |      |     |         |     |               |
|                |                     |         |        |          | / F                                       | \ II         |      |      |     |         |     |               |
|                |                     |         |        | /        | / <u>.                               </u> | <sup>†</sup> |      |      |     |         |     |               |
| 20             |                     |         |        |          | j.                                        | 4            |      |      | 1   |         |     |               |
|                |                     |         |        | /        | <b> </b>                                  | 4            | \    |      |     |         |     |               |
|                |                     |         |        | /        | 1 r                                       | A)           | \    |      | - 1 |         |     |               |



Date: 20.JUN.2023 14:51:00

Center 217.0125 MHz

| Analyzer Setup      | Test Results |
|---------------------|--------------|
| Detector = Max Peak | Pass         |
| Sweep Count = 0     |              |
| RF Atten (dB) = 10  | /            |
| Trace Mode = CLRWR  |              |

4 kHz/

back to matrix

-57.8

Issue Date: 21st August 2023

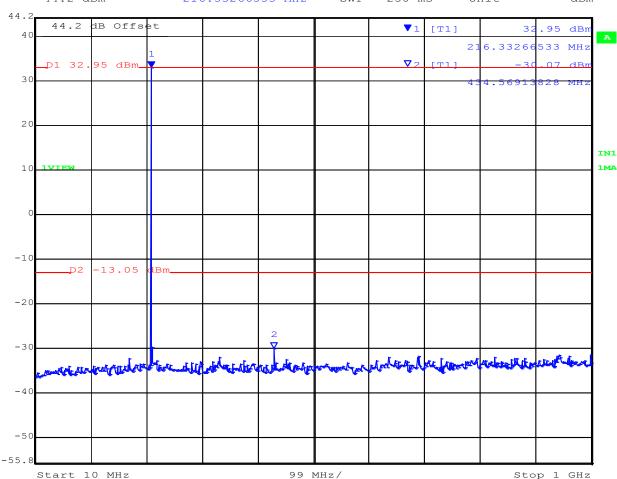
**Page:** 38 of 65

Span 40 kHz



FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A


#### SPECTRUM EMISSION 10MHz - 1GHz

**MiTest** 

Variant: 12.5KHz, Channel: 217.0125 MHz, Chain a, Temp: 20, Voltage: 13.84 Vdc

| ₹ <b>A</b> | Marker 1 [T1] | RBW    | 100 kHz | RF Att | 10 dB |
|------------|---------------|--------|---------|--------|-------|
| Ref Lvl    | 32.95 d       | Bm VBW | 300 kHz |        |       |
|            |               |        |         |        |       |

44.2 dBm 216.33266533 MHz SWT 250 ms Unit dBm



12.JUN.2023 09:56:48

| Analyzer Setup      | Test Results |
|---------------------|--------------|
| Detector = Max Peak | Pass         |
| Sweep Count = 0     |              |
| RF Atten (dB) = 10  |              |
| Trace Mode = CLRWR  |              |

Page:

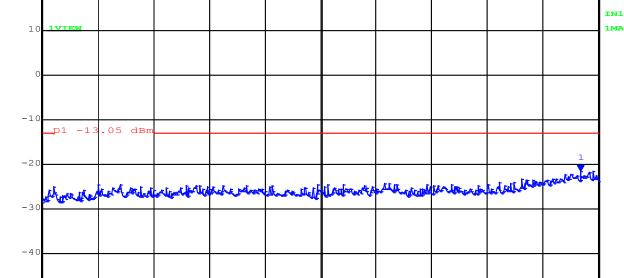
back to matrix

21st August 2023

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report. MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com



FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119


Serial #: GEMD02-U12 Rev A

#### SPECTRUM EMISSION 1GHz - 6GHz

MiTest

Variant: 12.5KHz, Channel: 217.0125 MHz, Chain a, Temp: 20, Voltage: 13.84 Vdc

RF Att Marker 1 [T1] RBW 1 MHz 10 dB Ref Lvl -21.66 dBm VBW 1 MHz dBm 44.2 dBm 5.83967936 GHz SWT 12.5 ms Unit dB Offset [T1] . 66 dBr 40 5.8396 30 20



Start 1 GHz 500 MHz/ Stop 6 GHz

| Analyzer Setup      | Test Results |
|---------------------|--------------|
| Detector = Max Peak | Pass         |
| Sweep Count = 0     |              |
| RF Atten (dB) = 10  |              |
| Trace Mode - CLRWR  |              |

back to matrix

-50 -55.8

Date:

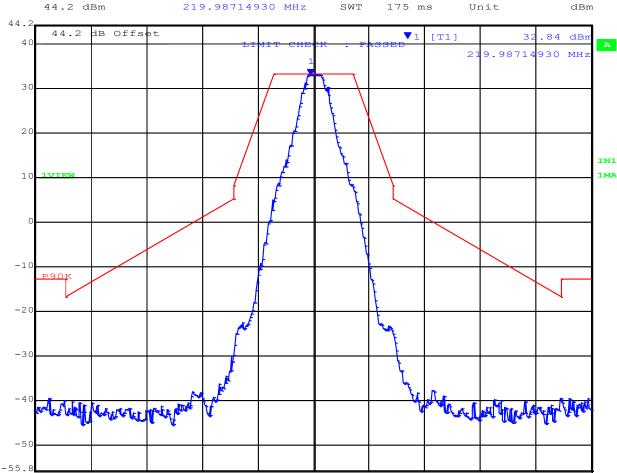
Issue Date: 21st August 2023

12.JUN.2023 10:04:41

Page: This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.



Fo: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119


Serial #: GEMD02-U12 Rev A

#### SPECTRUM EMISSION MASK

**MiTest** 

Variant: 12.5KHz, Channel: 219.9875 MHz, Chain a, Temp: 20, Voltage: 13.84 Vdc

| (P.)     |          | Marker 1 [T1] | RBW        | 1 kHz | RF Att  | 10 dB |
|----------|----------|---------------|------------|-------|---------|-------|
| <b>V</b> | Ref Lvl  | 32.84         | dBm VBW    | 3 kHz |         |       |
|          | 44 2 -15 | 210 00714020  | MII - CRIE | 175   | TT 2 4- | -170  |



Date: 12.JUN.2023 09:40:57

Center 219.9875 MHz

| Analyzer Setup      | Test Results |
|---------------------|--------------|
| Detector = Max Peak | Pass         |
| Sweep Count = 0     |              |
| RF Atten (dB) = 10  |              |
| Trace Mode = CLRWR  |              |

7 kHz/

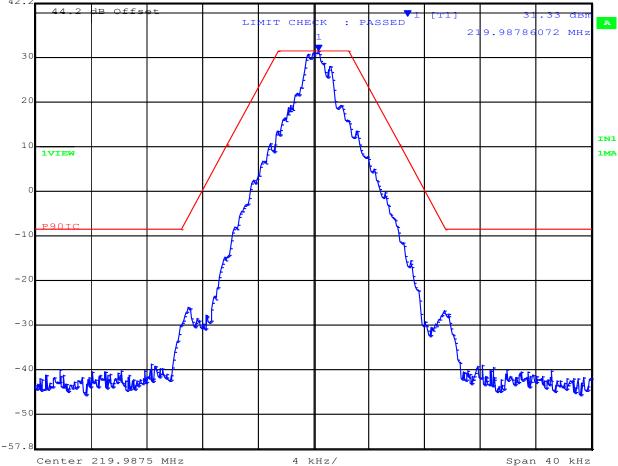
Span 70 kHz

back to matrix

Issue Date: 21st August 2023 Page:



