

41039 Boyce Road Fremont, CA. 94538 510-578-3500 Phone

EMC Test Report

Application for FCC Grant of Equipment Authorization Canada Certification

Innovation, Science and Economic Development Canada RSS-Gen Issue 5 / RSS-247 Issue 2 FCC Part 15 Subpart C

Model: NET9L

IC CERTIFICATION #: FCC ID:	E5MDS-NET9L 101D-NET9L
APPLICANT:	GE Digital Energy - MDS 175 Science Pkwy Rochester, NY 14620
TEST SITE(S):	NTS Labs LLC 41039 Boyce Road. Fremont, CA. 94538-2435
IC SITE REGISTRATION #:	2845B-4
PROJECT NUMBER:	PR171060
REPORT DATE:	June 1, 2023
RE-ISSUED DATE:	July 11, 2023
FINAL TEST DATES:	May 11 thru 22, 2023
TOTAL NUMBER OF PAGES:	66

This report and the information contained herein represent the results of testing of only those articles / products identified in this document and selected by the client. The tests were performed to specifications and/or procedures selected by the client. NTS Labs LLC makes no representations expressed or implied that such testing fully demonstrates efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS Labs LLC of the equipment tested, nor does it present any statement whatsoever as to its merchantability or fitness of the test article or similar products, for a particular purpose. This report shall not be reproduced except in full without written approval from NTS Labs LLC.

VALIDATING SIGNATORIES

PROGRAM MGR

David W. Bare Chief Engineer

TECHNICAL REVIEWER:

David W. Bare Chief Engineer

FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

QUALITY ASSURANCE DELEGATE

Gary Izard Senior Technical Writer

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	June 1, 2023	First release	
1	July 11, 2023	Added results for other hopping mode, added firmware and settings used during testing.	

TABLE OF CONTENTS

COVER PAGE	1
VALIDATING SIGNATORIES	2
REVISION HISTORY	3
TABLE OF CONTENTS	4
SCOPE	
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
FREQUENCY HOPPING SPREAD SPECTRUM (902 – 928 MHZ, 50 CHANNELS OR MORE)	, / 7
MEASUREMENT UNCERTAINTIES	8
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	9
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	9
EUT INTERFACE PORTS	10
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	11
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	12
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	14
CONDUCTED EMISSIONS FROM ANTENNA PORT	
BANDWIDTH MEASUREMENTS	18
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; RSS GEN	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – FHSS SYSTEMS TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMILE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
END OF REPORT	66

SCOPE

An electromagnetic emissions test has been performed on the GE Digital Energy - MDS model NET9L, pursuant to the following rules:

RSS-GEN Issue 5 "General Requirements for Compliance of Radio Apparatus" RSS 247 Issue 2 "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSS) and Licence-Exempt Local Area Network (LE-LAN) Devices" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in NTS Labs LLC test procedures:

ANSI C63.10-2013

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

NTS Labs LLC is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of GE Digital Energy - MDS model NET9L complied with the requirements of the following regulations:

RSS-GEN Issue 5 "General Requirements for Compliance of Radio Apparatus" RSS 247 Issue 2 "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSS) and Licence-Exempt Local Area Network (LE-LAN) Devices" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of GE Digital Energy - MDS model NET9L and therefore apply only to the tested sample. The sample was selected and prepared by Jonathan Vilagy of GE Digital Energy - MDS.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

FREQUENCY HOPPING SPREAD SPECTRUM (902 – 928 MHz, 50 channels or more)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result					
15.247 (a) (1) (i)	RSS 247 5.1 (1) & (3)	20dB Bandwidth	128 kHz	<= 500 kHz	Complies					
15.247 (a) (1)	RSS 247 5.1 (2)	Channel Separation	200 kHz	Channel spacing > 20dB bandwidth (minimum 25kHz)	Complies					
15.247 (a) (1) (i)	RSS 247 5.1 (3)	Number of Channels	128	50 or more	Complies					
15.247 (a) (1) (i)	RSS 247 5.1 (3)	Channel Dwell Time	77.0 mS in any 20 second period	<0.4 second within a 20 second period	Complies					
15.247 (a) (1)	RSS 247 5.1 (1)	Channel Utilization	All channels are used equally - refer to the operational description for full explanation	All channels shall, on average, be used equally	Complies					
15.247 (b) (3)	RSS 247 5.4 (1)	Output Power	30 dBm (1.0 W) EIRP = 3.98 W ^{Note 1}	1Watt, EIRP <= 4 Watts	Complies					
15.247 (d)	RSS 247 5.5	Antenna Port Spurious Emissions 30MHz – 9.28 GHz	-25.2 dBc (margin: 5.2 dB)	< -20dBc	Complies					
15.247 (d) /	RSS 247 5.5	Radiated Spurious Emissions 30MHz – 9.28 GHz Omni	40.9 dBµV/m @ 867.15 MHz (-5.1 dB)	Refer to the limits section (p19) for	Complian					
15.209	KOO 247 0.0	Radiated Spurious Emissions 30MHz – 9.28 GHz Yagi	41.4 dBµV/m @ 888.56 MHz (-4.6 dB)	restricted bands, all others < -20dBc	Complies					
15.247 (a) (1)	RSS 247 5.1(2)	Receiver bandwidth	Refer to operational description	Shall match the channel bandwidth	Complies					
Note 1 EIRP Note 2 Pass	calculated using	g antenna gain of 6 dBi fo ned by standards listed a	r the highest EIRP systen	٦.	Note 1 EIRP calculated using antenna gain of 6 dBi for the highest EIRP system.					

	ENERAL REQUIREMENTS APPLICABLE TO ALL BANDS					
FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)	
15.203	-	RF Connector	Professional Install, Refer to User Manual	Unique or integral antenna required or Professional Installation	Complies	
15.407 (b) (6)	RSS-Gen Table 4	AC Conducted Emissions	46.9 dBµV @ 0.238 MHz (-5.3 dB)	Refer to page 19	Complies	
15.247 (i) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in separate exhibit, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies	
-	RSS-Gen 6.8	User Manual	Refer to User Manual statements	Statement for products with detachable antenna	Complies	
-	RSS-Gen 8.4	User Manual	Refer to User Manual statements	Statement for all products	Complies	
-	RSP-100 RSS-Gen 6.7	Occupied Bandwidth	121 kHz	Information only	N/A	
Note 1 Pass/F	ail criteria define	ed by standards listed ab	ove.			

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Dedicted amigaion (field strength)	dDu\//m	25 to 1000 MHz	± 3.6 dB
Radiated emission (field strength)	dBµV/m	1000 to 40000 MHz	± 6.0 dB
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The GE Digital Energy - MDS model NET9L is an industrial frequency hopping radio that is designed to operate in the 902-928 MHz band. Since the EUT could be placed in any position during operation, the EUT was treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 6-36 Volts DC, 1.2 Amps max.

The sample was received on May 11, 2023 and tested on May 11 thru 22, 2023. The EUT consisted of the following component(s):

ſ	Company	Model	Description	Serial Number	FCC ID
	GE MDS	NET9L	Industrial Transceiver	Pre-production	E5MDS-NET9L

ANTENNA SYSTEM

The antenna system consists of either a Kathrein Scala OGB9-915N multi-element omnidirectional 11 dBi with at least 5 dB of cable loss or PCTEL Z2336 Yagi 10 dBd with at least 6.2 dB cable loss antenna.

ENCLOSURE

The EUT enclosure is primarily constructed of metal. It measures approximately 13.5 cm wide by 9.6 cm deep by 3.8 cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS Labs LLC.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
HP	6024A	Power Supply	2430A-03013	-

The following equipment was used as remote support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
D-Link	DES-1105	Ethernet Switch	DRL7271011218	-
hp	250 G8	Laptop	CND1454HKM	-

EUT INTERFACE PORTS

		EUT		
Port			Cable(s)	
From	То	Description	Shielded/Unshielded	Length(m)
Antenna	Antenna	Coax	Shielded	0.6
Ethernet	Remote switch	Cat 6	Shielded	7.6
СОМ	Termination	Cat 6	Unshielded	2
Chassis	Ground	Braid	Unshielded	2.5

The I/O cabling configuration during testing was as follows:

Additional on Support Equipment

Port		Cable(s)			
From	То	Description	Shielded/Unshielded	Length(m)	
Laptop USB	EUT (for configuration only, removed for testing)	Multiwire	Shielded	0.5	
Laptop DC	AC Adapter	two wire	Unshielded	1.7	
AC Adapter	Mains	three wire	Unshielded	1.5	

EUT OPERATION

During emissions testing the EUT was configured using commands in a TeraTerm application on the laptop to transmit a 100% duty cycle modulated signal at the desired frequency and maximum power level or set to hop on all channels at the maximum power level depending on the test being performed. The EUT firmware 06-7272A01 is version 0.1.9. Single frequency operation was set using command "radio channel x" where x is the channel number. Radio output power was set using command "cfg set radio.power 30" and hopping mode was set using command "radio mode transnet".

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 6.2 of RSS-GEN, NTS Labs LLC has been recognized as an accredited test laboratory by the Commission and Innovation, Science and Economic Development Canada. A description of the facilities employed for testing is maintained by NTS Labs LLC.

Site	Company / Registration Numbers		Location
Sile	FCC	Canada	Location
Chamber 4	US1031	2845B (Wireless Test Lab #US0027)	41039 Boyce Road Fremont, CA 94538-2435

ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Results from testing performed in this chamber have been correlated with results from an open area test site. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.10. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

Software is used to view and convert receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers. The software used for radiated and conducted emissions measurements is NTS Labs LLC EMI Test Software (rev 2.10)

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.10 specifies that the test height above ground for table mounted devices shall be 80 centimeters for testing below 1 GHz and 1.5m for testing above 1 GHz. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor as specified in ANSI C63.4. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.10, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

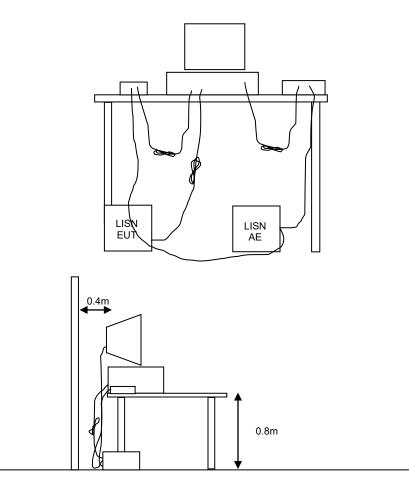
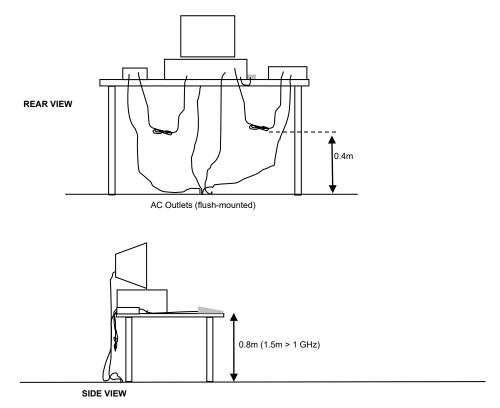
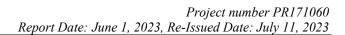


Figure 1 Typical Conducted Emissions Test Configuration

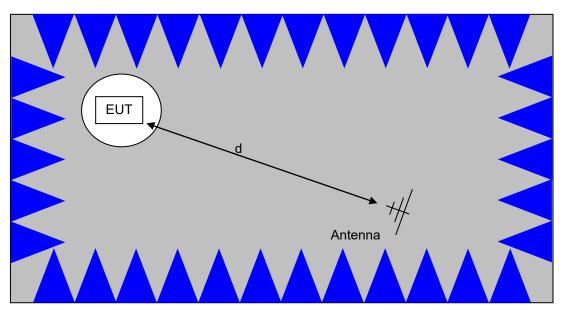
RADIATED EMISSIONS


A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

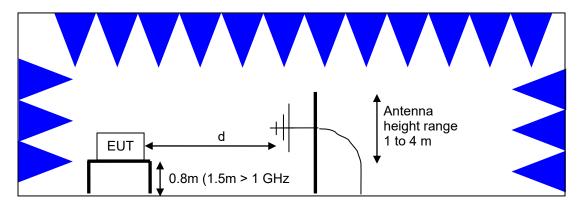
A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.


Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.

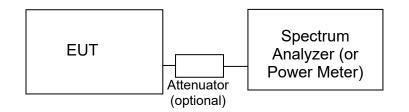


Typical Test Configuration for Radiated Field Strength Measurements



The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.



Test Configuration for Radiated Field Strength Measurements

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and NTS Labs LLC's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB, 26dB and/or 99% signal bandwidth are measured using the bandwidths recommended by ANSI C63.10 and RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

¹ The restricted bands are detailed in FCC 15.205 and RSS-Gen Table 7

OUTPUT POWER LIMITS – FHSS SYSTEMS

The table below shows the limits for output power based on the number of channels available for the hopping system.

Operating Frequency (MHz)	Number of Channels	Output Power
902 – 928	≥ 50	1 Watt (30 dBm)
902 – 928	25 to 49	0.25 Watts (24 dBm)
2400 – 2483.5	≥ 75	1 Watt (30 dBm)
2400 – 2483.5	< 75	0.125 Watts (21 dBm)
5725 – 5850	75	1 Watt (30 dBm)

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS GEN. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

 $R_r - S = M$ where: $R_r =$ Receiver Reading in dBuV S = Specification Limit in dBuV M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

 $F_{d} = 20*LOG_{10} (D_{m}/D_{s})$ where: $F_{d} = Distance Factor in dB$ $D_{m} = Measurement Distance in meters$ $D_{s} = Specification Distance in meters$

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

 $F_d = 40*LOG_{10} (D_m/D_s)$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$
 and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_s = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

 $E = \frac{1000000 \sqrt{30 P}}{d}$ microvolts per meter

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

Manufacturer Padiatod Emissions	<u>Description</u> 5, 30 - 9,300 MHz, 11-17-May	Model	<u>Asset #</u>	Calibrated	<u>Cal Due</u>
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	WC022452	N/A	N/A
Hewlett Packard EMCO	Spectrum Analyzer (Blue) Antenna, Horn, 1-18 GHz	8564E 3115	WC055592 WC064442	4/19/2023 11/18/2022	4/19/2024 11/18/2024
Hewlett Packard Sunol Sciences Agilent Technologies	(SA40-Blue) High Pass filter, 1.5 GHz Biconilog, 30-3000 MHz Microwave Preamplifier, 1- 26.5GHz	84300-80037 JB3 8449B	WC064494 WC064573 WC064574	11/15/2022 2/27/2022 2/28/2023	11/15/2023 8/1/2024 2/28/2024
Rohde & Schwarz	EMI Test Receiver, 20Hz- 7GHz	ESIB 7	WC064989	1/4/2023	1/4/2024
Com-Power	Preamplifier, 1-1000 MHz	PAM-103	WC080961	5/20/2022	5/20/2023
National Technical	(Power and Spurious Emise NTS EMI Software (rev	sions), 16-May-23 N/A	WC022452	N/A	N/A
Systems National Technical Systems	2.10) NTS Capture Analyzer Software (rev 4.0)	N/A	WC022706	N/A	N/A
Agilent Technologies	PSA Spectrum Analyzer	E4446A	WC055650	8/30/2022	8/31/2023
	s, 25 - 1,000 MHz, 19-May-23				
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	WC022452	N/A	N/A
Sunol Sciences Hewlett Packard Rohde & Schwarz	Biconilog, 30-3000 MHz 9kHz-1300MHz pre-amp EMI Test Receiver, 20Hz-	JB3 8447F ESI	WC064582 WC064718 WC068000	8/18/2022 12/28/2022 7/21/2022	3/24/2025 12/28/2023 7/21/2023
	40GHz				
Conducted Emission National Technical Systems	ns - AC Power Ports, 22-Ma NTS EMI Software (rev 2.10)	y-23 N/A	WC022452	N/A	N/A
Fischer Custom Communications	LISN, 25A, 150kHz to 30MHz, 25 Amp	FCC-LISN-50- 25-2-09	WC064532	9/8/2022	9/8/2023
Rohde & Schwarz	EMI Test Receiver, 20Hz- 40GHz	ESI	WC068000	7/21/2022	7/21/2023
Rohde & Schwarz	Pulse Limiter	ESH3-Z2	WC072359	6/30/2022	6/30/2023
Channel Occupancy National Technical	NTS Capture Analyzer	N/A	WC022706	N/A	
Systems Rohde & Schwarz	Software (rev 4.0) Spectrum Analyzer	FSQ26	WC055662	12/11/2022	12/31/2023

Appendix B Test Data

TL171060-RA NET9L Pages 25 – 65

EMC Test Data

Client:	GE MDS LLC	PR Number:	PR171060
Product	NET9L	T-Log Number:	TL171060-RA-NET9L
System Configuration:	-	Project Manager:	Christine Krebill
Contact:	Jonathan Viligy	Project Engineer:	David Bare
Emissions Standard(s):	FCC §15.247, RSS-247	Class:	-
Immunity Standard(s):	-	Environment:	Industrial

EMC Test Data

For The

GE MDS LLC

Product

NET9L

Date of Last Test: 5/19/2023

EMC Test Data

Client:	GE MDS LLC	PR Number:	PR171060
Madal	NET9I	T-Log Number:	TL171060-RA-NET9L
wouer.		Project Manager:	Christine Krebill
Contact:	Jonathan Viligy	Project Engineer:	David Bare
Standard:	FCC §15.247, RSS-247	Class:	N/A

RSS-247 and FCC 15.247 (FHSS) Measurements

Power, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Config. Used: 1

Test Location: Fremont Chamber #2, #4 & #7

General Test Configuration

NTS

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located outside the chamber with all I/O connections running under the floor.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

Unless stated otherwise the EUT was operating such that it constantly hopped on either the low, center or high channels.

