

www.elliottlabs.com

Elliott Laboratories Inc. 684 West Maude Avenue Sunnyvale, CA 94085-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to Industry Canada RSS-Gen Issue 1 / RSS 210 Issue 6 FCC Part 15 Subpart B (Receivers) FCC Part 15 Subpart C on the Microwave Data Systems Transmitter Model: Mercury OFDM

UPN: FCC ID:	3738A-MERCURY9 E5MDS-MERCURY900
GRANTEE:	Microwave Data Systems 175 Science Parkway Rochester, NY 14620
TEST SITE:	Elliott Laboratories, Inc.

684 W. Maude Ave Sunnyvale, CA 94086

REPORT DATE: July 20, 2006

FINAL TEST DATE:

March 23, March 24, July 14 and July 18, 2006

AUTHORIZED SIGNATORY:

un mar

Juan Martinez Senior EMC Engineer

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

REVISION HISTORY

Revision #	Date	Comments	Modified By
1	August 11, 2006	Initial Release	David Guidotti

TABLE OF CONTENTS

COVER PAGE	1
REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	5
OBJECTIVE	6
STATEMENT OF COMPLIANCE	7
TEST RESULTS SUMMARY	8
DIGITAL TRANSMISSION SYSTEMS (902 – 928 MHz) GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
EQUIPMENT UNDER TEST (EUT) DETAILS	11
OTHER EUT DETAILS	11
ANTENNA SYSTEM ENCLOSURE	
MODIFICATIONS SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	12
TEST SITE	13
GENERAL INFORMATION CONDUCTED EMISSIONS CONSIDERATIONS RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	14
RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN) FILTERS/ATTENUATORS ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION	

TABLE OF CONTENTS (Continued)

TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	16
RADIATED EMISSIONS	17
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	19
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	19
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	20
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	20
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	21
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	23
EXHIBIT 1: Test Equipment Calibration Data	1
EXHIBIT 2: Test Measurement Data	
EXHIBIT 3: Photographs of Test Configurations	
EXHIBIT 4: Proposed FCC ID Label & Label Location	4
EXHIBIT 5: Detailed Photographs	5
EXHIBIT 6: Operator's Manual	
EXHIBIT 7: Block Diagram	
EXHIBIT 8: Schematic Diagrams	
EXHIBIT 9: Theory of Operation	
EXHIBIT 10: RF Exposure Information	10

SCOPE

An electromagnetic emissions test has been performed on the Microwave Data Systems model Mercury OFDM pursuant to the following rules:

Industry Canada RSS-Gen Issue 1 RSS 210 Issue 6 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart B (Receivers) FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 RSS-212 Issue 1 Test Facilities and Test Methods for Radio Equipment

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Microwave Data Systems model Mercury OFDM and therefore apply only to the tested sample. The sample was selected and prepared by Dennis McCarthy of Microwave Data Systems

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Microwave Data Systems model Mercury OFDM complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 1 RSS 210 Issue 6 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart B (Receivers) FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

TEST RESULTS SUMMARY

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM techniques	-	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	3.133 MHz	>500kHz	Complies
	RSP100	99% Bandwidth	3.494 MHz	Information only	Complies
15.247 (b) (3)	RSS 210 A8.2 (4)	Output Power, 902 – 928 MHz	29.1 dBm (0.813 Watts) EIRP = $3.89 \text{ W}^{\text{Note 1}}$	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	2.5 dBm / 3 kHz	8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 9.28 GHz	All spurious emissions < -30dBc	< -30dBc ^{Note 2}	Complies
15.247(c) / 15.209	RSS 210 A8.5 Table 2, 3	Radiated Spurious Emissions 30MHz – 9.28 GHz	52.9 dBuV/m @ 2711.3 MHz (-1.1 dB)	15.207 in restricted bands, all others <-30dBc ^{Note 2}	Complies

DIGITAL TRANSMISSION SYSTEMS (902 - 928 MHz)

Note 1: EIRP calculated using antenna gain of dBi (12) for the highest EIRP system. Note 2: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst).

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Reverse polarity	•	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	45.3 dBuV/m @ 944.999 MHz		Complies (- 0.7 dB)
15.207	RSS GEN Table 2	AC Conducted Emissions	40.7 dBuV/m @ 27.158 MHz	Refer to standard	Complies (- 9.3 dB)
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
	RSP 100 RSS GEN 7.1.5	User Manual		Statement required regarding non- interference	

MEASUREMENT UNCERTAINTIES

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions Radiated Emissions Radiated Emissions	0.15 to 30 0.015 to 30 30 to 1000	$\pm 2.4 \pm 3.0 \pm 3.6$
Radiated Emissions	1000 to 40000	± 6.0

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Microwave Data Systems model Mercury OFDM is a 900 MHz wireless transceiver for ethernet data networks. There are two versions of the radio, a base unit and a remote unit. The rf circuitry in both devices is identical. The digital device (modem) boards are the only difference between the two units. The master unit was tested for all radio-related emissions (preliminary radiated emissions scans on both master and remote units demonstrated that the transmitter- and receiver-related emissions from both devices were not significantly different). Digital device radiated and AC conducted emissions tests were performed on both units.

The sample was received on March 23, 2006 and tested on March 23, March 24, July 14 and July 18, 2006. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
MDS	Mercury 900-R	900 MHz TRx	1234567	E5MDS-
	-	(Remote)		Mercury900
MDS	Mercury 900-AP	900 MHz TRx	none	E5MDS-
		(Base)		Mercury900

OTHER EUT DETAILS

List any items from the test log.

ANTENNA SYSTEM

The EUT is designed to use two different types of antenna - "omni-directional" (as in the MaxRad MFB915 series) and a log periodic. The highest gain antennas of these types are the Microwave Data Systems 97-3194A14 (Antennex Y8966) Log-Periodic with a gain of 9dBd (11.2dBi) and the Maxrad MFB9157NF Omni directional with a gain of 7dBi. Radiated emissions measurements were made with each of the highest gain omni and log-periodic antennas.

The EUT requires professional installation and therefore is exempt from the requirement of 15.203. The output power is configured for each antenna to ensure the EIRP does not exceed 4 Watts, and the output power at the rf connector cannot exceed the maximum value reported in this test data. Radiated emissions were measured with the output power set to maximum and with the EUT antennas connected via a short length of cable, with negligible loss at the fundamental frequency.

ENCLOSURE

The EUT enclosure is primarily constructed of cast aluminum. It measures approximately 18 cm wide by 10 cm deep by 4 cm high.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with emissions specifications.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Transmitter radiated and rf power port measurements					
Manufacturer	Model	Description	Serial Number	FCC ID	
Dell	Latitiude D510	Laptop	Not serialized	DoC	
-		AC-DC Adapter	-	-	

Manufacturer	Model	Description	Serial Number	FCC ID
ACER	710TE	Laptop	9147A0132184900016M	DoC
IBM	ThinkPad	Laptop	KV-41187	DoC
	(2371-87U)			
Protek	PUP55-13-HD	AC-DC adapter	336	N/A

Receiver radiated spurious and AC Conducted Emissions	Receiver	radiated	spurious	and AC	Conducted	Emissions
---	----------	----------	----------	--------	-----------	-----------

No remote support equipment was used during emissions testing.

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

			Cable(s)	
Port	Connected To		Shielded or	
		Description	Unshielded	Length(m)
EUT ethernet	Laptop (Dell or IBM)	CAT 5	Unshielded	3.0
EUT serial	Laptop (Dell or ACER)		Shielded	3.0
AC-DC adapter AC	AC Mains	3 wire	Unshielded	1.5
DC	AC-DC adpater	2 wire	Unshielded	1.0

Note: The serial ports were not connected during testing. The manufacturer stated that these are for maintenance purposes and therefore would not normally be connected.

EUT OPERATION

During transmitter-related testing the EUT was transmitting continuously on the specified channel.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on March 23, March 24, July 14 and July 18, 2006at the Elliott Laboratories Open Area Test Site #1 & 2 located at 684 West Maude Avenue, Sunnyvale, California or 41039 Boyce Road, Fremont, California Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission.

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003 and RSS 212.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003 and RSS 212. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003 / RSS 212.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

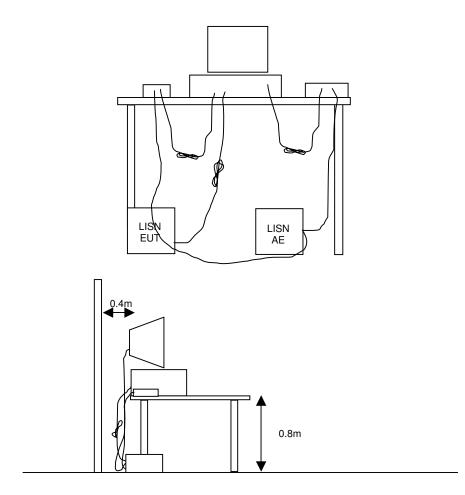
ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 and RSS 212 specify that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

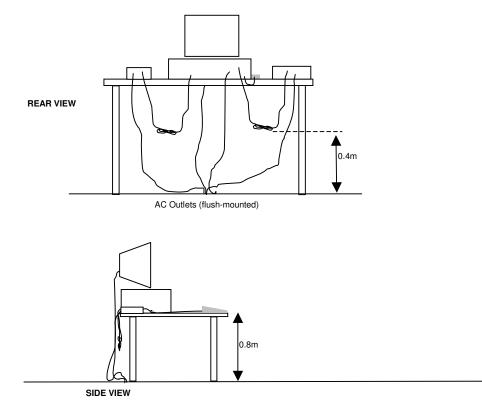

TEST PROCEDURES

EUT AND CABLE PLACEMENT

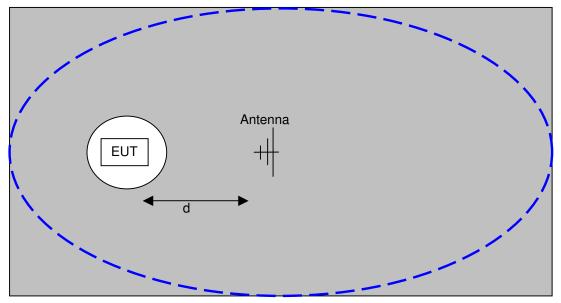
The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

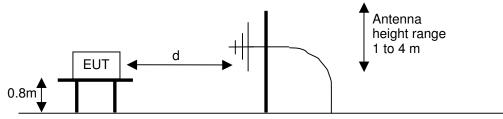
Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.



RADIATED EMISSIONS


A preliminary scan of the radiated emissions is perfromed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.


Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

Typical Test Configuration for Radiated Field Strength Measurements

The ground plane extends beyond the ellipse defined in CISPR 16 / CISPR 22 / ANSI C63.4 and is large enough to accommodate test distances (d) of 3m and 10m. Refer to the test data tables for the actual measurement distance.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>OATS- Plan and Side Views</u>

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 - 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 - 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 - 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

 $E = \underline{1000000 \sqrt{30 P}} \text{ microvolts per meter}$ 3
where P is the eirp (Watts)

EXHIBIT 1: Test Equipment Calibration Data

1 Page

Radiated Emissions, 1000 - 10,000 MHz, 24-Mar-06 Engineer: Chris Byleckie Manufacturer **Description** Model # Asset # Cal Due EMC Spectrum Analyzer 9KHz-26.5GHz, non Hewlett Packard 8563E 284 22-Apr-06 programmable Hewlett Packard Microwave Preamplifier, 1-26.5GHz 8449B 870 13-Jan-07 Horn antenna, D. Ridge 1-18GHz (SA40 system EMCO 3115 1142 11-Jun-06 antenna)30Hz sunnyvale High Pass filter, 1.5GHz Hewlett Packard P/N 84300-80037 (84125C) 1154 09-Jun-06

Preliminary Scans - Radiated Emissions (Receiver/Digital Device - Master Unit), 14-Jul-06 Engineer: Mark Briggs

Linginieer, mark briggs	5		
Manufacturer	Description	Model #	Asset # Cal Due
EMCO	Log Periodic Antenna, 0.3-1 GHz	3146A	364 17-Nov-06
Hewlett Packard	EMC Spectrum Analyzer, 9 kHz - 6.5 GHz	8595EM	780 26-Aug-06
EMCO	Biconical Antenna, 30-300 MHz	3110B	801 03-Aug-06
Hewlett Packard	Microwave Preamplifier 0.5-26.5 GHz	83017A	1257 28-Sep-06
EMCO	Antenna, Horn, 1-18 GHz	3117	1662 07-Apr-07
Hewlett Packard	Preamplifier	8447D OPT 010	1826 02-May-07

EXHIBIT 2: Test Measurement Data

31 Pages

Elliott

EMC Test Data

_			
Client:	Microwave Data Systems	Job Number:	J63298
Model:	Mercury Project	Test-Log Number:	T63365
		Project Manager:	Esther Zhu
Contact:	Rich		
Emissions Spec:	FCC 15.247 / FCC 15 B	Class:	А
Immunity Spec:	N/A	Environment:	N/A

EMC Test Data

For The

Microwave Data Systems

Model

Mercury Project

Date of Last Test: 7/18/2006

Elliott

EMC Test Data

Client:	Microwave Data Systems	Job Number:	J63298
Model:	Mercury Project	Test-Log Number:	T63365
		Project Manager:	Esther Zhu
Contact:	Rich		
Emissions Spec:	FCC 15.247 / FCC 15 B	Class:	А
Immunity Spec:	N/A	Environment:	N/A

EUT INFORMATION

The following information was collected during the test sessions(s).

General Description

The EUT is a 900 MHz wireless transceiver for ethernet data networks. There are two versions of the radio, a base unit and a remote unit. The rf circuitry in both devices is identical. The digital device (modem) boards are the only difference between the two units. The master unit was tested for all radio-related emissions (preliminary radiated emissions scans on both master and remote units demonstrated that the transmitter- and receiver-related emissions from both devices were not significantly different). Digital device radiated and AC conducted emissions tests were performed on both units.

Equipment Under Test

			<u> </u>	
Manufacturer	Model	Description	Serial Number	FCC ID
MDS	Mercury 900-R	900 MHz TRx (Remote)	1234567	E5MDS-Mercury900
MDS	Mercury 900-AP	900 MHz TRx (Base)	none	E5MDS-Mercury900

EUT Antenna (Intentional Radiators Only)

The EUT is designed to use two different types of antenna - "omni-directional" (as in the MaxRad MFB915 series) and a log periodic. The highest gain antennas of these types are the Microwave Data Systems 97-3194A14(Antennex Y8966) Log-Periodic with a gain of 9dBd (11.2dBi) and the Maxrad MFB9157NF Omni directional with a gain of 7dBi. Radiated emissions measurements were made with each of the highest gain omni and log-periodic antennas.

The EUT requires professional installation and therefore is exempt from the requirement of 15.203. The output power is configured for each antenna to ensure the EIRP does not exceed 4 Watts, and the output power at the rf connector cannot exceed the maximum value reported in this test data. Radiated emissions were measured with the output power set to maximum and with the EUT antennas connected via a short length of cable, with negligible loss at the fundamental frequency.

EUT Enclosure

The EUT enclosure is primarily constructed of cast aluminum . It measures approximately 18 cm wide by 10 cm deep by 4 cm high.

Modification History

Mod. #	Test	Date	Modification
1	Radiated emissions -	6/14/2006	Digital board revised to rev 2 To reduce digital device emissions.
2	Radiated emissions -	6/14/2006	Firmware change to test software to reduce tx LO leakage
3			

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

Elliott EMC Test Data Client: Microwave Data Systems Job Number: J63298 Model: Mercury Project T-Log Number: T63365 Project Manager: Esther Zhu Contact: Rich Emissions Spec: FCC 15.247 / FCC 15 B Class: А Immunity Spec: N/A Environment: N/A **Test Configuration #1** The following information was collected during the test sessions(s). Local Support Equipment - Transmitter radiated and rf power port measurements Manufacturer Model Description Serial Number FCC ID Dell Latitiude D510 Not serialized DoC Laptop -AC-DC Adapter --Local Support Equipment - Receiver radiated spurious and AC Conducted Emissions Serial Number Manufacturer FCC ID Model Description ACER 710TE 9147A0132184900016M DoC Laptop IBM ThinkPad (2371-87U) Laptop KV-41187 DoC Protek PUP55-13-HD AC-DC adapter 336 N/A Remote Support Equipment Manufacturer Model Description Serial Number FCC ID None **Cabling and Ports** Port Connected To Cable(s) Description Shielded or Unshielded Length(m) EUT ethernet Laptop (Dell or IBM) CAT 5 Unshielded 3.0 EUT serial Laptop (Dell or ACER) Shielded 3.0 AC-DC adapter AC AC Mains 3 wire Unshielded 1.5 DC AC-DC adpater 1.0 2 wire Unshielded Note: The serial ports were not connected during testing. The manufacturer stated that these are for maintenance purposes and therefore would not normally be connected.

EUT Operation - Receiver Radiated Spurious Emissions Tests

During emissions testing the EUT was excercised via pings on the Ethernet interface and was set in a receive mode on top/center and high channel.

Elliott

EMC Test Data

_			
Client:	Microwave Data Systems	Job Number:	J63298
Model:	Mercury Project	T-Log Number:	T63365
		Project Manager:	Esther Zhu
Contact:	Rich		
Emissions Spec:	FCC 15.247 / FCC 15 B	Class:	А
Immunity Spec:	N/A	Environment:	N/A

EUT Operation - AC Conducted Emissions Tests

During emissions testing the EUT was excercised via pings on the Ethernet interface and was set in a a continuous transmit mode on the center channel.

EUT Operation During Radio Tests

During transmitter-related testing the EUT was transmitting continuously on the specified channel.

EMC Test Data

Job Number: J63298

T-Log Number: T63365

Account Manager: Esther Zhu

Class: A

Client: Microwave Data Systems

Model: Mercury Project

Contact: Rich

Elliott

Spec: FCC 15.247 / FCC 15 B

Receive-Mode Radiated Emissions

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 7/14/2006 Test Engineer: Mark Briggs Test Location: Chamber #2 Config. Used: #1 Config Change: -EUT Voltage: 120V/60Hz (External AC-DC adapter)

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated emissions testing.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, <u>and</u> manipulation of the EUT's interface cables.

Note, for testing above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the peak reading of any emission above 1 GHz, can not exceed the average limit by more than 20 dB.

Summary of Results

Run #	Test Performed	Limit	Result	Margin
2	RE, 30 - 3000MHz, Maximized Emissions	FCC 15.109 / RSS 210	Pass	45.3dBµV/m (184.1µV/m) @ 944.999MHz (-0.7dB)

