

41039 Boyce Road Fremont, CA. 94538 510-578-3500 Phone

EMC Test Report

Application for FCC Grant of Equipment Authorization Canada Certification

Innovation, Science and Economic Development Canada RSS-Gen Issue 5 / RSS-247 Issue 2 FCC Part 15 Subpart C

Model: NET9S

IC CERTIFICATION #: FCC ID:	E5MDS-NET9S 101D-NET9S
APPLICANT:	GE Digital Energy - MDS 175 Science Pkwy Rochester, NY 14620
TEST SITE(S):	NTS Labs LLC 41039 Boyce Road. Fremont, CA. 94538-2435
IC SITE REGISTRATION #:	2845B-4
PROJECT NUMBER:	PR171060
REPORT DATE:	June 1, 2023
REISSUE DATE:	July 14, 2023
FINAL TEST DATES:	May 11 thru 22, 2023
TOTAL NUMBER OF PAGES:	72

This report and the information contained herein represent the results of testing of only those articles / products identified in this document and selected by the client. The tests were performed to specifications and/or procedures selected by the client. NTS Labs LLC makes no representations expressed or implied that such testing fully demonstrates efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS Labs LLC of the equipment tested, nor does it present any statement whatsoever as to its merchantability or fitness of the test article or similar products, for a particular purpose. This report shall not be reproduced except in full without written approval from NTS Labs LLC.

Report Date: June 1, 2023

VALIDATING SIGNATORIES

PROGRAM MGR

David W. Bare Chief Engineer

TECHNICAL REVIEWER:

David W. Bare Chief Engineer

FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

QUALITY ASSURANCE DELEGATE

Gary Izard Senior Technical Writer

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	June 1, 2023	First release	
1	July 11, 2023	Added results for other hopping mode, added firmware and settings used during testing.	David Bare
2	July 13, 2023	Revised to correct the values of output power and antenna gain for Yagi antenna.	David Bare
3	July 14, 2023	Revised to update power plots for Yagi antenna	David Bare

TABLE OF CONTENTS

COVER PAGE	1
VALIDATING SIGNATORIES	2
REVISION HISTORY	3
TABLE OF CONTENTS	4
SCOPE	5
	0
STATEMENT OF COMPLIANCE	0
DEVIATIONS FROM THE STANDARDS	6
TEST RESULTS SUMMARY	7
FREQUENCY HOPPING SPREAD SPECTRUM (902 – 928 MHZ, 50 CHANNELS OR MORE) MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	9
GENERAL	9
ANTENNA SYSTEM	9
ENCLOSURE	9
MUDIFICATIONS SUDDODT FOLUDMENT	9
FUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	11
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	11
RADIATED EMISSIONS CONSIDERATIONS	11
MEASUREMENT INSTRUMENTATION	12
RECEIVER SYSTEM	12
INSTRUMENT CONTROL COMPUTER	12
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	12
FILTERS/ATTENUATORS	13
ΑΝΤΕΝΝΑΣ	13
INSTRUMENT CALIBRATION	13
TEST PROCEDURES	14
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	14
RADIATED EMISSIONS	14
CONDUCTED EMISSIONS FROM ANTENNA PORT	18
BANDWIDTH MEASUREMENTS	18
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	19
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; K88 GEN	19
OUTPUT POWER LIMITS – FHSS SYSTEMS	19
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	20
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	21
SAMPLE CALCULATIONS - RADIATED EMISSIONS	21
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	22
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	23
APPENDIX B TEST DATA	24
END OF REPORT	72

SCOPE

An electromagnetic emissions test has been performed on the GE Digital Energy - MDS model NET9S, pursuant to the following rules:

RSS-GEN Issue 5 "General Requirements for Compliance of Radio Apparatus" RSS 247 Issue 2 "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSS) and Licence-Exempt Local Area Network (LE-LAN) Devices" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in NTS Labs LLC test procedures:

ANSI C63.10-2013

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

NTS Labs LLC is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of GE Digital Energy - MDS model NET9S complied with the requirements of the following regulations:

RSS-GEN Issue 5 "General Requirements for Compliance of Radio Apparatus" RSS 247 Issue 2 "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSS) and Licence-Exempt Local Area Network (LE-LAN) Devices" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of GE Digital Energy - MDS model NET9S and therefore apply only to the tested sample. The sample was selected and prepared by Jonathan Vilagy of GE Digital Energy - MDS.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

FREQUENCY HOPPING SPREAD SPECTRUM (902 – 928 MHz, 50 channels or more)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247 (a) (1) (i)	RSS 247 5.1 (1) & (3)	20dB Bandwidth	128 kHz	<= 500 kHz	Complies
15.247 (a) (1)	RSS 247 5.1 (2)	Channel Separation	200 kHz	Channel spacing > 20dB bandwidth (minimum 25kHz)	Complies
15.247 (a) (1) (i)	RSS 247 5.1 (3)	Number of Channels	128	50 or more	Complies
15.247 (a) (1) (i)	RSS 247 5.1 (3)	Channel Dwell Time	77.0 mS in any 20 second period	<0.4 second within a 20 second period	Complies
15.247 (a) (1)	RSS 247 5.1 (1)	Channel Utilization	All channels are used equally - refer to the operational description for full explanation	All channels shall, on average, be used equally	Complies
15.247 (b) (3)	RSS 247 5.4 (1)	Output Power (Both radios)	30 dBm (1.0 W) EIRP = 3.98 W ^{Note 1}	1Watt, EIRP <= 4 Watts	Complies
15.247 (d)	RSS 247 5.5	Antenna Port Spurious Emissions 30MHz – 9.28 GHz	-25.2 dBc (margin: 5.2 dB)	< -20dBc	Complies
15.247 (d) /	DSS 247 5 5	Radiated Spurious Emissions 30MHz – 9.28 GHz Omni	51.0 dBµV/m @ 2782.8 MHz (-3.0 dB)	Refer to the limits section (p19) for	Complies
15.209	K33 247 5.5	Radiated Spurious Emissions 30MHz – 9.28 GHz Yagi	47.3 dBµV/m @ 2704.16 MHz (-6.7 dB)	others < -20dBc	Complies
15.247 (a) (1)	RSS 247 5.1(2)	Receiver bandwidth	Refer to operational description	Shall match the channel bandwidth	Complies
Note 1 EIRP calculated using antenna gain of 6 dBi for the highest EIRP system. Note 2 Pass/Fail criteria defined by standards listed above.					

Report Date: June 1, 2023

GENERAL REQU	JIREMIENISAPP	LICABLE TO ALL BANDS			
FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Professional Install, Refer to User Manual	Unique or integral antenna required or Professional Installation	Complies
15.407 (b) (6)	RSS-Gen Table 4	AC Conducted Emissions	42.7 dBµV @ 2.224 MHz (-3.3 dB)	Refer to page 19	Complies
15.247 (i) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in separate exhibit, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSS-Gen 6.8	User Manual	Refer to User Manual statements	Statement for products with detachable antenna	Complies
-	RSS-Gen 8.4	User Manual	Refer to User Manual statements	Statement for all products	Complies
-	RSP-100 RSS-Gen 6.7	Occupied Bandwidth	121 kHz	Information only	N/A
Note 1 Pass/Fail criteria defined by standards listed above.					

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Redicted emission (field strength)	dDu\//m	25 to 1000 MHz	± 3.6 dB
	ασμν/π	1000 to 40000 MHz	± 6.0 dB
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The GE Digital Energy - MDS model NET9S is an industrial frequency hopping radio that is designed to operate in the 902-928 MHz band. Since the EUT could be placed in any position during operation, the EUT was treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 6-36 Volts DC, 1.2 Amps max.

The sample was received on May 11, 2023 and tested on May 11 thru 22, 2023. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
GE MDS	NET9S	Industrial Dual Transceiver	Pre-production	E5MDS-NET9S

ANTENNA SYSTEM

The antenna system consists of either a Hana Wireless HW-0D9-6D-NF multi-element omnidirectional 6 dBi with at least 3 dB of cable loss or PCTEL BMYD890K-DP Yagi 11 dBi with at least 8 dB cable loss antenna.

ENCLOSURE

The EUT enclosure is primarily constructed of metal. It measures approximately 13.5 cm wide by 9.6 cm deep by 3.8 cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS Labs LLC.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
HP	6024A	Power Supply	2430A-03013	-

The following equipment was used as remote support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
D-Link	DES-1105	Ethernet Switch	DRL7271011218	-
hp	250 G8	Laptop	CND1454HKM	-

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

	LOT					
Port		Cable(s)				
From	То	Description	Shielded/Unshielded	Length(m)		
Antenna	Antenna	Coax	Shielded	0.6		
Ethernet	Remote switch	Cat 6	Shielded	7.6		
COM	Termination	Cat 6	Unshielded	2		
Chassis	Ground	Braid	Unshielded	2.5		

Additional on Support Equipment

Port		Cable(s)			
From	То	Description	Shielded/Unshielded	Length(m)	
Laptop USB	EUT (for configuration only, removed for testing)	Multiwire	Shielded	0.5	
Laptop DC	AC Adapter	two wire	Unshielded	1.7	
AC Adapter	Mains	three wire	Unshielded	1.5	

EUT OPERATION

During emissions testing the EUT was configured using commands in a TeraTerm application on the laptop to transmit a 100% duty cycle modulated signal at the desired frequency and maximum power level from both radios or set to hop on all channels at the maximum power level on both radios depending on the test being performed. The EUT firmware 06-7272A01 is version 0.1.9. Single frequency operation was set using command "radio channel x" where x is the channel number. Radio output power was set using command "cfg set radio.power 30" and hopping mode was set using command "radio mode transnet".