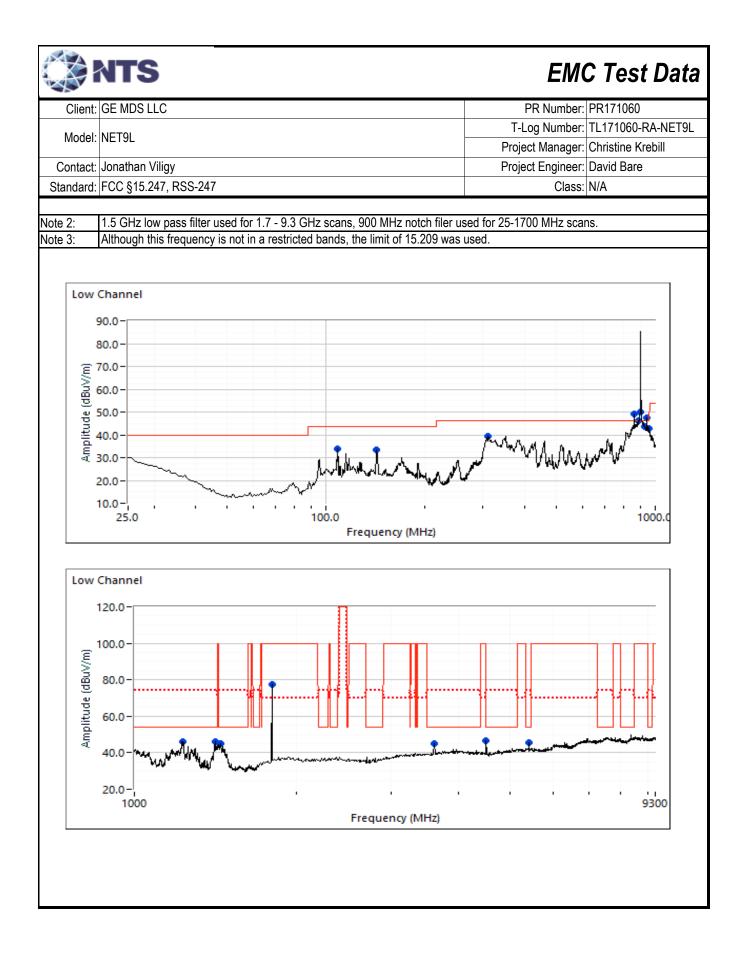
Ambient Conditions:	Temperature:	20-23 °C
	Rel. Humidity:	35-48 %

Summary of Results

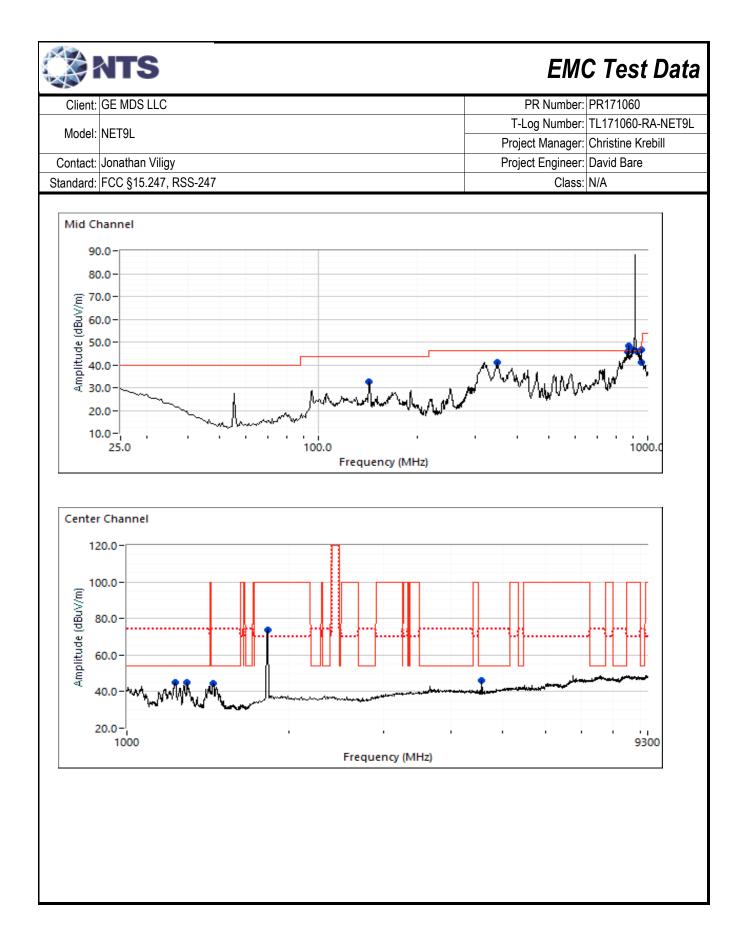
Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	25 - 9,300 MHz - Transmitter Radiated Spurious	FCC Part 15.209 /	Pass	40.9 dBµV/m @ 867.15 MHz
I	Emissions	15.247(c)	Pass	(-5.1 dB)
4	Transmitter Conducted Spurious Emissions	FCC Part 15.247(c)	Pass	-25.2 dBc (margin: 5.2 dB)
5	Output Power	15.247(b)	Pass	30 dBm (1.0 W)
6	20dB Bandwidth	15.247(a)	Pass	128 kHz
6	Channel Occupancy	15.247(a)	Pass	18.29 mS or 77.0 mS in any 20
0	Charner Occupancy	15.247 (d)	F855	second period
6	Number of Channels	15.247(a)	Pass	64 or 128

Modifications Made During Testing:

No modifications were made to the EUT during testing

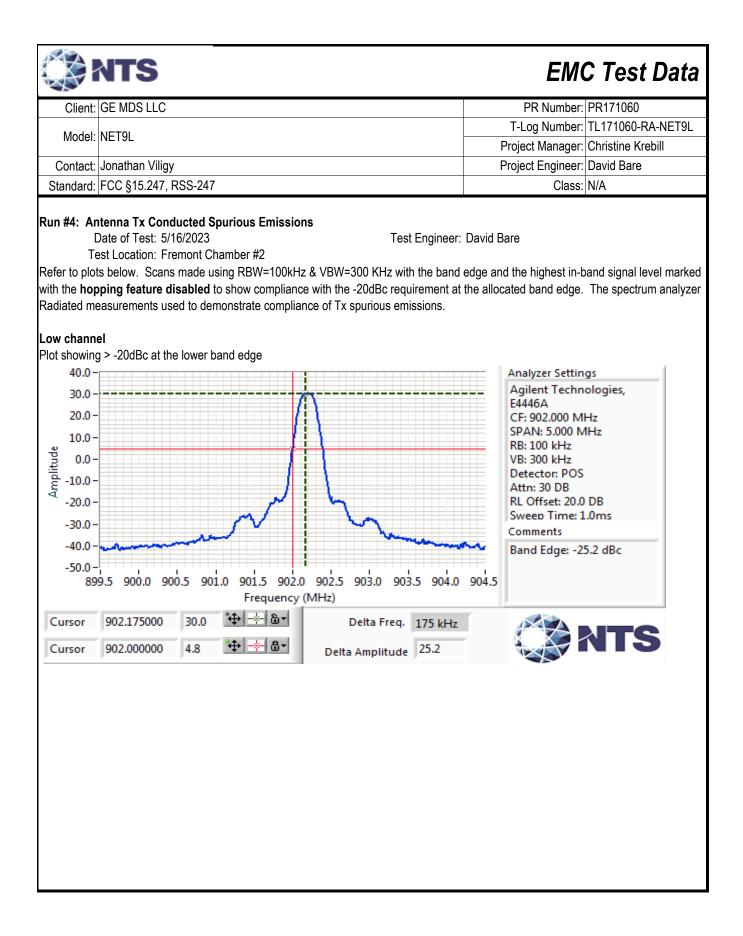

Deviations From The Standard

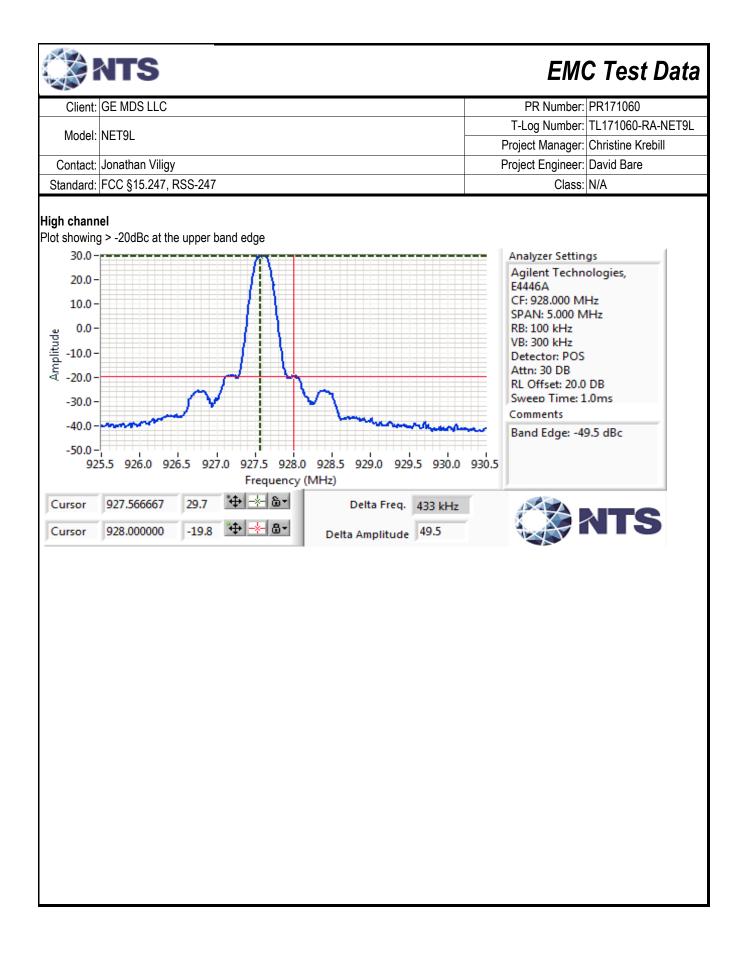
No deviations were made from the requirements of the standard.

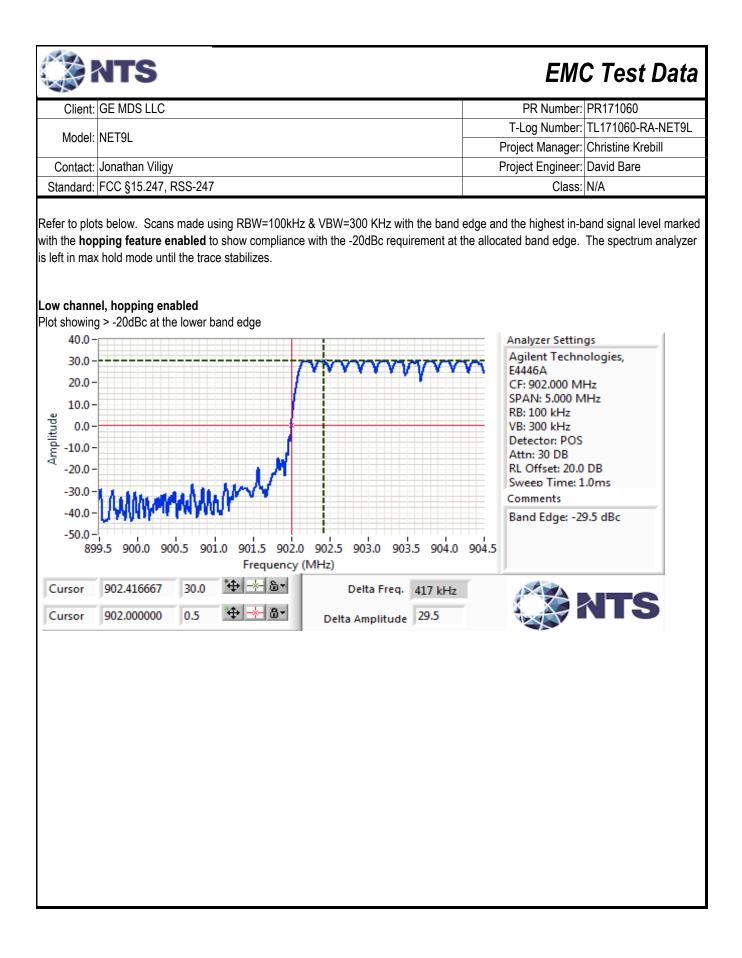

Test Notes

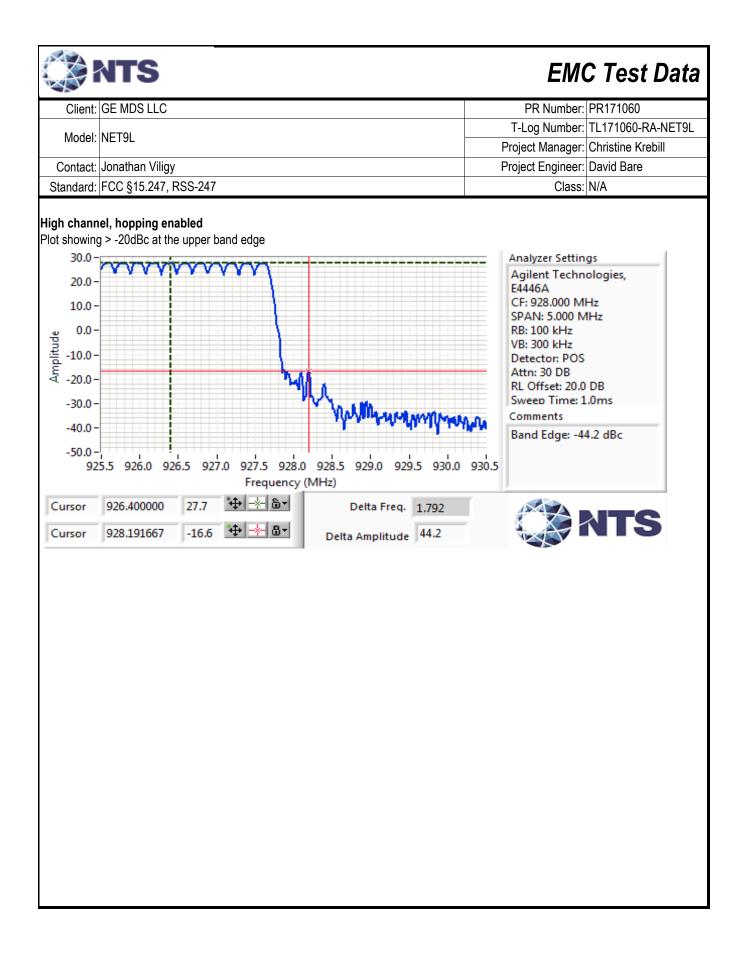
Based on prelimiary radiated emissions tests in 3 orthogonal orientations, the flat orientation was the worst case w.r.t. the limits and was therefore used for all radiated testing.