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client	Microwave	e Data S	ystems					Job Number:	J63298
Madal	Maraury	roiget					T-l	og Number:	T63365
woder	Mercury P	rojeci					Accou	int Manager:	Esther Zhu
Contact									
Spec	FCC 15.24	47 / FCC	; 15 B					Class:	А
				s, 30-3000 N		er Spurious		s	
	te of Test:					Config. Used:			
	Engineer:					nfig Change:			
les	t Location:			Test D					C-DC adapter)
		quency F - 1000 I	-		istance 3	Limit Di 3			ation Factor
		0 - 3000			1	3			9.5
Frequency	Level	Pol)9/RSS210	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg		meters	Comments	
958.982	39.3	V	46.0	-6.7	Peak	178	1.7	EUT at 915	5 MHz
944.999	39.1	V	46.0	-6.9	Peak	177	1.7	EUT at 904	
	39.7	V	54.0	-14.3	Peak	192	1.7	EUT at 926	
967.994									
	Tested wit	h Yaqi a	ntenna con	nected					
ote 1: ote 2: u n #2: M a Da Test	All receive Eximized R ite of Test: Engineer:	er-related eadings 7/18/200 Rafael V	From Run)6 ⁄arelas	above 1GH:	C	or more belo Config. Used: nfig Change:	#1 None		
lote 1: lote 2: Run #2: Ma Da Test	All receive Eximized R te of Test:	er-related eadings 7/18/200 Rafael V	From Run 06 /arelas 5 #2 Te	above 1GH: #1 emperature:	Co Co E 32	Config. Used: nfig Change: EUT Voltage:	#1 None		C-DC adapter
lote 1: lote 2: Run #2: Ma Da Test	All receive ximized R te of Test: Engineer: t Location:	er-related eadings 7/18/20(Rafael V SVOATS	I emissions From Run)6 /arelas S #2 Te Re	above 1GH: #1 emperature: el. Humidity:	C Cor E 32 36	Config. Used: nfig Change: EUT Voltage: °C %	#1 None 120V/60H:	z (External A	
lote 1: lote 2: tun #2: Ma Da Tesi	All receive iximized R te of Test: Engineer: t Location: Frec	er-related eadings 7/18/200 Rafael V SVOATS	I emissions From Run 06 /arelas 5 #2 Te Range	above 1GH: #1 emperature: I. Humidity: Test D	C Col 32 36 istance	Config. Used: nfig Change: EUT Voltage: °C % Limit Di	#1 None 120V/60H; stance	z (External A Extrapola	ation Factor
lote 1: lote 2: :un #2: Ma Da Tesi Tes	All receive Eximized R te of Test: Engineer: t Location: Frec 30	er-related eadings 7/18/20(Rafael V SVOATS	I emissions From Run 06 /arelas 5 #2 Te Range	above 1GH: #1 emperature: I. Humidity: Test D	C Cor E 32 36	Config. Used: nfig Change: EUT Voltage: °C %	#1 None 120V/60H; stance	z (External A Extrapola	
lote 1: lote 2: Run #2: Ma Da Tesi Tesi Tesi	All receive ximized R te of Test: Engineer: t Location: Frec 30 1a	eadings 7/18/200 Rafael V SVOATS quency F - 3000 I	I emissions From Run 06 ('arelas 5 #2 Te Re Range MHz	above 1GH: #1 emperature: I. Humidity: Test D	Co Co 32 36 istance 3	Config. Used: nfig Change: EUT Voltage: °C % Limit Di 3	#1 None 120V/60H: stance	z (External A Extrapola	ation Factor
lote 1: lote 2: Run #2: Ma Da Test Tes Yagi Anten Frequency	All receive ximized R te of Test: Engineer: t Location: Free 30 na Level	eadings 7/18/200 Rafael V SVOATS quency F - 3000 I Pol	I emissions From Run)6 /arelas 5 #2 Te Range MHz FCC 15.10	above 1GH: #1 	Co E 32 36 istance 3 Detector	Config. Used: nfig Change: EUT Voltage: °C % Limit Di 3 Azimuth	#1 None 120V/60H; stance	z (External A Extrapola	ation Factor
lote 1: lote 2: Run #2: Ma Da Tesi Tesi Tesi	All receive ximized R te of Test: Engineer: t Location: Frec 30 1a	eadings 7/18/200 Rafael V SVOATS quency F - 3000 I	I emissions From Run 06 ('arelas 5 #2 Te Re Range MHz	above 1GH: #1 emperature: I. Humidity: Test D	Co Co 32 36 istance 3	Config. Used: nfig Change: EUT Voltage: °C % Limit Di 3 Azimuth	#1 None 120V/60H; stance Height	z (External A Extrapola	ation Factor D.O
ote 1: lote 2: lun #2: Ma Da Test Test Tes agi Anten Frequency MHz	All receive Eximized R te of Test: Engineer: t Location: Frec 30 1a Level dBµV/m	r-related eadings 7/18/200 Rafael V SVOATS quency F - 3000 f Pol v/h	I emissions From Run 06 /arelas 5 #2 Te Range MHz FCC 15.10 Limit	above 1GH: #1 I. Humidity: Test D 09/RSS210 Margin	C Col 32 36 istance 3 Detector Pk/QP/Avg	Config. Used: nfig Change: EUT Voltage: °C % Limit Di 3 Azimuth degrees 360 345	#1 None 120V/60H; stance Height meters 1.2 1.0	z (External A Extrapola Comments	ation Factor D.0
lote 1: lote 2: 2un #2: M a Test Test Tes <u>7agi Anten</u> Frequency <u>MHz</u> 944.999 958.982 944.999	All receive ximized R te of Test: Engineer: t Location: Frec 30 1a Level dBµV/m 45.3 42.0 36.2	eadings 7/18/200 Rafael V SVOATS quency F - 3000 f V Pol V/h V V H	From Run From Run 06 (/arelas 5 #2 Te Re Range MHz FCC 15.10 Limit 46.0 46.0 46.0	above 1GH: #1 emperature: I. Humidity: Test D 09/RSS210 Margin -0.7 -4.0 -9.8	C Col 32 36 istance 3 Detector Pk/QP/Avg QP QP QP	Config. Used: nfig Change: EUT Voltage: °C % Limit Di 3 Azimuth degrees 360 345 325	#1 None 120V/60H: stance Height meters 1.2 1.0 2.3	z (External A Extrapola Comments EUT at 904 EUT at 915 EUT at 904	ation Factor D.0 MHz MHz MHz MHz
lote 1: lote 2: 2un #2: M a Test Test Tes <u>agi Anten</u> Frequency <u>MHz</u> 944.999 958.982 944.999 969.994	All receive ximized R te of Test: Engineer: t Location: Frec 30 12 42.0 36.2 43.8	eadings 7/18/200 Rafael V SVOATS quency F - 3000 f - 3000 f V h V V H V	From Run 06 Varelas 5 #2 Te Re Range MHz FCC 15.10 Limit 46.0 46.0 46.0 54.0	above 1GH: #1 emperature: I. Humidity: Test D 09/RSS210 Margin -0.7 -4.0 -9.8 -10.2	Co E 32 36 istance 3 Detector Pk/QP/Avg QP QP QP QP QP	Config. Used: nfig Change: EUT Voltage: °C % Limit Di 3 Azimuth degrees 360 345 325 353	#1 None 120V/60H: stance Height meters 1.2 1.0 2.3 1.0	z (External A Extrapola Comments EUT at 904 EUT at 915 EUT at 904 EUT at 926	ation Factor D.0 MHz MHz MHz MHz MHz MHz
lote 1: lote 2: Run #2: Ma Da Test Test Yagi Anten Frequency MHz 944.999 958.982 944.999 969.994 958.982	All receive iximized R te of Test: Engineer: t Location: Free 30 1a Level dBµV/m 45.3 42.0 36.2 43.8 32.4	r-related eadings 7/18/200 Rafael V SVOATS <u>quency F</u> - 3000 f <u>Pol</u> V/h V V H V H	E emissions From Run 06 /arelas 5 #2 Te Re Range MHz FCC 15.10 Limit 46.0 46.0 46.0 54.0 46.0 46.0	above 1GH: #1 #1 I. Humidity: Test D 09/RSS210 Margin -0.7 -4.0 -9.8 -10.2 -13.6	Co Co 32 36 istance 3 Detector Pk/QP/Avg QP QP QP QP QP QP QP	Config. Used: nfig Change: EUT Voltage: °C % Limit Di 3 Azimuth degrees 360 345 325 353 332	#1 None 120V/60H: stance Height meters 1.2 1.0 2.3 1.0 1.2	z (External A Extrapola Comments EUT at 904 EUT at 915 EUT at 926 EUT at 915	Ation Factor D.0 MHz MHz MHz MHz MHz MHz MHz
ote 1: ote 2: un #2: Ma Test Test Test MHz 944.999 958.982 944.999 958.982 944.999 958.982 969.994	All receive Eximized R te of Test: Engineer: t Location: Free 30 14 45.3 42.0 36.2 43.8 32.4 34.3	eadings 7/18/200 Rafael V SVOATS quency F - 3000 f - 3000 f V h V V H V	From Run 06 Varelas 5 #2 Te Re Range MHz FCC 15.10 Limit 46.0 46.0 46.0 54.0	above 1GH: #1 emperature: I. Humidity: Test D 09/RSS210 Margin -0.7 -4.0 -9.8 -10.2	Co E 32 36 istance 3 Detector Pk/QP/Avg QP QP QP QP QP	Config. Used: nfig Change: EUT Voltage: °C % Limit Di 3 Azimuth degrees 360 345 325 353	#1 None 120V/60H: stance Height meters 1.2 1.0 2.3 1.0	z (External A Extrapola Comments EUT at 904 EUT at 915 EUT at 904 EUT at 926	Ation Factor D.0 MHz MHz MHz MHz MHz MHz MHz
agi Anten requency 944.999 958.982 944.999 958.982 944.099 958.982 944.099	All receive ximized R te of Test: Engineer: t Location: Free 30 1a Level dBµV/m 45.3 42.0 36.2 43.8 32.4 34.3 Antenna	eadings 7/18/200 Rafael V SVOATS quency F - 3000 f V/h V V V H V H H H	Exange FCC 15.10 Limit 46.0 46.0 46.0 46.0 54.0	above 1GH: #1 mperature: I. Humidity: Test D 09/RSS210 Margin -0.7 -4.0 -9.8 -10.2 -13.6 -19.7	C Coi 32 36 istance 3 Detector Pk/QP/Avg QP QP QP QP QP QP QP QP QP	Config. Used: nfig Change: EUT Voltage: °C % Limit Di 3 3 Azimuth degrees 360 345 325 353 353 332 345	#1 None 120V/60H: stance Height meters 1.2 1.0 2.3 1.0 1.2 1.2 1.2	z (External A Extrapola Comments EUT at 904 EUT at 915 EUT at 926 EUT at 915 EUT at 926	ation Factor D.0 MHz MHz MHz MHz MHz MHz MHz MHz MHz
ote 1: ote 2: un #2: Ma Test Test Test agi Anten requency MHz 944.999 958.982 944.999 969.994 958.982 969.994 969.994 g69.994	All receive ximized R te of Test: Engineer: t Location: Frec 30 ha Level dBµV/m 45.3 42.0 36.2 43.8 32.4 34.3 Antenna Level	r-related eadings 7/18/200 Rafael V SVOATS 2000 P - 3000 P - 3000 P - 3000 P - 901 V/h V V H H H H H H	Exange FCC 15.10 Limit 46.0 46.0 46.0 46.0 46.0 46.0 54.0 46.0 54.0 54.0	above 1GH: #1 mperature: I. Humidity: Test D 99/RSS210 Margin -0.7 -4.0 -9.8 -10.2 -13.6 -19.7 99/RSS210	C Con 32 36 istance 3 Detector Pk/QP/Avg QP QP QP QP QP QP QP QP QP QP QP QP QP	Config. Used: nfig Change: EUT Voltage: °C % Limit Di 3 3 Azimuth degrees 360 345 325 353 353 332 345 345 Azimuth	#1 None 120V/60H: stance Height meters 1.2 1.0 2.3 1.0 2.3 1.0 1.2 1.2 Height	z (External A Extrapola Comments EUT at 904 EUT at 915 EUT at 926 EUT at 915	ation Factor D.0 MHz MHz MHz MHz MHz MHz MHz MHz MHz
lote 1: lote 2: 2un #2: M a Test Test Test Tes <u>7agi Anten</u> Frequency <u>MHz</u> 944.999 958.982 944.999 969.994 958.982 969.994 <u>958.982</u> 969.994	All receive ximized R te of Test: Engineer: t Location: Frec 30 12 42.0 36.2 43.8 32.4 34.3 Antenna Level dBµV/m	r-related eadings 7/18/200 Rafael V SVOATS 2000 P - 3000 P - 3000 P - 3000 P - 400 P -	Example 4 emissions From Run 06 (/arelas 5 #2 Te Re Range MHz FCC 15.10 Limit 46.0 46.0 46.0 54.0 46.0 54.0 FCC 15.10 Limit	above 1GH: #1 emperature: I. Humidity: Test D 99/RSS210 Margin -0.7 -4.0 -9.8 -10.2 -13.6 -19.7 99/RSS210 Margin	C Col 32 36 istance 3 Detector Pk/QP/Avg QP QP QP QP QP QP QP QP QP QP QP QP QP	Config. Used: nfig Change: EUT Voltage: °C % Limit Di 3 Azimuth degrees 360 345 325 353 332 345 Azimuth degrees	#1 None 120V/60H: stance Height meters 1.2 1.0 2.3 1.0 1.2 1.2 1.2 Height meters	z (External A Extrapola Comments EUT at 904 EUT at 915 EUT at 926 EUT at 926 Comments	ation Factor D.0 MHz MHz MHz MHz MHz MHz MHz MHz
lote 1: lote 2: Run #2: Ma Test Test Test Test Test 7agi Anten Frequency MHz 944.999 958.982 944.999 958.982 944.999 969.994 958.982 969.994 dBd Omni Frequency	All receive ximized R te of Test: Engineer: t Location: Frec 30 ha Level dBµV/m 45.3 42.0 36.2 43.8 32.4 34.3 Antenna Level	r-related eadings 7/18/200 Rafael V SVOATS 2000 P - 3000 P - 3000 P - 3000 P - 901 V/h V V H H H H H H	Exange FCC 15.10 Limit 46.0 46.0 46.0 46.0 46.0 46.0 54.0 46.0 54.0 54.0	above 1GH: #1 mperature: I. Humidity: Test D 99/RSS210 Margin -0.7 -4.0 -9.8 -10.2 -13.6 -19.7 99/RSS210	C Con 32 36 istance 3 Detector Pk/QP/Avg QP QP QP QP QP QP QP QP QP QP QP QP QP	Config. Used: nfig Change: EUT Voltage: °C % Limit Di 3 3 Azimuth degrees 360 345 325 353 353 332 345 345 Azimuth	#1 None 120V/60H: stance Height meters 1.2 1.0 2.3 1.0 2.3 1.0 1.2 1.2 Height	z (External A Extrapola Comments EUT at 904 EUT at 915 EUT at 926 EUT at 915 EUT at 926	ation Factor D.0 MHz MHz MHz MHz MHz MHz MHz MHz MHz

EMC Test Data

Job Number: J63298

Class: N/A

T-Log Number: T63365 Model: Mercury Project Account Manager: Esther Zhu Contact: Rich Spec: FCC 15.247 / FCC 15 B

FCC 15.247 DTS - Power, Bandwidth and Spurious Emissions

Test Specifics

Elliott

Client: Microwave Data Systems

The objective of this test session is to perform final qualification testing of the EUT with respect to the Objective: specification listed above.