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 6.2 of RSS-GEN, NTS Labs LLC has been recognized as an accredited test laboratory by the Commission and Innovation, Science and Economic Development Canada. A description of the facilities employed for testing is maintained by NTS Labs LLC.

Sito	Company / Registration Numbers		Location
Sile	FCC	Canada	Location
Chamber 4	US1031	2845B (Wireless Test Lab #US0027)	41039 Boyce Road Fremont, CA 94538-2435

ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Results from testing performed in this chamber have been correlated with results from an open area test site. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.10. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

Software is used to view and convert receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers. The software used for radiated and conducted emissions measurements is NTS Labs LLC EMI Test Software (rev 2.10)

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.10 specifies that the test height above ground for table mounted devices shall be 80 centimeters for testing below 1 GHz and 1.5m for testing above 1 GHz. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor as specified in ANSI C63.4. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.10, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

Figure 1 Typical Conducted Emissions Test Configuration

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.

Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

Test Configuration for Radiated Field Strength Measurements

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and NTS Labs LLC's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB, 26dB and/or 99% signal bandwidth are measured using the bandwidths recommended by ANSI C63.10 and RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

¹ The restricted bands are detailed in FCC 15.205 and RSS-Gen Table 7

OUTPUT POWER LIMITS – FHSS SYSTEMS

The table below shows the limits for output power based on the number of channels available for the hopping system.

Operating Frequency (MHz)	Number of Channels	Output Power
902 – 928	≥ 50	1 Watt (30 dBm)
902 – 928	25 to 49	0.25 Watts (24 dBm)
2400 - 2483.5	≥ 75	1 Watt (30 dBm)
2400 – 2483.5	< 75	0.125 Watts (21 dBm)
5725 - 5850	75	1 Watt (30 dBm)

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS GEN. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$\begin{split} R_r - S &= M \\ \text{where:} \\ R_r &= \text{Receiver Reading in dBuV} \\ S &= \text{Specification Limit in dBuV} \\ M &= \text{Margin to Specification in +/- dB} \end{split}$$

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

 $F_{d} = 20*LOG_{10} (D_{m}/D_{s})$ where: $F_{d} = Distance Factor in dB$ $D_{m} = Measurement Distance in meters$ $D_{s} = Specification Distance in meters$

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

 $F_d = 40*LOG_{10} (D_m/D_s)$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$
 and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_s = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

 $E = \frac{1000000 \sqrt{30 P}}{d}$ microvolts per meter

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

Manufacturer Radiated Emissions	Description 30 - 9 300 MHz 11-17-May	Model	<u>Asset #</u>	Calibrated	<u>Cal Due</u>
National Technical	NTS EMI Software (rev	N/A	WC022452	N/A	
Hewlett Packard EMCO	Spectrum Analyzer (Blue) Antenna, Horn, 1-18 GHz (SA40-Blue)	8564E 3115	WC055592 WC064442	4/19/2023 11/18/2022	4/19/2024 11/18/2024
Hewlett Packard Sunol Sciences Agilent Technologies	High Pass filter, 1.5 GHz Biconilog, 30-3000 MHz Microwave Preamplifier, 1- 26 5GHz	84300-80037 JB3 8449B	WC064494 WC064573 WC064574	11/15/2022 2/27/2022 2/28/2023	11/15/2023 8/1/2024 2/28/2024
Rohde & Schwarz	EMI Test Receiver, 20Hz-	ESIB 7	WC064989	1/4/2023	1/4/2024
Rohde & Schwarz	EMI Test Receiver, 9kHz- 7GHz	ESR 7	WC078725	3/14/2023	3/14/2024
Com-Power	Preamplifier, 1-1000 MHz	PAM-103	WC080961	5/20/2022	5/20/2023
Radio Antenna Port	(Power and Spurious Emiss	ions), 16-May-23			
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	WC022452	N/A	
National Technical Systems	NTS Capture Analyzer Software (rev 4.0)	N/A	WC022706	N/A	
Agilent Technologies	PSA Spectrum Analyzer	E4446A	WC055650	8/30/2022	8/31/2023
Conducted Emission	ns - AC Power Ports. 22-May	-23			
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	WC022452	N/A	
Fischer Custom	LISN, 25A, 150kHz to 30MHz, 25 Amp	FCC-LISN-50- 25-2-09	WC064532	9/8/2022	9/8/2023
Rohde & Schwarz	EMI Test Receiver, 20Hz-	ESI	WC068000	7/21/2022	7/21/2023
Rohde & Schwarz	Pulse Limiter	ESH3-Z2	WC072359	6/30/2022	6/30/2023
Channel Occupancy	, 10-Jul-23				
National Technical Systems	NTS Capture Analyzer Software (rev 4.0)	N/A	WC022706	N/A	
Rohde & Schwarz	Spectrum Analyzer	FSQ26	WC055662	12/11/2022	12/31/2023

Appendix B Test Data

TL171060-RA NET9S Pages 25 – 71

EMC Test Data

Client	GE MDS LLC	PR Number:	PR171060
Product	NET9S	T-Log Number:	TL171060-RA-NET9S
System Configuration:	-	Project Manager:	Christine Krebill
Contact	Jonathan Viligy	Project Engineer:	David Bare
Emissions Standard(s):	FCC §15.247, RSS-247	Class:	-
Immunity Standard(s):	-	Environment:	Industrial

EMC Test Data

For The

GE MDS LLC

Product

NET9S

Date of Last Test: 7/10/2023

EMC Test Data

Client:	GE MDS LLC	PR Number:	PR171060
Model:	NETOS	T-Log Number:	TL171060-RA-NET9S
	NE135	Project Manager:	Christine Krebill
Contact:	Jonathan Viligy	Project Engineer:	David Bare
Standard:	FCC §15.247, RSS-247	Class:	N/A

RSS-247 and FCC 15.247 (FHSS) Measurements Power, Bandwidth and Spurious Emissions

Test Specific Details

NTS

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Config. Used: 1

Test Location: Fremont Chambers #2 & #4

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located outside the chamber with all I/O connections running under the floor.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

Unless stated otherwise the EUT was operating such that it constantly hopped on either the low, center or high channels.

Ambient Co	onditions:
------------	------------

Temperature:	20-24 °C	;
Rel. Humidity:	35-48 %	

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	25 - 9,300 MHz	FCC Part 15.209 /	Deee	51.0 dBµV/m @ 2782.8 MHz
I	Transmitter Radiated Spurious Emissions 15.247	15.247(c)	Pass	(-3.0 dB)
4	Transmitter Conducted Spurious Emissions	FCC Part 15.247(c)	Pass	-25.2 dBc (margin: 5.2 dB)
5	Output Power	15.247(b)	Pass	30 dBm (1.0 W)
6	20dB Bandwidth	15.247(a)	Pass	128 kHz
6	Channel Occupanov	15.247(a)	Deee	18.29 mS or 77.0 mS in any 20
0		15.247 (d)	Pass	second period
6	Number of Channels	15.247(a)	Pass	64 or 128

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Test Notes

Based on prelimiary radiated emissions tests in 3 orthogonal orientations, the flat orientation was the worst case w.r.t. the limits and was therefore used for all radiated testing.