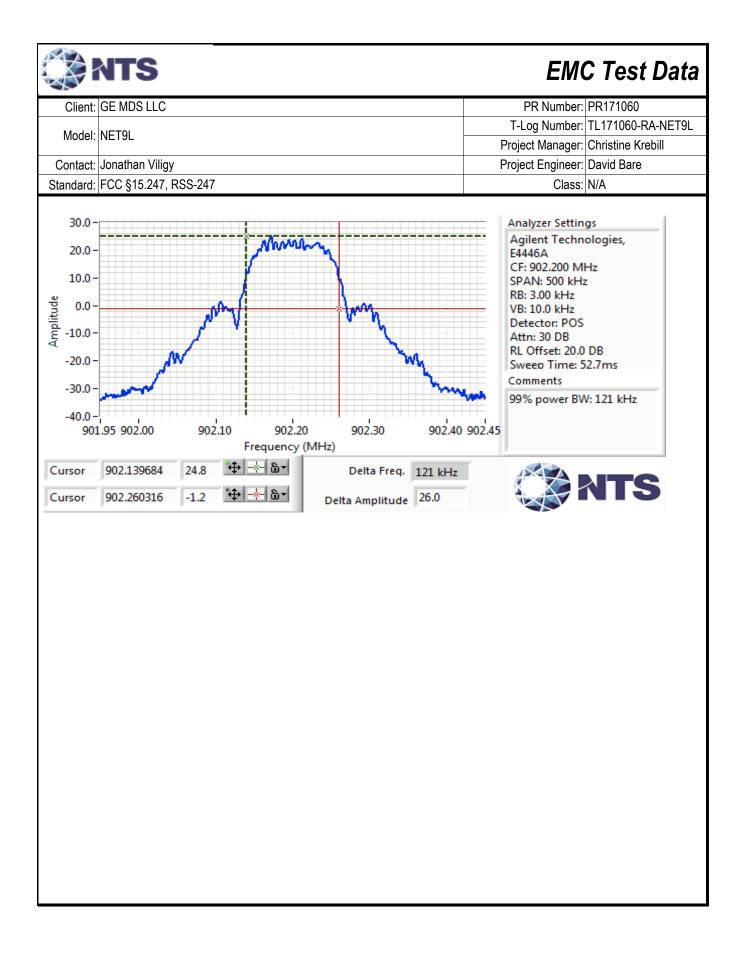

Client:	GE MDS LL	С						PR Number: PR171060
Model	NET9L						T-Log Number: TL171060-RA-NET9L	
MOUEI.	INC 19L				Project Manager: Christine Krebill			
Contact:	Jonathan Vil	ligy				Project Engineer: David Bare		
Standard:	FCC §15.24	7, RSS-247						Class: N/A
ا Run #1a: F	adiated Spur Date of Test: Radiated Spu tal Signal Fie	5/12 & 5/19/ Irious Emiss	2023 sions, 30 - 9		Te: .ow Channel	st Engineer: @ 902.2 Mł		
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
902.199	126.0	V	-	-	PK	120	1.4	RB = 100kHz; VB = 300kHz
902.199	102.5	Н	-	-	PK	311	1.2	RB = 100kHz; VB = 300kHz
Aaximun F	undamental e	mission leve	el @ 3m in 10	00kHz RRW·	126 0	dBµV/m		
		emissions ou				dBμV/m dBμV/m	Limit is -20)dBc
Athor Sour								
iner opur	ious Emissi	ons						
	ious Emissio Level	ons Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
			15.209 Limit	/ 15.247 Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments
requency	Level	Pol		1				Comments QP (1.00s)
requency MHz 108.030 142.562	Level dBμV/m 23.6 27.0	Pol V/H V V	Limit 43.5 43.5	Margin -19.9 -16.5	Pk/QP/Avg QP QP	degrees 3 176	meters	QP (1.00s) QP (1.00s); Note 3
requency MHz 108.030 142.562 310.911	Level dBμV/m 23.6 27.0 33.8	Pol V/H V V V	Limit 43.5 43.5 46.0	Margin -19.9 -16.5 -12.2	Pk/QP/Avg QP QP QP	degrees 3 176 240	meters 1.0 1.2 1.0	QP (1.00s) QP (1.00s); Note 3 QP (1.00s); Note 3
requency MHz 108.030 142.562 310.911 863.196	Level dBµV/m 23.6 27.0 33.8 50.5	Pol V/H V V V V	Limit 43.5 43.5 46.0 106.0	Margin -19.9 -16.5 -12.2 -55.5	Pk/QP/Avg QP QP QP PK	degrees 3 176 240 40	meters 1.0 1.2 1.0 1.7	QP (1.00s) QP (1.00s); Note 3 QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz
requency MHz 108.030 142.562 310.911 863.196 885.517	Level dBµV/m 23.6 27.0 33.8 50.5 46.0	Pol V/H V V V V V	Limit 43.5 43.5 46.0 106.0 106.0	Margin -19.9 -16.5 -12.2 -55.5 -60.0	Pk/QP/Avg QP QP PK PK	degrees 3 176 240 40 337	meters 1.0 1.2 1.0 1.7 1.7	QP (1.00s) QP (1.00s); Note 3 QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz
requency MHz 108.030 142.562 310.911 863.196 885.517 902.000	Level dBμV/m 23.6 27.0 33.8 50.5 46.0 59.6	Pol V/H V V V V V V V	Limit 43.5 43.5 46.0 106.0 106.0 106.0	Margin -19.9 -16.5 -12.2 -55.5 -60.0 -46.4	Pk/QP/Avg QP QP PK PK PK PK	degrees 3 176 240 40 337 337	meters 1.0 1.2 1.0 1.7 1.7 1.7	QP (1.00s) QP (1.00s); Note 3 QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz
requency MHz 108.030 142.562 310.911 863.196 885.517 902.000 928.000	Level dBµV/m 23.6 27.0 33.8 50.5 46.0 59.6 39.5	Pol V/H V V V V V V V V	Limit 43.5 43.5 46.0 106.0 106.0 106.0 46.0	Margin -19.9 -16.5 -12.2 -55.5 -60.0 -46.4 -6.5	Pk/QP/Avg QP QP PK PK PK QP	degrees 3 176 240 40 337 337 330	meters 1.0 1.2 1.0 1.7 1.7 1.7 1.7	QP (1.00s) QP (1.00s); Note 3 QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz QP (1.00s); Note 3
requency MHz 108.030 142.562 310.911 863.196 885.517 902.000 928.000 941.186	Level dBµV/m 23.6 27.0 33.8 50.5 46.0 59.6 39.5 49.0	Pol V/H V V V V V V V V V V	Limit 43.5 43.5 46.0 106.0 106.0 106.0 46.0 106.0	Margin -19.9 -16.5 -12.2 -55.5 -60.0 -46.4 -6.5 -57.0	Pk/QP/Avg QP QP PK PK PK QP PK	degrees 3 176 240 40 337 337 330 335	meters 1.0 1.2 1.0 1.7 1.7 1.7 1.7 1.7 1.7 1.7	QP (1.00s) QP (1.00s); Note 3 QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz
requency MHz 108.030 142.562 310.911 863.196 885.517 902.000 928.000 941.186 960.000	Level dBµV/m 23.6 27.0 33.8 50.5 46.0 59.6 39.5 49.0 39.3	Pol V/H V V V V V V V V V V V V	Limit 43.5 46.0 106.0 106.0 106.0 46.0 106.0 46.0	Margin -19.9 -16.5 -12.2 -55.5 -60.0 -46.4 -6.5 -57.0 -6.7	Pk/QP/Avg QP QP PK PK PK QP PK QP	degrees 3 176 240 40 337 337 330 335 328	meters 1.0 1.2 1.0 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	QP (1.00s) QP (1.00s); Note 3 QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz QP (1.00s)
requency MHz 108.030 142.562 310.911 863.196 885.517 902.000 928.000 941.186 960.000 1232.650	Level dBμV/m 23.6 27.0 33.8 50.5 46.0 59.6 39.5 49.0 39.3 42.1	Pol V/H V V V V V V V V V V V V V	Limit 43.5 43.5 46.0 106.0 106.0 106.0 46.0 46.0 54.0	Margin -19.9 -16.5 -12.2 -55.5 -60.0 -46.4 -6.5 -57.0 -6.7 -11.9	Pk/QP/Avg QP QP PK PK PK QP PK QP AVG	degrees 3 176 240 40 337 337 330 335 328 298	meters 1.0 1.2 1.0 1.7 1.7 1.7 1.7 3.5	QP (1.00s) QP (1.00s); Note 3 QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz QP (1.00s) RB 1 MHz;VB 10 Hz;Peak
requency MHz 108.030 142.562 310.911 863.196 885.517 902.000 928.000 941.186 960.000 1232.650 1234.000	Level dBµV/m 23.6 27.0 33.8 50.5 46.0 59.6 39.5 49.0 39.3 42.1 53.8	Pol V/H V V V V V V V V V V V V V V	Limit 43.5 43.5 46.0 106.0 106.0 106.0 46.0 106.0 46.0 54.0 74.0	Margin -19.9 -16.5 -12.2 -55.5 -60.0 -46.4 -6.5 -57.0 -6.7 -11.9 -20.2	Pk/QP/Avg QP QP PK PK PK QP PK QP AVG PK	degrees 3 176 240 40 337 337 330 335 328 298 298	meters 1.0 1.2 1.0 1.7 1.7 1.7 1.7 3.5 3.5	QP (1.00s) QP (1.00s); Note 3 QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz QP (1.00s) RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak
requency MHz 108.030 142.562 310.911 863.196 885.517 902.000 928.000 941.186 960.000 1232.650 1234.000 1413.090	Level dBµV/m 23.6 27.0 33.8 50.5 46.0 59.6 39.5 49.0 39.3 42.1 53.8 40.9	Pol V/H V V V V V V V V V V V V V	Limit 43.5 43.5 46.0 106.0 106.0 106.0 46.0 106.0 46.0 54.0 74.0 54.0	Margin -19.9 -16.5 -12.2 -55.5 -60.0 -46.4 -6.5 -57.0 -6.7 -11.9 -20.2 -13.1	Pk/QP/Avg QP QP PK PK PK QP PK QP AVG PK AVG	degrees 3 176 240 40 337 337 330 335 328 298 298 41	meters 1.0 1.2 1.0 1.7 1.7 1.7 1.6 1.4 1.2 3.5 3.5 1.0	QP (1.00s) QP (1.00s); Note 3 QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz QP (1.00s) RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 10 Hz;Peak
requency MHz 108.030 142.562 310.911 863.196 885.517 902.000 928.000 941.186 960.000 1232.650 1234.000 1413.090 1412.970	Level dBµV/m 23.6 27.0 33.8 50.5 46.0 59.6 39.5 49.0 39.3 42.1 53.8 40.9 52.5	Pol V/H V V V V V V V V V V V V V	Limit 43.5 43.5 46.0 106.0 106.0 106.0 46.0 106.0 46.0 54.0 74.0 54.0 74.0	Margin -19.9 -16.5 -12.2 -55.5 -60.0 -46.4 -6.5 -57.0 -6.7 -11.9 -20.2 -13.1 -21.5	Pk/QP/Avg QP QP PK PK PK QP PK QP AVG PK AVG PK	degrees 3 176 240 40 337 337 330 335 328 298 298 41	meters 1.0 1.2 1.0 1.7 1.7 1.7 1.6 1.4 1.2 3.5 3.5 1.0 1.0	QP (1.00s) QP (1.00s); Note 3 QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz QP (1.00s) RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak
requency MHz 108.030 142.562 310.911 863.196 885.517 902.000 928.000 941.186 960.000 1232.650 1234.000 1413.090 1412.970 1445.990	Level dBµV/m 23.6 27.0 33.8 50.5 46.0 59.6 39.5 49.0 39.3 42.1 53.8 40.9 52.5 41.1	Pol V/H V V V V V V V V V V V V V V V V V	Limit 43.5 43.5 46.0 106.0 106.0 106.0 46.0 106.0 46.0 54.0 74.0 54.0 74.0 54.0	Margin -19.9 -16.5 -12.2 -55.5 -60.0 -46.4 -6.5 -57.0 -6.7 -11.9 -20.2 -13.1 -21.5 -12.9	Pk/QP/Avg QP QP PK PK PK QP PK QP AVG PK AVG PK AVG	degrees 3 176 240 40 337 337 330 335 328 298 298 41 355	meters 1.0 1.2 1.0 1.7 1.7 1.7 1.6 1.4 1.2 3.5 3.5 1.0 1.0 2.0	QP (1.00s) QP (1.00s); Note 3 QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz QP (1.00s) RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 10 Hz;Peak
requency MHz 108.030 142.562 310.911 863.196 885.517 902.000 928.000 941.186 960.000 1232.650 1234.000 1412.970 1445.990 1445.760	Level dBµV/m 23.6 27.0 33.8 50.5 46.0 59.6 39.5 49.0 39.3 42.1 53.8 40.9 52.5 41.1 52.8	Pol V/H V V V V V V V V V V V V V V V V V V	Limit 43.5 43.5 46.0 106.0 106.0 106.0 46.0 106.0 46.0 54.0 74.0 54.0 74.0 54.0 74.0	Margin -19.9 -16.5 -12.2 -55.5 -60.0 -46.4 -6.5 -57.0 -6.7 -11.9 -20.2 -13.1 -21.5 -12.9 -21.2	Pk/QP/Avg QP QP PK PK PK QP PK QP AVG PK AVG PK AVG PK	degrees 3 176 240 40 337 337 330 335 328 298 298 41 41 355 355	meters 1.0 1.2 1.0 1.7 1.7 1.7 1.6 1.4 1.2 3.5 3.5 1.0 1.0 2.0	QP (1.00s) QP (1.00s); Note 3 QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz QP (1.00s) RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak
requency MHz 108.030 142.562 310.911 863.196 885.517 902.000 928.000 941.186 960.000 1232.650 1234.000 1413.090 1445.990 1445.760 1804.510	Level dBµV/m 23.6 27.0 33.8 50.5 46.0 59.6 39.5 49.0 39.3 42.1 53.8 40.9 52.5 41.1 52.8 78.0	Pol V/H V V V V V V V V V V V V V	Limit 43.5 43.5 46.0 106.0 106.0 106.0 46.0 106.0 46.0 54.0 74.0 54.0 74.0 54.0 74.0 106.0	Margin -19.9 -16.5 -12.2 -55.5 -60.0 -46.4 -6.5 -57.0 -6.7 -11.9 -20.2 -13.1 -21.5 -12.9 -21.2 -28.0	Pk/QP/Avg QP QP PK PK PK QP PK QP AVG PK AVG PK AVG PK PK PK	degrees 3 176 240 40 337 337 337 330 335 328 298 298 41 455 355 321	meters 1.0 1.2 1.0 1.7 1.7 1.7 1.7 3.5 3.5 1.0 1.0 2.0 1.5	QP (1.00s) QP (1.00s); Note 3 QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz QP (1.00s) RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 00 kHz;VB 300 kHz;Peak
requency MHz 108.030 142.562 310.911 863.196 885.517 902.000 928.000 941.186 960.000 1232.650 1234.000 1413.090 1412.970 1445.760 1804.510 3608.820	Level dBμV/m 23.6 27.0 33.8 50.5 46.0 59.6 39.5 49.0 39.3 42.1 53.8 40.9 52.5 41.1 52.8 78.0 43.6	Pol V/H V V V V V V V V V V V V V	Limit 43.5 43.5 46.0 106.0 106.0 106.0 46.0 106.0 46.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	Margin -19.9 -16.5 -12.2 -55.5 -60.0 -46.4 -6.5 -57.0 -6.7 -11.9 -20.2 -13.1 -21.5 -12.9 -21.2 -28.0 -10.4	Pk/QP/Avg QP QP PK PK PK QP PK QP AVG PK AVG PK AVG PK PK AVG	degrees 3 176 240 40 337 337 330 335 328 298 41 355 355 321 158	meters 1.0 1.2 1.0 1.7 1.7 1.7 1.7 1.6 1.4 1.2 3.5 3.5 1.0 2.0 1.5	QP (1.00s) QP (1.00s); Note 3 QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz QP (1.00s) RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 00 kHz;Peak RB 1 MHz;VB 10 Hz;Peak
requency MHz 108.030 142.562 310.911 863.196 885.517 902.000 928.000 941.186 960.000 1232.650 1234.000 1413.090 1412.970 1445.760 1804.510 3608.820 3608.840	Level dBµV/m 23.6 27.0 33.8 50.5 46.0 59.6 39.5 49.0 39.3 42.1 53.8 40.9 52.5 41.1 52.8 78.0 43.6 49.4	Pol V/H V V V V V V V V V V V V V	Limit 43.5 43.5 46.0 106.0 106.0 106.0 46.0 106.0 46.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 74.0 74.0	Margin -19.9 -16.5 -12.2 -55.5 -60.0 -46.4 -6.5 -57.0 -6.7 -11.9 -20.2 -13.1 -21.5 -12.9 -21.2 -28.0 -10.4 -24.6	Pk/QP/Avg QP QP PK PK PK QP PK QP AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK	degrees 3 176 240 40 337 338 298 298 41 355 355 321 158 158	meters 1.0 1.2 1.0 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.6 1.4 1.2 3.5 3.5 1.0 2.0 2.0 1.5 1.5	QP (1.00s) QP (1.00s); Note 3 QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz QP (1.00s) RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak
requency MHz 108.030 142.562 310.911 863.196 885.517 902.000 928.000 941.186 960.000 1232.650 1234.000 1413.090 1412.970 1445.760 1804.510 1804.510 3608.820 3608.840 4510.950	Level dBµV/m 23.6 27.0 33.8 50.5 46.0 59.6 39.5 49.0 39.3 42.1 53.8 40.9 52.5 41.1 52.8 78.0 43.6 49.4 43.6	Pol V/H V V V V V V V V V V V V V	Limit 43.5 43.5 46.0 106.0 106.0 106.0 46.0 106.0 46.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	Margin -19.9 -16.5 -12.2 -55.5 -60.0 -46.4 -6.5 -57.0 -6.7 -11.9 -20.2 -13.1 -21.5 -12.9 -21.2 -28.0 -10.4 -24.6 -10.4	Pk/QP/Avg QP QP PK PK PK QP PK QP AVG PK AVG PK AVG PK AVG PK AVG PK AVG	degrees 3 176 240 40 337 338 298 298 41 355 355 321 158 158 142	meters 1.0 1.2 1.0 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.6 1.4 1.2 3.5 3.5 1.0 2.0 2.0 1.5 1.5 1.0	QP (1.00s) QP (1.00s); Note 3 QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz QP (1.00s) RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 10 Hz;Peak
requency MHz 108.030 142.562 310.911 863.196 885.517 902.000 928.000 941.186 960.000 1232.650 1234.000 1412.970 1445.990 1445.760 1804.510 3608.820 3608.840 4510.950	Level dBµV/m 23.6 27.0 33.8 50.5 46.0 59.6 39.5 49.0 39.3 42.1 53.8 40.9 52.5 41.1 52.8 78.0 43.6 49.4 43.6 49.1	Pol V/H V V V V V V V V V V V V V	Limit 43.5 43.5 46.0 106.0 106.0 106.0 46.0 106.0 46.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 74.0 54.0 74.0	Margin -19.9 -16.5 -12.2 -55.5 -60.0 -46.4 -6.5 -57.0 -6.7 -11.9 -20.2 -13.1 -21.5 -12.9 -21.2 -28.0 -10.4 -24.6 -10.4 -24.9	Pk/QP/Avg QP QP PK PK PK QP PK QP AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG	degrees 3 176 240 40 337 337 337 330 335 328 298 298 41 41 355 321 158 158 142 142	meters 1.0 1.2 1.0 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.6 1.4 1.2 3.5 3.5 1.0 2.0 2.0 2.0 2.0 1.5 1.5 1.5 1.0 1.0	QP (1.00s) QP (1.00s); Note 3 QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz QP (1.00s) RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak
Frequency MHz 108.030 142.562 310.911 863.196 885.517 902.000 928.000 941.186	Level dBµV/m 23.6 27.0 33.8 50.5 46.0 59.6 39.5 49.0 39.3 42.1 53.8 40.9 52.5 41.1 52.8 78.0 43.6 49.4 43.6	Pol V/H V V V V V V V V V V V V V	Limit 43.5 43.5 46.0 106.0 106.0 106.0 46.0 106.0 46.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	Margin -19.9 -16.5 -12.2 -55.5 -60.0 -46.4 -6.5 -57.0 -6.7 -11.9 -20.2 -13.1 -21.5 -12.9 -21.2 -28.0 -10.4 -24.6 -10.4	Pk/QP/Avg QP QP PK PK PK QP PK QP AVG PK AVG PK AVG PK AVG PK AVG PK AVG	degrees 3 176 240 40 337 338 298 298 41 355 355 321 158 158 142	meters 1.0 1.2 1.0 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.6 1.4 1.2 3.5 3.5 1.0 2.0 2.0 1.5 1.5 1.0	QP (1.00s) QP (1.00s); Note 3 QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz POS; RB 100 kHz; VB: 300 kHz QP (1.00s); Note 3 POS; RB 100 kHz; VB: 300 kHz QP (1.00s) RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 10 Hz;Peak