Date of Test: See Individual Run Test Engineer: See Individual Run Test Location: See Individual Run

Config. Used: 1 Config Change: None EUT Voltage: 120V/60Hz

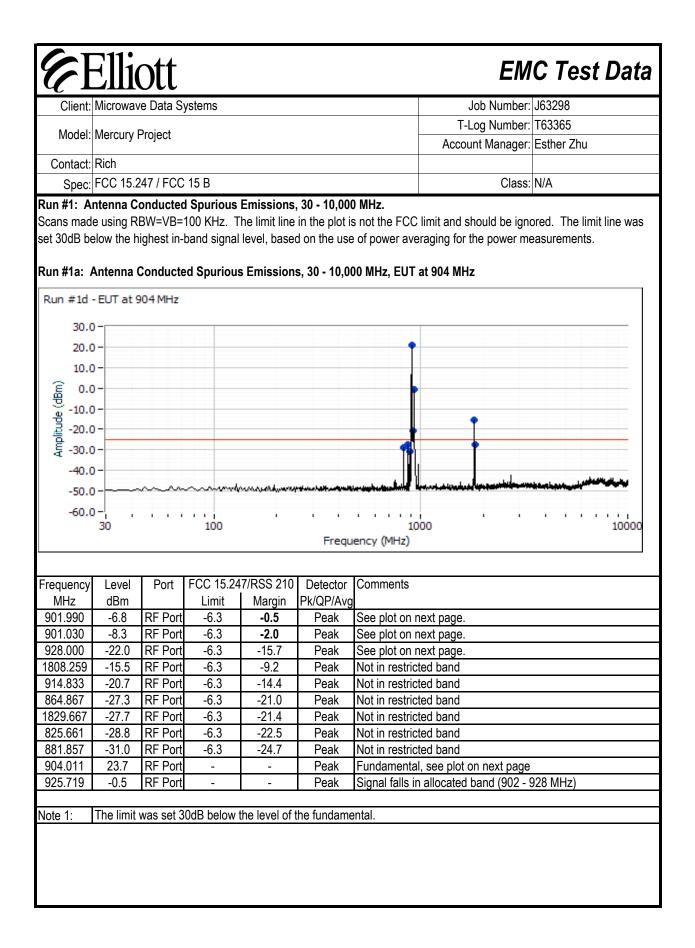
General Test Configuration

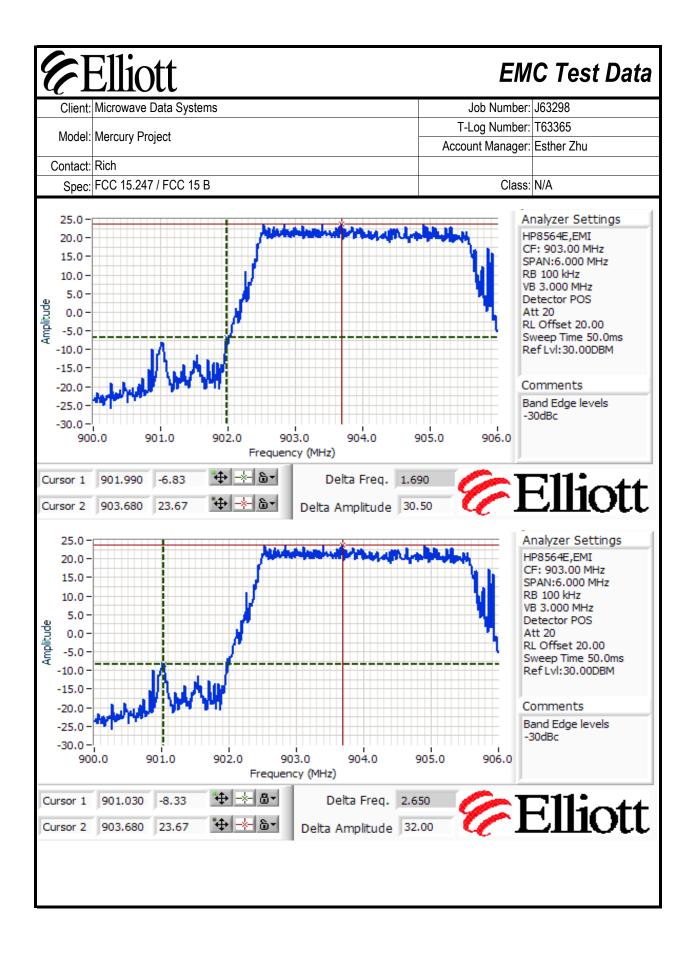
The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

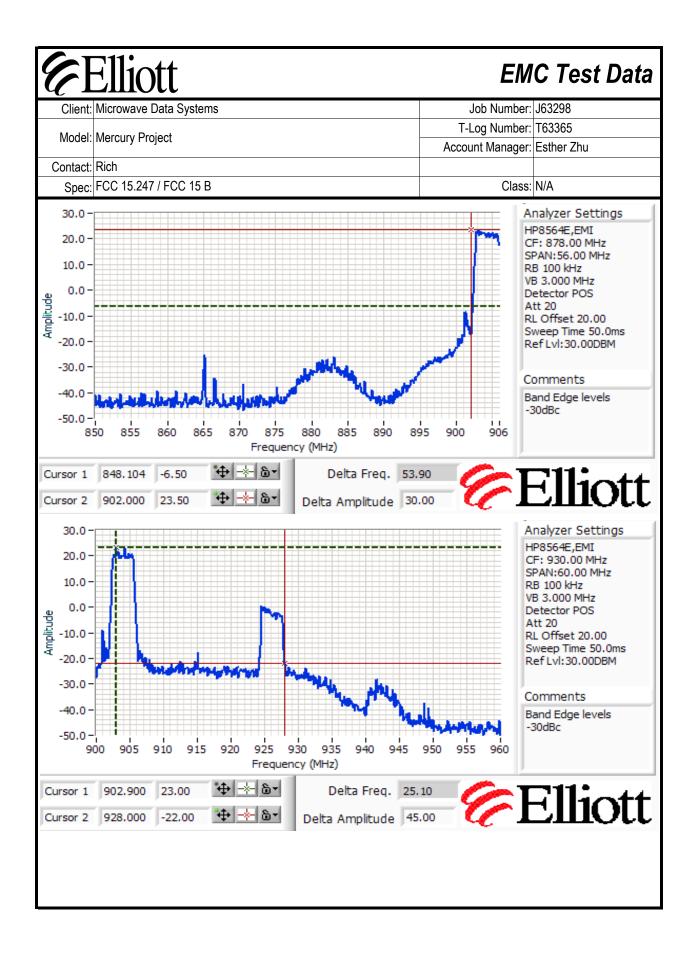
For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

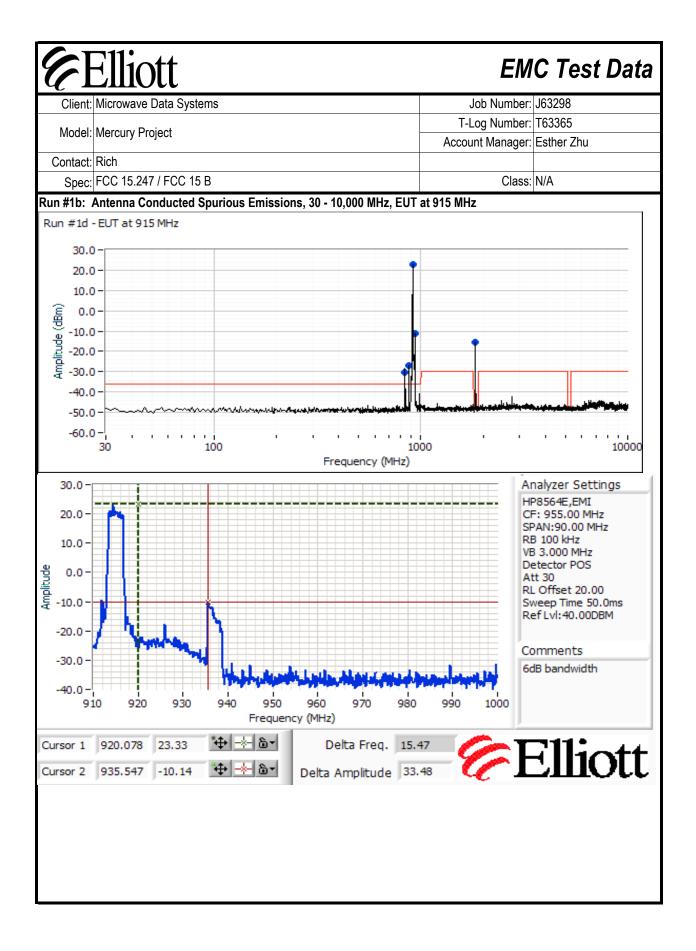
When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

Summary of Results

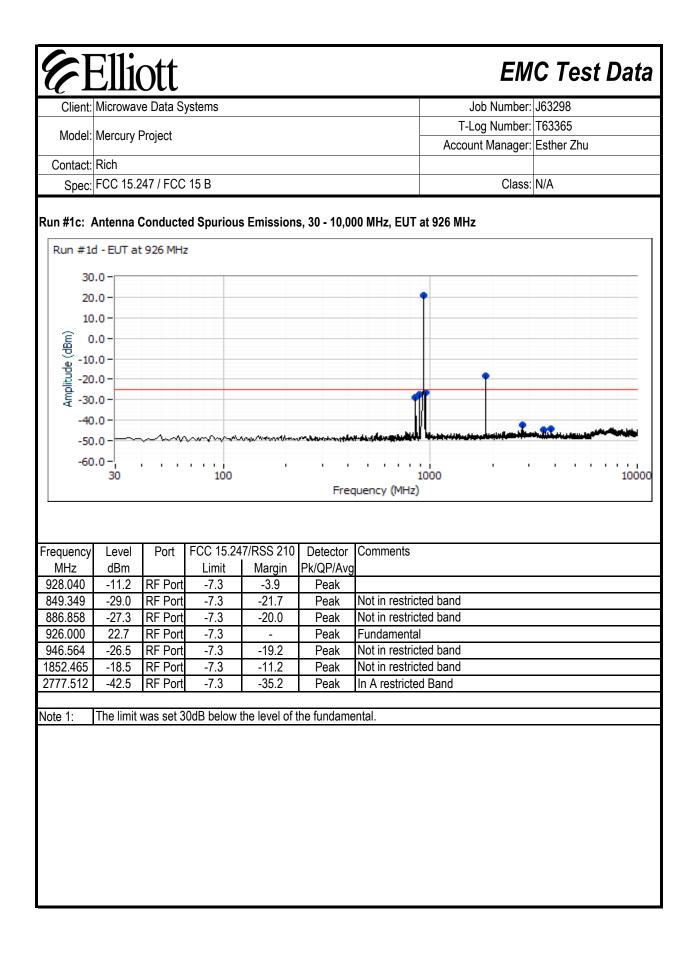

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Antenna Port Conducted	15.247(a)	Pass	Out of band all more
	Emissions			than -30dBc
2a	6dB Bandwidth	15.247(a)	Pass	3.133 MHz
2b	99% bandwidth	RSS GEN	N/A	3.494 MHz
3	Output Power (Max)	15.247(b)	Pass	29.1 dBm
3	Output Power (Min)	15.247(b)	Pass	29.1 dBm
4	Power Spectral Density (PSD)	15.247(d)	Pass	2.5dBm/3kHz