EMC Test Data									
Client:	GE MDS LLO	С						PR Number:	PR171060
							T-l	_og Number:	TL171060-RA-NET9S
Model:	NET9S						Proje	ect Manager:	Christine Krebill
Contact:	Jonathan Vil	igy					Proje	ect Engineer:	David Bare
Standard:	FCC §15.24	7, RSS-247						Class:	N/A
Run #1: Radiated Spurious Emissions, 25 - 9,300 MHz. Date of Test: 5/15 & 5/17/2023 Test Engineer: David Bare / M. Birgani Fundamental Signal Field Strength									
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
902.358	128.3	V	-	-	PK	143	2.0	POS; RB 10	0 kHz; VB: 300 kHz
902.228	130.2	Н	-	-	PK	188	1.7	POS; RB 10	0 kHz; VB: 300 kHz
Maximun Fu	undamental e Limit for e urious Emis	mission leve missions ou sions	el @ 3m in 10 tside of restr)0kHz RBW: icted bands:	130.2 110.2	dBμV/m dBμV/m	Limit is -20	dBc	
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
863.398	39.9	Н	46.0	-6.1	QP	192	2.0	QP (1.00s),	Note 3
941.366	39.8	Н	46.0	-6.2	QP	225	1.0	QP (1.00s),	Note 3
96.113	34.9	V	43.5	-8.6	QP	144	1.0	QP (1.00s).	Note 3
2707.170	44.6	V	54.0	-9.4	AVG	182	1.5	RB 1 MHz;V	/B 10 Hz:Peak
5413.230	44.0	V	54.0	-10.0	AVG	197	1.8	RB 1 MHz;V	/B 10 Hz:Peak
3609.540	42.6	H	54.0	-11.4	AVG	209	1.5	RB 1 MHz;V	/B 10 Hz;Peak
6316.650	42.4	V	54.0	-11.6	AVG	134	1.7	RB 1 MHz;V	/B 10 Hz;Peak;Note 3
4510.920	41.1	V	54.0	-12.9	AVG	184	2.5	RB 1 MHz;V	/B 10 Hz;Peak
1233.710	39.5	V	54.0	-14.5	AVG	130	1.6	RB 1 MHz;V	/B 10 Hz;Peak
158.855	24.1	V	43.5	-19.4	QP	219	1.0	QP (1.00s),	Note 3
27.500	19.9	V	40.0	-20.1	QP	309	1.0	QP (1.00s),	Note 3
1234.200	52.6	V	74.0	-21.4	PK	130	1.6	RB 1 MHz:V	/B 3 MHz:Peak
5413.420	50.9	V	74.0	-23.1	PK	197	1.8	RB 1 MHz:V	/B 3 MHz:Peak
6316.540	49.9	V	74.0	-24.1	PK	134	1.7	RB 1 MHz:V	/B 3 MHz:Peak:Note 3
3609.490	49.3	H	74.0	-24.7	PK	209	1.5	RB 1 MHz:V	/B 3 MHz:Peak
488.613	20.6	Н	46.0	-25.4	QP	3	1.5	QP (1.00s),	Note 3
2707.310	48.3	V	74.0	-25.7	PK	182	1.5	RB 1 MHz;V	/B 3 MHz;Peak
4510.910	47.5	V	74.0	-26.5	PK	184	2.5	RB 1 MHz;V	/B 3 MHz;Peak
1804.870	71.5	Н	110.2	-38.7	PK	202	1.0	RB 100 kHz	;VB 300 kHz;Peak
Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below the level of the fundamental. Note 2: 1.5 GHz low pass filter used for 1.7 - 9.3 GHz scans, 900 MHz notch filer used for 25-1700 MHz scans. Note 3: Although this frequency is not in a restricted bands, the limit of 15.209 was used.									

EMC Test Data									
Client:	GE MDS LL	С						PR Number:	PR171060
							T-	Log Number:	TL171060-RA-NET9S
Model:	NET9S							ect Manager:	Christine Krebill
Contact:	Jonathan Vi	liav					Proj	ect Engineer:	David Bare
Standard:	FCC §15.24	7, RSS-247					,	Class:	N/A
Run #1b: Radiated Spurious Emissions, 25 - 9,300 MHz. Center Channels @ 914.8 & 915 MHz Fundamental Signal Field Strength									
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Heiaht	Comments	
MHz	dBuV/m	V/H	Limit	Margin	Pk/QP/Avg	dearees	meters		
914.962	129.8	H	-	-	PK	178	1.7	POS: RB 10	0 kHz: VB: 300 kHz
914.829	127.6	V	-	-	PK	144	1.9	POS; RB 10	0 kHz; VB: 300 kHz
Maximun Fi	Indamental	mission leve	al @ 3m in 10		120.8	dBu\//m			
		amissions ou	teide of restr	icted bands:	129.0	dDu\//m			
Other Sp	urious Emis	sions	45 000	45.047					
Frequency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
2744.420	50.2	H	54.0	-3.8	AVG	196	2.5	RB 1 MHz;∖	/B 10 Hz;Peak
953.772	41.1	H	46.0	-4.9	QP	232	1.1	QP (1.00s),	Note 3
875.770	40.4	H	46.0	-5.6	QP	218	1.0	QP (1.00s),	Note 3
6403.410	47.6	V	54.0	-6.4	AVG	132	1.4	RB 1 MHz;\	/B 10 Hz;Peak;Note 3
5489.920	46.2	V	54.0	-7.8	AVG	208	1.6	RB 1 MHz;\	/B 10 Hz;Peak;Note 3
594.345	34.2	V	46.0	-11.8	QP	221	2.0	QP (1.00s),	Note 3
1232.080	39.7	V	54.0	-14.3	AVG	160	1.5	RB 1 MHz;\	/B 10 Hz;Peak
3659.190	39.1	H	54.0	-14.9	AVG	214	1.4	RB 1 MHZ;V	/B 10 Hz;Peak
45/4.960	38.8	H	54.0	-15.2	AVG	56	3.0	RB 1 MHZ;V	/B 10 Hz;Peak
2744.610	55.8	H	/4.0	-18.2	PK	196	2.5	RB 1 MHZ;V	/B 3 MHZ;Peak
95.116	23.7	V	43.5	-19.8	QP	88	1.0	QP (1.00s),	Note 3
6403.900	52.7	V	/4.0	-21.3	PK	132	1.4	RB 1 MHZ;V	'B 3 MHZ;Peak;Note 3
25.480	18.3	V	40.0	-21.7	QP	13	2.5	QP (1.00S)	
1232.180	5Z.Z	V	/4.0	-21.8		160	1.5	RB T MHZ;V	B 3 MHZ;Peak
120.415	Z1.4	V	43.5	-ZZ.1	QP	3	1.0		D 2 Miller De alviNata 2
2650,000	01.9 47.0	V L	74.0	-22.1		200	1.0		
3039.090	47.0		74.0	-20.2		Z14 56	1.4		
40/0.010	40.9	<u>п</u>	14.0	-21.1		00 100	3.U 2 E		
1820 550	60.2	п Ц	40.0 100 P	-29.9 _10 5		205	3.5 1 0		NOLE J
1029.000	09.0	Π	109.0	-40.3	Γſ	200	1.0		, VD JUU KIIZ, FEAK
Note 1:	For emission level of the f	ns in restricte undamental.	ed bands, the	limit of 15.2	09 was used.	For all othe	r emissions	, the limit was	s set 20dB below the
Note 2:	1.5 GHz low	pass filter u	sed for 1.7 -	9.3 GHz sca	ns, 900 MHz	notch filer us	ed for 25-1	700 MHz sca	ns.
Note 3:	Although this	s frequency i	s not in a res	tricted band	s, the limit of	15.209 was u	used.		

-									
EMC Test Data									
Client:	GE MDS LL	С						PR Number:	PR171060
							T-	Loa Number:	TL171060-RA-NET9S
Model:	NET9S						Proi	ect Manager:	Christine Krebill
Contact	lonathan Vi	liav					Proj	ect Engineer:	David Bare
Chanderd		7 DCC 047					110		
Standard:	FUU § 15.24	1, RSS-241						Class:	N/A
Run #1c: F Fundame	Radiated Spu ental Signal	urious Emis Field Streng	sions, 25 - 9 _I th	,300 MHz. H	ligh Channe	ls @ 927.4 a	& 927.6 MHz	2	
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
927.428	126.6	V			PK	116	1.1	POS; RB 10	0 kHz; VB: 300 kHz
927.562	129.5	Н			PK	181	1.7	POS; RB 10	0 kHz; VB: 300 kHz
Movimun E	undomontol	mission love	al @ 2m in 1(100 5		1		
Maximun F	Limit for		teido of roctr	juknz RDVV.	129.5	dBµV/m	Limitia 20)dDo	
					109.5	ασμν/Π		JUDC	
Band Ed	ne Signal Fig	eld Strength	1						
Frequency	l evel	Pol	15,209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBuV/m	V/H	Limit	Margin	Pk/QP/Ava	dearees	meters	o onninon to	
960.000	34.3	H	46.0	-11.7	QP	220	1.1	QP (1.00s)	
960.000	29.6	V	46.0	-16.4	QP	126	1.1	QP (1.00s)	
Other Sp	urious Emis	sions	45.000				<u> </u>		
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
2782.750	51.0	V	54.0	-3.0	AVG	141	2.1	RB 1 MHz;V	/B 10 Hz;Peak
888.362	42.7	H	46.0	-3.3	QP	215	1.2	QP (1.00s),	Note 3
4637.940	45.8	V	54.0	-8.2	AVG	158	1.5	RB 1 MHZ;V	B 10 Hz;Peak
594.861	36.1	V	46.0	-9.9	QP	215	1.3	QP (1.00s),	Note 3
/55.106	35.4	H	46.0	-10.6	QP	168	1.5	QP (1.00s),	Note 3
29.524	25.9	V	40.0	-14.1	QP	316	1.0	QP (1.00S),	
3710.390	39.0 20.5	H	54.0	-14.4	AVG	100	1.5	RB 1 MHZ;V	B 10 HZ;Peak
1241.090	39.3 55.2	V	54.0 74.0	-14.0	AVG	1/1	1.7		
2102.030	20.3	V	14.0	-10.7		200	2.1	(D 1 0 1 , 0 0 0 0 0 0 0 0 0 0	Noto 2
01.204	20.0	V	40.0	-19.Z 20.0		102	1.0	OP(1.008),	Note 3
97.732 12/2 700	22.0 52.7	V	74.0	-20.9		102	1.0	RB 1 MHz·\/	R 3 MHz:Poak
1242.700	JZ.7 21.8	V	/4.0	-21.3		120	1.7	OP(1.00e)	
120.303	51.5	V	74.0	-21.7		158	1.0	RB 1 MHz·V	/R 3 MHz·Peak
3700 0/0	/8.3	V Н	74.0	-22.3	PK	166	1.5	RB 1 MHz·V	/B 3 MHz:Peak
1855 140	71 <u>/</u>	V	109.5	-20.7	PK	271	24	RB 100 kHz	·VR 300 kHz·Peak
6492 920	54.2	V V	109.5	-55.1	PK	144	1.4	RB 100 kHz	·VB 300 kHz·Peak
0452.520	J-1.2	v	100.0	-00.0		144	1 1.7		
Note 1:	For emission	ns in restricte	ed bands, the	limit of 15.2	09 was used.	For all othe	er emissions	, the limit was	s set 20dB below the
NOTE T:	level of the f	undamental.							
Note 2:	1.5 GHz low	pass filter u	sed for 1.7 -	9.3 GHz sca	ns, 900 MHz	notch filer u	sed for 25-1	700 MHz scar	าร.
Note 3:	Although this	s frequency i	is not in a res	stricted bands	s, the limit of	15.209 was	used.		
	· · · · · ·								