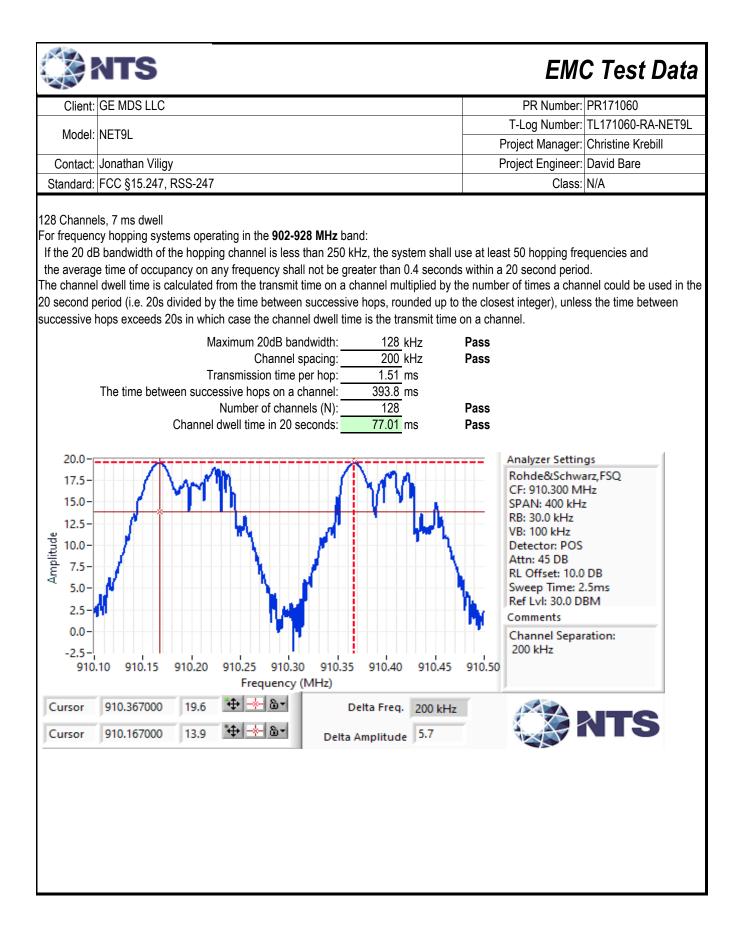


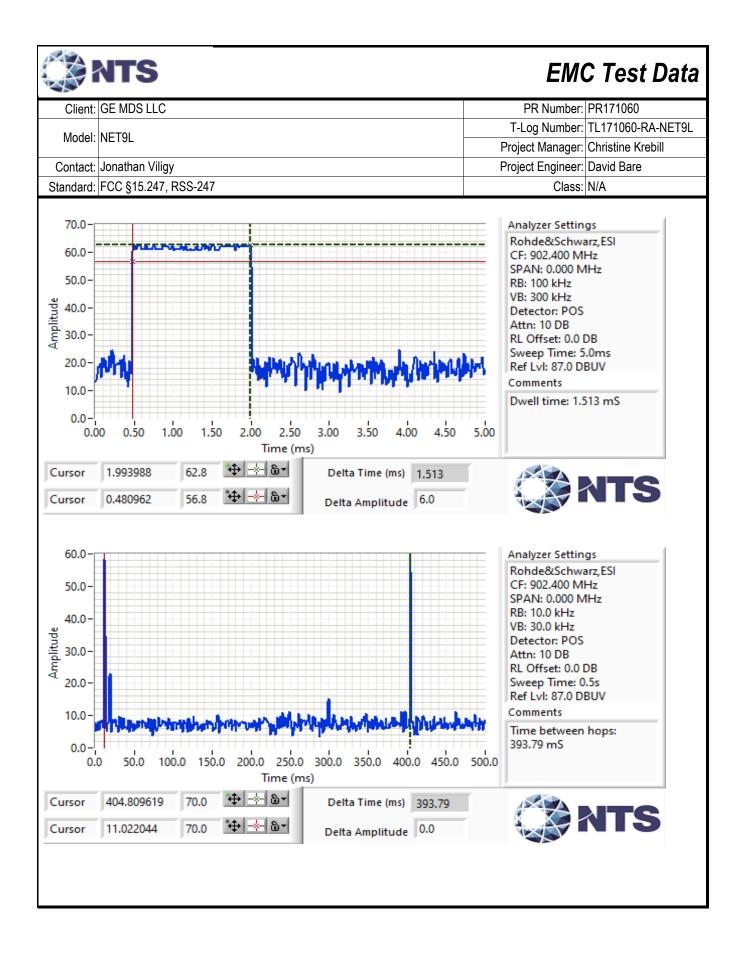

Client:	GE MDS LLC)						PR Number:	PR171060	
							T-	Log Number:	TL171060-RA-NET9	
Model:	NET9L						Proj	ect Manager:	Christine Krebill	
Contact:	Jonathan Vili	av					Project Engineer: David Bare			
	FCC §15.247						Class: N/A			
otanadia.	1 00 310.211	,1100 2 11						01000.		
Run #1b: F	Radiated Spu	rious Emis	sions, 25 - 9	,300 MHz. (Center Chani	nel @ 915 M	Hz			
	ental Signal F					A : (I				
requency	Level	Pol	15.209 /		Detector	Azimuth	Height	Comments		
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters			
915.025	102.0	H V	-	-	PK PK	309 123	<u>1.2</u> 1.6) kHz; VB: 300 kHz	
915.028	126.4	V	-	-	Ph	123	1.0	PUS; RB 100) kHz; VB: 300 kHz	
Aaximun F	undamental e	mission leve	el @ 3m in 10	0kHz RBW:	126.4	dBµV/m				
			Itside of restri			dBµV/m				
Other Sp	urious Emiss									
requency	Level	Pol	15.209/	15.247	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters			
142.393	28.7	V	43.5	-14.8	QP	305	1.4	QP (1.00s); I		
348.192	35.9	V	46.0	-10.1	QP	178	1.0	QP (1.00s); I		
867.145	40.9	V	46.0	-5.1	QP	42	1.6	QP (1.00s); I		
875.989	50.0	V	106.4	-56.4	PK	332	1.5) kHz; VB: 300 kHz	
902.000	47.3	V V	106.4	-59.1	PK	63	1.7) kHz; VB: 300 kHz	
928.000	47.1	V V	106.4 106.4	-59.3	PK	54 336	1.4 1.2) kHz; VB: 300 kHz	
953.996 960.000	49.9 37.8	V V	46.0	-56.5 -8.2	PK QP	58	1.2	QP (1.00s)) kHz; VB: 300 kHz	
1229.720	42.0	V	40.0 54.0	-0.2	AVG	295	3.5		B 10 Hz;Peak	
1229.440	54.4	V V	74.0	-12.0	PK	295	3.5		B 3 MHz;Peak	
1296.190	40.0	V	54.0	-14.0	AVG	278	1.5		B 10 Hz;Peak	
1296.590	51.8	V	74.0	-22.2	PK	278	1.5		B 3 MHz;Peak	
1448.080	36.1	V	54.0	-17.9	AVG	360	2.0		B 10 Hz;Peak	
1447.990	48.3	V	74.0	-25.7	PK	360	2.0		B 3 MHz;Peak	
1829.930	74.4	V	106.4	-32.0	PK	325	1.5		VB 300 kHz;Peak	
4574.990	42.1	Н	54.0	-11.9	AVG	153	1.0		B 10 Hz;Peak	
4575.080	48.3	Н	74.0	-25.7	PK	153	1.0	RB 1 MHz;V	B 3 MHz;Peak	
lote 1:				limit of 15.2	09 was used.	For all othe	r emissions	s, the limit was	set 20dB below the	
	level of the fu									
								700 MHz scan	S.	
ote 2: ote 3:	Although this	frequency i	is not in a res	tricted band	s, the limit of	15.209 was i	used.			

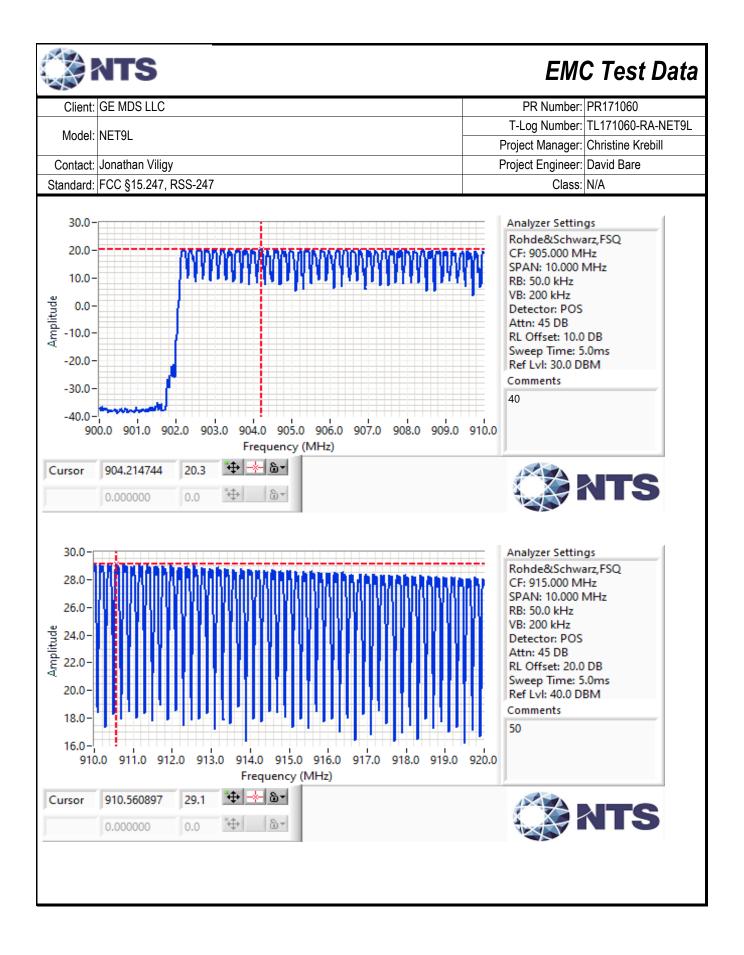


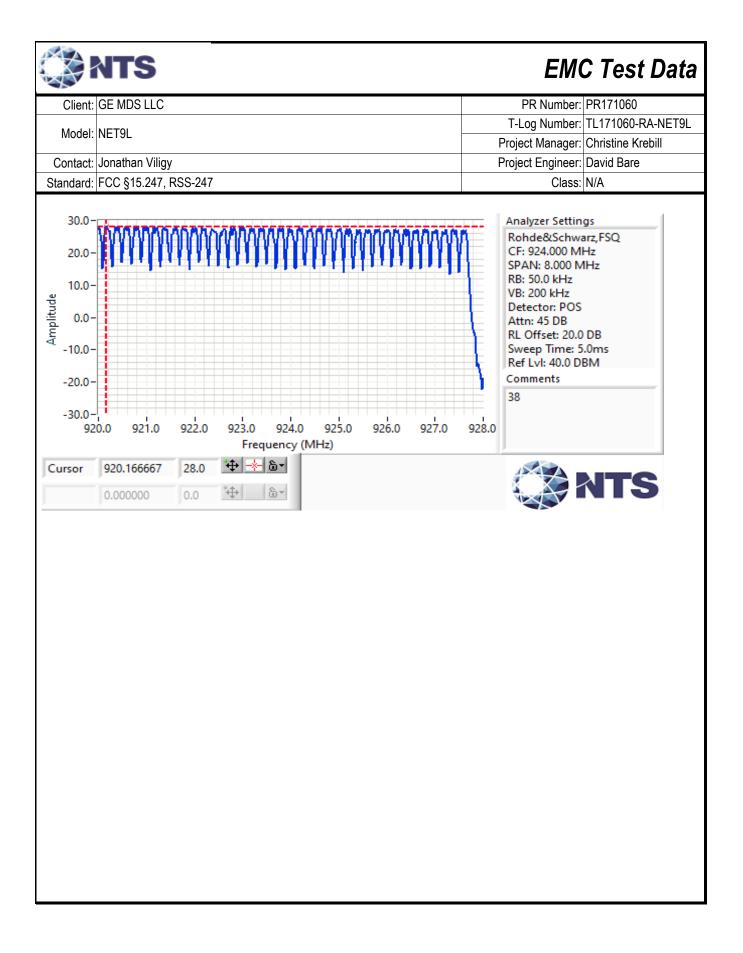

	NTS							EMC Test Data	
Client:	GE MDS LL	С						PR Number: PR171060	
							T-	Log Number: TL171060-RA-NET9L	
Model:	NET9L						Project Manager: Christine Krebill		
Contact [.]	Jonathan Vil	liav				-	ect Engineer: David Bare		
	FCC §15.24						1.10]	Class: N/A	
Stanuaru.	100 915.24	7,1100-247						Class. IN/A	
	adiated Spu al Signal Fie			,300 MHz. H	ligh Channe	I @ 927.6 M	lHz		
Frequency	Level	Pol		15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
927.560	125.2	V	-	-	PK	134	1.5	POS; RB 100 kHz; VB: 300 kHz	
927.560	101.7	Н	-	-	PK	309	1.1	POS; RB 100 kHz; VB: 300 kHz	
Maximun Fu			el @ 3m in 10			dBµV/m			
	Limit for e	emissions ou	tside of restr	icted bands:	105.2	dBµV/m	Limit is -20)dBc	
Dond Edge	Cianal Field	Strongth							
Frequency	Signal Field Level	Pol	15 209	15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments	
960.000	37.8	V	46.0	-8.2	QP	332	1.0	QP (1.00s)	
960.000	25.8	H	46.0	-20.2	QP QP	345	1.0	QP (1.00s)	
	ous Emissio		15 000	15.247	Datastar	A	llaiaht		
Frequency MHz		Pol V/H			Detector	Azimuth	Height	Comments	
95.540	dBµV/m 26.4	V/H V	Limit 43.5	Margin -17.1	Pk/QP/Avg QP	degrees 97	meters 1.0	QP (1.00s)	
106.002	20.4	V	43.5	-17.1	QF QP	18	1.0	QP (1.00s)	
871.540	39.3	V	45.5	-21.9	QF QP	60	1.0	QP (1.00s); Note 3	
888.592	50.0	V	105.2	-55.2	PK	60	1.4	POS; RB 100 kHz; VB: 300 kHz	
944.284	46.7	V	105.2	-58.5	PK	339	1.5	POS; RB 100 kHz; VB: 300 kHz	
966.604	44.3	V	54.0	-9.7	QP	63	1.0	QP (1.00s)	
1413.590	38.6	V	54.0	-15.4	AVG	344	1.5	RB 1 MHz;VB 10 Hz;Peak	
1414.350	50.8	V	74.0	-23.2	PK	344	1.5	RB 1 MHz;VB 3 MHz;Peak	
1296.030	40.6	V	54.0	-13.4	AVG	296	1.5	RB 1 MHz;VB 10 Hz;Peak	
1296.750	52.6	V	74.0	-21.4	PK	296	1.5	RB 1 MHz;VB 3 MHz;Peak	
1230.520	40.4	V	54.0	-13.6	AVG	296	3.5	RB 1 MHz;VB 10 Hz;Peak	
1230.040	52.9	V	74.0	-21.1	PK	296	3.5	RB 1 MHz;VB 3 MHz;Peak	
4637.980	40.5	V	54.0	-13.5	AVG	182	1.5	RB 1 MHz;VB 10 Hz;Peak	
4638.330	47.8	V	74.0	-26.2	PK	182	1.5	RB 1 MHz;VB 3 MHz;Peak	
1850.500	62.2	V	105.2	-43.0	PK	40	1.0	RB 100 kHz;VB 300 kHz;Peak	
5562.830	49.3	V	105.2	-55.9	PK	171	2.0	RB 100 kHz;VB 300 kHz;Peak	
6495.000	54.2	Н	105.2	-51.0	PK	156	1.5	RB 100 kHz;VB 300 kHz;Peak	
Note 1:	level of the f	undamental.	d bands, the					, the limit was set 20dB below the	
Note 2:								700 MHz scans.	
Note 3:	Although this	s frequency i	s not in a res	tricted bands	s, the limit of	15.209 was	used.		