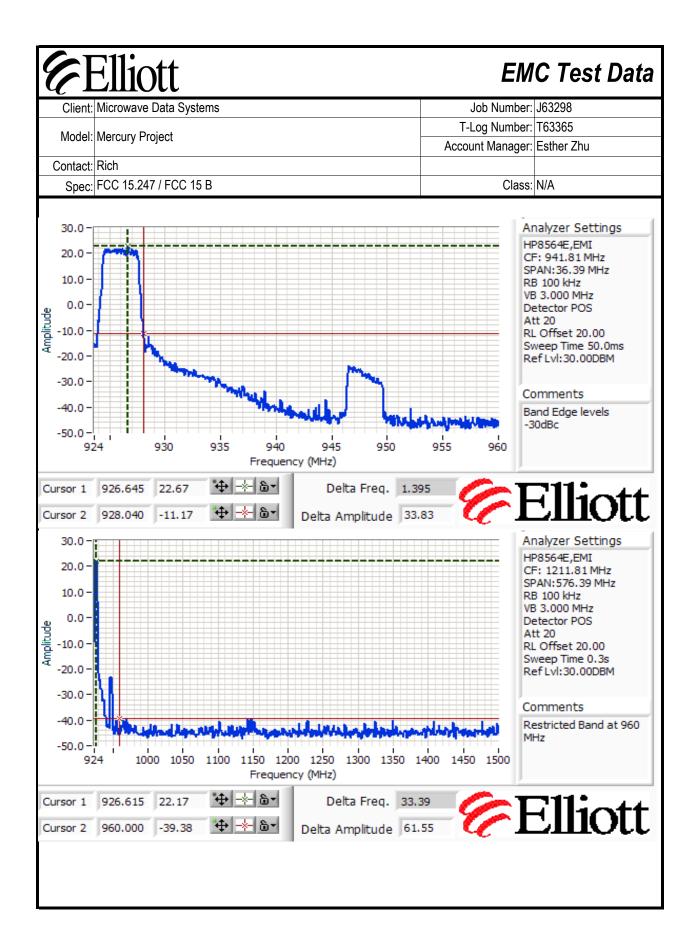

Modifications Made During Testing:

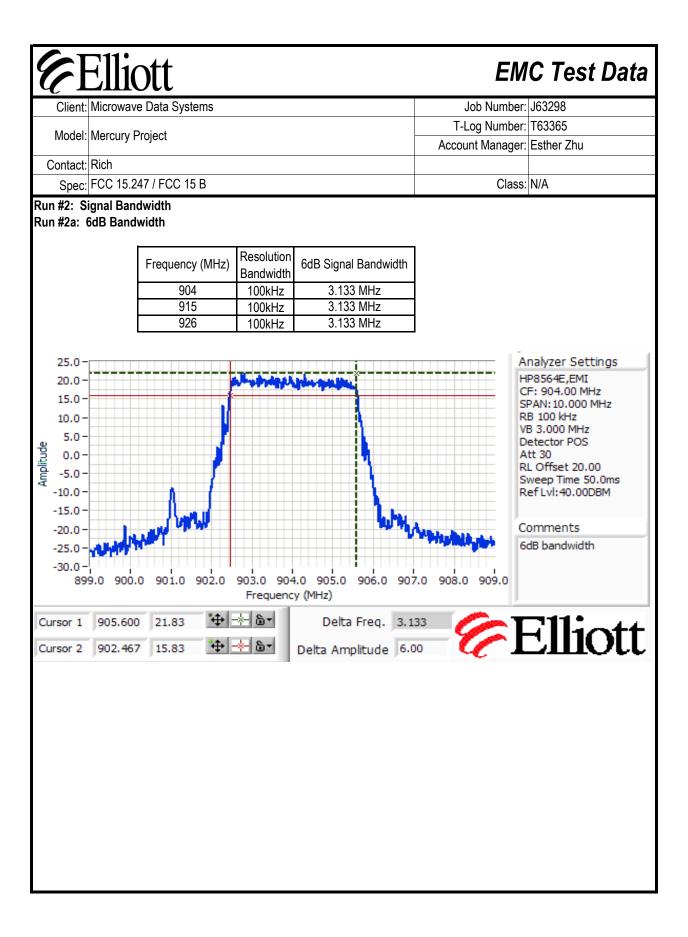

Modifications are detailed under each run description.

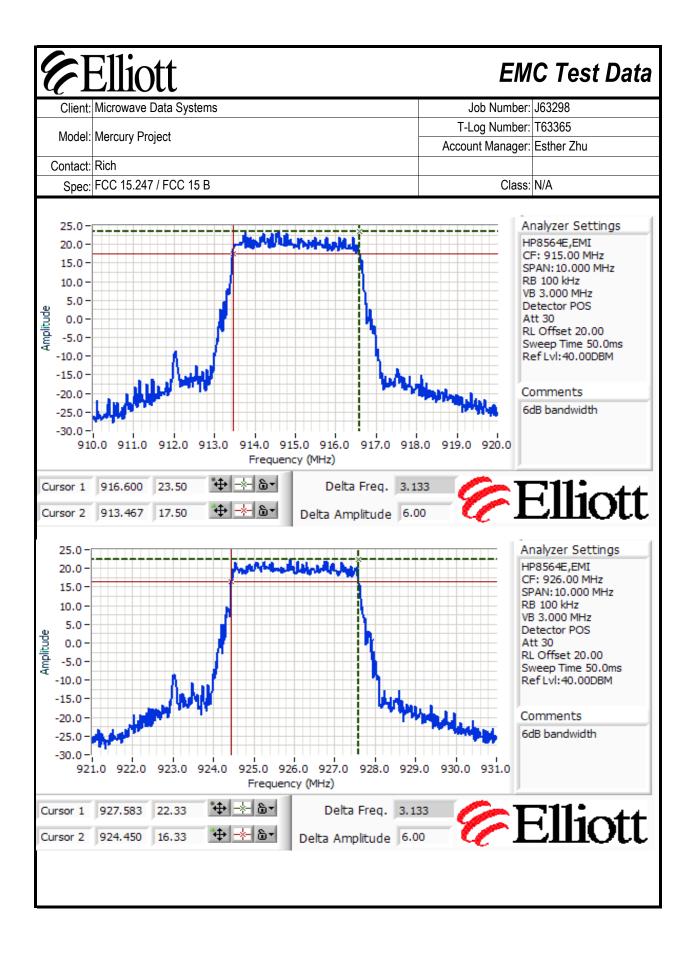

Deviations From The Standard

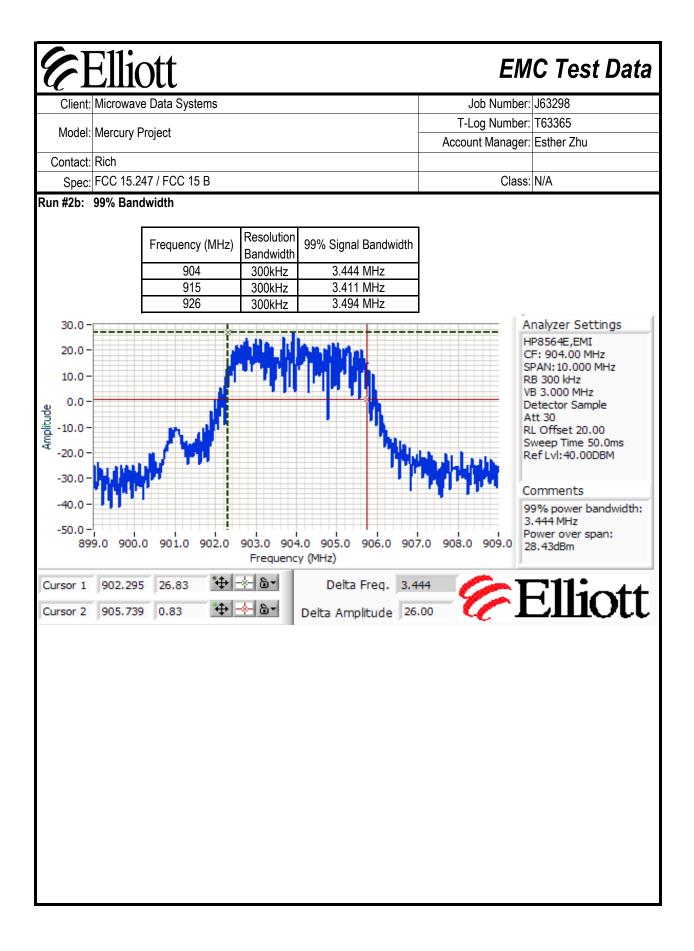
No deviations were made from the requirements of the standard.