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119


Serial #: GEMD02-U12 Rev A

#### SPECTRUM EMISSION MASK ISED

MiTest

Variant: 12.5KHz, Channel: 219.9875 MHz, Chain a, Temp: 20, Voltage: 13.84 Vdc

| (a)      |         |         | Marker | 1 [T1]  |     |     |    | RBW | 30    | 0 | Ηz   | RF       | Att   |    | 30  | dB  |
|----------|---------|---------|--------|---------|-----|-----|----|-----|-------|---|------|----------|-------|----|-----|-----|
| <b>V</b> | Ref Lvl |         |        | 31.     | 33  | dBm |    | VBW | 30    | 0 | Ηz   |          |       |    |     |     |
| -        | 42.2 d  | Bm      | 219    | .987860 | 72  | MHz |    | SWT | 2.2   | 5 | s    | Un       | it    |    |     | dBm |
| 42.2     | 4.4.0   | dB Offs | L      |         |     |     | I  |     | _     | _ |      | <u> </u> |       |    |     |     |
|          | 44.2    | DB OFFS | PT .   | LI      | MIT | CHE | CK | : P | ASSED | 1 | [T1] |          |       | 31 | .33 | dBm |
|          |         |         |        |         |     |     | ,  |     |       |   |      | 219      | 9.987 | 86 | 72  | MHz |



Date: 20.JUN.2023 14:59:17

| Analyzer Setup      | Test Results |
|---------------------|--------------|
| Detector = Max Peak | Pass         |
| Sweep Count = 0     |              |
| RF Atten (dB) = 10  |              |
| Trace Mode = CLRWR  |              |

back to matrix

Issue Date: 21st August 2023



o: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

## SPECTRUM EMISSION 10MHz - 1GHz

MiTest

Variant: 12.5KHz, Channel: 219.9875 MHz, Chain a, Temp: 20, Voltage: 13.84 Vdc

|       | e cloud     |            | м       | arker     | 1 [171] | 1.1       |          | RBW              | 100      | kH7      | R       | F Att         | 1.0      | dВ     |
|-------|-------------|------------|---------|-----------|---------|-----------|----------|------------------|----------|----------|---------|---------------|----------|--------|
| > Dot | f Lvl       |            | 11      | arker     |         |           |          | VBW              |          |          | 10      | r Acc         | 10       | αБ     |
| 44    | 1.2 d       |            |         | 22        |         |           |          | SWT              |          |          | U       | nit           |          | dBm    |
| 10    | 14.2        | dB Of:     | fset    |           |         |           |          |                  | ▼        | 1 [T1]   | ]       | 3             | 3.11     | dBm    |
| _ D   | 1 22        | 11 dB      | 1       |           |         |           |          |                  |          | 2 [T1]   |         | 0.30060<br>-3 |          | MHz    |
| 30    |             | II ub      |         |           |         |           |          |                  | ·        |          | ,       | 0.5210        | 1        |        |
|       |             |            |         |           |         |           |          |                  |          |          |         |               |          |        |
| 20    |             |            | ╁       |           |         |           |          |                  |          | +        |         |               | +        |        |
| 0 117 | IEW         |            |         |           |         |           |          |                  |          |          |         |               |          |        |
| 10 10 | T.F.W       |            |         |           |         |           |          |                  |          |          |         |               |          |        |
| 0     |             |            | Щ       |           |         |           |          |                  |          |          |         |               | <u> </u> |        |
|       |             |            |         |           |         |           |          |                  |          |          |         |               |          |        |
| 0     | D2          | -12.8      | 9 dE    | m         |         |           |          |                  |          | +        |         |               | $\vdash$ |        |
|       |             | 12.0       |         |           |         |           |          |                  |          |          |         |               |          |        |
| 20    |             |            |         |           |         |           |          |                  |          |          |         |               | $\vdash$ |        |
| 3 0   |             |            |         |           |         |           | 2        |                  |          |          |         |               |          |        |
|       | r r. Klasie | ant little | باللارا | AL malin  | سللله   | r i en le | Mic moul | atali-talitalist | Michigan | Continue | Car Mar | michial pinal | ries     | ellind |
| 4 0   |             |            |         | - www.u.v |         |           |          |                  |          |          |         |               | <u> </u> |        |
|       |             |            |         |           |         |           |          |                  |          |          |         |               |          |        |
| 50    |             |            |         |           |         | $\perp$   |          |                  |          |          |         |               | $\vdash$ |        |
| . 8   |             |            |         |           |         |           |          |                  |          | 1        |         |               |          |        |

Date: 12.JUN.2023 10:02:17

Center 505 MHz

| Analyzer Setup      | Test Results |
|---------------------|--------------|
| Detector = Max Peak | Pass         |
| Sweep Count = 0     |              |
| RF Atten (dB) = 10  |              |
| Trace Mode = CLRWR  |              |

99 MHz/

Span 990 MHz

back to matrix

Issue Date: 21st August 2023



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

## SPECTRUM EMISSION 1GHz - 6GHz

MiTest

Variant: 12.5KHz, Channel: 219.9875 MHz, Chain a, Temp: 20, Voltage: 13.84 Vdc

| ary compliance in the cloud |                 |                                                                                                                |                |                |         | _            |          |          |
|-----------------------------|-----------------|----------------------------------------------------------------------------------------------------------------|----------------|----------------|---------|--------------|----------|----------|
| <b>&gt;</b>                 | Marker          | 1 [T1]                                                                                                         | RBW            | 1 1            | ИНz     | RF Att       | 10 0     | dB       |
| Ref Lvl                     |                 | -20.25 dBm                                                                                                     | VBW            | 1 1            | 4Hz     |              |          |          |
| 44.2 dBm                    | 5               | .93987976 GHz                                                                                                  | SWT            | 12.5 r         | ns      | Unit         | C        | dBm      |
| 44.2 dB Of                  | = = L _         |                                                                                                                | 1              |                |         |              |          |          |
| 40 44.2 08 01               | iset            |                                                                                                                | 1              | V <sub>1</sub> | [T1]    | _            | .25 d    |          |
|                             |                 |                                                                                                                |                |                |         | 5.93987      | 976 G    | Hz       |
|                             |                 |                                                                                                                |                |                |         |              | ĺ        |          |
| 30                          |                 |                                                                                                                | +              |                |         |              |          |          |
|                             |                 |                                                                                                                |                |                |         |              |          |          |
| 20                          |                 |                                                                                                                |                |                |         |              |          |          |
|                             |                 |                                                                                                                |                |                |         |              |          |          |
|                             |                 |                                                                                                                |                |                |         |              |          | - [:     |
| 10 1VIEW                    |                 |                                                                                                                | +              |                |         |              | <u> </u> |          |
|                             |                 |                                                                                                                |                |                |         |              |          |          |
|                             |                 |                                                                                                                |                |                |         |              |          |          |
| 0                           |                 |                                                                                                                |                |                |         |              |          |          |
|                             |                 |                                                                                                                |                |                |         |              |          |          |
| 10                          |                 |                                                                                                                |                |                |         |              |          | _        |
| _D1 -12.89                  | dBm             |                                                                                                                |                |                |         |              | <u> </u> | -        |
|                             |                 |                                                                                                                |                |                |         |              | ĺ        | 1        |
| 20                          |                 |                                                                                                                |                |                |         |              | F        | <u></u>  |
| ar ration to                | to at mount and | at of a Lusting and                                                                                            | PROPERTY MAKES | to tores as    | ANIMARK | E LANGE MENT | distance | , a      |
| ·30                         | Charles Charles | at a later and a little little later and a later a |                | 00000          |         |              | ĺ        |          |
|                             |                 |                                                                                                                |                |                |         |              |          |          |
|                             |                 |                                                                                                                |                |                |         |              | ĺ        |          |
| 40                          |                 |                                                                                                                |                |                |         |              |          | _        |
|                             |                 |                                                                                                                |                |                |         |              |          |          |
|                             |                 |                                                                                                                |                |                |         |              | ĺ        |          |
| 50                          |                 |                                                                                                                | +              |                |         |              | $\vdash$ | $\dashv$ |
|                             |                 |                                                                                                                |                |                |         |              | 1        | - 1      |