	NTS				EM	C Test I	Data			
Client:	GE MDS LL	С			PR Number:	PR171060				
					T-Log Number: TL171060-RA-NETS					
Model:	NE19S			-	Project Manager:	Christine Krebi	ill			
Contact:	Jonathan Vi	igy			Project Engineer:	David Bare				
Standard:	FCC §15.24	7, RSS-247		Class:	N/A					
Run #5: Output Power (Peak Detector) Date of Test: 5/15 & 5/16/2023										
le T	st Engineer:	David Bare								
For frequence	est Location:	remont Champer #2	02 028 MH-	hand: 1 watt for systems	omploving at least 50 ho	nning channels:	and			
0 25 watts fo	or systems of	moloving less than 50 hor	oz-920 IVII IZ onina channe	als but at least 25 honning	ripioying at least 50 hoj i channels	sping channels,	anu,			
0.25 Walls IC	JI SYSICITIS CI		sping channe	as, but at least 25 hopping						
	Maximum a	ntenna gain: 6	dBi							
	Radio 1 (me	asured at RF output with	3dB cable lo	ss included)						
	Channel	Frequency (MHz)	Res BW	Output Power (dBm)	Output Power (W)	EIRP (W)				
	Low	902.2	1 MHz	27.0	0.500	1.991				
	Mid	915	1 MHz	27.0	0.500	1.991				
	High	927.6	0.457	1.820						
	Radio 2 (me	asured at RF output with	3 dB cable I	oss included)						
	Channel	Frequency (MHz)	Res BW	Output Power (dBm)	Output Power (W)	EIRP (W)				
	Low	902.2	1 MHz	27.0	0.500	1.991				
	Mid	915.0	1 MHz	26.9	0.490 1.950					
	High	927.6	1 MHz	26.2	0.417	1.660				
	Combined (\	VITIN JOB CADIE IOSS INCIUO		Output Dowor (dDm)	Output Dower (M/)					
	Channel					2 081				
	LOW	902.2		30.0	0.000	3.901				
	High	927.6	1 MHz	29.4	0.330	3.341				
	riigii	521.0	1 1011 12	20.4	0.014	0.475				
	Output powe	er measured at each of th	e antenna po	orts with a suitable attenua	ator and spectrum analyz	er with RBW >>	>			
Note 1:	Occupied Ba	andwidth. Represenative	plot below.							
Note 2:	The two radi	os both use 128 pseudo-	random hopp	ping channels, however, th	ney never use the same	hopping channe	el at the			
NOLE Z.	same time.									

	NTS				EMO	C Test Data					
Client:	GE MDS LL	C			PR Number:	PR171060					
					T-Log Number:	TL171060-RA-NET9S					
Model:	NET9S				Project Manager:	Christine Krebill					
Contact:	Jonathan Vil	igy			Project Engineer:	David Bare					
Standard:	tandard: FCC §15.247, RSS-247 Class: N/A										
Run #6: Ba i [Te Te	ndwidth, Ch Date of Test: st Engineer: est Location: Radio 1	annel Occupancy, Spac 5/10 and 7/10/2023 David Bare Fremont Chamber #2	cing and Nur	nber of Channels							
	Channel	Frequency (MHz)	Resolution Bandwidth	20dB Bandwidth (kHz)	99% Bandwidth (kHz)						
	Low	902.2	3 kHz	128	121						
	Mid	915	3 kHz	128	121						
	High	927.6	3 kHz	128	120						
	Radio 2					1					
	Channel	Frequency (MHz)	Resolution Bandwidth	20dB Bandwidth (kHz)	99% Bandwidth (kHz)						
	Low	902.2	3 kHz	128	121						
	Mid	915	3 kHz	128	121						
	High	927.6	3 kHz	128	120						
Note 1 [.]	20dB bandw	idth measured using RB	= 3 kHz_VB	= 10 kHz (VB > RB) Rep	resentative plot below						
30 20 10 ^{ap} n11 40 -20 -30 -40	.0 - .0 - .0 - .0 - .0 - .0 - .0 -				Analyzer Set Agilent Tec E4446A CF: 927.600 SPAN: 500 RB: 3.00 kH VB: 10.0 kH Detector: P Attn: 30 DB RL Offset: 2 Sweep Tim Comments 20dB BW: 1	ttings chnologies, MHz kHz lz OS 20.0 DB e: 52.7ms 28 kHz					
Curso	927.35 927.	40 927.50 Free 2500 24.5 ↔ -*	927.60 quency (MH	927.70 927 z) Delta Freq. 129 LL	.80 927.85						
-	000 000		8-	120 K		NTS					
Curso	r 927.535	4.5 +		Delta Amplitude 20.0							

🎲 NT	'S				EM	C Test Data				
Client: GE MI	DS LLO	C		PR Number: PR171060						
	<u>_</u>			T-I	Log Number:	TL171060-RA-NET9S				
	2			Proje	ect Manager:	Christine Krebill				
Contact: Jonath	ian Vil	igy		Proje	ect Engineer:	David Bare				
Standard: FCC §	Class:	N/A								
RSS-247 and FCC 15.247 (FHSS) Measurements Power, Bandwidth and Spurious Emissions										
Test Specific D)etail	S								
Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.										
Test Loca	ation:	Fremont Chamber #4	Config. Used:	1						
General lest C The EUT and all equipment was lo For radiated emis When measuring analyzer or powe allow for the exte Unless stated oth	 General Test Configuration The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located outside the chamber with all I/O connections running under the floor. For radiated emissions testing the measurement antenna was located 3 meters from the EUT. When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used. Unless stated otherwise the EUT was operating such that it constantly hopped on either the low, center or high channels. 									
Ambient Condi	itions	S: Temperature:	Temperature: 20-24 °C							
		Rel. Humidity:	35-48 %							
Summary of Re	esult	S T I D (I I	I	- /						
Run #		Test Performed	Limit	Pass / Fail	Result / Mar					
1		25 - 9,300 MHz - Transmitter	FCC Part 15.209 /	Pass	4/.3 dBµv/i	m @ 2704.16 MHz				
2	-+	Autout Power	15.247(0) 15.247(b)	Pass	(-0.7 ub) 30 dBm (1.	0 W)				
Modifications No modifications Deviations Fro No deviations we Test Notes Based on prelimi was therefore us	Made were m Th are ma	During Testing: made to the EUT during testing te Standard ide from the requirements of the stand diated emissions tests in 3 orthogonal all radiated testing.	lard.	ntation was t	he worst cas	e w.r.t. the limits and				

