

EMC Test Data

Client:	GE MDS LLC	PR Number:	PR171060
Model:	NETOS	T-Log Number:	TL171060-RA-NET9S
	NE 195	Project Manager:	Christine Krebill
Contact:	Jonathan Viligy	Project Engineer:	David Bare
Standard:	FCC §15.247, RSS-247	Class:	-

Maximum Permissible Exposure / SAR Exclusion

Specific Details

Objective: Evaluate the RF Exposure requirements per FCC 1.1310, 2.1091, 2.1093 and RSS-102.

Date of Test: 6/8/2023 Test Engineer: David Bare

General Test Configuration

Calculation uses the free space transmission formula:

 $S = (PG)/(4 \pi d^2)$

Where: S is power density (W/m²), P is output power (W), G is antenna gain relative to isotropic, d is separation distance from the transmitting antenna (m).

SAR exclusion calculation formula is from FCC KDB 447498 D01 section 4.3:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] \cdot [$\sqrt{f_{(GHz)}}$]

Where: f_(GHz) is the RF trasnmit channel frequency

Summary of Results

Device complies with Power Density requirements at 20cm separation:	No
If not, required separation distance (in cm):	34

Deviations From The Standard

No deviations were made from the requirements of the standard.

FCC MPE Calculation

Use: General Antenna: 11 dBi yagi

USE THIS FOR 300-1500 MHz single transmitters (General use)

	El	JT	Cable Loss	Ant	Tot.Power		Power Density (S)	MPE Limit
Freq.	Po	wer	Loss	Gain	both Ant	EIRP	at 34 cm	at 34 cm
MHz	dBm	mW*	dB	dBi	dBm	mW	mW/cm^2	mW/cm^2
902.2	30.0	1000.0	8	11	25.0	3981.07	0.274	0.601
915	30.0	1000.0	8	11	25.0	3981.07	0.274	0.610
927.6	30.0	1000.0	8	11	25.0	3981.07	0.274	0.618

For the cases where S > the MPE Limit

	Power Density (S)	MPE Limit	Distance where
Freq.	at 34 cm	at 34 cm	S <= MPE Limit
MHz	mW/cm^2	mW/cm^2	cm
902.2	0.274	0.601	23.0
915	0.274	0.610	22.8
927.6	0.274	0.618	22.6

ISED Canada MPE Calculation

Use: General Antenna: 11 dBi yagi

For 300 - 6000 MHz single transmitters (General use)

	El	JT	Cable Loss	Ant	Tot.Power		Power Density (S)	MPE Limit
Freq.	Pov	wer	Loss	Gain	both Ant	EIRP	at 34 cm	at 34 cm
MHz	dBm	mW*	dB	dBi	dBm	mW	W/m^2	W/m^2
902.2	30.0	1000.0	8	11	25.0	3981.07	2.740	2.740
915	30.0	1000.0	8	11	25.0	3981.07	2.740	2.767
927.6	30.0	1000.0	8	11	25.0	3981.07	2.740	2.793

For the cases where S > the MPE Limit

	Power Density (S)	MPE Limit	Distance where
Freq.	at 34 cm	at 34 cm	S <= MPE Limit
MHz	W/m^2	W/m^2	cm
902.2	2.740	2.740	34.0
915	2.740	2.767	33.8
927.6	2.740	2.793	33.7