Date: 12.JUN.2023 10:14:49

| Analyzer Setup      | Test Results |
|---------------------|--------------|
| Detector = Max Peak | Pass         |
| Sweep Count = 0     |              |
| RF Atten (dB) = 10  |              |
| Trace Mode = CLRWR  |              |

500 MHz/

back to matrix

ssue Date: 21st August 2023

Fage. 44 01 03



o: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

#### SPECTRUM EMISSION MASK

MiTest

Variant: 12.5KHz, Channel: 220.00 MHz, Chain a, Temp: 20, Voltage: 13.84 Vdc

| regulatory comp | lest.   |         | Va         | riant: | 12.5KHz, ( | Channel: 22 | 0.00 MHz, ( | Chain a, Ter | np: 20, Vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Itage: 13.84 \   | Vdc  |     |     |
|-----------------|---------|---------|------------|--------|------------|-------------|-------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------|-----|-----|
| 2               |         |         | Mark       | er     | 1 [T1]     |             | RBW         | 100          | Hz 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RF Att           | 10   | dВ  |     |
| <b>%</b> >      | Ref Lvl |         |            |        | 28.        | 24 dBm      | VBW         | 1 k          | Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |      |     |     |
|                 | 44.2 d  | .Bm     |            | 219    | .999874    | 75 MHz      | SWT         | 12.5         | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unit             |      | dBm |     |
| 44.2            |         | dB Offs | et         |        |            |             |             | <b>V</b> 1   | [T1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28               | 8.24 | dBm | A   |
|                 |         |         |            |        |            |             |             |              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 219.99985        | 7475 | MHz | A   |
| 30              |         |         |            |        |            | 1           |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |      |     |     |
|                 |         |         |            |        |            | 1           | Ar.         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |      |     |     |
| 20              |         |         |            |        |            |             | 44          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |      |     |     |
|                 |         |         |            |        |            | All         | The H       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |      |     | IN1 |
| 10              | 1VIEW   |         | +          |        |            |             | UL T        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |      |     | 1M2 |
|                 |         |         |            |        | . Je 14    | Man 1       | , T         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |      |     |     |
| 0               |         |         |            |        |            |             |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |      |     |     |
|                 |         |         | <i>  [</i> |        | Mar        |             |             | MIM IT       | ,<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\setminus$      |      |     |     |
| -10             |         |         |            |        | ţŲ.        |             |             |              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>         |      |     |     |
|                 |         | /       | /          | A [ ]  | •          |             |             | "            | le de la constant de | $\setminus$      |      |     |     |
| -20             |         |         |            | ۴      |            |             |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\bot \setminus$ |      |     |     |

-30 P90T

Date: 12.JUN.2023 13:15:24

Center 220 MHz

| Analyzer Setup      | Test Results |
|---------------------|--------------|
| Detector = Max Peak | Pass         |
| Sweep Count = 0     |              |
| RF Atten (dB) = 10  |              |
| Trace Mode = CLRWR  |              |

2.5 kHz/

back to matrix

Issue Date: 21st August 2023

Page: 45 of 65

Span 25 kHz



o: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

## SPECTRUM EMISSION 10MHz - 1GHz

MiTest

Variant: 12.5KHz, Channel: 220.00 MHz, Chain a, Temp: 20, Voltage: 13.84 Vdc

| Ref Lvl         |                | 1 [T1]      | 02 dBm     | RBW          | 300 1      | CHZ            |              |       |           |            |
|-----------------|----------------|-------------|------------|--------------|------------|----------------|--------------|-------|-----------|------------|
| 44.2 dBm        | 220            | .300601     |            |              | 250 r      |                | Uni+         |       |           | dBr        |
| 2               |                |             | 20 11112   |              | 200 1      |                | 011110       |       |           | u.D.       |
| 44.2 dB Off     | set            |             |            |              | ▼1         | [T1]           |              | 33    | .02       | dBn        |
|                 | 1              |             |            |              |            |                | 220.3        | 0060  | 120       | MHz        |
| D1 33.02 dB     | n              |             |            |              | <b>∇</b> 2 | [T1]           |              | -30   | . 49      | dBn        |
| 0               |                |             |            |              |            |                | 440.5        | 2104  | 208       | MHZ        |
|                 |                |             |            |              |            |                |              |       |           |            |
| 0               |                |             |            |              |            |                |              |       |           |            |
|                 |                |             |            |              |            |                |              |       |           |            |
|                 |                |             |            |              |            |                |              |       |           |            |
| 1VIEW           |                |             |            |              |            |                | -            |       |           |            |
|                 |                |             |            |              |            |                |              |       |           |            |
| 0               |                |             |            |              |            |                |              |       |           |            |
|                 |                |             |            |              |            |                |              |       |           |            |
|                 |                |             |            |              |            |                |              |       |           |            |
| 0               |                |             |            |              |            |                |              |       |           |            |
|                 |                |             |            |              |            |                |              |       |           |            |
| 0               |                |             |            |              |            |                |              |       |           |            |
| D2 -24.9        | 8 dBm          |             |            |              |            |                |              |       |           |            |
|                 |                |             | 2          |              |            |                |              |       |           |            |
| 0               |                | 1           | 7          |              | F. 1       | <u> </u>       |              |       | er e et e | عالي جا    |
| the third water | My derectation | the Athlian | Mellitante | that witight | Attitude   | Market Company | The state of | A-AL- | Acres     | The second |
| 0               |                |             |            |              |            |                |              |       |           |            |
|                 |                |             |            |              |            |                |              |       |           |            |
|                 |                |             |            |              |            |                |              |       |           |            |

Date: 12.JUN.2023 14:39:47

Start 10 MHz

| Analyzer Setup      | Test Results |
|---------------------|--------------|
| Detector = Max Peak | Pass         |
| Sweep Count = 0     |              |
| RF Atten (dB) = 10  |              |
| Trace Mode = CLRWR  |              |

99 MHz/

Stop 1 GHz

back to matrix

Issue Date: 21st August 2023

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, <a href="https://www.micomlabs.com">www.micomlabs.com</a>



Fo: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

## SPECTRUM EMISSION 1GHz - 5GHz

MiTest.