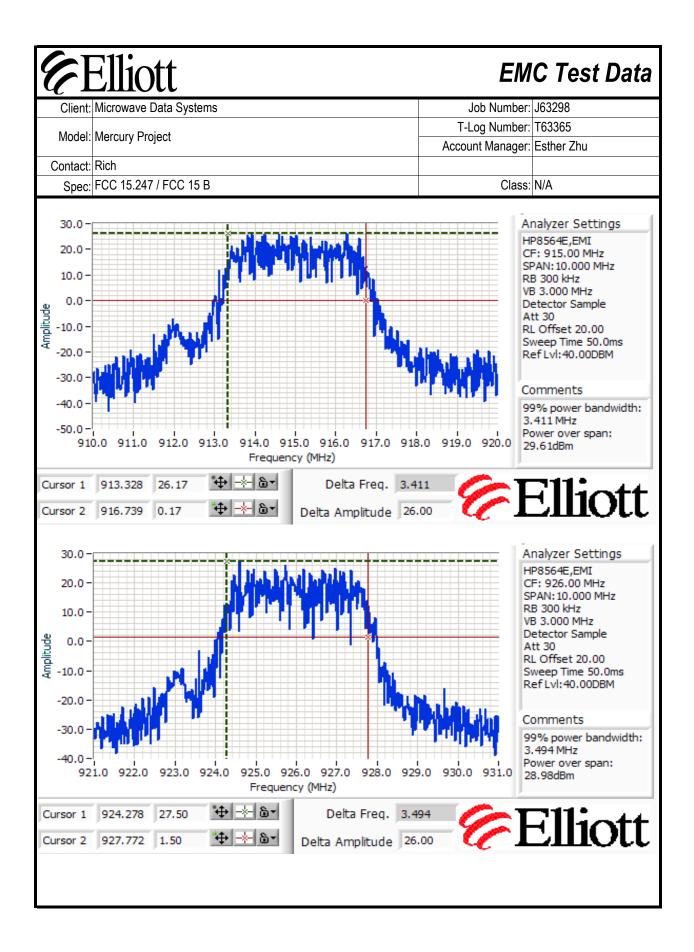


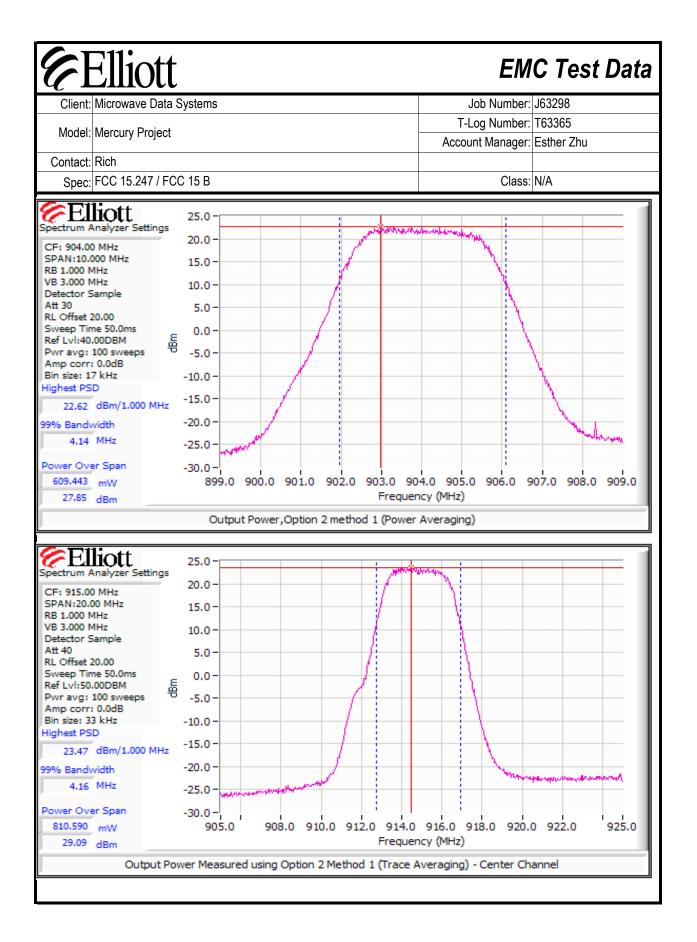


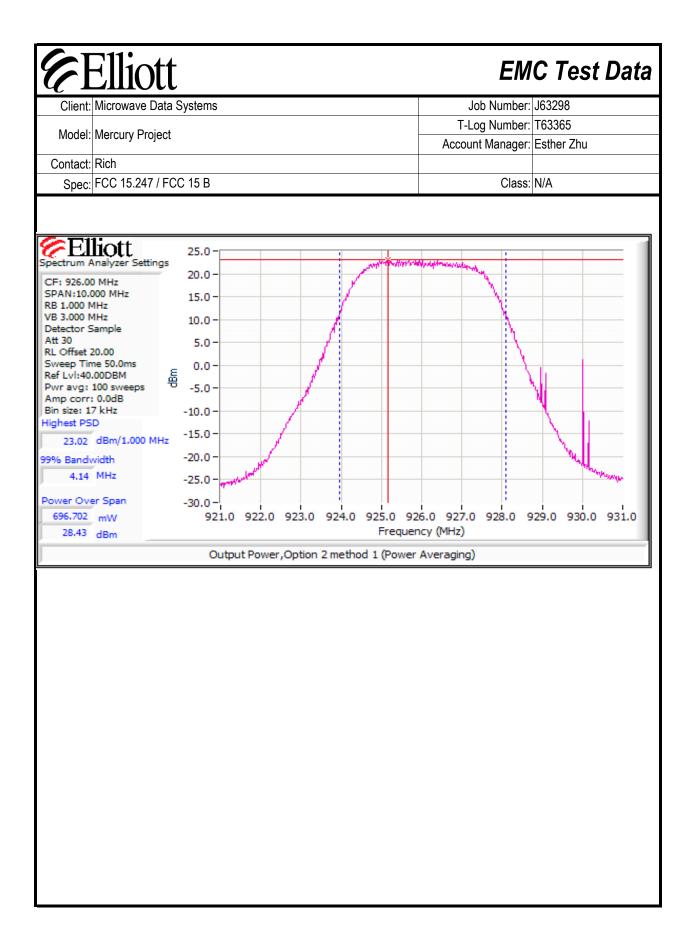


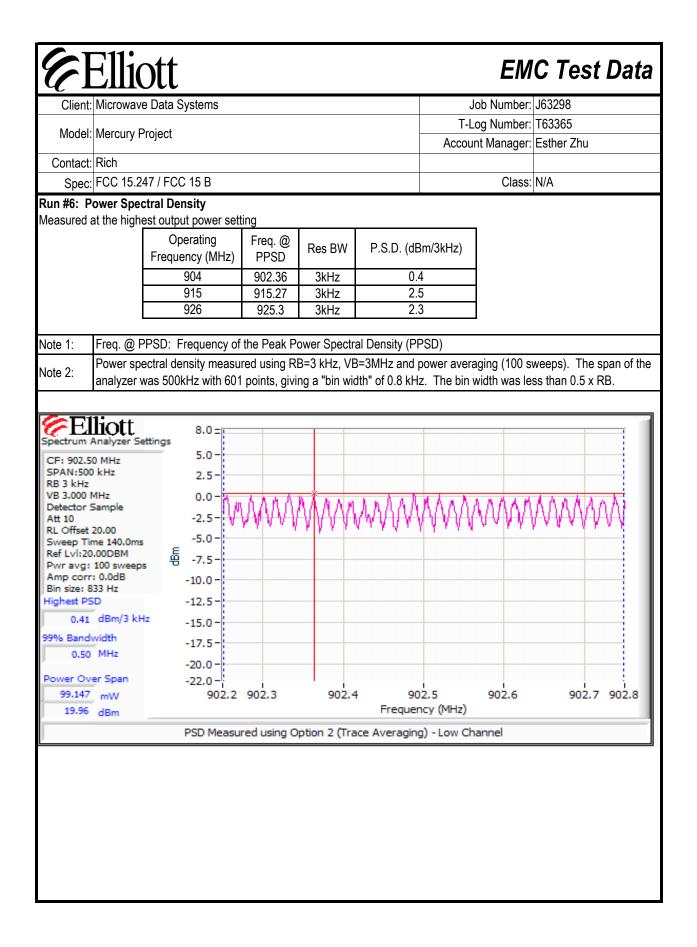


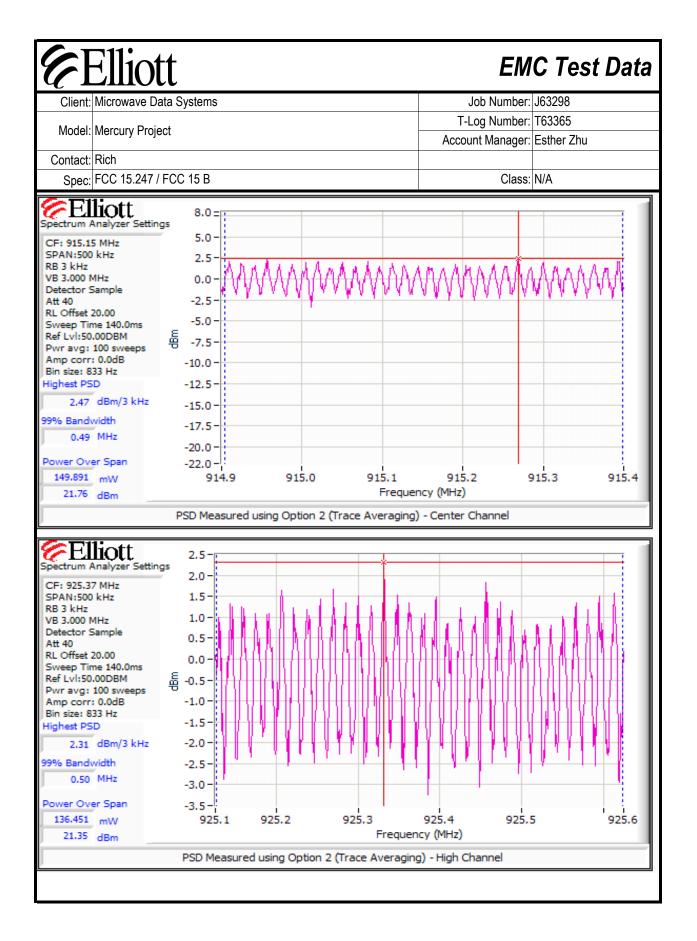

	Ellic	<u>ott</u>					EM	C Test Data
Client:	Microwave	e Data Sy	/stems				Job Number:	J63298
Model [.]	Mercury F	Proiect					T-Log Number:	
		lojoot					Account Manager:	Esther Zhu
Contact:								
Spec:	FCC 15.24	47 / FCC	15 B				Class:	N/A
requency	Level	Port	ECC 15 24	7/RSS 210	Detector	Comments		
MHz	dBm	TOIL	Limit	Margin	Pk/QP/Avg			
915.000		RF Port	-	-	Peak	Fundamenta	I	
935.547		RF Port	-6.7	-3.4	Peak	Not in restric	ted band	
935.634		RF Port	-6.7	-4.5	Peak	Not in restric		
1830.000		RF Port	-6.7	-8.6		Not in restric		
875.861		RF Port	-6.7	-20.3		Not in restric		
837.833	-30.2	RF Port	-6.7	-23.5	Peak	Not in restric	ted band	
lote 1:	The limit y	vac cat 3		the level of t	he fundame	ntal		
		103 301 0				intai.		











	liott					EM	C Test	Data
	rowave Data Systems				J	ob Number:	J63298	
					T-L	og Number:	T63365	
Model: Mer	rcury Project				Accour	nt Manager:	Esther Zhu	
Contact: Ricl	h							
Spec: FC	C 15.247 / FCC 15 B					Class:	N/A	
un #3: Outpu								
he antenna ass	ver is set by the profession sembly (antenna + feed ca	able). The m						•
Date of Test Eng Test Loc	Confiugred for Maximur f Test: 3/23/2006 ineer: Mark Briggs cation: SV Lab							
Maximum	antenna gain:	7 dBi						
		Res BW	Output F	Power Note 1	EIRP	Average	Power Note 2	
	Frequency (MHz)	MHz	dBm	W	W	dBm	W	
	904	1	27.9	0.617	3.090			
	915	1	29.1	0.813	4.074			
	926	1	28.4	0.692	3.467			
Dutput Power Date of Test Eng	Confiugred for Highest Test: 7/18/2006 jineer: Mark Briggs cation: SV #2						ss))	
Maximum	antenna gain: 11.2	2 dBi	(9dBd)					
	Frequency (MHz)	Res BW MHz	Output F dBm	ower ^{Note 1} W	EIRP W	Average dBm	Power ^{Note 2} W	
	904	1	24.5	0.282	3.715			
	915	1	24.6	0.288	3.802			
	926	1	24.7	0.295	3.890			
	tput power measured usin RBW=1MHz, VB=3 MHz,	•				ntegration o	ver 10 MHz	
Nioto 1.				utput power se		nogration o		

EMC Test Data

Client: Microwave Data Systems

Model: Mercury Project

Elliott

Job Number: J63298 T-Log Number: T63365 Account Manager: Esther Zhu

Spec: FCC 15.247 / FCC 15 B

Class: N/A

FCC 15.247 DTS - Transmitter Radiated Spurious Emissions 7dBi 'Omni-Directional' Antenna

Test Specifics

Contact: Rich

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 3/24/2006 Test Engineer: Chris Byleckie Test Location: SVOATS #1 Config. Used: 1 Config Change: None EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1a-c	Radiated Spurious Emissions, 30MHz - 10GHz	FCC Part 15.209 / 15.247(c)	Pass	41.9dBµV/m (123.7µV/m) @ 4569.4MHz (-12.2dB)

Modifications Made During Testing:

Modifications are detailed under each run description.

Deviations From The Standard

No deviations were made from the requirements of the standard.