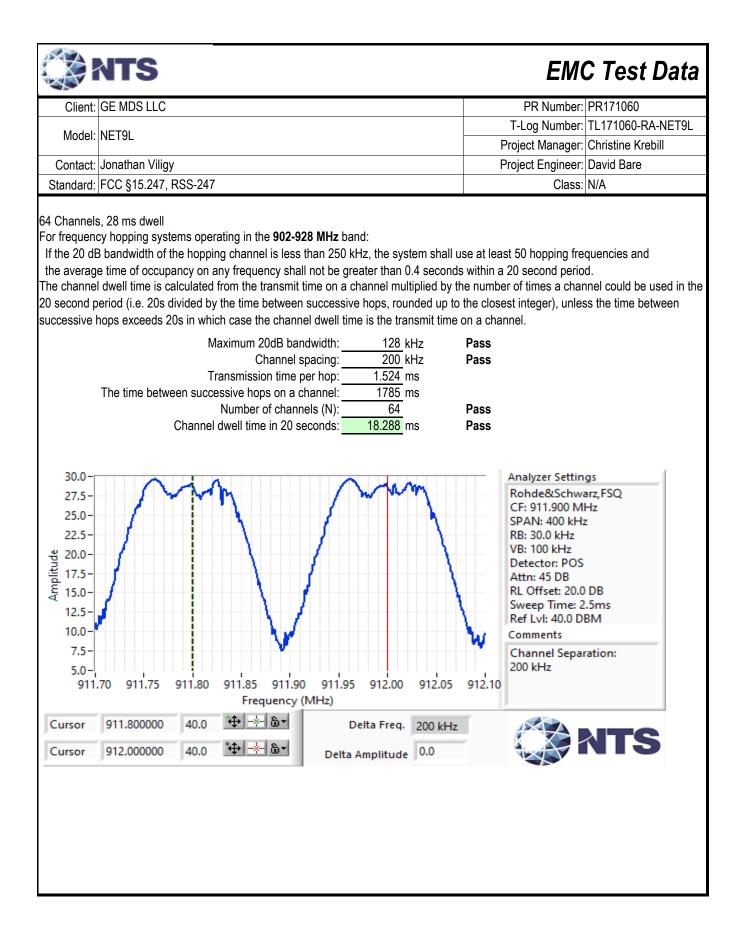


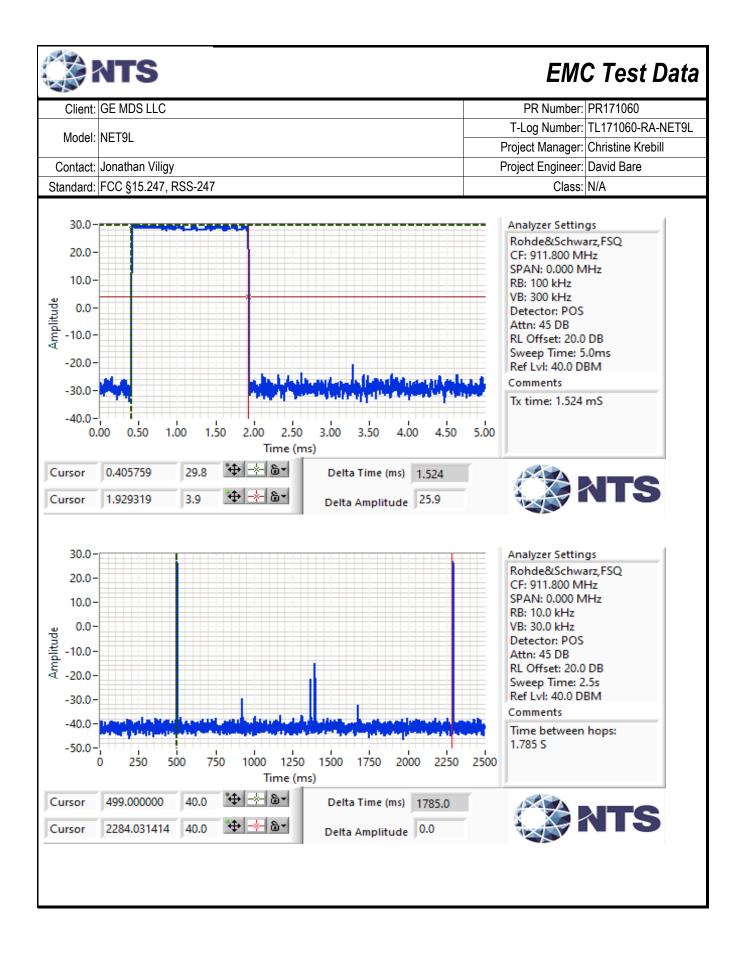


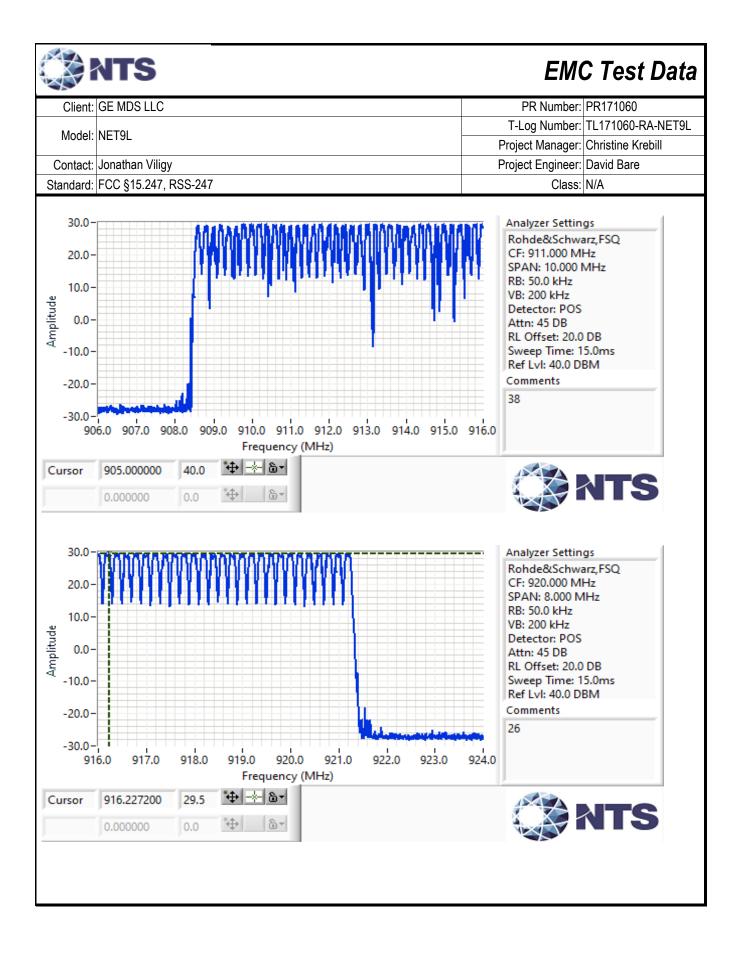



E MDS LLC IET9L onathan Viligi CC §15.247,				PR Number: T-Log Number: Project Manager:	: TL171060-RA-NET9				
onathan Vilig									
onathan Vilig				Project Manager:	Christine Krebill				
		Jonathan Viligy							
CC §15.247,				Project Engineer:					
	RSS-247			Class:	N/A				
ate of Test: 5/ t Engineer: Da t Location: Fr hopping syst systems emp	avid Bare remont Chamber #2 tems operating in the 9 oloying less than 50 hop	pping channe	els, but at least 25 hopping	channels.	pping channels; and,				
laximum ante	inna gain: 6.0	dBi	= Antenna gain less minir	num cable loss of 5 dBi					
Channel	Frequency (MHz)	Res BW	Output Power (dBm)	Output Power (W)	EIRP (W)				
Low					3.981				
					3.981 3.981				
				CF: 902.200 M SPAN: 5.000 M RB: 1.000 MHz VB: 3.000 MHz Detector: POS Attn: 45 DB RL Offset: 20.0 Sweep Time: 2 Ref Lvl: 40.0 D Comments	IHz /IHz z c DDB 2.5ms BM				
7 900.9			903.0 903.5 904.0	Power: 30.0 dE 904.7	Bm				
902.159936	30.0 💠 🔸 💩	-							
0.000000	0.0 💠 🗅	-			NTS				
	Location: Fr hopping syst systems emp laximum ante Channel Low Mid High utput power n andwidth. Re 7 900.1 902.159936	systems employing less than 50 hop laximum antenna gain: 6.0 Channel Frequency (MHz) Low 902.2 Mid 915 High 927.6 utput power measured at the antenna andwidth. Represenative plot below 7 900.5 901.0 901.5 902 Freque 902.159936 30.0 $\oplus \oplus \oplus \oplus$	Location: Fremont Chamber #2 hopping systems operating in the 902-928 MHz systems employing less than 50 hopping channed laximum antenna gain: 6.0 dBi Channel Frequency (MHz) Res BW Low 902.2 1 MHz Mid 915 1 MHz High 927.6 1 MHz utput power measured at the antenna port with a andwidth. Represenative plot below.	Location: Fremont Chamber #2 hopping systems operating in the 902-928 MHz band: 1 watt for systems esystems employing less than 50 hopping channels, but at least 25 hopping laximum antenna gain: 6.0 dBi = Antenna gain less minin Channel Frequency (MHz) Res BW Output Power (dBm) Low 902.2 1 MHz 30 Mid 915 1 MHz 30 High 927.6 1 MHz 30 utput power measured at the antenna port with a suitable attenuator and sandwidth. Represenative plot below. andwidth. Represenative plot below. 7 900.5 901.0 901.5 902.0 902.5 903.0 903.5 904.0 Frequency (MHz) Regenery (MHz) So So Frequency (MHz) So	Location: Fremont Chamber #2 hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopsystems employing less than 50 hopping channels, but at least 25 hopping channels. laximum antenna gain: 6.0 dBi = Antenna gain less minimum cable loss of 5 dBi Channel Frequency (MHz) Res BW Output Power (dBm) Output Power (W) Low 902.2 1 MHz 30 1.000 Mid 915 1 MHz 30 1.000 Mid 915 1 MHz 30 1.000 utput power measured at the antenna port with a suitable attenuator and spectrum analyzer with R andwidth. Represenative plot below. Analyzer Settin CF: 902.200 M SPAN: 5.000 N RB: 1.000 MHz SPAN: 5.000 N 7 900.5 901.0 901.5 902.0 902.5 903.0 903.5 904.0 904.7 7 900.5 901.0 901.5 902.0 902.5 903.0 903.5 904.0 904.7 Power: 30.0 dH Power: 30.0 dH Power: 30.0 dH Power: 30.0 dH Power: 30.0 dH				


Cliont		`			PR Number:	C Test Dat
Client:	GE MDS LLC	J				TL171060-RA-NETS
Model:	NET9L				Project Manager:	
Contact:	Jonathan Vili	av			Project Engineer:	
	FCC §15.247				Class:	
] Te	Date of Test:	annel Occupancy, Sp 5/10 and 7/10/2023 David Bare Fremont Chamber #2	bacing and Nu	mber of Channels		
	Channel	Frequency (MHz)	Resolution Bandwidth	20dB Bandwidth (kHz)	99% Bandwidth (kHz)	
	Low	902.2	3 kHz	128	121	1
	Mid	915	3 kHz	128	121	4
	High	927.6	3 kHz	128	121	J
- 10.0 0.0 - - 10.0 - - 20.0 - - 30.0 -		m		home my	CF: 902.200 M SPAN: 500 kHz RB: 3.00 kHz VB: 10.0 kHz Detector: POS Attn: 30 DB RL Offset: 20.0 Sweep Time: 5 Comments	DB 52.7ms
-40.0 - 901 Cursor Cursor	902.265000 902.136667	902.10 Freq 24.8 +	902.20 uency (MHz)	902.30 902.40 Delta Freq. 128 kHz Ita Amplitude 20.0	902.45	NTS







EMC Test Data

Client:	GE MDS LLC	PR Number:	PR171060
Model	NET9I	T-Log Number:	TL171060-RA-NET9L
MOUEI.		Project Manager:	Christine Krebill
Contact:	Jonathan Viligy	Project Engineer:	David Bare
Standard:	FCC §15.247, RSS-247	Class:	N/A

RSS-247 and FCC 15.247 (FHSS) Measurements

Power, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Config. Used: 1

Test Location: Fremont Chamber #4

General Test Configuration

NTS

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located outside the chamber with all I/O connections running under the floor.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

Unless stated otherwise the EUT was operating such that it constantly hopped on either the low, center or high channels.

Ambient Conditions:

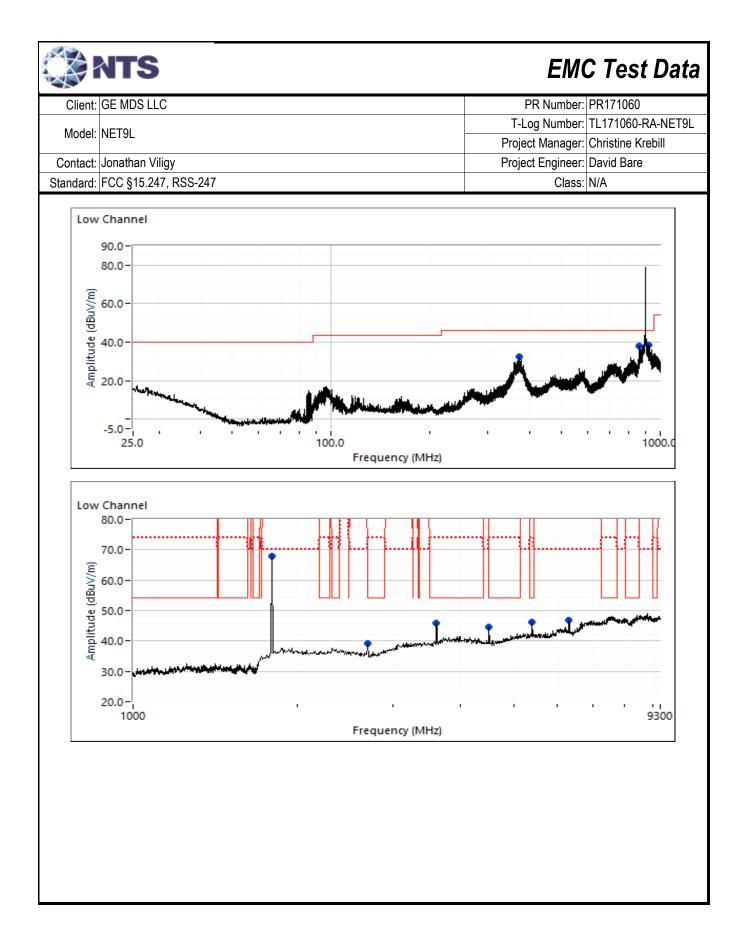
Temperature:	20-23 °C
Rel. Humidity:	35-48 %

Summary of Results

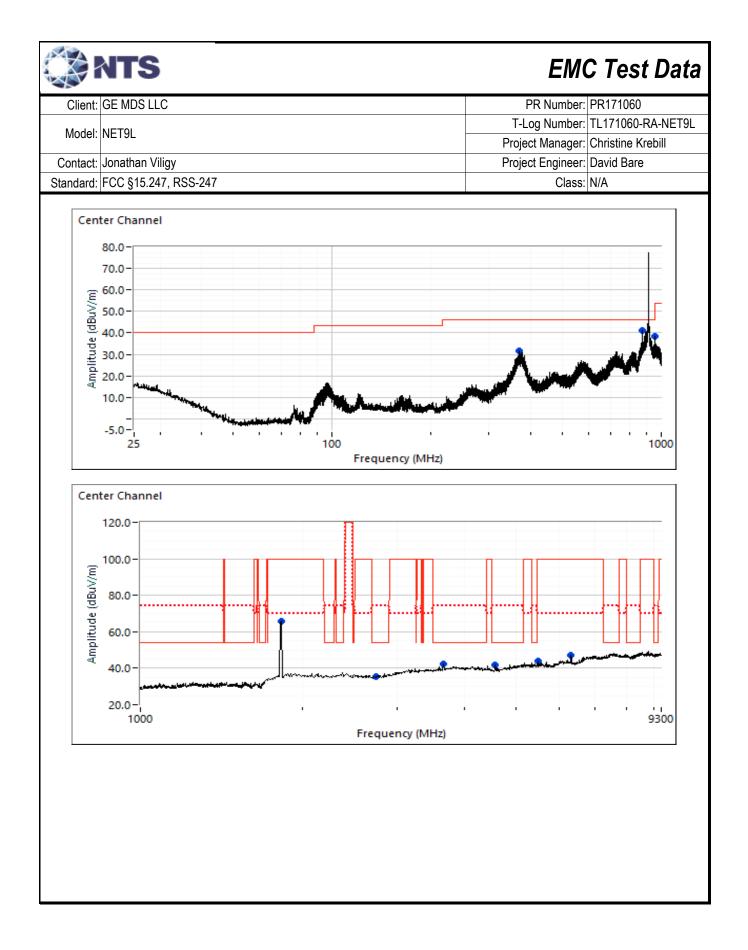
Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	25 - 9,300 MHz Transmitter Radiated Spurious Emissions	FCC Part 15.209 / 15.247(c)	Pass	41.4 dBµV/m @ 888.56 MHz (-4.6 dB)
2	Output Power	15.247(b)	Pass	30 dBm (1.0 W)

Modifications Made During Testing:

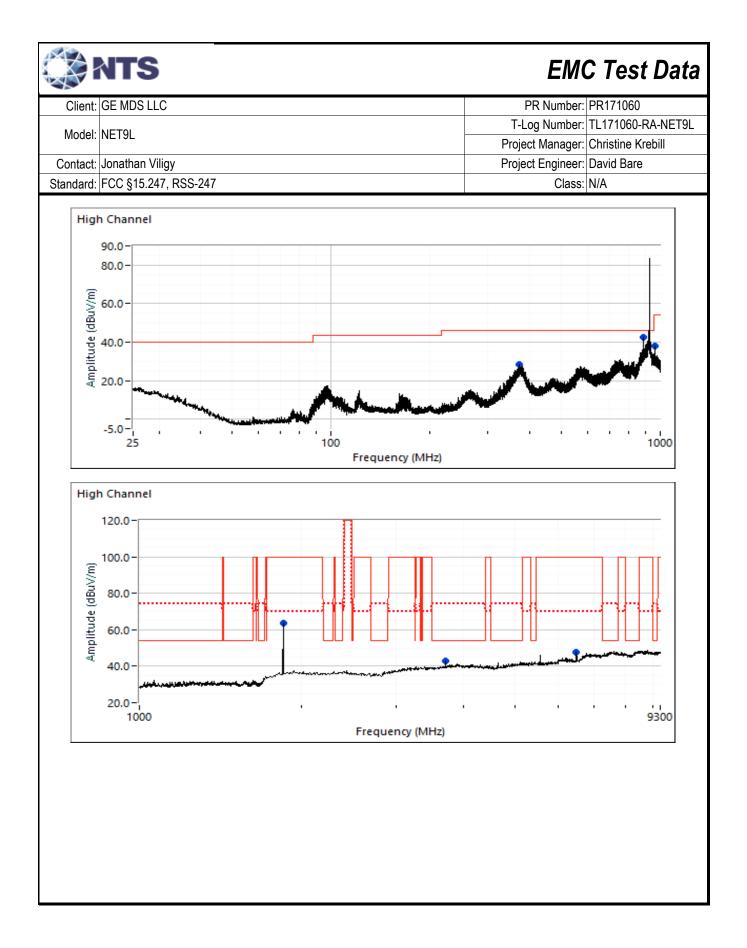
No modifications were made to the EUT during testing


Deviations From The Standard

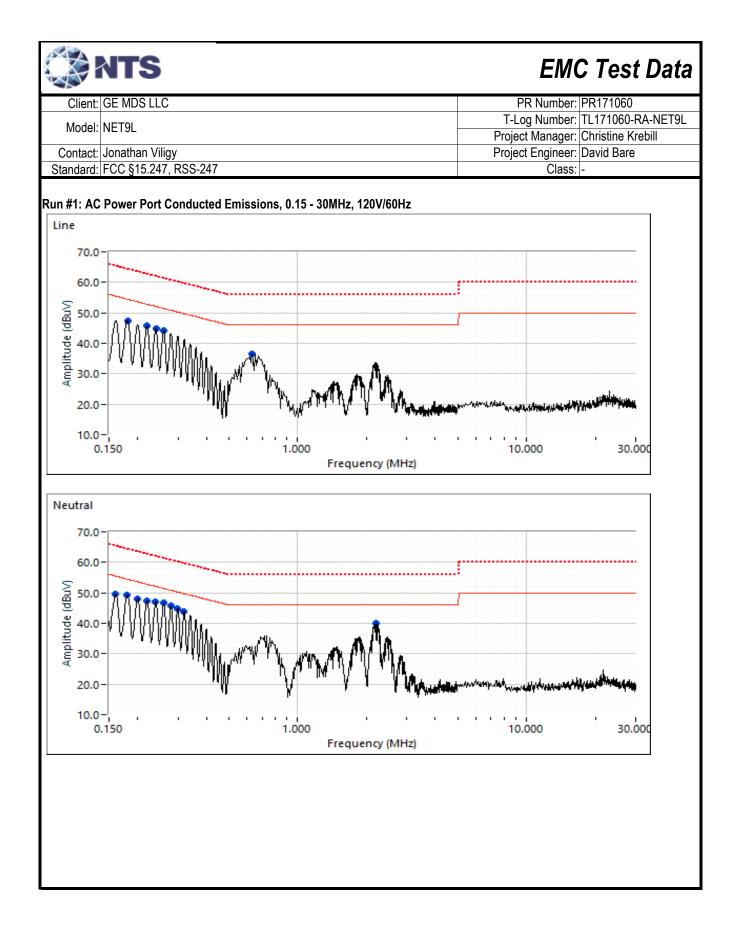
No deviations were made from the requirements of the standard.