Variant: 12.5KHz, Channel: 220.00 MHz, Chain a, Temp: 20, Voltage: 13.84 Vdc

| ry compliance in the cloud |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      |                |          |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|----------------|----------|
| <b>&gt;</b>                | Marker 1 [T1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                      | RF Att         | 0 dB     |
| Ref Lvl                    | -32.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dBm VBW              | 3 MHz                |                |          |
| 34.2 dBm                   | 4.39078156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GHz SWT              | 1 s                  | Unit           | dBm      |
| .2 44.2 dB Of              | ee-L-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>             |                      |                |          |
| 30 44.2 05 01              | LISEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | ▼1 [T1]              | ] -3           | 2.21 dBm |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      | 4.3907         | 3156 GHz |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      |                |          |
| 20                         | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                    |                      |                |          |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      |                |          |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      |                |          |
| 10                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      |                |          |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      |                |          |
| 0 1VIEW                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      |                |          |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      |                |          |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      |                |          |
| 10                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      |                |          |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      |                |          |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      |                |          |
| 20                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      |                |          |
| _D1 -24.98 (               | dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                      |                |          |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      | _              |          |
| 30                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      | 1              |          |
| an and citized             | page of a policy of a tile of the total and the contract of th | petitet in that I am | CORNER TO THE WAY DE | WATER BUILDING | are an   |
| •                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 444                  |                      |                | <b>"</b> |
| 4 0                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      |                |          |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      |                |          |
| E 0                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      |                |          |
| 50                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      |                |          |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      |                |          |
| 60                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      |                | <b> </b> |
| 30                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      |                |          |

Date: 12.JUN.2023 14:54:31

Center 3 GHz

| Analyzer Setup      | Test Results |
|---------------------|--------------|
| Detector = Max Peak | Pass         |
| Sweep Count = 0     |              |
| RF Atten (dB) = 0   |              |
| Trace Mode = CLRWR  |              |

400 MHz/

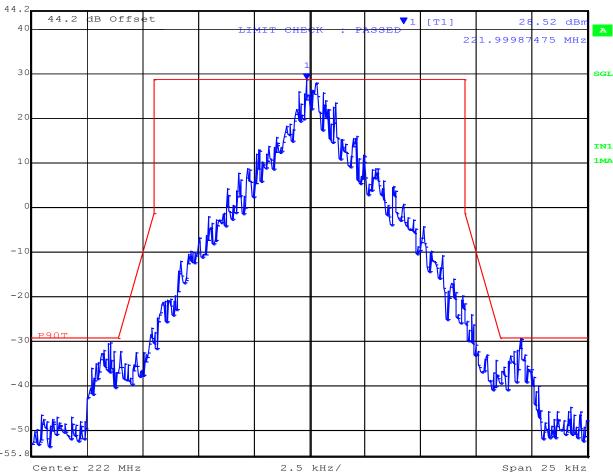
Span 4 GHz

back to matrix

Issue Date: 21st August 2023 Page: 4



o: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119


Serial #: GEMD02-U12 Rev A

## SPECTRUM EMISSION MASK

**MiTest** 

Variant: 12.5KHz, Channel: 222.00 MHz, Chain a, Temp: 20, Voltage: 13.84 Vdc

| R  |          | Marker 1 [T1] |     | RBW | 100 Hz | RF Att | 10 dB |
|----|----------|---------------|-----|-----|--------|--------|-------|
| V. | Ref Lvl  | 28.52         | dBm | VBW | 1 kHz  |        |       |
| _  | 44.2 dBm | 221.99987475  | MHz | SWT | 12.5 s | Unit   | dBm   |
| 11 | 2        |               |     |     |        |        |       |



Date: 12.JUN.2023 14:00:29

| Analyzer Setup      | Test Results |
|---------------------|--------------|
| Detector = Max Peak | Pass         |
| Sweep Count = 0     |              |
| RF Atten (dB) = 10  |              |
| Trace Mode = CLRWR  |              |

back to matrix

ssue Date: 21st August 2023

**Page:** 48 of 65



Fo: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

## SPECTRUM EMISSION 10MHz - 1GHz

**MiTest** 

Variant: 12.5KHz, Channel: 222.00 MHz, Chain a, Temp: 20, Voltage: 13.84 Vdc

|                     | Marker 1 [       | T1]                               | RBW        | 100 k        | Hz         | RF Att     | 10 dB         |
|---------------------|------------------|-----------------------------------|------------|--------------|------------|------------|---------------|
| Ref Lvl             |                  | 33.13 dBm                         | VBW        | 300 k        | Hz         |            |               |
| 44.2 dBm            | 222.28           | 456914 MHz                        | SWT        | 250 m        | ıs         | Unit       | dBm           |
| .2<br>44.2 dB Off:  | set              |                                   |            | <b>V</b> 1   | [T1]       | 3          | 3.13 dBm      |
| 40                  | 1                |                                   |            |              |            | 222.2845   | 6914 MHz      |
| _D1 33.13 dBm       |                  |                                   |            | <u>∇</u> 2   | [T1]       | -3         | 0.54 dBm      |
| 30                  | ++               | +                                 |            |              |            | 444.4889   | 7796 MHZ      |
|                     |                  |                                   |            |              |            |            |               |
| 20                  |                  |                                   |            |              |            |            |               |
|                     |                  |                                   |            |              |            |            |               |
|                     |                  |                                   |            |              |            |            |               |
| 10 1VIEW            |                  |                                   |            |              |            |            |               |
|                     |                  |                                   |            |              |            |            |               |
| 0                   |                  |                                   |            |              |            |            |               |
|                     |                  |                                   |            |              |            |            |               |
| 1 0                 |                  |                                   |            |              |            |            |               |
|                     |                  |                                   |            |              |            |            |               |
|                     |                  |                                   |            |              |            |            |               |
| 20                  | +                |                                   |            |              |            |            |               |
| D2 -24.87           | d.Bm             |                                   |            |              |            |            |               |
| 30                  |                  | 2<br><b>7</b>                     |            |              |            |            |               |
| with alter like and | in lock war were | -yari-jayi -airad                 | The Line 1 | entactedat L | ANTA ANTA  | in and the | Andred winter |
|                     | and the same     | - Contract of the Contract of the | of a stand |              | -fr-co-sa- |            |               |
| 4 0                 |                  |                                   |            |              |            |            |               |
|                     |                  |                                   |            |              |            |            |               |
| 50                  |                  |                                   | I          | I            | l          | 1          |               |

Date: 12.JUN.2023 14:41:31

Start 10 MHz

| Analyzer Setup      | Test Results |
|---------------------|--------------|
| Detector = Max Peak | Pass         |
| Sweep Count = 0     |              |
| RF Atten (dB) = 10  |              |
| Trace Mode = CLRWR  |              |

99 MHz/

back to matrix

Issue Date: 21st August 2023

**Page:** 49 of 65

Stop 1 GHz

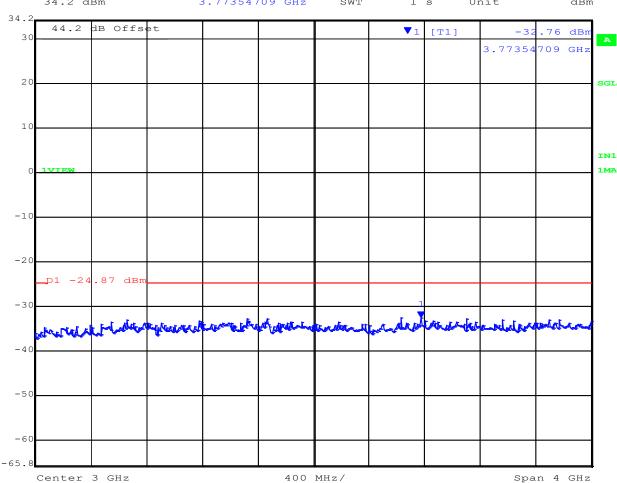


FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

RF Att

0 dB

Serial #: GEMD02-U12 Rev A


#### SPECTRUM EMISSION 1GHz - 5GHz

MiTest

Variant: 12.5KHz, Channel: 222.00 MHz, Chain a, Temp: 20, Voltage: 13.84 Vdc RBW

Marker 1 [T1] 1 MHz Ref Lvl -32.76 dBm VBW 3 MHz

34.2 dBm 3.77354709 GHz SWT 1 s Unit dBm



Date: 12.JUN.2023 14:53:24

| Analyzer Setup      | Test Results |
|---------------------|--------------|
| Detector = Max Peak | Pass         |
| Sweep Count = 0     |              |
| RF Atten (dB) = 0   |              |
| Trace Mode = CLRWR  |              |