	NTS							EMC Test Data	
Client:	GE MDS LL	С						PR Number: PR171060	
							T-Log Number: TL171060-RA-NET9S		
Model:	NET9S						Proi	ect Manager: Christine Krehill	
Orintenti	lanathan \/il						Drei		
Contact:	Jonathan VII					Proj	ect Engineer: David Bare		
Standard:	d: FCC §15.247, RSS-247 Class: N/A								
<u>Note:</u> Run #1: Ra	From 25 MH transmit freq	z to 1.6GHz uency during	for transmit in g the spuriou	mode a narro s emission to	ow band tuna esting and fro	ble notch filt m 1.6 to 9.3	er was used GHz a 1.5G	I to reduce the fundamental level of Hz high pass filter was used.	
[Date of Test:	5/12 & 5/17/	/2023		Te	st Engineer:	David Bare		
Run #1a: F Fundament	Radiated Spu tal Signal Fie	irious Emis eld Strength	sions, 30 - 9	,300 MHz. L	ow Channel	s @ 902.2 8	902.4 MHz	-	
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
902.231	131.7	V	-	-	PK	5	1.0	POS; RB 100 kHz; VB: 300 kHz	
902.361	131.6	Н	-	-	PK	360	1.4	POS; RB 100 kHz; VB: 300 kHz	
Maximun F	undamental e Limit for e ious Emissio	emission leve emissions ou ons	el @ 3m in 10 Itside of restr	00kHz RBW: icted bands:	131.7 111.7	dBμV/m dBμV/m	Limit is -20	0dBc	
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
543.732	19.5	Н	46.0	-26.5	QP	328	1.5	QP (1.00s), Note 3	
741.444	25.2	Н	46.0	-20.8	QP	360	1.0	QP (1.00s), Note 3	
863.432	37.4	Н	46.0	-8.6	QP	360	1.0	QP (1.00s), Note 3	
941.256	36.1	V	46.0	-9.9	QP	360	1.0	QP (1.00s), Note 3	
960.000	29.2	V	46.0	-16.8	QP	360	1.0	QP (1.00s)	
1804.470	68.9	V	111.7	-42.8	PK	287	1.5	RB 100 kHz;VB 300 kHz;Peak	
2707.160	47.3	V	54.0	-6.7	AVG	178	1.8	RB 1 MHz;VB 10 Hz;Peak	
2707.130	50.5	V	74.0	-23.5	PK	178	1.8	RB 1 MHz;VB 3 MHz;Peak	
3609.530	42.2	V	54.0	-11.8	AVG	173	1.8	RB 1 MHz;VB 10 Hz;Peak	
3609.540	48.5	V	74.0	-25.5	PK	173	1.8	RB 1 MHz;VB 3 MHz;Peak	
4510.970	42.6	V	54.0	-11.4	AVG	197	1.6	RB 1 MHz;VB 10 Hz;Peak	
4511.160	49.0	V	74.0	-25.0	PK	197	1.6	RB 1 MHz;VB 3 MHz;Peak	
5413.070	46.4	V	54.0	-7.6	AVG	193	1.8	RB 1 MHz;VB 10 Hz;Peak	
5413.400	52.0	V	74.0	-22.0	PK	193	1.8	RB 1 MHz;VB 3 MHz;Peak	
6316.540	40.0	V	111.7	-71.7	PK	360	1.5	RB 100 kHz;VB 300 kHz;Peak	
Note 1:	For emissior level of the f	ns in restricte undamental.	ed bands, the	limit of 15.2	09 was used.	For all othe	er emissions	s, the limit was set 20dB below the	
Note 2:	1.5 GHz low pass filter used for 1.7 - 9.3 GHz scans, 900 MHz notch filer used for 25-1700 MHz scans.								
Note 3:	Although this	s frequency i	is not in a res	tricted band	s, the limit of	15.209 was	used.		
Note 4:	Emission adjacent to fundamental is in band and was a transient.								

EMC Test Data											
Client:	GE MDS LL	GE MDS LLC PR Number: PR171060									
							T-	Log Number: TL171060-RA-NET9S			
Model:	NET9S						Proje	ect Manager: Christine Krebill			
Contact:	Jonathan Vil	igy				Proje	ect Engineer: David Bare				
Standard:	FCC §15.24	7. RSS-247					,	Class: N/A			
Run #1b: Radiated Spurious Emissions, 25 - 9,300 MHz. Center Channels @ 914.8 & 915 MHz Date of Test: 5/12 & 5/17/2023 Test Engineer: David Bare Fundamental Signal Field Strength											
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments			
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters				
914.960	131.3	V	-	-	PK	360	1.0	POS; RB 100 kHz; VB: 300 kHz			
914.828	131.2	Н	-	-	PK	360	1.4	POS; RB 100 kHz; VB: 300 kHz			
Maximun Fi	undamental e Limit for e	emission leve emissions ou	el @ 3m in 10 tside of restr	00kHz RBW: icted bands:	131.3 111.3	dBμV/m dBμV/m					
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments			
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters				
544.092	21.8	Н	46.0	-24.2	QP	235	1.8	QP (1.00s), Note 3			
748.945	26.4	Н	46.0	-19.6	QP	360	1.0	QP (1.00s), Note 3			
875.792	37.9	Н	46.0	-8.1	QP	360	1.0	QP (1.00s), Note 3			
954.037	37.2	V	46.0	-8.8	QP	356	1.0	QP (1.00s), Note 3			
960.000	30.0	V	46.0	-16.0	QP	0	1.0	QP (1.00s)			
1829.950	66.1	V	111.3	-45.2	PK	89	1.7	RB 100 kHz;VB 300 kHz;Peak			
2744.380	44.6	V	54.0	-9.4	AVG	178	2.0	RB 1 MHz;VB 10 Hz;Peak			
2744.660	48.3	V	74.0	-25.7	PK	178	2.0	RB 1 MHz;VB 3 MHz;Peak			
3659.980	39.9	V	54.0	-14.1	AVG	132	1.6	RB 1 MHz;VB 10 Hz;Peak			
3659.480	48.6	V	74.0	-25.4	PK	132	1.6	RB 1 MHz;VB 3 MHz;Peak			
4574.880	44.3	V	54.0	-9.7	AVG	156	1.4	RB 1 MHz;VB 10 Hz;Peak			
4575.280	50.1	V	74.0	-23.9	PK	156	1.4	RB 1 MHz;VB 3 MHz;Peak			
5489.770	50.9	V	111.3	-60.4	PK	200	1.8	RB 100 kHz;VB 300 kHz;Peak			
6403.810	48.9	Н	111.3	-62.4	PK	159	1.4	RB 100 kHz;VB 300 kHz;Peak			
Note 1:	For emission level of the f	ns in restricte undamental.	ed bands, the	limit of 15.2	09 was used.	For all othe	er emissions	, the limit was set 20dB below the			
Note 2.	Although this	pass inter us		9.5 GI IZ SCa	h the limit of	15 200 woo					
11010 0.	, acrough and				, are mine of	10.200 was					

EMC Test Data										
Client:	GE MDS LLO	C						PR Number:	PR171060	
							T-	Log Number:	TL171060-RA-NET9S	
Model:	NET9S					Proi	ect Manager:	Christine Krebill		
Contact:	Jonathan Vil	iav				Proje	ect Engineer:	David Bare		
Standard [.]	FCC §15.24	7. RSS-247						Class:	N/A	
Run #1c: Radiated Spurious Emissions, 25 - 9,300 MHz. High Channels @ 927.4 and 927.6 MHz Date of Test: 5/11 & 5/17/2023 Test Engineer: David Bare										
Fundament	al Signal Fie	eld Strength	45.000	45.047		A : 11				
Frequency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments		
MHZ	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters			
927.560	130.8	V	-	-	PK	0	1.0	POS; RB 10	0 KHZ; VB: 300 KHZ	
927.427	130.6	Ħ	-	-	PK	360	1.3	PUS; RB 10	U KHZ; VB: 100 KHZ	
Maximun Fi	Indamental e	mission love	al @ 3m in 10		120.8	dD\//m	1			
	Limit for e	missions ou	teide of restr	icted hands:	130.0	dBuV/m	Limitic 20	dBa		
		1113310113 00			110.0	ибμν/Ш		UDC		
Band Edge	Signal Field	Strenath								
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters			
960.000	29.0	V	46.0	-17.0	QP	354	1.0	QP (1.00s)		
960.000	30.0	Н	46.0	-16.0	QP	6	1.2	QP (1.00s)		
Note 1:	Calculated b	y subtracting	g the marker	delta values	from the func	lamental fiel	d strength m	easurements		
• •										
Other Spur	ious Emissio	ons	45.000	45.047	D ()	A				
Frequency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments		
MHZ	dBµV/m	V/H	Limit	Margin	PK/QP/AVg	degrees	meters		N-4- 0	
105.285	12.2	V	43.5	-31.3	QP	196	1.0	QP(1.00s),	Note 3	
543.300	20.7	H	46.0	-25.3	QP	224	2.0	QP(1.00s),	Note 3	
000.400	30.0 20.9		40.0	-7.4		300	1.0	QP(1.00s),	Note 5	
1955 120	50.0 61.5	V	110.9	-23.2		1 297	1.0		V/P 300 kHz·Dook	
1637.040	45.8	V	54.0	-49.0 8.0		207	2.0			
4037.340	40.0 50.4	V	74.0	-0.2		213	2.0		B 3 MHz: Dook	
5565 750	50.4	V	110.8	-60.8	PK	215	2.0	RB 100 kHz	V/B 300 kHz:Poak	
6491 550	51.5	V	110.0	-00.0	PK	153	1.5	RB 100 kHz	VB 300 kHz:Peak	
3709 500	44.4	V H	54.0	-9.6	AVG	140	1.0	RB 1 MHz·W	/B 10 Hz·Peak	
3709 720	50.1	Н	74.0	-23.9	PK	140	1.0	RB 1 MHz·V	B 3 MHz Peak	
2782 220	41.9	H	54.0	-12 1	AVG	197	1.0	RB 1 MHz·V	B 10 Hz Peak	
2782 430	46.9	Н	74.0	-27.1	PK	127	1.0	RB 1 MHz·V	B 3 MHz:Peak	
2102.100	10.0		11.0	2				<u> (0 (11)2,)</u>	B o miliz,i out	
	For emissior	ns in restricte	d bands, the	limit of 15.2	09 was used.	For all othe	er emissions	, the limit was	set 20dB below the	
Note 1:	level of the f	undamental.								
Note 2:	1.5 GHz low	pass filter us	sed for 1.7 -	9.3 GHz sca	ns, 900 MHz	notch filer us	sed for 25-1	700 MHz scar	IS.	
Note 3:	Although this	s frequency i	s not in a res	tricted bands	s, the limit of	15.209 was	used.			