Test Notes

Based on prelimiary radiated emissions tests in 3 orthogonal orientations, the flat orientation was the worst case w.r.t. the limits and was therefore used for all radiated testing.


Client:	GE MDS LL	С						PR Number: PR171060
		-					T-	Log Number: TL171060-RA-NET9L
Model:	NET9L							ect Manager: Christine Krebill
Contact	lonothon \/il	liav					-	ect Engineer: David Bare
	Jonathan Vil						Ploje	-
Standard:	FCC §15.24	7, RSS-247						Class: N/A
l Run #1a: F	adiated Spur Date of Test: Radiated Spu ental Signal I	5/11 & 5/17/ Irious Emiss	2023 sions, 30 - 9			st Engineer: @ 902.2 MF		/ M. Birgani
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
902.165	132.9	H	-	-	PK	1	1.0	POS; RB 100 kHz; VB: 300 kHz
902.233	114.7	V	-	-	PK	333	2.0	POS; RB 100 kHz; VB: 300 kHz
л ан .:					400.0		1	
laximun F	undamental e		tside of restr			dBµV/m	1	
	Limit for e	emissions ou	tside of restr	icted bands:	112.9	dBµV/m	Limit is -20	Јавс
Other Sp	urious Emis	sions						
requency	-	Pol	15,209	/ 15.247	Detector	Azimuth	Height	Comments
requeries								
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
MHz				[degrees 234	meters 1.0	QP (1.00s)
MHz 373.467	dBµV/m	V/H H H	Limit	Margin	Pk/QP/Avg	234 0		
MHz 373.467 863.150 919.307	dBμV/m 28.4 36.9 34.6	V/H H H H	Limit 46.0 46.0 46.0	Margin -17.6 -9.1 -11.4	Pk/QP/Avg QP QP QP	234 0 360	1.0 1.0 1.0	QP (1.00s) QP (1.00s) QP (1.00s)
MHz 373.467 863.150 919.307 1804.340	dBμV/m 28.4 36.9 34.6 68.4	V/H H H H H	Limit 46.0 46.0 46.0 112.9	Margin -17.6 -9.1 -11.4 -44.5	Pk/QP/Avg QP QP QP PK	234 0 360 151	1.0 1.0 1.0 2.0	QP (1.00s) QP (1.00s) QP (1.00s) RB 100 kHz;VB 300 kHz;Peak
MHz 373.467 863.150 919.307 1804.340 2706.670	dBµV/m 28.4 36.9 34.6 68.4 33.2	V/H H H H H	Limit 46.0 46.0 46.0 112.9 54.0	Margin -17.6 -9.1 -11.4 -44.5 -20.8	Pk/QP/Avg QP QP PK AVG	234 0 360 151 49	1.0 1.0 1.0 2.0 1.6	QP (1.00s) QP (1.00s) QP (1.00s) RB 100 kHz;VB 300 kHz;Peak RB 1 MHz;VB 10 Hz;Peak
MHz 373.467 863.150 919.307 1804.340 2706.670 2706.710	dBμV/m 28.4 36.9 34.6 68.4 33.2 43.1	V/H H H H H H H	Limit 46.0 46.0 112.9 54.0 74.0	Margin -17.6 -9.1 -11.4 -44.5 -20.8 -30.9	Pk/QP/Avg QP QP PK AVG PK	234 0 360 151 49 49	1.0 1.0 2.0 1.6 1.6	QP (1.00s) QP (1.00s) QP (1.00s) RB 100 kHz;VB 300 kHz;Peak RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak
MHz 373.467 863.150 919.307 1804.340 2706.670 2706.710 8608.760	dBμV/m 28.4 36.9 34.6 68.4 33.2 43.1 45.8	V/H H H H H H H H	Limit 46.0 46.0 112.9 54.0 74.0 54.0	Margin -17.6 -9.1 -11.4 -44.5 -20.8 -30.9 -8.2	Pk/QP/Avg QP QP PK AVG PK AVG	234 0 360 151 49 49 160	1.0 1.0 2.0 1.6 1.6 2.0	QP (1.00s) QP (1.00s) QP (1.00s) RB 100 kHz;VB 300 kHz;Peak RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 10 Hz;Peak
MHz 373.467 863.150 919.307 804.340 2706.670 2706.710 8608.760 3608.930	dBμV/m 28.4 36.9 34.6 68.4 33.2 43.1 45.8 50.5	V/H H H H H H H H H	Limit 46.0 46.0 112.9 54.0 74.0 54.0 74.0 74.0	Margin -17.6 -9.1 -11.4 -44.5 -20.8 -30.9 -8.2 -23.5	Pk/QP/Avg QP QP PK AVG PK AVG PK	234 0 360 151 49 49 160 160	1.0 1.0 2.0 1.6 1.6 2.0 2.0	QP (1.00s) QP (1.00s) QP (1.00s) RB 100 kHz;VB 300 kHz;Peak RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak
MHz 373.467 863.150 919.307 804.340 2706.670 2706.710 8608.760 8608.930 510.910	dBμV/m 28.4 36.9 34.6 68.4 33.2 43.1 45.8 50.5 47.7	V/H H	Limit 46.0 46.0 112.9 54.0 74.0 54.0 74.0 74.0 74.0	Margin -17.6 -9.1 -11.4 -44.5 -20.8 -30.9 -8.2 -23.5 -26.3	Pk/QP/Avg QP QP PK AVG PK AVG PK PK	234 0 360 151 49 49 160 160 189	1.0 1.0 2.0 1.6 1.6 2.0 2.0 1.4	QP (1.00s) QP (1.00s) QP (1.00s) RB 100 kHz;VB 300 kHz;Peak RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak
MHz 373.467 863.150 919.307 804.340 2706.670 2706.710 608.760 8608.930 3510.910 5510.940	dBμV/m 28.4 36.9 34.6 68.4 33.2 43.1 45.8 50.5 47.7 40.8	V/H H H H H H H H H V	Limit 46.0 46.0 112.9 54.0 74.0 54.0 74.0 74.0 74.0 54.0	Margin -17.6 -9.1 -11.4 -44.5 -20.8 -30.9 -30.9 -8.2 -23.5 -26.3 -13.2	Pk/QP/Avg QP QP PK AVG PK AVG PK PK AVG	234 0 360 151 49 49 160 160 189 189	1.0 1.0 2.0 1.6 2.0 2.0 1.4	QP (1.00s) QP (1.00s) QP (1.00s) RB 100 kHz;VB 300 kHz;Peak RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 10 Hz;Peak
MHz 373.467 863.150 919.307 804.340 2706.670 2706.710 8608.760 8608.930 510.910 510.940 5412.860	dBμV/m 28.4 36.9 34.6 68.4 33.2 43.1 45.8 50.5 47.7 40.8 51.3	V/H H	Limit 46.0 46.0 112.9 54.0 74.0 54.0 74.0 74.0 54.0 74.0 74.0 74.0	Margin -17.6 -9.1 -11.4 -44.5 -20.8 -30.9 -30.9 -8.2 -23.5 -26.3 -13.2 -22.7	Pk/QP/Avg QP QP PK AVG PK AVG PK AVG PK AVG	234 0 360 151 49 49 160 160 189 189 207	$ \begin{array}{r} 1.0\\ 1.0\\ 1.0\\ 2.0\\ 1.6\\ 2.0\\ 2.0\\ 1.4\\ 1.4\\ 1.3\\ \end{array} $	QP (1.00s) QP (1.00s) QP (1.00s) RB 100 kHz;VB 300 kHz;Peak RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak
MHz 373.467 863.150 919.307 804.340 2706.670 2706.710 3608.760 3608.930 4510.910 4510.940 5412.860 5413.100	dBμV/m 28.4 36.9 34.6 68.4 33.2 43.1 45.8 50.5 47.7 40.8 51.3 44.6	V/H H	Limit 46.0 46.0 112.9 54.0 74.0 54.0 74.0 74.0 54.0 74.0 54.0 74.0 54.0	Margin -17.6 -9.1 -11.4 -44.5 -20.8 -30.9 -8.2 -23.5 -26.3 -13.2 -22.7 -9.4	Pk/QP/Avg QP QP PK AVG PK AVG PK AVG PK AVG	234 0 360 151 49 49 160 160 160 189 189 207 207	$ \begin{array}{r} 1.0\\ 1.0\\ 1.0\\ 2.0\\ 1.6\\ 1.6\\ 2.0\\ 2.0\\ 1.4\\ 1.4\\ 1.3\\ 1.3\\ \end{array} $	QP (1.00s) QP (1.00s) QP (1.00s) RB 100 kHz;VB 300 kHz;Peak RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 10 Hz;Peak
MHz 373.467 863.150 919.307 804.340 2706.670 2706.710 8608.760 3608.930 1510.910 1510.940 5412.860 5413.100 5315.220	dBμV/m 28.4 36.9 34.6 68.4 33.2 43.1 45.8 50.5 47.7 40.8 51.3 44.6 50.8	V/H H H H H H V H H H H H H H H H H H H H H H V H H V	Limit 46.0 46.0 112.9 54.0 74.0 54.0 74.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0	Margin -17.6 -9.1 -11.4 -44.5 -20.8 -30.9 -8.2 -23.5 -26.3 -13.2 -22.7 -9.4 -23.2	Pk/QP/Avg QP QP PK AVG PK AVG PK AVG PK AVG PK AVG PK	234 0 360 151 49 49 160 160 160 189 189 207 207 207 171	$ \begin{array}{r} 1.0\\ 1.0\\ 2.0\\ 1.6\\ 1.6\\ 2.0\\ 2.0\\ 1.4\\ 1.4\\ 1.3\\ 1.3\\ 1.4\\ \end{array} $	QP (1.00s) QP (1.00s) QP (1.00s) RB 100 kHz;VB 300 kHz;Peak RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak
	dBμV/m 28.4 36.9 34.6 68.4 33.2 43.1 45.8 50.5 47.7 40.8 51.3 44.6	V/H H	Limit 46.0 46.0 112.9 54.0 74.0 54.0 74.0 74.0 54.0 74.0 54.0 74.0 54.0	Margin -17.6 -9.1 -11.4 -44.5 -20.8 -30.9 -8.2 -23.5 -26.3 -13.2 -22.7 -9.4	Pk/QP/Avg QP QP PK AVG PK AVG PK AVG PK AVG	234 0 360 151 49 49 160 160 160 189 189 207 207	$ \begin{array}{r} 1.0\\ 1.0\\ 1.0\\ 2.0\\ 1.6\\ 1.6\\ 2.0\\ 2.0\\ 1.4\\ 1.4\\ 1.3\\ 1.3\\ \end{array} $	QP (1.00s) QP (1.00s) QP (1.00s) RB 100 kHz;VB 300 kHz;Peak RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 10 Hz;Peak
MHz 373.467 863.150 919.307 1804.340 2706.670 2706.710 3608.760 3608.930 4510.910 4510.940 5412.860 5413.100 5315.220	dBμV/m 28.4 36.9 34.6 68.4 33.2 43.1 45.8 50.5 47.7 40.8 51.3 44.6 50.8 43.2	V/H H H H H H H V V V H H V V s in restricte	Limit 46.0 46.0 112.9 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0	Margin -17.6 -9.1 -11.4 -44.5 -20.8 -30.9 -8.2 -23.5 -26.3 -13.2 -22.7 -9.4 -23.2 -10.8 limit of 15.2	Pk/QP/Avg QP QP PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG 09 was used.	234 0 360 151 49 49 160 160 189 189 207 207 207 171 171 171	1.0 1.0 2.0 1.6 1.6 2.0 2.0 1.4 1.4 1.3 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4	QP (1.00s) QP (1.00s) QP (1.00s) RB 100 kHz;VB 300 kHz;Peak RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak RB 1 MHz;VB 3 MHz;Peak

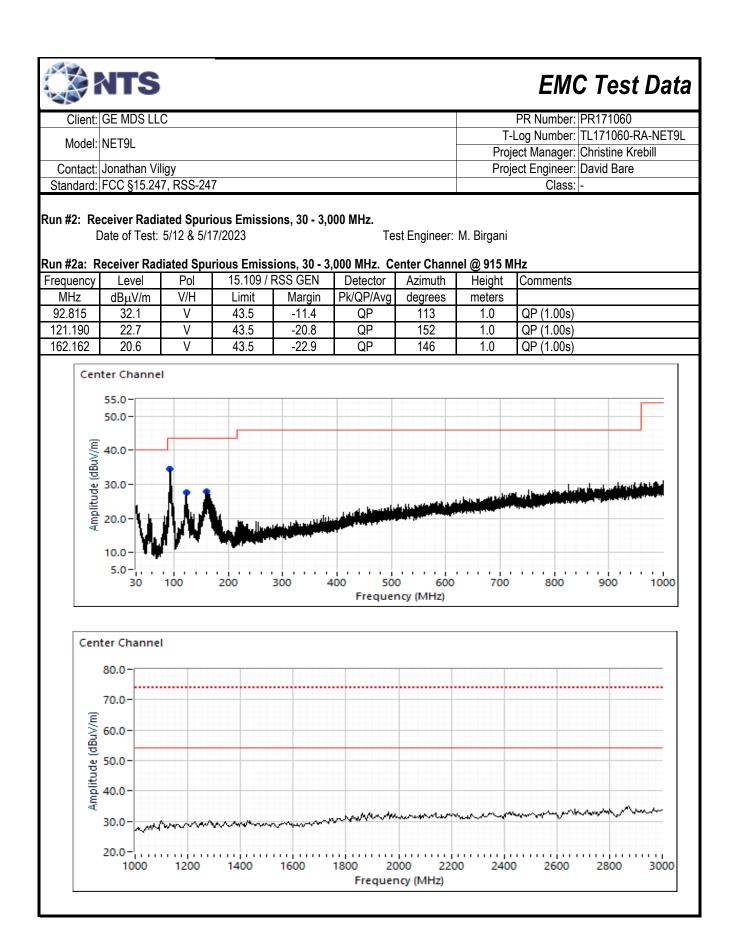
	NTS							EMC Test Data	
Client:	GE MDS LLO	C						PR Number: PR171060	
Madal	NET9L						T-	Log Number: TL171060-RA-NET9L	
MOUEI.	INEISL						Proj	ect Manager: Christine Krebill	
Contact:	Jonathan Vil	igy					Project Engineer: David Bare		
	FCC §15.24	•••					Class: N/A		
[Radiated Spu Date of Test: Intal Signal F	5/11 & 5/17/	2023	,300 MHz.(Center Chani Te	nel @ 915 M st Engineer:		. Birgani	
requency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
914.965	132.9	Н	-	-	PK	4	1.0	POS; RB 100 kHz; VB: 300 kHz	
914.966	115.4	V	-	-	PK	341	1.7	POS; RB 100 kHz; VB: 300 kHz	
	undamental e Limit for e urious Emise	emissions ou		00kHz RBW: icted bands:		dBμV/m dBμV/m			
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
370.905	28.5	H	46.0	-17.5	QP	234	1.0	QP (1.00s)	
876.024	40.3	H	46.0	-5.7	QP	357	1.0	QP (1.00s)	
953.978	36.6	H	46.0	-9.4	QP	354	1.0	QP (1.00s)	
1829.940	67.1	Н	112.9	-45.8	PK	149	1.7	RB 100 kHz;VB 300 kHz;Peak	
2744.910	31.8	V	54.0	-22.2	AVG	234	2.3	RB 1 MHz;VB 10 Hz;Peak	
2745.190	39.9	V	74.0	-34.1	PK	234	2.3	RB 1 MHz;VB 3 MHz;Peak	
3659.900	41.3	Н	54.0	-12.7	AVG	222	1.0	RB 1 MHz;VB 10 Hz;Peak	
3659.930	47.9	Н	74.0	-26.1	PK	222	1.0	RB 1 MHz;VB 3 MHz;Peak	
4575.020	38.8	V	54.0	-15.2	AVG	180	2.0	RB 1 MHz;VB 10 Hz;Peak	
4575.080	46.3	V	74.0	-27.7	PK	180	2.0	RB 1 MHz;VB 3 MHz;Peak	
5489.610	47.7	V	112.9	-65.2	PK	182	1.6	RB 100 kHz;VB 300 kHz;Peak	
ote 1: ote 2:	level of the f	undamental.						, the limit was set 20dB below the 700 MHz scans.	