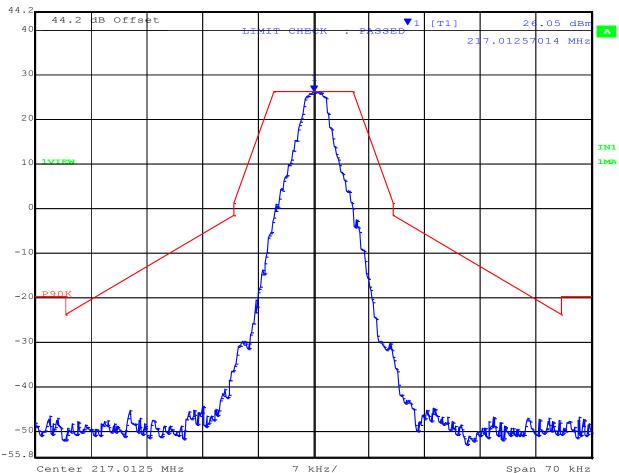
back to matrix

Issue Date: 21st August 2023 Page:



FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A


# A.3. Low Power Spectrum Emission Mask & Spurious Emissions

## SPECTRUM EMISSION MASK

Variant: 12.5KHz, Channel: 217.0125 MHz, Chain a, Temp: 20, Voltage: 13.84 Vdc







Date: 12.JUN.2023 09:01:50

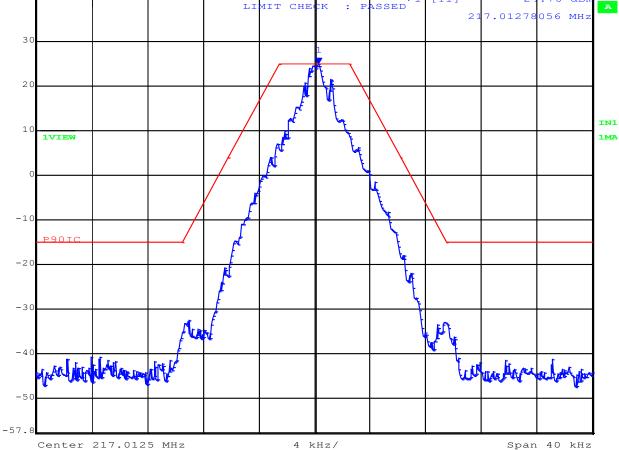
| Analyzer Setup      | Test Results |
|---------------------|--------------|
| Detector = Max Peak | Pass         |
| Sweep Count = 0     |              |
| RF Atten (dB) = 10  |              |
| Trace Mode - CLRWR  |              |

back to matrix

ssue Date: 21st August 2023 Page: 51



o: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119


Serial #: GEMD02-U12 Rev A

#### SPECTRUM EMISSION MASK ISED

MiTest

Variant: 12.5KHz, Channel: 217.0125 MHz, Chain a, Temp: 20, Voltage: 13.84 Vdc

| Ŕ.       |         |         | Marker     | 1 [T1] |       |     | RBW      | 300   | Hz R      | F Att          | 30  | dВ  |
|----------|---------|---------|------------|--------|-------|-----|----------|-------|-----------|----------------|-----|-----|
| <b>%</b> | Ref Lvl |         |            | 24.    | 76 dE | 3m  | VBW      | 300   | Ηz        |                |     |     |
|          | 42.2 di | Bm      | 217        | 012780 | 56 MH | Ιz  | SWT      | 2.25  | s U       | nit            |     | dBm |
| 42.2     | 44.0    | dB Offs |            |        |       |     |          | _     |           |                |     |     |
|          | 44,2    | ab offs | <b>9</b> C | LI     | MIT C | HEC | K : P    | ASSED | [T1]<br>2 | 24<br>17.01278 | .76 |     |
| 30       |         |         |            |        |       |     |          |       |           |                |     |     |
|          |         |         |            |        |       | 1   | <u> </u> |       |           |                |     |     |



Date: 20.JUN.2023 14:55:26

| Analyzer Setup      | Test Results |
|---------------------|--------------|
| Detector = Max Peak | Pass         |
| Sweep Count = 0     |              |
| RF Atten (dB) = 10  |              |
| Trace Mode = CLRWR  |              |

back to matrix

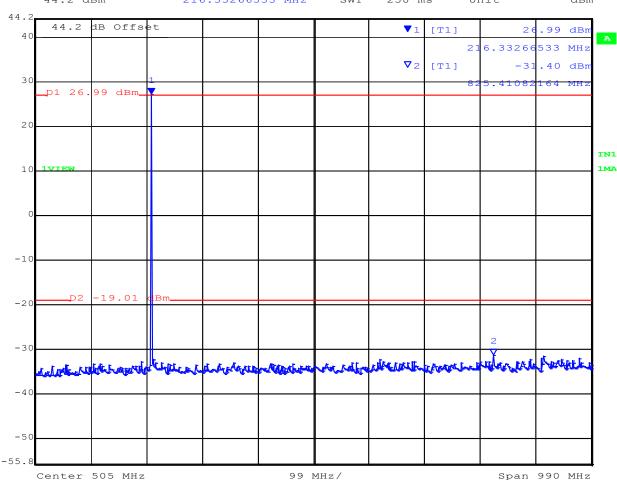
Issue Date: 21st August 2023

Page: 52 of 65



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A


#### SPECTRUM EMISSION 10MHz - 1GHz

Variant: 12.5KHz, Channel: 217.0125 MHz, Chain a, Temp: 20, Voltage: 13.84 Vdc

Marker 1 [T1] RBW 100 kHz RF Att 10 dB

Ref Lvl 26.99 dBm VBW 300 kHz

44.2 dBm 216.33266533 MHz SWT 250 ms Unit dBm



Date: 12.JUN.2023 09:59:02

| Analyzer Setup      | Test Results |
|---------------------|--------------|
| Detector = Max Peak | Pass         |
| Sweep Count = 0     |              |
| RF Atten (dB) = 10  |              |
| Trace Mode = CLRWR  |              |

back to matrix

Issue Date: 21st August 2023 Page:



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

## SPECTRUM EMISSION 1GHz - 5GHz

MiTest

Variant: 12.5KHz, Channel: 217.0125 MHz, Chain a, Temp: 20, Voltage: 13.84 Vdc

| Ref Lvl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -31.77 dBm<br>5.78957916 GHz                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 44.2 dB Offset  V1 [T1]  10  10  10  10  10  10  10  10  10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -31.77 dBm                                       |
| 44.2 dB Offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |
| 0 1VIEW 0 D1 -19.01 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |
| 0 1VTEW 0 D1 -19.01 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.7337,310 GHZ                                   |
| 0 1VTEW 0 D1 -19.01 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |
| 0 IVIEW  0 D1 -19.01 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |
| 0 IVIEW  0 D1 -19.01 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |
| 0 IVIEW 10 p1 -19.01 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |
| D1 -19.01 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |
| D1 -19.01 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |
| 20 D1 -19.01 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 20 D1 -19.01 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 20 D1 -19.01 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |
| 30 mare replace to the first and the first a |                                                  |
| 10 months for the market of the partition of the first of |                                                  |
| 2 - Land Charles of the first o | 1                                                |
| 10 Same of the second of the s | - Will a transferrage                            |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | afet material                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>                                     </del> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |

Date: 21.JUN.2023 13:32:18

Center 3.5 GHz

| Analyzer Setup      | Test Results |
|---------------------|--------------|
| Detector = Max Peak | Pass         |
| Sweep Count = 0     |              |
| RF Atten (dB) = 10  |              |
| Trace Mode = CLRWR  |              |

500 MHz/

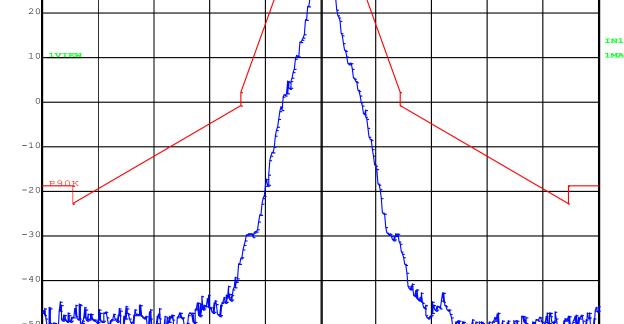
Span 5 GHz

back to matrix

Issue Date: 21st August 2023 Page



FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119


Serial #: GEMD02-U12 Rev A

#### SPECTRUM EMISSION MASK

MiTest

Variant: 12.5KHz, Channel: 219.9875 MHz, Chain a, Temp: 20, Voltage: 13.84 Vdc

Marker 1 [T1] RBW 1 kHz RF Att 10 dB Ref Lvl 26.99 dBm VBW 3 kHz 44.2 dBm 219.98827154 MHz SWT 175 ms Unit dBm dB Offset . 99 dBr 40 9.9882 30



Date: 12.JUN.2023 09:08:42

Center 219.9875 MHz

| Analyzer Setup      | Test Results |
|---------------------|--------------|
| Detector = Max Peak | Pass         |
| Sweep Count = 0     |              |
| RF Atten (dB) = 10  |              |
| Trace Mode = CLRWR  |              |

7 kHz/

back to matrix

-55.8

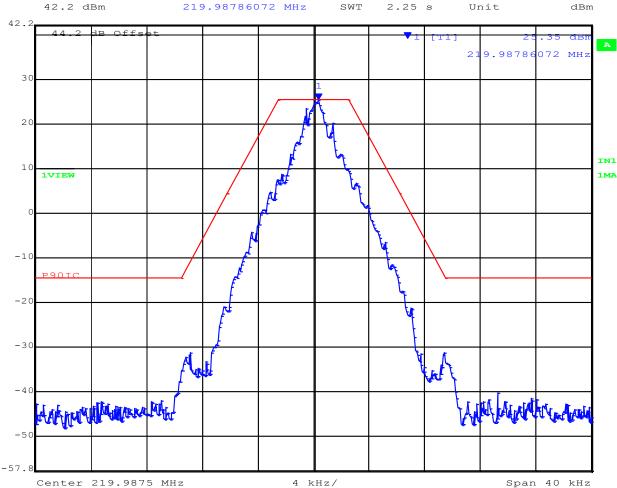
Issue Date: 21st August 2023

**Page:** 55 of 65

Span 70 kHz



o: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119


Serial #: GEMD02-U12 Rev A

#### SPECTRUM EMISSION MASK ISED

MiTest

Variant: 12.5KHz, Channel: 219.9875 MHz, Chain a, Temp: 20, Voltage: 13.84 Vdc

| R.A.    | Marker 1 [T1] | RBW | 300 Hz | RF Att | 30 dB |
|---------|---------------|-----|--------|--------|-------|
| Ref Lvl | 25.35 dBm     | VBW | 300 Hz |        |       |



Date: 20.JUN.2023 14:57:39

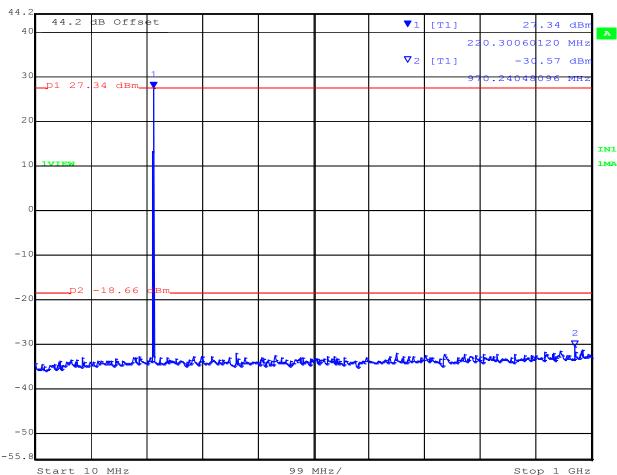
| Analyzer Setup      | Test Results |
|---------------------|--------------|
| Detector = Max Peak | Pass         |
| Sweep Count = 0     |              |
| RF Atten (dB) = 10  |              |
| Trace Mode = CLRWR  |              |

back to matrix

Issue Date: 21st August 2023

**Page:** 56 of 65




o: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

#### SPECTRUM EMISSION 10MHz - 1GHz

Variant: 12.5KHz, Channel: 219.9875 MHz, Chain a, Temp: 20, Voltage: 13.84 Vdc

Marker 1 [T1] RBW 100 kHz RF Att 10 dB 27.34 dBm VBW 300 kHz



Date: 12.JUN.2023 10:00:46

| Analyzer Setup      | Test Results |
|---------------------|--------------|
| Detector = Max Peak | Pass         |
| Sweep Count = 0     |              |
| RF Atten (dB) = 10  |              |
| Trace Mode = CLRWR  |              |

Page:

back to matrix

ssue Date: 21st August 2023



o: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

## SPECTRUM EMISSION 1GHz - 5GHz

MiTest

Variant: 12.5KHz, Channel: 219.9875 MHz, Chain a, Temp: 20, Voltage: 13.84 Vdc

| story compliance in the cloud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |         |          | •              | ,           | . ,       | J              |             |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|----------|----------------|-------------|-----------|----------------|-------------|----------|
| <b>&gt;</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Marker           | 1 [T1]  |          | RBW            | 1 M         | IHz F     | RF Att         | 0           | dВ       |
| Ref Lvl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | -30.    | 80 dBm   | VBW            | 1 M         | IHz       |                |             |          |
| 34.2 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                | .919839 | 68 GHz   | SWT            | 12.5 m      | ıs U      | Jnit           |             | dBm      |
| 44.2 dB Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | aht I            |         |          | I              | <del></del> | I         | I              |             | $\neg$   |
| 30 44.2 dB 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sec              |         |          |                | ▼1          | [T1]      | 1              | .80         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |         |          |                |             |           | 5.91983        | 968         | GHz      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |         |          |                |             |           |                |             |          |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |         |          |                |             |           |                |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |         |          |                |             |           |                |             |          |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |         |          |                |             |           |                |             | _        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |         |          |                |             |           |                |             |          |
| O 1VIEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |         |          |                |             |           |                |             | - 1      |
| 0 1VIEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |         |          |                |             |           |                |             | <b></b>  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |         |          |                |             |           |                |             |          |
| -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |         |          |                |             |           |                |             | _        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |         |          |                |             |           |                |             |          |
| _p1 -18.66 di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3m               |         |          |                |             |           |                |             |          |
| -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |         |          |                |             |           |                |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |         |          |                |             |           |                |             |          |
| -30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |         |          |                |             |           |                |             | 1        |
| -40 with the little to the total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r                |         |          |                |             |           | - 44           | TANK OF THE | FIE      |
| be with the late of the late o | enterent for the |         | material | The particular | where       | the whole | A COLETON BOOK |             |          |
| - 4 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |         |          |                |             |           |                |             | _        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |         |          |                |             |           |                |             |          |
| -50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |         |          |                |             |           |                |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |         |          |                |             |           |                |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |         |          |                |             |           |                |             |          |
| -60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |         |          |                |             |           |                |             | $\dashv$ |
| 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |         |          |                |             |           |                |             |          |