EMC Test Data										
Client:	GE MDS LLO	C		PR Number:	PR171060					
					T-Log Number: TI 171060-RA-NET9S					
Model:	NET9S				Project Manager:	Christine Krehill				
Contrati	lonothon \/il				Droject Mariager.	David Dara				
Contact:	Jonathan VII				Project Engineer:					
Standard:	FCC §15.24	7, RSS-247			Class:	N/A				
Run #2: Output Power (Peak Detector) Date of Test: 5/15 & 5/16/2023 Test Engineer: David Bare Test Location: Fremont Chamber #2 For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels.										
Maximum antenna gain: 11 dBi Radio 1 (measured at RE output and the 8 dB cable loss included)										
	Channel	Frequency (MHz)	Res BW	Output Power (dBm)	Output Power (W)	EIRP (W)				
	Low	902.2	1 MHz	22.0	0.158	1.995				
	Mid	915	1 MHz	22.0	0.158	1.995				
	High	927.6	1 MHz	21.6	0.145	1.820				
	Radio 2 (me	asured at RF output and	the 8 dB cab	le loss included)						
	Channel	Frequency (MHz)	Res BW	Output Power (dBm)	Output Power (W)	EIRP (W)				
	Low	902.2	1 MHz	22.0	0.158	0.158 1.995				
	Mid	915.0	1 MHz	21.9	0.155	55 1.950				
	High	927.6	1 MHz	21.2	0.132	1.660				
	Combined (v	vith and the 8 dB cable lo	ss included)							
	Channel	Frequency (MHz)	Res BW	Output Power (dBm)	Output Power (W) EIRP (W)					
	Low	902.2	1 MHz	25.0	0.317	317 3.991				
	Mid	915	1 MHz	25.0	0.313	3.945				
	High	927.6	1 MHz	24.4	0.276	3.479				
Note 1:	Output powe Occupied Ba	er measured at each of th andwidth. Represenative	e antenna po plot below.	orts with a suitable attenua	ator and spectrum analyz	er with RBW >>				

•			EMC Test Data
.C			PR Number: PR171060
			Log Number: TL171060-RA-NET9S
iliov		Proj	ect Manager: Christine Krebill
17 RSS-247		P10j	
		I	
Condu (NTS Silicon Valley, Frem	icted Emissions ont Facility, Semi-Anec	hoic Cham	ıber)
ls			
The objective of this test session is a specification listed above.	to perform final qualificat	ion testing o	of the EUT with respect to the
5/22/2023	Config. Used:	1	
David Bare	Config Change:	None	
Fremont Chamber #7	Host Unit Voltage	120V/60Hz	<u>-</u>
guration			
nt, the EUT was located on a foam tai the LISN. A second LISN was used nechoic chamber. Any cables running I through a ferrite clamp upon exiting	ble inside the semi-anecl I for all local support equi g to remote support equip the chamber.	noic chambe pment. Re oment where	er, 40 cm from a vertical coupling emote support equipment was located e routed through metal conduit and
s: Temperature:	24 °C		
Rel. Humidity:	42 %		
ts			
Test Performed	Limit	Result	Margin
CE, AC Power,120V/60Hz	FCC §15.207(a)	Pass	42.7 dBμV @ 2.224 MHz (-3.3 dB)
e During Testing e made to the EUT during testing he Standard ade from the requirements of the star nsmit on mid channels during tests.	ndard.		
	Iligy IV, RSS-247 Conduct (NTS Silicon Valley, Freme) Is The objective of this test session is specification listed above. 5/22/2023 David Bare Fremont Chamber #7 guration nt, the EUT was located on a foam ta the LISN. A second LISN was used bechoic chamber. Any cables running s: Temperature: Rel. Humidity: ts CE Puring Testing e made to the EUT during testing the Standard ade from the requirements of the stat hsmit on mid channels during tests.	C Iligy I7, RSS-247 Conducted Emissions (NTS Silicon Valley, Fremont Facility, Semi-Anec Is The objective of this test session is to perform final qualificat specification listed above. 5/22/2023 Config. Used: David Bare Config Change: Fremont Chamber #7 Host Unit Voltage guration n, the EUT was located on a foam table inside the semi-anecd the LISN. A second LISN was used for all local support equip through a ferrite clamp upon exiting the chamber. s: Temperature: 24 °C Rel. Humidity: 42 % ts Test Performed Limit CE, AC Power, 120V/60Hz FCC §15.207(a) e During Testing e made to the EUT during testing the Standard ade from the requirements of the standard. nsmit on mid channels during tests.	C T. iligy Pro I/7, RSS-247 Pro Conducted Emissions Conducted Emissions (JTS Silicon Valley, Fremont Facility, Semi-Anechoic Charr Is Config. Used: 1 David Bare Config. Used: 1 David Bare Config Change: None Fremont Chamber #7 Host Unit Voltage 120V/60Hz guration nt, the EUT was located on a foam table inside the semi-anechoic chamber thost Unit Voltage 120V/60Hz Burdinal Incal support equipment. Re the LUSN As second LISN was used for all local support equipment. Re through a ferrite clamp upon exiting the chamber. S Config Change: None S Temperature: 24 °C Rel. Humidity: 42 % through a ferrite clamp upon exiting the chamber. S During Testing e During Testing mad

	NTS
--	-----

EMC Test Data

Client:	GE MDS LLC	PR Number:	PR171060
Modol:	NETOS	T-Log Number:	TL171060-RA-NET9S
wouer.	NE135	Project Manager:	Christine Krebill
Contact:	Jonathan Viligy	Project Engineer:	David Bare
Standard:	FCC §15.247, RSS-247	Class:	-

Preliminary peak readings captured during pre-scan (peak readings vs. average limit)

Frequency	Level	AC	FCC §1	5.207(a)	Detector	Comments
MHz	dBμV	Line	Limit	Margin	QP/Ave	
0.159	48.4	Line 1	55.4	-7.0	Peak	
0.179	47.6	Line 1	54.5	-6.9	Peak	
0.199	46.6	Line 1	53.6	-7.0	Peak	
0.219	45.0	Line 1	52.8	-7.8	Peak	
0.239	44.0	Line 1	52.1	-8.1	Peak	
2.224	37.2	Line 1	46.0	-8.8	Peak	
0.159	50.1	Neutral	55.4	-5.3	Peak	
0.179	49.5	Neutral	54.5	-5.0	Peak	
0.198	48.5	Neutral	53.6	-5.1	Peak	
0.219	47.3	Neutral	52.8	-5.5	Peak	
0.238	46.2	Neutral	52.1	-5.9	Peak	
2.224	43.4	Neutral	46.0	-2.6	Peak	