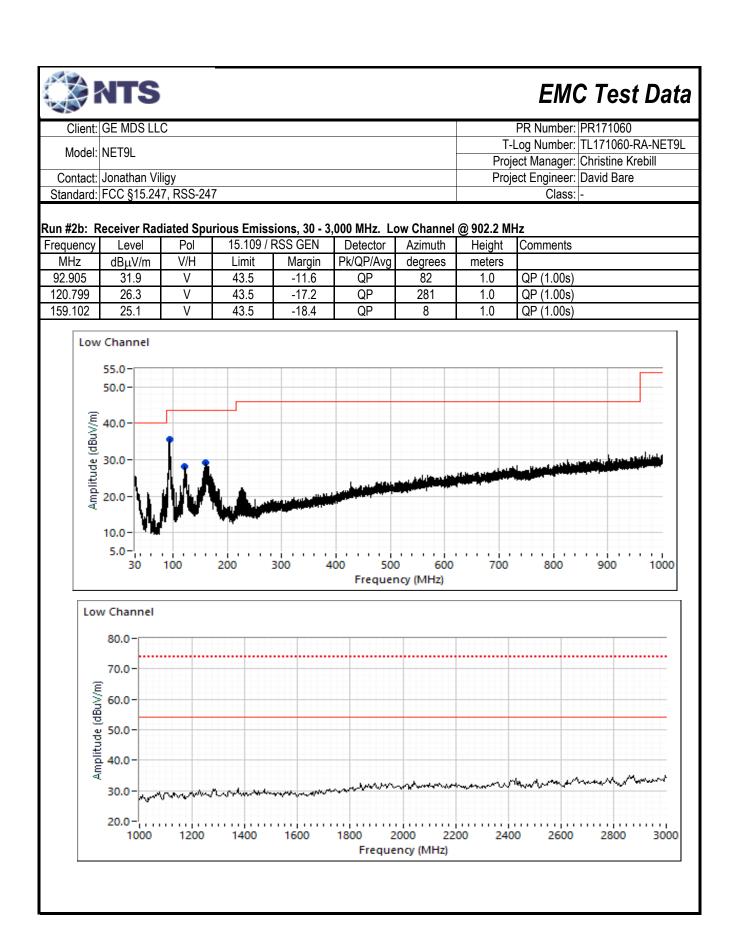


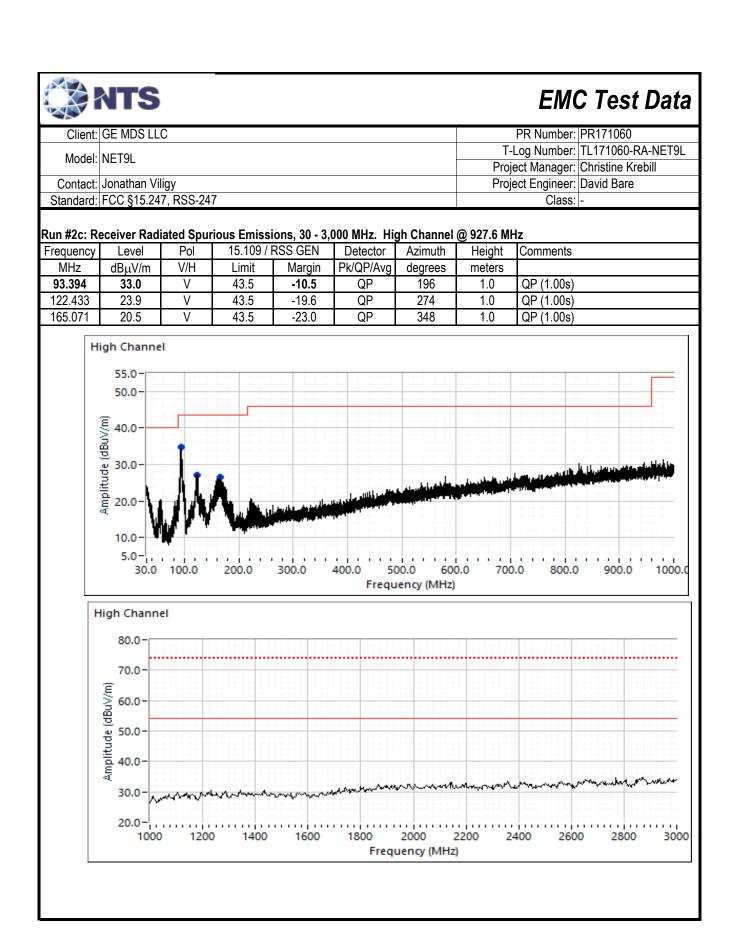
Client:	GE MDS LLC)						PR Number: PR171060	
							T-	Log Number: TL171060-RA-NET9L	
Model:	NET9L						Project Manager: Christine Krebill		
Contact:	Jonathan Vili	av					-	ect Engineer: David Bare	
	FCC §15.247	0,					-,	Class: N/A	
[Radiated Spur Date of Test: { ental Signal F	5/11 & 5/17/	2023	,300 MHz. H	-	I @ 927.6 M st Engineer:			
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
927.563	132.4	Н	-	-	PK	4	1.0	100 kHz; VB: 300 kHz	
927.564	115.5	V	-	-	PK	340	1.6	100 kHz; VB: 300 kHz	
	undamental ei Limit for e ge Signal Fiel	missions ou	tside of restr			dBμV/m dBμV/m	Limit is -20)dBc	
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
960.000	29.8	H	46.0	-16.2	QP	<u> </u>	1.0	QP (1.00s)	
960.000	14.4	V	46.0	-31.6	QP	341	2.3	QP (1.00s)	
Other Sp -requency	urious Emiss	sions Pol	15 209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
376.279	25.2	Н	46.0	-20.8	QP	240	1.0	QP (1.00s)	
888.557	41.4	H	46.0	-4.6	QP	354	1.0	QP (1.00s)	
966.630	38.3	Н	54.0	-15.7	QP	356	1.5	QP (1.00s)	
1855.130	65.7	Н	112.4	-46.7	PK	158	2.2	RB 100 kHz;VB 300 kHz;Peak	
3718.340	36.3	Н	54.0	-17.7	AVG	219	2.0	RB 1 MHz;VB 10 Hz;Peak	
	45.5	Н	74.0	-28.5	PK	219	2.0	RB 1 MHz;VB 3 MHz;Peak	
3718.430	36.3	V	54.0	-17.7	AVG	167	2.0	RB 1 MHz;VB 10 Hz;Peak	
3718.430 3720.880				-28.4	PK	167	2.0	RB 1 MHz;VB 3 MHz;Peak	
3718.430 3720.880 3722.530	45.6	V	74.0						
3718.430 3720.880 3722.530 5565.290	45.6 50.4	V	112.4	-62.0	PK	174	1.5	RB 100 kHz;VB 300 kHz;Peak	
3718.430 3720.880 3722.530 5565.290	45.6 50.4 52.5	V H	112.4 112.4	-62.0 -59.9	PK PK	174 161	1.0	RB 100 kHz;VB 300 kHz;Peak RB 100 kHz;VB 300 kHz;Peak	
3718.430 3720.880	45.6 50.4 52.5 For emissions level of the fu	V H s in restricte undamental.	112.4 112.4 ed bands, the	-62.0 -59.9 limit of 15.2	PK PK 209 was used.	174 161 For all othe	1.0 er emissions	RB 100 kHz;VB 300 kHz;Peak	

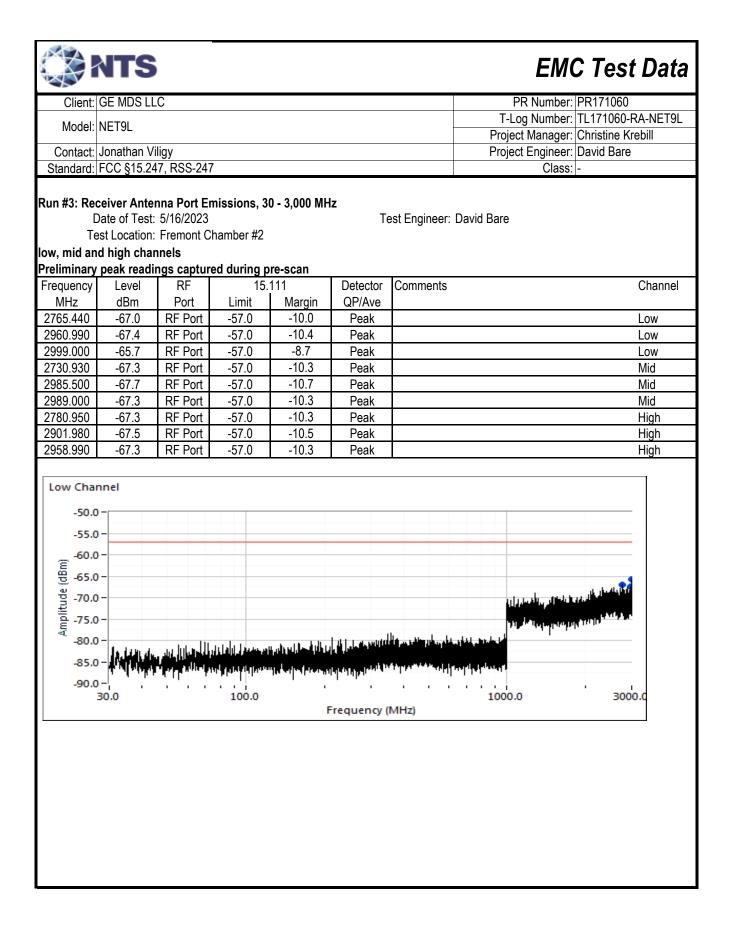
				EM	C Test Dat
GE MDS LLC				PR Number	
NET9L			-		: TL171060-RA-NET9
FCC §15.247	, RSS-247			Class	: N/A
Date of Test: 8 est Engineer: 1 est Location: F cy hopping sys or systems em	5/10/2023 David Bare Fremont Chamber #2 stems operating in the pploying less than 50 ho	opping channe	els, but at least 25 hopping	channels.	pping channels; and,
Maximum an	tenna gain: 6.	0 dBi	-	e loss of 6.2 dBi	
Channel	Frequency (MHz)	Res BW	Output Power (dBm)	Output Power (W)	EIRP (W)
					3.981 3.981
					3.981
5.0- 0.0- 5.0-				SPAN: 5.00 RB: 1.000 N VB: 3.000 N Detector: F Attn: 45 DI RL Offset: Sweep Tim	00 MHz MHz POS B 20.0 DB ne: 2.5ms
0.0- 5.0- 0.0-				Ref LvI: 40 Comments	
5.0-			5 903.0 903.5 904.0		
5.0-	Fr	902.0 902.1 equency (MH		Comments Power: 30.	
	Jonathan Vilig FCC §15.247 Atput Power (Date of Test: 5 est Engineer: I est Location: F cy hopping sys or systems em Maximum an Channel Low Mid High Output power Bandwidth. R 5.0- 5.0-	Jonathan Viligy FCC §15.247, RSS-247 Atput Power (Peak detector) Date of Test: 5/10/2023 Ist Engineer: David Bare est Location: Fremont Chamber #2 cy hopping systems operating in the por systems employing less than 50 he Maximum antenna gain: 6. <u>Channel Frequency (MHz)</u> Low 902.2 <u>Mid 915</u> <u>High 927.6</u> Output power measured at the anter Bandwidth. Represenative plot below 6.0- 0.0- 6.0-	Jonathan Viligy FCC §15.247, RSS-247 Atput Power (Peak detector) Date of Test: 5/10/2023 Ist Engineer: David Bare est Location: Fremont Chamber #2 cy hopping systems operating in the 902-928 MHz or systems employing less than 50 hopping channe Maximum antenna gain: 6.0 dBi <u>Channel Frequency (MHz) Res BW</u> Low 902.2 1 MHz Mid 915 1 MHz Mid 915 1 MHz High 927.6 1 MHz Output power measured at the antenna port with a Bandwidth. Represenative plot below.	Jonathan Viligy FCC §15.247, RSS-247 utput Power (Peak detector) Date of Test: 5/10/2023 sst Engineer: David Bare est Location: Fremont Chamber #2 cy hopping systems operating in the 902-928 MHz band: 1 watt for systems e or systems employing less than 50 hopping channels, but at least 25 hopping Maximum antenna gain: 6.0 dBi = Antenna gain less cable <u>Channel Frequency (MHz) Res BW Output Power (dBm)</u> Low 902.2 1 MHz 30 <u>Mid 915 1 MHz 30</u> <u>Mid 915 1 MHz 30</u> Output power measured at the antenna port with a suitable attenuator and s Bandwidth. Represenative plot below.	NET9L Project Manager Jonathan Viligy Project Engineer FCC §15.247, RSS-247 Class utput Power (Peak detector) Class Date of Test: 5/10/2023 sist Engineer: David Bare est Location: Fremont Chamber #2 cy hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hop cy hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hop sit at least 25 hopping channels. Maximum antenna gain: 6.0 dBi = Antenna gain less cable loss of 6.2 dBi Channel Frequency (MHz) Res BW Output Power (dBm) Output Power (W) Low 902.2 1 MHz 30 1.000 Mid 915 1 MHz 30 1.000 Mid 915 1 MHz 30 1.000 Output power measured at the antenna port with a suitable attenuator and spectrum analyzer with F Bandwidth. Represenative plot below. Analyzer Se CF: 902.20 SPAN: 5.00 Res 1.000 f Res 1.000 f Res 1.000 f

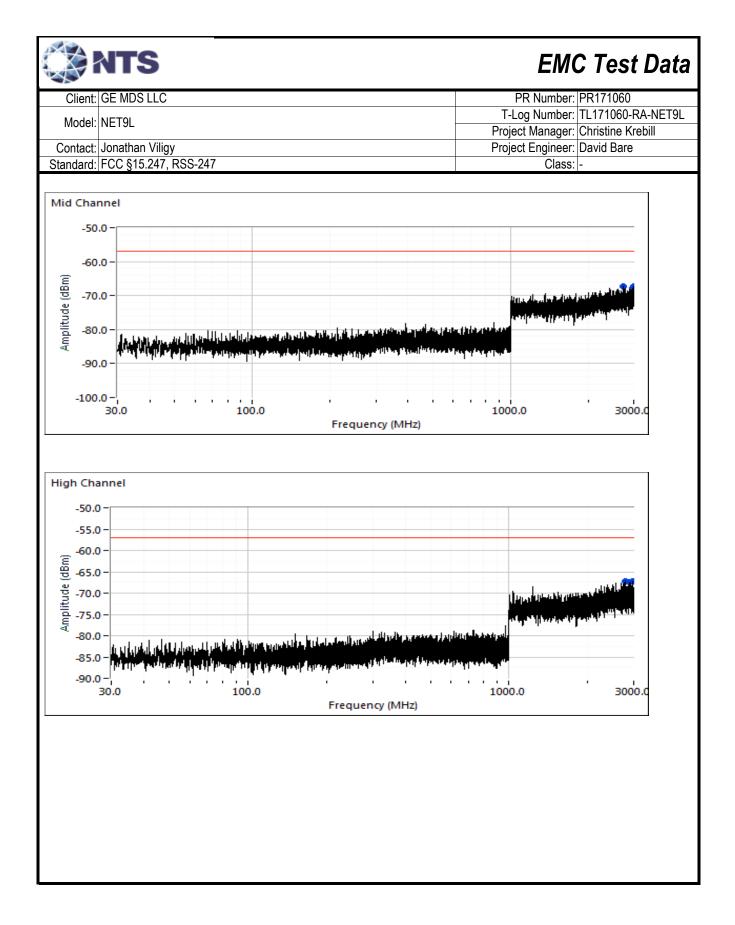
SIN S				EMC Test Data
Client: GE MDS LL	C			PR Number: PR171060
Model: NET9L				Log Number: TL171060-RA-NET9L
				ect Manager: Christine Krebill
Contact: Jonathan Vi Standard: FCC §15.24			Proj	ect Engineer: David Bare Class: -
	Condu (NTS Silicon Valley, Frem	icted Emissions ont Facility, Semi-Anec	choic Cham	ber)
Test Specific Detai Objective:	Is The objective of this test session is specification listed above.	to perform final qualificat	ion testing o	f the EUT with respect to the
Date of Test: Test Engineer: Test Location:		Config. Used: Config Change: Host Unit Voltage	None	
plane and 80cm from foutside of the semi-an when possible passed	t, the EUT was located on a foam ta he LISN. A second LISN was used echoic chamber. Any cables running through a ferrite clamp upon exiting	I for all local support equi g to remote support equip the chamber.	ipment. Re	mote support equipment was located
Ambient Condition	s: Temperature:	24 °C		
	Rel. Humidity:	42 %		
Summary of Result	'e			
Run #	Jest Performed	Limit	Result	Margin
1	CE, AC Power,120V/60Hz	FCC §15.207(a)	Pass	46.9 dBµV @ 0.238 MHz (-5.3 dB)
Deviations From TI	made to the EUT during testing	ndard.		