	Ellic	ЛІ							C Test Dat
Client:	Microwave	e Data S	ystems				J	lob Number:	J63298
Model	Mercury P	roioct					T-L	og Number:	T63365
MOUEI.		lojeci					Accou	nt Manager:	Esther Zhu
Contact:	Rich								
Spec:	FCC 15.24	47 / FCC	15 B					Class:	N/A
			Emissions,	30MHz - 1	0GHz				
	Radiated S	•	Emission	s, 1000 - 10	000MHz. Lo	w Channel	@ 904 MHz	!	
Max. Pout									
Spurious I	Emissions								
- requency	1	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
4518.770	41.6	Н	54.0	-12.4	AVG	0	1.0		
4518.500	41.6	V	54.0	-12.4	AVG	0	1.0		
3616.135	39.0	Н	54.0	-15.0	AVG	0	1.0		
3616.038	39.0	V	54.0	-15.0	AVG	0	1.0		
2711.700	35.3	Н	54.0	-18.7	AVG	360	1.0	ļ	
2713.035	35.2	V	54.0	-18.8	AVG	0	1.0		
4518.500	53.4	V	74.0	-20.6	PK	0	1.0		
4518.770	52.4	H	74.0	-21.6	PK	0	1.0		
3616.135		H	74.0	-24.0	PK	0	1.0		
3616.038		V	74.0	-24.5	PK	0	1.0		
0744 700	40.0								
	46.9	H	74.0	-27.1	PK	360	1.0		
2711.700 2713.035		H V	74.0 74.0	-27.1 -28.3	PK PK	360 0	1.0 1.0		
2713.035	45.7	V	74.0	-28.3	PK	0	1.0	missions the	e limit was set 30dB bel
2713.035	45.7 For emissi	V ons in re	74.0 estricted bar	-28.3	PK	0	1.0	missions, the	e limit was set 30dB bel
	45.7	V ons in re	74.0 estricted bar	-28.3	PK	0	1.0	missions, the	e limit was set 30dB bel
2713.035	45.7 For emissi	V ons in re	74.0 estricted bar	-28.3	PK	0	1.0	missions, the	e limit was set 30dB bel
2713.035 Note 1:	45.7 For emissi the level o	V ons in re f the fun	74.0 estricted bar damental.	-28.3 nds, the limi	PK	0 vas used. Fo	1.0 r all other e		e limit was set 30dB bel
2713.035 Note 1: Run #1b:	45.7 For emissi the level o	V ons in re f the fun	74.0 estricted bar damental. s Emissions	-28.3 nds, the limi s, 1000 - 10	РК t of 15.209 w	0 vas used. Fo	1.0 r all other e		e limit was set 30dB bel
2713.035 Note 1: Run #1b:	45.7 For emissi the level o Radiated S Emissions	V ons in re f the fun	74.0 estricted bar damental. s Emissions	-28.3 nds, the limi	РК t of 15.209 w	0 vas used. Fo	1.0 r all other e		e limit was set 30dB bel
2713.035 Note 1: Run #1b: Spurious I Frequency MHz	45.7 For emissi the level o Radiated S Emissions Level dBμV/m	V ons in re f the fun Spurious Pol V/h	74.0 estricted bar damental. s Emissions 15.209 Limit	-28.3 nds, the limi s, 1000 - 10 / 15.247 Margin	PK t of 15.209 w 0000 MHz. C Detector Pk/QP/Avg	0 ras used. Fo enter Chanr	1.0 r all other e nel @ 915 M Height meters	ЛНz	e limit was set 30dB bel
2713.035 Jote 1: Spurious I Frequency MHz 4569.350	45.7 For emissi the level o Radiated S Emissions Level dBμV/m 41.9	V ons in re f the fun Spurious Pol V/h V	74.0 estricted bar damental. s Emissions 15.209 Limit 54.0	-28.3 nds, the limi s, 1000 - 10 / 15.247 Margin -12.2	PK t of 15.209 w 0000 MHz. C Detector Pk/QP/Avg AVG	0 ras used. Fo enter Chanr Azimuth degrees 0	1.0 r all other e nel @ 915 M Height meters 1.0	ЛНz	e limit was set 30dB bel
2713.035 Note 1: Run #1b: Spurious I Frequency MHz 4569.350 4574.798	45.7 For emissi the level o Radiated S Emissions Level dBμV/m 41.9 41.8	V ons in re f the fun Spurious Pol V/h V H	74.0 estricted bar damental. s Emissions 15.209 Limit 54.0 54.0	-28.3 nds, the limi s, 1000 - 10 / 15.247 Margin -12.2 -12.2	PK t of 15.209 w 0000 MHz. C Detector Pk/QP/Avg AVG AVG	0 ras used. Fo enter Chanr Azimuth degrees 0 360	1.0 r all other e nel @ 915 M Height neters 1.0 1.0	ЛНz	e limit was set 30dB be
2713.035 Note 1: Spurious I Frequency MHz 4569.350 4574.798 2744.835	45.7 For emissi the level o Radiated S Emissions Level dBμV/m 41.9 41.8 61.2	V ons in re f the fun Spurious Pol V/h V H V	74.0 estricted bar damental. s Emissions 15.209 Limit 54.0 54.0 74.0	-28.3 nds, the limi s, 1000 - 10 / 15.247 Margin -12.2 -12.2 -12.8	PK t of 15.209 w 0000 MHz. C Detector Pk/QP/Avg AVG AVG PK	0 ras used. Fo enter Chann Azimuth degrees 0 360 360	1.0 r all other e nel @ 915 M Height neters 1.0 1.0 1.0	ЛНz	e limit was set 30dB be
2713.035 Note 1: Spurious I Frequency MHz 4569.350 4574.798 2744.835 3659.265	45.7 For emissi the level o Radiated S Emissions Level dBμV/m 41.9 41.8 61.2 38.7	V ons in re f the fun Spurious Pol V/h V H V V	74.0 estricted bar damental. s Emissions 15.209 Limit 54.0 54.0 74.0 54.0	-28.3 nds, the limi s, 1000 - 10 / 15.247 Margin -12.2 -12.8 -12.3	PK t of 15.209 w 0000 MHz. C Detector Pk/QP/Avg AVG AVG PK AVG	0 ras used. Fo enter Chann Azimuth degrees 0 360 360 360 360	1.0 r all other e nel @ 915 N Height meters 1.0 1.0 1.0 1.0	ЛНz	e limit was set 30dB be
2713.035 Note 1: Run #1b: Spurious I Frequency MHz 4569.350 4574.798 2744.835 3659.265 3660.968	45.7 For emissi the level o Radiated S Emissions Level dBμV/m 41.9 41.8 61.2 38.7 38.7	V ons in re f the fun Spurious Pol V/h V H V V H	74.0 estricted bar damental. 5 Emissions 15.209 Limit 54.0 54.0 74.0 54.0 54.0 54.0	-28.3 nds, the limi s, 1000 - 10 / 15.247 Margin -12.2 -12.8 -15.3 -15.4	PK t of 15.209 w 0000 MHz. C Detector Pk/QP/Avg AVG AVG PK AVG AVG AVG	0 ras used. Fo enter Chann Azimuth degrees 0 360 360 360 360	1.0 r all other e nel @ 915 M Height meters 1.0 1.0 1.0 1.0 1.0	ЛНz	e limit was set 30dB be
2713.035 Jote 1: Spurious I Frequency MHz 4569.350 4574.798 2744.835 3659.265 3660.968 2744.835	45.7 For emissi the level o Radiated S Emissions Level dBμV/m 41.9 41.8 61.2 38.7 38.7 38.7 35.3	V ons in re f the fun Spurious Pol V/h V V H V V V H V V	74.0 estricted bar damental. 5 Emission s 15.209 Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0	-28.3 nds, the limi s, 1000 - 10 / 15.247 Margin -12.2 -12.2 -12.8 -15.3 -15.4 -15.4 -18.7	PK t of 15.209 w 0000 MHz. C Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG	0 ras used. Fo enter Chanr Azimuth degrees 0 360 360 360 360 360	1.0 r all other e nel @ 915 M Height meters 1.0 1.0 1.0 1.0 1.0 1.0	ЛНz	e limit was set 30dB be
2713.035 Jote 1: Spurious I Frequency MHz 4569.350 4574.798 2744.835 3660.968 2744.835 2744.835 2744.760	45.7 For emissi the level o Radiated S Emissions Level dBμV/m 41.9 41.8 61.2 38.7 38.7 38.7 35.3 35.2	V ons in ref f the fun Spurious Pol V/h V H V V H V V H V H	74.0 estricted bar damental. s Emissions 15.209 Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	-28.3 nds, the limi s, 1000 - 10 / 15.247 Margin -12.2 -12.2 -12.8 -15.3 -15.4 -15.4 -18.7 -18.8	PK t of 15.209 w 0000 MHz. C Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG	0 ras used. Fo enter Chann Azimuth degrees 0 360 360 360 360 360 360 360	1.0 r all other e nel @ 915 M Height neters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ЛНz	e limit was set 30dB be
2713.035 Jote 1: Com #1b: Com #1c Com #1b: Com #	45.7 For emissi the level o Radiated S Emissions Level dBμV/m 41.9 41.8 61.2 38.7 35.3 35.2 52.7	V ons in ref f the fun Spurious Pol V/h V V H V V H V V H V H H H	74.0 estricted bar damental. s Emissions 15.209 Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	-28.3 nds, the limi s, 1000 - 10 / 15.247 Margin -12.2 -12.8 -12.3 -15.3 -15.4 -18.7 -18.8 -21.4	PK t of 15.209 w 0000 MHz. C Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	0 ras used. Fo enter Chann Azimuth degrees 0 360 360 360 360 360 360 360 360 360	1.0 r all other e nel @ 915 M Height neters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ЛНz	e limit was set 30dB be
2713.035 Jote 1: Spurious I Frequency MHz 4569.350 4574.798 2744.835 3659.265 3660.968 2744.835 2744.760 4574.798 4569.350	45.7 For emissi the level o Radiated S Emissions Level dBμV/m 41.9 41.8 61.2 38.7 35.3 35.2 52.7 52.2	V ons in ref f the fun Spurious Pol V/h V H V V H V V H V V H V V V	74.0 estricted bar damental. 5 Emissions 15.209 Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	-28.3 nds, the limi s, 1000 - 10 / 15.247 Margin -12.2 -12.8 -12.3 -15.3 -15.4 -18.7 -18.8 -21.4 -21.8	PK t of 15.209 w 000 MHz. C Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	0 ras used. Fo enter Chann Azimuth degrees 0 360 360 360 360 360 360 360 360 0	1.0 r all other e nel @ 915 N Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ЛНz	e limit was set 30dB be
2713.035 Note 1: Spurious I Frequency MHz 4569.350 4574.798 2744.835 3660.968 2744.835 2744.835 2744.760 4574.798 4569.350 2744.760	45.7 For emissi the level o Radiated S Emissions Level dBμV/m 41.9 41.8 61.2 38.7 38.7 35.3 35.2 52.7 52.2 50.3	V ons in re f the fun Spurious Pol V/h V H V V H V H V H H V H	74.0 estricted bar damental. 5 Emissions 15.209 Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	-28.3 nds, the limi s, 1000 - 10 / 15.247 Margin -12.2 -12.8 -15.3 -15.4 -18.7 -18.8 -21.4 -21.8 -21.4 -21.8 -23.7	PK t of 15.209 w 0000 MHz. C Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG PK PK PK PK	0 ras used. Fo enter Chann Azimuth degrees 0 360 360 360 360 360 360 360 360 360 3	1.0 r all other e nel @ 915 N Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ЛНz	e limit was set 30dB be
2713.035 Note 1: Run #1b: Spurious I Frequency	45.7 For emissi the level o Radiated S Emissions Level dBμV/m 41.9 41.8 61.2 38.7 38.7 35.3 35.2 52.7 52.2 50.3 50.1	V ons in ref f the fun Spurious Pol V/h V H V V H V V H V V H V V V	74.0 estricted bar damental. 5 Emissions 15.209 Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	-28.3 nds, the limi s, 1000 - 10 / 15.247 Margin -12.2 -12.8 -12.3 -15.3 -15.4 -18.7 -18.8 -21.4 -21.8	PK t of 15.209 w 000 MHz. C Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	0 ras used. Fo enter Chann Azimuth degrees 0 360 360 360 360 360 360 360 360 0	1.0 r all other e nel @ 915 N Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	ЛНz	e limit was set 30dB be

	Ellic	ott						EM	C Test Data
Client:	Microwave		stems					Job Number:	J63298
							T-L	_og Number:	T63365
Model:	Mercury P	roject					Accou	int Manager:	Esther Zhu
Contact:	Rich							0	
	FCC 15.24	17 / FCC	15 B					Class:	N/A
opoo.			-						
un #1c:	Radiated S	purious	Emissions	, 1000 - 10	000 MHz. H	igh Channel	@ 926 MH	lz	
	missions		1 - 000						
requency		Pol	15.209 /		Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
630.623	41.8	H	54.0	-12.2	AVG	360	1.0		
630.675	41.8	V	54.0	-12.2	AVG	360	1.0		
705.043	38.8 38.8	H V	54.0 54.0	-15.2 -15.2	AVG AVG	360 0	1.0 1.0		
704.615	38.8 35.1	V H	54.0 54.0	-15.2	AVG	360	1.0	+	
776.808	35.1	п V	54.0 54.0	-18.9	AVG	0	1.0		
630.623	53.3	H	74.0	-20.7	PK	360	1.0		
630.675	52.8	V	74.0	-20.7	PK	360	1.0	1	
705.043	50.0	Ĥ	74.0	-24.0	PK	360	1.0		
704.615	49.5	V	74.0	-24.5	PK	0	1.0		
776.950	46.4	H	74.0	-27.6	PK	360	1.0		
776.808	46.0	V	74.0	-28.0	PK	0	1.0		
ote 1:	For emissi the level o			ds, the lim	it of 15.209 w	as used. Fo	r all other e	emissions, the	e limit was set 30dB belo
ote 1:				ds, the lim	it of 15.209 w	as used. Fo	r all other e	emissions, the	e limit was set 30dB bel

	EIVI	C Test Data
/icrowave Data Systems	Job Number:	J63298
Arroury Project	T-Log Number:	T63365
	Account Manager:	Esther Zhu
Rich		
CC 15.247 / FCC 15 B	Class:	N/A
	Aicrowave Data Systems Mercury Project Rich FCC 15.247 / FCC 15 B	Aicrowave Data Systems Job Number: Aercury Project T-Log Number: Account Manager: Rich

FCC 15.247 DTS - Transmitter Radiated Spurious Emissions 9dBd Yagi Antenna

Test Specifics

111

. .