	NTS						EMC Test Data		
Client:	GE MDS LL	.C					PR Number: PR171060		
Madal				T-Log Number: TL171060-RA-NET9S					
woder.	NE195						Project Manager: Christine Krebill		
Contact:	Jonathan Vi	ligy		Project Engineer: David Bare					
Standard:	FCC §15.24	7, RSS-247		Class: -					
Final quasi-peak and average readings									
Frequency	Level	AC	FCC §1	5.207(a)	Detector	Comments			
MHz	dBµV	Line	Limit	Margin	QP/Ave				
0.159	48.1	Line 1	55.5	-7.4	AVG	AVG (0.10s)			
0.159	48.1	Line 1	65.5	-17.4	QP	QP (1.00s)			
0.179	47.4	Line 1	54.5	-7.1	AVG	AVG (0.10s)			
0.179	47.5	Line 1	64.5	-17.0	QP	QP (1.00s)			
0.199	46.1	Line 1	53.6	-7.5	AVG	AVG (0.10s)			
0.199	46.2	Line 1	63.6	-17.4	QP	QP (1.00s)			
0.219	44.7	Line 1	52.9	-8.2	AVG	AVG (0.10s)			
0.219	44.8	Line 1	62.9	-18.1	QP	QP (1.00s)			
0.239	43.3	Line 1	52.1	-8.8	AVG	AVG (0.10s)			
0.239	43.5	Line 1	62.1	-18.6	QP	QP (1.00s)			
2.224	35.8	Line 1	46.0	-10.2	AVG	AVG (0.10s)			
2.224	36.3	Line 1	56.0	-19.7	QP	QP (1.00s)			
0.159	49.9	Neutral	55.5	-5.6	AVG	AVG (0.10s)			
0.159	50.0	Neutral	65.5	-15.5	QP	QP (1.00s)			
0.179	49.3	Neutral	54.5	-5.2	AVG	AVG (0.10s)			
0.179	49.4	Neutral	64.5	-15.1	QP	QP (1.00s)			
0.198	48.4	Neutral	53.7	-5.3	AVG	AVG (0.10s)			
0.198	48.5	Neutral	63.7	-15.2	QP	QP (1.00s)			
0.219	47.0	Neutral	52.9	-5.9	AVG	AVG (0.10s)			
0.219	47.1	Neutral	62.9	-15.8	QP	QP (1.00s)			
0.238	46.1	Neutral	52.2	-6.1	AVG	AVG (0.10s)			
0.238	46.2	Neutral	62.2	-16.0	QP	QP (1.00s)			
2.224	42.7	Neutral	46.0	-3.3	AVG	AVG (0.10s)			
2.224	43.2	Neutral	56.0	-12.8	QP	QP (1.00s)			
	-			-					

🎲 NT:	S			EM	C Test Data						
Client: GE MDS	SLLC			PR Number:	PR171060						
Model: NET9S		T.	Log Number:	TL171060-RA-NET9S							
Contact: Jonathar	n Viligy	Pro	ject Manager:	David Bare							
Standard: FCC §15	5.247, RSS-247		Class:	-							
	Radiated & ((NTS Silicon Valley, Frem	Conducted Emiston Cont Facility, Semi-Anec	sions choic Cham	ıber)							
Test Specific De	tails										
Objecti	ve: The objective of this test session is specification listed above.	to perform final qualificat	ion testing c	of the EUT with	h respect to the						
Date of Te	est: 5/12 & 5/15 & 5/16/2023	Config. Used:	1								
Test Engine	er: M. Birgani / David Bare	Config Change:	None								
Test Locati	on: Fremont Chambers #2 & #4	EUT Voltage:	13.8VDC								
equipment was loc metal conduit and Radiated emissions methods of ANSI C Ambient Conditi	equipment was located outside the semi-anechoic chamber. Any cables running to remote support equipment were routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber. Radiated emissions tests above 1 GHz to FCC Part 15 were performed with floor absorbers in place in accordance with the test methods of ANSI C63.4 and CISPR 16-1-4.										
Run #	Test Performed	Limit	Result	Margin							
2	Radiated Emissions 30 - 3000 MHz	FCC Part 15.109	Pass	32.4 dBµV/ı (-11.1 dB)	m @ 93.93 MHz						
3	30 - 3,000 MHz Receiver Conducted Spurious Emissions	FCC Part 15.111	Pass	-79.2 dBm ((-22.2 dB)	<u>ම</u> 2980.5 MHz						
Modifications Ma No modifications w Deviations From No deviations were	ade During Testing ere made to the EUT during testing The Standard e made from the requirements of the star	ndard.									

	NTS
--	-----

EMC Test Data

Client:	GE MDS LLC	PR Number:	PR171060
Model:	NETOS	T-Log Number:	TL171060-RA-NET9S
	NE135	Project Manager:	Christine Krebill
Contact:	Jonathan Viligy	Project Engineer:	David Bare
Standard:	FCC §15.247, RSS-247	Class:	-

Run #2b: Receiver Radiated Spurious Emissions, 30 - 3,000 MHz. Low Channel @ 902.2 & 902.4 MHz

Frequency	Level	Pol	15.109 / F	RSS GEN	Detector	Azimuth	Height	Comments
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
87.432	14.8	V	40.0	-25.2	QP	144	1.0	QP (1.00s)
121.232	18.1	V	43.5	-25.4	QP	90	1.0	QP (1.00s)
153.002	10.9	V	43.5	-32.6	QP	192	1.5	QP (1.00s)
160.943	10.6	V	43.5	-32.9	QP	165	1.0	QP (1.00s)
431.957	11.3	Н	46.0	-34.7	QP	222	2.5	QP (1.00s)
300.449	6.5	V	46.0	-39.5	QP	289	2.0	QP (1.00s)

		S						EMO	C Test Data
Client:	GE MD	S LLC						PR Number:	PR171060
M								T-Log Number:	TL171060-RA-NET9S
MODEL NE 195								Project Manager:	Christine Krebill
Contact: Jonathan Viligy								Project Engineer:	David Bare
Standard: FCC §15.247, RSS-247								Class:	-
Run #3: Re [Te low, mid an Radio 1	ceiver A Date of T est Loca id high o	Antenn Fest: 5/ tion: Fi channe	a Port Er /16/2023 remont Cl els	nissions, 3 hamber #2	0 - 3,000 MH	iz Te	est Engineer: [David Bare	
Preliminary	peak re	eading	s capture	ed during p	re-scan				
Frequency	Leve	el	RF Dari	15.	111 Marita	Detector	Comments		Channel
MHZ	dBn	n r	Port	Limit	Margin	QP/Ave			I
2548.890	-67.	3 h		-57.0	-10.3	Peak			LOW
2603.400	-07.			-57.0	-10.5	Peak			LOW
2743.440	-07.	1 C	RF POIL	-57.0	-10.5	Peak			Low
2/03.440	-07.4	4 r 7 r	RF FUIL	-57.0	-10.4	Peak			LUW
2853 /60	-00.	/ r 2 [DE Dort	- <u>57.0</u>	-10.2	Peak			Mid
2053.400	-66	2 I 8 F	RE Port	-57.0	-9.8	Peak			Mid
2388 350	-00.	6 5	RE Port	-57.0	-10.6	Peak			High
2878 970	-67	6 F	RF Port	-57.0	-10.6	Peak			High
2010.010	-67	0 F	RE Port	-57.0	-10.0	Peak			High
Amplitude (dBm)	Chann -50.0 - -55.0 - -60.0 - -65.0 - -70.0 - -75.0 - -80.0 - -80.0 - -85.0 - -90.0 - 30	el, Rad				Freque			
						-	-		

Client: GE MDS LLC Model: NET9S Contact: Jonathan Viligy	PR Number: PR1710 T-Log Number: TL1710 Project Manager: Christin	60 60-RA-NET9S				
Model: NET9S Contact: Jonathan Viligy	T-Log Number: TL1710 Project Manager: Christin	60-RA-NET9S				
Contact: Jonathan Viligy	Project Manager: Christin					
Contact: Jonathan Viligy		e Krebill				
	Project Engineer: David B	are				
Standard: FCC §15.247, RSS-247 Class: -						
Final quasi-peak readings						
Frequency Level RF 15.111 Detector Comments						
MHz dBm Port Limit Margin QP/Ave						
All emissions more than 20 dB below the limit						
First sector to second the second second						
Final peak and average readings		Channel				
MHz dPm Port Limit Margin OP/Avo		Channel				
	1 MHz: \/R: 10 Hz	Low				
2548.540 -68.5 RE Port -37.0 -31.5 PK PK (CISPR)-RB.1	MHz: VB: 3 MHz					
2602 440 -79.8 RE Port -57.0 -22.8 AVG AVG (CISPR)-RB	1 MHz: VB: 10 Hz	Low				
2603.670 -68.7 RE Port -37.0 -31.7 PK PK (CISPR)-RB.1	MHz: VB: 3 MHz	Low				
2741 950 -79.4 RE Port -57.0 -22.4 AVG AVG (CISPR)-RB	1 MHz: VB: 10 Hz	Low				
2743.080 -68.2 RE Port -37.0 -31.2 PK PK (CISPR)-RB 1	MHz: VB: 3 MHz	Low				
2752.490 -79.4 RF Port -57.0 -22.4 AVG AVG (CISPR)-RB	1 MHz: VB: 10 Hz	Low				
2752.490 -67.6 RF Port -37.0 -30.6 PK PK (CISPR)-RB 1	MHz; VB: 3 MHz	Low				
2465.910 -79.9 RF Port -57.0 -22.9 AVG AVG (CISPR)-RB	1 MHz; VB: 10 Hz	Mid				
2466.090 -68.2 RF Port -37.0 -31.2 PK PK (CISPR)-RB 1	MHz; VB: 3 MHz	Mid				
2854.510 -79.6 RF Port -57.0 -22.6 AVG AVG (CISPR)-RB	1 MHz; VB: 10 Hz	Mid				
2854.050 -68.1 RF Port -37.0 -31.1 PK PK (CISPR)-RB 1	MHz; VB: 3 MHz	Mid				
2959.600 -79.4 RF Port -57.0 -22.4 AVG AVG (CISPR)-RB	1 MHz; VB: 10 Hz	Mid				
2958.300 -68.2 RF Port -37.0 -31.2 PK PK (CISPR)-RB 1	MHz; VB: 3 MHz	Mid				
2389.500 -80.1 RF Port -57.0 -23.1 AVG AVG (CISPR)-RB	1 MHz; VB: 10 Hz	High				
2387.670 -67.8 RF Port -37.0 -30.8 PK PK (CISPR)-RB 1	MHz; VB: 3 MHz	High				
2877.910 -79.4 RF Port -57.0 -22.4 AVG AVG (CISPR)-RB	1 MHz; VB: 10 Hz	High				
2877.540 -67.0 RF Port -37.0 -30.0 PK PK (CISPR)-RB 1	MHz; VB: 3 MHz	High				
2916.590 -79.4 RF Port -57.0 -22.4 AVG AVG (CISPR)-RB	1 MHz; VB: 10 Hz	High				
	MHz; VB: 3 MHz	High				