Date: 21.JUN.2023 13:34:11

Center 3.5 GHz

| Analyzer Setup      | Test Results |
|---------------------|--------------|
| Detector = Max Peak | Pass         |
| Sweep Count = 0     |              |
| RF Atten (dB) = 10  | /            |
| Trace Mode = CLRWR  |              |

500 MHz/

Span 5 GHz

back to matrix

Issue Date: 21st August 2023 P



FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

#### SPECTRUM EMISSION MASK

| registrice in the cloud | Marker       | 1 [T1] |           | RBW                 | 100        | Ηz       | RF Att   | 10    | ) dB |
|-------------------------|--------------|--------|-----------|---------------------|------------|----------|----------|-------|------|
| Ref Lvl                 |              |        | .11 dBm   |                     | 1 k        |          |          |       |      |
| 44.2 dBm                | 220          |        |           | SWT                 | 12.5       |          | Unit     |       | dBr  |
| 44.2 dB Of              | Eset         | T. T   | MIT CHE   | чк                  | <b>V</b> 1 | [T1]     |          | 22.11 | dBn  |
|                         |              |        |           |                     | 10000      |          | 220.000  | 17535 | MHz  |
| 0                       |              |        |           |                     |            |          |          |       |      |
|                         |              |        |           | 1                   |            |          |          |       |      |
| 0                       |              |        |           | <u> </u>            |            |          | 7        |       |      |
|                         |              |        |           | [ A] [              |            |          |          |       |      |
| 0                       |              |        | <b>₩</b>  | u l                 |            |          | Н—       |       |      |
|                         |              |        | L. Market | "H(A <sub>1</sub> ) |            |          |          |       |      |
| 0                       |              | FA     | M         |                     |            |          | +-       |       |      |
|                         |              |        |           | "                   | tha        |          |          |       |      |
| 0                       |              | AF"    |           |                     | 44         |          | \        |       |      |
| 0                       | / At         | H      |           |                     |            | die i    | \        |       |      |
|                         | / <b>N</b> t |        |           |                     |            | THI      |          |       |      |
| 0                       | / Late       |        |           |                     |            | <b>V</b> |          |       |      |
| P90T                    |              |        |           |                     |            | 4        |          |       |      |
| 0 4                     | , <b>#</b> I |        |           |                     |            |          | <u> </u> | į.    |      |

Date: 12.JUN.2023 13:55:21

Center 220 MHz

| Analyzer Setup      | Test Results |
|---------------------|--------------|
| Detector = Max Peak | Pass         |
| Sweep Count = 0     |              |
| RF Atten (dB) = 10  |              |
| Trace Mode = CLRWR  |              |

2.5 kHz/

back to matrix

Issue Date: 21st August 2023

Span 25 kHz



To: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

## SPECTRUM EMISSION 10MHz - 1GHz

**MiTest** 

Variant: 12.5KHz, Channel: 220.00 MHz, Chain a, Temp: 20, Voltage: 13.84 Vdc

| Ref Lvl            |                  | 0.7             | 00 45-     | RBW<br>VBW | 100 k         |               |          |                                                  |
|--------------------|------------------|-----------------|------------|------------|---------------|---------------|----------|--------------------------------------------------|
| 34.2 dBm           | 2.2              | 27.<br>0.300601 |            |            |               |               | nit      | dBr                                              |
| 2                  | 22               | 0.300601        | ZU MHZ     | SWI        | 250 H         | is o          | IIIC     | аы                                               |
| 44.2 dB Off        | set<br>1         |                 |            |            | <b>V</b> 1    | [T1]          | 27       | .09 dBr                                          |
| D1 27.09 dBm       | ¥                |                 |            |            |               | 2             | 0.30060  | 120 MH2                                          |
|                    |                  |                 |            |            | <b>∇</b> 2    | [T1]          | -35      | .62 dBr                                          |
| 0                  | +                |                 |            |            |               | 4             | 40.52104 | 208 MH2                                          |
|                    |                  |                 |            |            |               |               |          |                                                  |
| 0                  | 4                |                 |            |            |               |               |          |                                                  |
|                    |                  |                 |            |            |               |               |          |                                                  |
| 1 1XTEW            |                  |                 |            |            |               |               |          |                                                  |
| 1VIEW              |                  |                 |            |            |               |               |          |                                                  |
|                    |                  |                 |            |            |               |               |          |                                                  |
|                    |                  |                 |            |            |               |               |          |                                                  |
|                    |                  |                 |            |            |               |               |          |                                                  |
|                    |                  |                 |            |            |               |               |          |                                                  |
| Ŭ I                |                  |                 |            |            |               |               |          |                                                  |
|                    |                  |                 |            |            |               |               |          |                                                  |
| 0 <u>P2 -30.91</u> | dBm              |                 | 2          |            |               |               |          |                                                  |
|                    |                  |                 | 7          |            |               |               |          |                                                  |
| 0                  |                  |                 |            |            |               |               |          |                                                  |
| Market California  | Indicate Colores | Mark State And  |            | cold in    | inches France | يشهيدا ويسفلل | mercul   | and the same                                     |
|                    |                  | A A (C.)        | - Carlotta |            |               |               |          |                                                  |
| 0                  |                  |                 |            |            |               |               |          | <del>                                     </del> |
|                    |                  |                 |            |            |               |               |          |                                                  |

Date: 12.JUN.2023 14:49:21

Center 505 MHz

| Analyzer Setup      | Test Results |
|---------------------|--------------|
| Detector = Max Peak | Pass         |
| Sweep Count = 0     |              |
| RF Atten (dB) = 20  |              |
| Trace Mode = CLRWR  |              |

99 MHz/

back to matrix

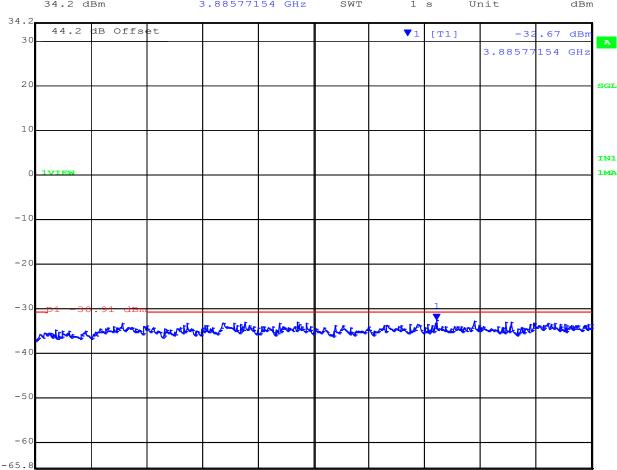
Issue Date: 21st August 2023

rage. 00 01 03

Span 990 MHz



FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119


Stop 5 GHz

Serial #: GEMD02-U12 Rev A

## SPECTRUM EMISSION 1GHz - 5GHz

**MiTest** Variant: 12.5KHz, Channel: 220.00 MHz, Chain a, Temp: 20, Voltage: 13.84 Vdc

| r.       |          | Marker 1 | [T1]    |     | RBW | 1 MHz | RF Att 0 | dB  |
|----------|----------|----------|---------|-----|-----|-------|----------|-----|
| <b>%</b> | Ref Lvl  |          | -32.67  | dBm | VBW | 3 MHz |          |     |
| •        | 34.2 dBm | 3.8      | 8577154 | GHz | SWT | 1 s   | Unit     | dBm |