	NTS						EM	C Test Dat
Client:	GE MDS LL	C					PR Number:	PR171060
		-						TL171060-RA-NET9
Model:	NE19L						Project Manager:	
Contact:	Jonathan V	iligy					Project Engineer:	
	FCC §15.24		7				Class:	
Preliminary					-	s vs. average lin	nit)	
Frequency	Level	AC		5.207(a)	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
0.179	47.3	Line 1	54.4	-7.1	Peak			
0.218	45.7	Line 1	52.8	-7.1	Peak			
0.238	44.8	Line 1	52.1	-7.3	Peak			
0.259	44.1	Line 1	51.4	-7.3	Peak			
0.636	36.5	Line 1	46.0	-9.5	Peak			
0.159	49.7	Neutral	55.5	-5.8	Peak			
0.179	49.1	Neutral	54.5	-5.4	Peak			
0.199	48.0	Neutral	53.6	-5.6	Peak			
0.219	47.5	Neutral	52.8	-5.3	Peak			
0.238	47.1	Neutral	52.1	-5.0	Peak			
0.259	46.6	Neutral	51.4	-4.8	Peak			
0.278	45.6	Neutral	50.8	-5.2	Peak			
0.298	44.7	Neutral	50.3	-5.6	Peak			
0.318	43.7	Neutral	49.7	-6.0	Peak			
2.204	39.9	Neutral	46.0	-6.1	Peak			
	39.9		46.0					
2.204 Final quasi-	peak and a	Neutral verage rea	dings	-6.1	Peak			
2.204 Final quasi- Frequency	-peak and a Level	Neutral verage rea AC	dings FCC §1	-6.1 5.207(a)	Peak Detector	Comments		
2.204 Final quasi- Frequency MHz	-peak and a Level dBμV	Neutral verage rea AC Line	<mark>dings</mark> FCC §1 Limit	-6.1 5.207(a) Margin	Peak Detector QP/Ave			
2.204 Final quasi- Frequency MHz 0.179	-peak and a Level dBμV 47.1	Neutral verage rea AC	dings FCC §1	-6.1 5.207(a) Margin -7.5	Peak Detector QP/Ave AVG	AVG (0.10s)		
2.204 Final quasi- Frequency MHz 0.179 0.179	peak and a Level dBμV 47.1 47.2	Neutral verage rea AC Line Line 1 Line 1	<mark>dings</mark> FCC §1 Limit	-6.1 5.207(a) Margin -7.5 -17.4	Peak Detector QP/Ave AVG QP	AVG (0.10s) QP (1.00s)		
2.204 Final quasi- Frequency MHz 0.179	-peak and a Level dBμV 47.1	Neutral verage rea AC Line Line 1	dings FCC §1 Limit 54.6 64.6 52.9	-6.1 5.207(a) Margin -7.5	Peak Detector QP/Ave AVG	AVG (0.10s)		
2.204 Final quasi- Frequency MHz 0.179 0.179 0.218 0.218	- peak and a Level dBμV 47.1 47.2 45.1 45.2	Neutral verage rea AC Line Line 1 Line 1 Line 1 Line 1	dings FCC §1 Limit 54.6 64.6 52.9 62.9	-6.1 5.207(a) Margin -7.5 -17.4 -7.8 -17.7	Peak Detector QP/Ave AVG QP AVG QP	AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s)		
2.204 Final quasi- Frequency MHz 0.179 0.179 0.218	- peak and a Level dBμV 47.1 47.2 45.1	Neutral verage rea AC Line Line 1 Line 1 Line 1	dings FCC §1 Limit 54.6 64.6 52.9	-6.1 5.207(a) Margin -7.5 -17.4 -7.8	Peak Detector QP/Ave AVG QP AVG	AVG (0.10s) QP (1.00s) AVG (0.10s)		
2.204 Final quasi- Frequency MHz 0.179 0.179 0.218 0.218	- peak and a Level dBμV 47.1 47.2 45.1 45.2	Neutral verage rea AC Line Line 1 Line 1 Line 1 Line 1	dings FCC §1 Limit 54.6 64.6 52.9 62.9	-6.1 5.207(a) Margin -7.5 -17.4 -7.8 -17.7	Peak Detector QP/Ave AVG QP AVG QP	AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s)		
2.204 Frequency MHz 0.179 0.179 0.218 0.218 0.238	- peak and a Level dBμV 47.1 47.2 45.1 45.2 44.5	Neutral verage rea AC Line Line 1 Line 1 Line 1 Line 1 Line 1	dings FCC §1 Limit 54.6 64.6 52.9 62.9 52.2	-6.1 5.207(a) Margin -7.5 -17.4 -7.8 -17.7 -7.7	Peak Detector QP/Ave AVG QP AVG QP AVG	AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s)		
2.204 Frequency MHz 0.179 0.218 0.218 0.238 0.238	- peak and a Level dBμV 47.1 47.2 45.1 45.2 44.5 44.6	Neutral verage rea AC Line Line 1	dings FCC §1 Limit 54.6 64.6 52.9 62.9 52.2 62.2	-6.1 5.207(a) Margin -7.5 -17.4 -7.8 -17.7 -7.7 -17.6	Peak Detector QP/Ave AVG QP AVG QP AVG QP	AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s)		
2.204 Final quasi- Frequency MHz 0.179 0.179 0.218 0.218 0.238 0.238 0.238 0.259	- peak and a Level dBμV 47.1 47.2 45.1 45.2 44.5 44.6 43.5	Neutral verage rea AC Line Line 1	dings FCC §1 Limit 54.6 64.6 52.9 62.9 52.2 62.2 51.5	-6.1 5.207(a) Margin -7.5 -17.4 -7.8 -17.7 -7.7 -7.7 -17.6 -8.0	Peak Detector QP/Ave AVG QP AVG QP AVG QP AVG	AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s)		
2.204 Frequency MHz 0.179 0.218 0.218 0.218 0.238 0.238 0.259 0.259	- peak and a Level dBμV 47.1 47.2 45.1 45.2 44.5 44.6 43.5 43.7	Neutral verage rea AC Line Line 1	dings FCC §1 Limit 54.6 64.6 52.9 62.9 52.2 62.2 51.5 61.5	-6.1 5.207(a) Margin -7.5 -17.4 -7.8 -17.7 -7.7 -17.6 -8.0 -17.8	Peak Detector QP/Ave AVG QP AVG QP AVG QP AVG QP	AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s)		
2.204 Frequency MHz 0.179 0.218 0.218 0.218 0.238 0.238 0.259 0.259 0.259 0.636	- peak and a Level dBμV 47.1 47.2 45.1 45.2 44.5 44.5 44.6 43.5 43.7 35.4	Neutral AC Line Line 1	dings FCC §1 Limit 54.6 64.6 52.9 62.9 52.2 62.2 51.5 61.5 46.0	-6.1 5.207(a) Margin -7.5 -17.4 -7.8 -17.7 -7.7 -17.6 -8.0 -17.8 -10.6	Peak Detector QP/Ave AVG QP AVG QP AVG QP AVG QP AVG	AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s)		
2.204 Frequency MHz 0.179 0.218 0.218 0.218 0.238 0.238 0.259 0.259 0.636 0.636	peak and a Level dBμV 47.1 47.2 45.1 45.2 44.5 44.5 44.6 43.5 43.7 35.4 35.6	Neutral AC Line Line 1	dings FCC §1 Limit 54.6 64.6 52.9 62.9 52.2 62.2 51.5 61.5 46.0 56.0	-6.1 5.207(a) Margin -7.5 -17.4 -7.8 -17.7 -7.7 -7.7 -17.6 -8.0 -17.8 -10.6 -20.4	Peak Detector QP/Ave AVG QP AVG QP AVG QP AVG QP AVG QP	AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s)		
2.204 Frequency MHz 0.179 0.218 0.218 0.238 0.238 0.238 0.259 0.259 0.636 0.636 0.159	- peak and a Level dBμV 47.1 47.2 45.1 45.2 44.5 44.6 43.5 43.7 35.4 35.6 49.0	Neutral verage rea AC Line Line 1	dings FCC §1 Limit 54.6 64.6 52.9 62.9 52.2 62.2 51.5 61.5 61.5 46.0 56.0 55.5	-6.1 5.207(a) Margin -7.5 -17.4 -7.8 -17.7 -7.7 -17.6 -8.0 -17.8 -10.6 -20.4 -6.5	Peak Detector QP/Ave AVG QP AVG QP AVG QP AVG QP AVG QP AVG QP AVG	AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s)		
2.204 Frequency MHz 0.179 0.218 0.218 0.218 0.238 0.238 0.238 0.259 0.259 0.636 0.636 0.636 0.159 0.159 0.179	- peak and a Level dBμV 47.1 47.2 45.1 45.2 44.5 44.6 43.5 43.7 35.4 35.6 49.0 49.1 49.1	Neutral Verage rea AC Line Neutral Neutral	dings FCC §1 Limit 54.6 64.6 52.9 62.9 52.2 62.2 51.5 61.5 46.0 55.5 65.5 54.5	-6.1 5.207(a) Margin -7.5 -17.4 -7.8 -17.7 -7.7 -17.6 -8.0 -17.8 -10.6 -20.4 -6.5 -16.4 -5.4	Peak Detector QP/Ave AVG QP AVG QP AVG QP AVG QP AVG QP AVG QP	AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s)		
2.204 Frequency MHz 0.179 0.218 0.218 0.218 0.238 0.238 0.259 0.259 0.259 0.636 0.636 0.159 0.159 0.179 0.179	- peak and a Level dBμV 47.1 47.2 45.1 45.2 44.5 44.6 43.5 43.7 35.4 35.6 49.0 49.1 49.1 49.1	Neutral AC Line Line 1 Neutral Neutral Neutral Neutral	dings FCC §1 Limit 54.6 64.6 52.9 62.9 62.9 52.2 62.2 51.5 61.5 46.0 56.0 55.5 65.5 65.5 54.5 64.5	-6.1 5.207(a) Margin -7.5 -17.4 -7.8 -17.7 -7.7 -17.6 -8.0 -17.8 -10.6 -20.4 -6.5 -16.4 -5.4 -15.4	Peak Detector QP/Ave AVG QP AVG QP AVG QP AVG QP AVG QP AVG QP AVG QP	AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s)		
2.204 Frequency MHz 0.179 0.218 0.218 0.218 0.218 0.238 0.259 0.259 0.636 0.636 0.636 0.159 0.159 0.179 0.179 0.179 0.179	peak and a Level dBμV 47.1 47.2 45.1 45.2 44.5 44.6 43.5 43.7 35.4 35.6 49.0 49.1 49.1 47.2	Neutral AC Line Line 1 Neutral Neutral Neutral Neutral Neutral	dings FCC §1 Limit 54.6 64.6 52.9 62.9 52.2 62.2 51.5 61.5 46.0 56.0 55.5 65.5 54.5 64.5 53.7	-6.1 5.207(a) Margin -7.5 -17.4 -7.8 -17.7 -7.7 -17.6 -8.0 -17.8 -10.6 -20.4 -6.5 -16.4 -5.4 -15.4 -5.8	Peak Detector QP/Ave AVG QP AVG QP AVG QP AVG QP AVG QP AVG QP AVG QP AVG QP AVG	AVG (0.10s) QP (1.00s) AVG (0.10s)		
2.204 Frequency MHz 0.179 0.218 0.218 0.218 0.238 0.238 0.259 0.259 0.259 0.636 0.636 0.159 0.159 0.179 0.179	- peak and a Level dBμV 47.1 47.2 45.1 45.2 44.5 44.6 43.5 43.7 35.4 35.6 49.0 49.1 49.1 49.1	Neutral AC Line Line 1 Neutral Neutral Neutral Neutral	dings FCC §1 Limit 54.6 64.6 52.9 62.9 62.9 52.2 62.2 51.5 61.5 46.0 56.0 55.5 65.5 65.5 54.5 64.5	-6.1 5.207(a) Margin -7.5 -17.4 -7.8 -17.7 -7.7 -17.6 -8.0 -17.8 -10.6 -20.4 -6.5 -16.4 -5.4 -15.4	Peak Detector QP/Ave AVG QP AVG QP AVG QP AVG QP AVG QP AVG QP AVG QP	AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s)		




EMC Test Data


Client:	GE MDS LL	C					PR Number:	PR171060
Model:							T-Log Number:	TL171060-RA-NET9L
WOUEI.	INE I 9L						Project Manager:	
	Jonathan Vi						Project Engineer:	David Bare
Standard:	FCC §15.24	7, RSS-24	7				Class:	-
Final quasi-	-peak and a	verage rea	dings cont'					
Frequency		ĀC		5.207(a)	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
0.238	46.9	Neutral	52.2	-5.3	AVG	AVG (0.10s)		
0.238	47.0	Neutral	62.2	-15.2	QP	QP (1.00s)		
0.259	46.0	Neutral	51.5	-5.5	AVG	AVG (0.10s)		
0.259	46.1	Neutral	61.5	-15.4	QP	QP (1.00s)		
0.278	45.1	Neutral	50.9	-5.8	AVG	AVG (0.10s)		
0.278	45.2	Neutral	60.9	-15.7	QP	QP (1.00s)		
0.298	44.5	Neutral	50.3	-5.8	AVG	AVG (0.10s)		
0.298	44.6	Neutral	60.3	-15.7	QP	QP (1.00s)		
0.318	43.7	Neutral	49.8	-6.1	AVG	AVG (0.10s)		
0.318	43.8	Neutral	59.8	-16.0	QP	QP (1.00s)		
2.204	39.0	Neutral	46.0	-7.0	AVG	AVG (0.10s)		
			56.0	-16.5	QP	QP (1.00s)		


	ITS				EMC Test Data		
Client: C	SE MDS LL	C			PR Number: PR171060		
Model: N		-	T-Log Number: TL171060-RA-NET9L				
			Project Manager: Christine Krebill				
Contact: J			Proj	iect Engineer: David Bare Class: -			
Standard: F	00 913.24	7,100-247		01035.			
		Radiated & ((NTS Silicon Valley, Frem	Conducted Emis ont Facility, Semi-Ane		ber)		
Test Speci	fic Detail	S					
•		The objective of this test session is specification listed above.	to perform final qualificat	tion testing c	of the EUT with respect to the		
Da	ate of Test:	5/12 & 5/17/2023	Config. Used:	: 1			
Test Engineer: David Bare Config Change							
Tes	t Location:	Fremont Chamber #4	EUT Voltage	Voltage: 13.8VDC			
General Te	et Confi	nuration					
Radiated er	missions te ANSI C63.	n possible passed through a ferrite c sts above 1 GHz to FCC Part 15 wer 4 and CISPR 16-1-4. 5: Temperature: Rel. Humidity:			place in accordance with the test		
Summary	of Docult	c					
Summary o			Limit	Result	Margin		
Summary o Run 2		s Test Performed Radiated Emissions 30 - 3000 MHz	Limit FCC Part 15.109	Result Pass	Margin 33.0 dBµV/m @ 93.39 MHz (-10.5 dB)		
Run		Test Performed Radiated Emissions			33.0 dBµV/m @ 93.39 MHz		

Onorit.	GE MDS LL	C		PR Number: PR171060				
Model:	NET9L			T-Log Number: TL171060-RA-NET9L				
				Project Manager: Christine Krebill				
	Jonathan V		7	Project Engineer: David Bare Class: -				
Standard:	FCC §15.24	1, 833-24	1				Class: -	
inal quasi	-peak readii	nas						
Frequency		RF	15.	111	Detector	Comments		
МНz	dBm	Port	Limit	Margin	QP/Ave			
II emission	s more than	20 dB belo	w the limit	Ĭ				
	and average				.			
Frequency		RF		111	Detector	Comments		Channel
MHz	dBm	Port	Limit	Margin	QP/Ave			
2764.160	-79.5	RF Port	-57.0	-22.5	AVG	· · · · · · · · · · · · · · · · · · ·	R)-RB 1 MHz; VB: 10 Hz	Low
2764.140 2962.280	-67.7	RF Port	-37.0 -57.0	-30.7 -22.3	PK		RB 1 MHz; VB: 3 MHz R)-RB 1 MHz; VB: 10 Hz	Low
2962.260	-79.3 -67.3	RF Port RF Port	-37.0	-22.3	AVG PK		RB 1 MHz; VB: 3 MHz	Low
29999.690	-07.3	RF Port	-57.0	-30.3	AVG		RB 1 MHz; VB: 10 Hz	Low Low
3000.000	-67.9	RF Port	-37.0	-30.9	PK		RB 1 MHz; VB: 3 MHz	Low
2730.730	-79.4	RF Port	-57.0	-22.4	AVG		R)-RB 1 MHz; VB: 10 Hz	Mid
2730.350	-68.3	RF Port	-37.0	-31.3	PK		RB 1 MHz; VB: 3 MHz	Mid
2986.660	-79.2	RF Port	-57.0	-22.2	AVG		x)-RB 1 MHz; VB: 10 Hz	Mid
2986.150	-67.4	RF Port	-37.0	-30.4	PK		RB 1 MHz; VB: 3 MHz	Mid
2989.030	-79.2	RF Port	-57.0	-22.2	AVG		R)-RB 1 MHz; VB: 10 Hz	Mid
2989.960	-67.8	RF Port	-37.0	-30.8	PK		RB 1 MHz; VB: 3 MHz	Mid
2779.870	-79.8	RF Port	-57.0	-22.8	AVG	AVG (CISPR	R)-RB 1 MHz; VB: 10 Hz	High
2779.510	-68.8	RF Port	-37.0	-31.8	PK	PK (CISPR)-	RB 1 MHz; VB: 3 MHz	High
2902.840	-79.3	RF Port	-57.0	-22.3	AVG		R)-RB 1 MHz; VB: 10 Hz	High
2901.420	-68.3	RF Port	-37.0	-31.3	PK	· · · · · · · · · · · · · · · · · · ·	RB 1 MHz; VB: 3 MHz	High
2959.670	-79.4	RF Port	-57.0	-22.4	AVG		R)-RB 1 MHz; VB: 10 Hz	High
2957.550	-68.0	RF Port	-37.0	-31.0	PK	PK (CISPR)-	RB 1 MHz; VB: 3 MHz	High

End of Report

This page is intentionally blank and marks the last page of this test report.