	ITS	•					EMC Te	est Data
Client:	GE MDS LI	LC					PR Number: PR171	060
Madal					T-Log Number: TL171060-RA-NET9S			
Mouel.	NE195			Project Manager: Christin	ne Krebill			
Contact:	Jonathan V	iligy					Project Engineer: David I	Bare
Standard:	FCC §15.24	47, RSS-247					Class: -	
low, mid an Radio 2 Preliminary	d high cha peak read	nnels ings capture	ed during p	Dre-scan				
Frequency	Level	RF	15.	.111	Detector	Comments		Channel
MHz	dBm	Port	Limit	Margin	QP/Ave	l		
2013.750	-67.9	RF Port	-57.0	-10.9	Peak	Noise floor		Low
2168.790	-67.9	RF Port	-57.0	-10.9	Peak	Noise floor		Low
2422.860	-68.1	RF Port	-57.0	-11.1	Peak	Noise floor		Low
2652.910	-67.4	RF Port	-57.0	-10.4	Peak	Noise floor		Low
2817.950	-67.9	RF Port	-57.0	-10.9	Peak	Noise floor		Low
2937.980	-68.1	RF Port	-57.0	-11.1	Peak	Noise floor		Low
2978.990	-67.5	RF Port	-57.0	-10.5	Peak	Noise floor		Low
2376.340	-67.9	RF Port	-57.0	-10.9	Peak	Noise floor		Mid
2581.400	-67.8	RF Port	-57.0	-10.8	Peak	Noise floor		Mid
2849.960	-67.0	RF Port	-57.0	-10.0	Peak	Noise floor		Mid
2857.960	-68.1	RF Port	-57.0	-11.1	Peak	Noise floor		Mid
2872.970	-68.0	RF Port	-57.0	-11.0	Peak	Noise floor		Mid
2966.990	-67.8	RF Port	-57.0	-10.8	Peak	Noise floor		Mid
2730.930	-67.8	RF Port	-57.0	-10.8	Peak	Noise floor		High
2757.440	-67.9	RF Port	-57.0	-10.9	Peak	Noise floor		High
2767.940	-67.7	RF Port	-57.0	-10.7	Peak	Noise floor		High
2886.970	-67.0	RF Port	-57.0	-10.0	Peak	Noise floor		High
2929.480	-67.8	RF Port	-57.0	-10.8	Peak	Noise floor		High
2962.490	-67.4	RF Port	-57.0	-10.4	Peak	Noise floor		High
Amplitude (dBm)	Channel, F -55.0 - -60.0 - -65.0 - -70.0 - -75.0 - -80.0 - -85.0 -			, J, b, b, p, p, (r, J, s, p) , J, c, b, a, p, r, b, s, b,	1		┍┺┲┲┲┲┲┲┲┲┲┲┲┲┲┲┲┲┲┲┲┲ ╺┺┲┲┲┲┲┲┲┲┲┲┲┲┲┲ ╺┺┲┲┲┲┲┲┲┲	
	90.0 - 30.0	1 1 1	10	0.0	Freque	ency (MHz)	1000.0	3000.C

EMC Test Data										
Client:	GE MDS LL	.C					PR Number:	PR171060		
Model [.]	NET9S		_	T-Log Number:	TL171060-RA-NET9S					
modol.	NE100						Project Manager:	Christine Krebill		
Contact:	Jonathan Vi	ligy					Project Engineer:	David Bare		
Standard:	FCC §15.24	7, RSS-24	7				Class:	-		
Final quasi-	peak readir	ngs								
Frequency	Level	RF	15.	111	Detector	Comments				
MHz	dBm	Port	Limit	Margin	QP/Ave					
All emissions	s more than	20 dB belov	w the limit							
Final peak a	and average	readings				_				
Frequency	Level	RF	15.	111	Detector	Comments		Channel		
MHz	dBm	Port	Limit	Margin	QP/Ave					
2013.850	-81.2	RF Port	-57.0	-24.2	AVG	AVG (CISPR)-RB 1 MHz; VB: 10 Hz	Low		
2014.570	-69.1	RF Port	-37.0	-32.1	PK	PK (CISPR)-	RB 1 MHz; VB: 3 MHz	Low		
2170.090	-80.7	RF Port	-57.0	-23.7	AVG	AVG (CISPR)-RB 1 MHz; VB: 10 Hz	Low		
2167.760	-69.0	RF Port	-37.0	-32.0	PK	PK (CISPR)-	RB 1 MHz; VB: 3 MHz	Low		
2422.720	-79.8	RF Port	-57.0	-22.8	AVG	AVG (CISPR)-RB 1 MHz; VB: 10 Hz	Low		
2423.840	-68.1	RF Port	-37.0	-31.1	PK	PK (CISPR)-	RB 1 MHz; VB: 3 MHz	Low		
2653.300	-79.9	RF Port	-57.0	-22.9	AVG	AVG (CISPR)-RB 1 MHz; VB: 10 Hz	Low		
2653.750	-69.4	RF Port	-37.0	-32.4	PK	PK (CISPR)-	RB 1 MHz; VB: 3 MHz	Low		
2819.120	-79.9	RF Port	-57.0	-22.9	AVG	AVG (CISPR)-RB 1 MHz; VB: 10 Hz	Low		
2818.340	-68.7	RF Port	-37.0	-31.7	PK	PK (CISPR)-	RB 1 MHz; VB: 3 MHz	Low		
2980.470	-79.2	RF Port	-57.0	-22.2	AVG	AVG (CISPR)-RB 1 MHz; VB: 10 Hz	Low		
2979.520	-67.1	RF Port	-37.0	-30.1	PK	PK (CISPR)-	RB 1 MHz; VB: 3 MHz	Low		
2376.290	-80.2	RF Port	-57.0	-23.2	AVG	AVG (CISPR)-RB 1 MHz; VB: 10 Hz	Mid		
2376.810	-68.8	RF Port	-37.0	-31.8	PK	PK (CISPR)-	RB 1 MHz; VB: 3 MHz	Mid		
2580.450	-79.6	RF Port	-57.0	-22.6	AVG	AVG (CISPR)-RB 1 MHz; VB: 10 Hz	Mid		
2582.330	-67.1	RF Port	-37.0	-30.1	PK	PK (CISPR)-	RB 1 MHz; VB: 3 MHz	Mid		
2850.580	-79.7	RF Port	-57.0	-22.7	AVG	AVG (CISPR)-RB 1 MHz; VB: 10 Hz	Mid		
2850.050	-68.7	RF Port	-37.0	-31.7	PK	PK (CISPR)-	RB 1 MHz; VB: 3 MHz	Mid		
2968.460	-79.3	RF Port	-57.0	-22.3	AVG	AVG (CISPR)-RB 1 MHz; VB: 10 Hz	Mid		
2966.150	-68.6	RF Port	-37.0	-31.6	PK	PK (CISPR)-	RB 1 MHz; VB: 3 MHz	Mid		
2732.410	-79.4	RF Port	-57.0	-22.4	AVG	AVG (CISPR)-RB 1 MHz; VB: 10 Hz	High		
2731.470	-68.7	RF Port	-37.0	-31.7	PK	PK (CISPR)-	RB 1 MHz; VB: 3 MHz	High		
2766.950	-79.5	RF Port	-57.0	-22.5	AVG	AVG (CISPR)-RB 1 MHz; VB: 10 Hz	High		
2766.450	-67.6	RF Port	-37.0	-30.6	PK	PK (CISPR)-	RB 1 MHz; VB: 3 MHz	High		
2886.160	-79.3	RF Port	-57.0	-22.3	AVG	AVG (CISPR)-RB 1 MHz; VB: 10 Hz	High		
2887.510	-67.8	RF Port	-37.0	-30.8	PK	PK (CISPR)-	RB 1 MHz; VB: 3 MHz	High		
2962.250	-79.4	RF Port	-57.0	-22.4	AVG	AVG (CISPR)-RB 1 MHz; VB: 10 Hz	High		
2962.990	-67.8	RF Port	-37.0	-30.8	PK	PK (CISPR)-	RB 1 MHz; VB: 3 MHz	High		

End of Report

This page is intentionally blank and marks the last page of this test report.