12.JUN.2023 14:51:41

Start 1 GHz

| Analyzer Setup      | Test Results |
|---------------------|--------------|
| Detector = Max Peak | Pass         |
| Sweep Count = 0     |              |
| RF Atten (dB) = 0   |              |
| Trace Mode = CLRWR  |              |

400 MHz/

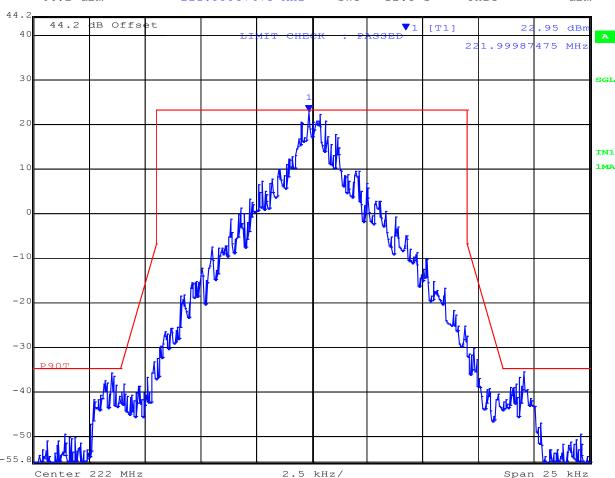
back to matrix

21st August 2023 Page:



FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A


## SPECTRUM EMISSION MASK

**MiTest** 

Variant: 12.5KHz, Channel: 222.00 MHz, Chain a, Temp: 20, Voltage: 13.84 Vdc

| <b>%</b> 5/ | Ref Lvl | 22.95 dBm     | VBW | 1 kHz  |        |       |
|-------------|---------|---------------|-----|--------|--------|-------|
| (F)         |         | Marker 1 [T1] | RBW | 100 Hz | RF Att | 10 dB |

44.2 dBm 221.99987475 MHz SWT 12.5 s Unit dBm



12.JUN.2023 13:58:25

| Analyzer Setup      | Test Results |
|---------------------|--------------|
| Detector = Max Peak | Pass         |
| Sweep Count = 0     |              |
| RF Atten (dB) = 10  |              |
| Trace Mode = CLRWR  |              |

Page:

back to matrix

Issue Date: 21st August 2023



o: FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

#### SPECTRUM EMISSION 10MHz - 1GHz

MiTest

Variant: 12.5KHz, Channel: 222.00 MHz, Chain a, Temp: 20, Voltage: 13.84 Vdc

|                       | Marker          |            | 10 1-               | RBW            |                | cHz          | RF Att       | 10 db            |
|-----------------------|-----------------|------------|---------------------|----------------|----------------|--------------|--------------|------------------|
| Ref Lvl<br>44.2 dBm   | 000             | 33.        | 13 dBm              |                | 300 1          | cHz<br>ns    | Unit         | .15              |
| 44.2 dBm              | 222             | .284569    | 14 MHZ              | SWT            | 250 f          | ns           | Unit         | dBr              |
| 44.2 dB Of1           | fset            |            |                     |                | <b>V</b> 1     | [T1]         | 3            | 3.13 dBr         |
|                       | 1               |            |                     |                |                |              | 222.2845     | 6914 MHz         |
| D1 33.13 dB           | m               |            |                     |                | <u>∇2</u>      | [T1]         | -3           | 10.54 dBr        |
|                       |                 |            |                     |                |                |              | 444.4889     | 7796 MH2         |
|                       |                 |            |                     |                |                |              |              |                  |
| 0                     |                 |            |                     |                |                |              |              |                  |
|                       |                 |            |                     |                |                |              |              |                  |
|                       |                 |            |                     |                |                |              |              |                  |
| 1VIEW                 |                 |            |                     |                |                |              |              | +                |
|                       |                 |            |                     |                |                |              |              |                  |
| 0                     |                 |            |                     |                |                |              |              |                  |
|                       |                 |            |                     |                |                |              |              |                  |
|                       |                 |            |                     |                |                |              |              |                  |
|                       |                 |            |                     |                |                |              |              |                  |
|                       |                 |            |                     |                |                |              |              |                  |
|                       |                 |            |                     |                |                |              |              | _                |
| p2 -24.8              | 7 d.Bm          |            |                     |                |                |              |              |                  |
|                       |                 |            | 2<br><b>7</b>       |                |                |              |              |                  |
|                       | It will a serve |            |                     | Teatte ti      | at a destant a | mme f.m      | ماننامنحنطمة | A retractionated |
| cather and the second | that as chall   | Town fresh | TALLA POR PROPERTY. | of many free f | CONTRACTOR OF  | - officering | -a dentitée  |                  |
|                       |                 | -          |                     |                |                |              |              | +                |
|                       |                 |            |                     |                |                |              |              |                  |
|                       |                 |            |                     |                |                |              |              |                  |

Date: 12.JUN.2023 14:41:31

Start 10 MHz

| Analyzer Setup      | Test Results |
|---------------------|--------------|
| Detector = Max Peak | Pass         |
| Sweep Count = 0     |              |
| RF Atten (dB) =10   |              |
| Trace Mode = CLRWR  |              |

99 MHz/

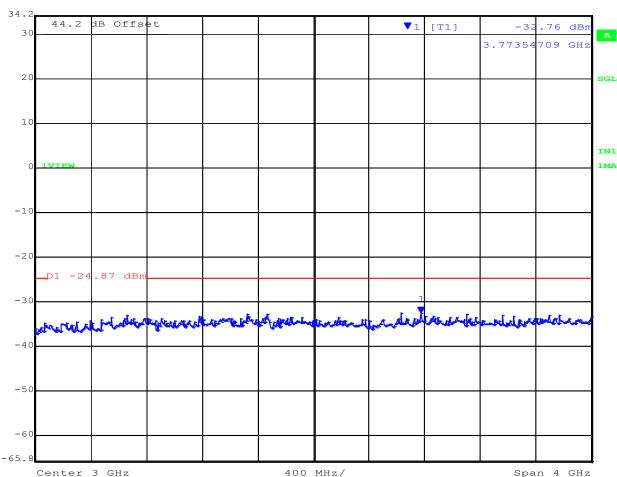
back to matrix

Issue Date: 21st August 2023

Page: 63 of 65

Stop 1 GHz




FCC CFR 47 Part 90 Subpart K & T; ISED RSS-119

Serial #: GEMD02-U12 Rev A

## SPECTRUM EMISSION 1GHz - 5GHz

**MiTest** Variant: 12.5KHz, Channel: 222.00 MHz, Chain a, Temp: 20, Voltage: 13.84 Vdc

| (a)      | Marker 1 [T1] | RBW     | 1 MHz | RF Att | 0 dB |
|----------|---------------|---------|-------|--------|------|
| Ref Lvl  | -32.76        | dBm VBW | 3 MHz |        |      |
| 34.2 dBm | 3.77354709    | GHz SWT | 1 s   | Unit   | dBm  |



12.JUN.2023 14:53:24

| Analyzer Setup      | Test Results |
|---------------------|--------------|
| Detector = Max Peak | Pass         |
| Sweep Count = 0     |              |
| RF Atten (dB) = 20  |              |
| Trace Mode = CLRWR  |              |

back to matrix

21st August 2023 Page:





575 Boulder Court
Pleasanton, California 94566, USA
Tel: +1 (925) 462 0304
Fax: +1 (925) 462 0306
www.micomlabs.com