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: See Individual Run Test Engineer: See Individual Run Test Location: See Individual Run Config. Used: 1 Config Change: None EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
38719	Radiated Spurious Emissions, 30MHz - 10GHz, Tx antenna Horizontal and Vertical	FCC Part 15.209 / 15.247(c)	Pass	52.9dBµV/m (443.6µV/m) @ 2711.3MHz (-1.1dB)

Modifications Made During Testing:

Modifications are detailed under each run description.

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client: Microwave Data Systems Job Number: J63298 Model: Mercury Project T-Log Number: T63365 Account Manager: Esther Zhu Contact: Rich Cliass: NA Spec: FCC 15.247 / FCC 15 B Class: NA Run #1: Radiated Spurious Emissions, 30MHz - 10GHz Run #1a: Radiated Spurious Emissions, 1000 - 10000MHz. Low Channel @ 904 MHz Date of Test: 3/24/2006 Test Engineer: Chris Byleckie Test Engineer: Chris Byleckie Test Location: SVOATS #1 Temperature: 19 °C Rel. Humidity: 54 % MDS Log Periodic Tx antenna horizontal Max. Pout Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dbu//m V/h Limit Margin PK/QP/Avg degrees meters 2711.300 70.2 H 74.0 -5.6 AVG 2.0 2711.300 2.0 2711.300 2.0 2711.300	E	Ellic	ott						EM	C Test Data
Model: Mercury Project Account Manager: Esther Zhu Contact: Rich Class: N/A Spec: FCC 15.247 / FCC 15 B Class: N/A Run #1: Radiated Spurious Emissions, 30MHz - 10GHz Cuass: N/A Run #1a: Radiated Spurious Emissions, 1000 - 10000MHz. Low Channel @ 904 MHz Date of Test: 3/24/2006 Test Engineer: Chris Byleckie Temperature: 19 °C Rel. Humidity: 54 % MDS Log Periodic Tx antenna horizontal Max. Pout Spurious Emissions Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/m Limit Margin PK/QP/Avg degrees meters 2711.300 52.9 H 54.0 -1.1 AVG 300 2.0 2709.500 48.4 V 54.0 -5.6 AVG 205 1.0 2709.500 3614.000 47.3 V 54.0 -7.2 AVG 0 1.0				ystems				J	lob Number:	J63298
Account Manager: Estner 2 nu Contact: Rich	Madal	M	!4					T-L	og Number:	T63365
Spec: FCC 15.247 / FCC 15 B Class: N/A Run #1: Radiated Spurious Emissions, 300Hz - 10GHz Run #1a: Radiated Spurious Emissions, 1000 - 10000MHz. Low Channel @ 904 MHz Date of Test: 3/24/2006 Test Engineer: Chris Byleckie Test Location: SVOATS #1 Temperature: 19 °C Rel. Humidity: 54 % MDS Log Periodic Tx antenna horizontal Max. Pout Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2711.300 52.9 H 54.0 -1.1 AVG 300 2.0 2709.500 48.4 V 54.0 -5.6 AVG 205 1.0 3614.050 47.3 V 54.0 -6.6 PK 205 1.0 3614.050 45.4 -7.2 AVG 0 1.0 3614.050 45.4 -7.2 AVG 0 1.0 3614.050 <td>Model:</td> <td>Mercury P</td> <td>roject</td> <td></td> <td></td> <td></td> <td></td> <td>Accou</td> <td>nt Manager:</td> <td>Esther Zhu</td>	Model:	Mercury P	roject					Accou	nt Manager:	Esther Zhu
Run #1: Radiated Spurious Emissions, 300Hz - 10GHz Run #1a: Radiated Spurious Emissions, 1000 - 10000MHz. Low Channel @ 904 MHz Date of Test: 3/24/2006 Test Engineer: Chris Byleckie Test Location: SVOATS #1 Temperature: 19 °C Rel. Humidity: 54 % MDS Log Periodic Tx antenna horizontal Max. Pout Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2711.300 52.9 H 54.0 -1.1 AVG 300 2.0 27011.00 20.0 2709.500 67.4 V 74.0 -3.8 PK 300 2.0 2709.500 67.4 V 74.0 -6.6 PK 205 1.0 3614.000 3614.000 46.8 H 54.0 -7.2 AVG 0 1.0 3614.000 46.8 H 54.0 -7.2 AVG 0 1.0 361	Contact:	Rich								
Run #1a: Radiated Spurious Emissions, 1000 - 10000MHz. Low Channel @ 904 MHz Date of Test: 3/24/2006 Test Engineer: Chris Byleckie Test Location: SVOATS #1 Temperature: 19 °C Rel. Humidity: 54 % MDS Log Periodic Tx antenna horizontal Max. Pout Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2711.300 52.9 H 54.0 -1.1 AVG 300 2.0 2711.300 70.2 H 74.0 -3.8 PK 300 2.0 2709.500 67.4 V 74.0 -6.6 PK 205 1.0 3614.000 46.8 H 54.0 -7.2 AVG 0 1.0 3614.000 46.8 H 54.0 -7.2 AVG 0 1.0 4521.900 452.1 V <	Spec:	FCC 15.24	17 / FCC	; 15 B					Class:	N/A
Date of Test: 3/24/2006 Test Engineer: Chris Byleckie Test Location: SVOATS #1 Temperature: 19 °C Rel. Humidity: 54 % MDS Log Periodic Tx antenna horizontal Max. Pout Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin PK/QP/Avg degrees meters	Run #1: Ra	adiated Sp	ourious	Emissions,	30MHz - 1	0GHz		L.		
Test Engineer: Chris Byleckie Test Location: SVOATS #1 Temperature: 19 °C Rel. Humidity: 54 % MDS Log Periodic Tx antenna horizontal Max. Pout Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2711.300 52.9 H 54.0 -1.1 AVG 300 2.0 2709.500 48.4 V 54.0 -5.6 AVG 205 1.0 2709.500 67.4 V 74.0 -6.6 PK 205 1.0 3614.050 47.3 V 54.0 -7.2 AVG 0 1.0 3614.050 64.5 V 74.0 -9.5 PK 250 1.0 3614.050 64.5 V 74.0 -9.5 PK 250 1.0 3614.050 64.5 V 74.0 -9.5 PK 250 1.0 3614.050 64.5 V <td>Run #1a: F</td> <td>Radiated S</td> <td>purious</td> <td>s Emissions</td> <td>s, 1000 - 10</td> <td>000MHz. Lo</td> <td>w Channel</td> <td>@ 904 MHz</td> <td>2</td> <td></td>	Run #1a: F	Radiated S	purious	s Emissions	s, 1000 - 10	000MHz. Lo	w Channel	@ 904 MHz	2	
Rel. Humidity: 54 % MDS Log Periodic Tx antenna horizontal Max. Pout Spurious Emissions Frequency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2711.300 52.9 H 54.0 -1.1 AVG 300 2.0 2711.300 70.2 H 74.0 -3.8 PK 300 2.0 2709.500 48.4 V 54.0 -5.6 AVG 205 1.0 2709.500 67.4 V 74.0 -6.6 PK 205 1.0 3614.050 47.3 V 54.0 -7.2 AVG 0 1.0 3614.000 67.0 H 74.0 -7.2 AVG 0 1.0 3614.050 46.5 V 74.0 -9.5 PK 250 1.0 3614.000 64.5 V 74.0 -9.5 PK 250 1.0 4518	Test	Engineer:	Chris By	leckie						
Rel. Humidity: 54 % MDS Log Periodic Tx antenna horizontal Max. Pout Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2711.300 52.9 H 54.0 -1.1 AVG 300 2.0 2711.300 70.2 H 74.0 -3.8 PK 300 2.0 2709.500 48.4 V 54.0 -5.6 AVG 205 1.0 2709.500 67.4 V 74.0 -6.6 PK 205 1.0 3614.050 47.3 V 54.0 -7.2 AVG 0 1.0 3614.000 67.0 H 74.0 -7.2 AVG 0 1.0 3614.050 45.3 V 74.0 -9.5 PK 250 1.0 3614.000 46.8 H 54.0 -7.2 AVG 0 1.0 451				То	mnoraturo:	10	ംറ			
MDS Log Periodic Tx antenna horizontal Max. Pout Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2711.300 52.9 H 54.0 -1.1 AVG 300 2.0 2711.300 70.2 H 74.0 -3.8 PK 300 2.0 2709.500 48.4 V 54.0 -5.6 AVG 205 1.0 2709.500 67.4 V 74.0 -6.6 PK 205 1.0 3614.050 47.3 V 54.0 -6.8 AVG 250 1.0 3614.000 67.0 H 74.0 -7.0 PK 0 1.0 3614.000 46.8 H 54.0 -7.2 AVG 0 1.0 4521.900 42.2 H 54.0										
Max. Pout Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2711.300 52.9 H 54.0 -1.1 AVG 300 2.0 2711.300 70.2 H 74.0 -3.8 PK 300 2.0 2709.500 48.4 V 54.0 -5.6 AVG 205 1.0 2709.500 67.4 V 74.0 -6.6 PK 205 1.0 3614.050 47.3 V 54.0 -7.2 AVG 0 1.0 3614.000 67.0 H 74.0 -7.2 AVG 0 1.0 3614.000 46.8 H 54.0 -7.2 AVG 0 1.0 4521.900 42.2 H 54.0 -11.8 AVG						04				
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2711.300 52.9 H 54.0 -1.1 AVG 300 2.0 2711.300 70.2 H 74.0 -3.8 PK 300 2.0 2709.500 48.4 V 54.0 -5.6 AVG 205 1.0 2709.500 67.4 V 74.0 -6.6 PK 205 1.0 3614.050 47.3 V 54.0 -6.8 AVG 250 1.0 3614.000 67.0 H 74.0 -7.0 PK 0 1.0 3614.000 46.8 H 54.0 -7.2 AVG 0 1.0 3614.000 42.2 H 54.0 -11.8 AVG 360 1.0 4521.900 42.2 H <td>Max. Pout</td> <td></td> <td>antenn</td> <td>a horizonta</td> <td>l</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Max. Pout		antenn	a horizonta	l					
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 2711.300 52.9 H 54.0 -1.1 AVG 300 2.0 2711.300 70.2 H 74.0 -3.8 PK 300 2.0 2709.500 48.4 V 54.0 -5.6 AVG 205 1.0 2709.500 67.4 V 74.0 -6.6 PK 205 1.0 2709.500 67.4 V 74.0 -6.6 PK 205 1.0 3614.050 47.3 V 54.0 -6.8 AVG 250 1.0 3614.000 67.0 H 74.0 -7.0 PK 0 1.0 3614.050 64.5 V 74.0 -9.5 PK 250 1.0 3614.050 64.5 V 74.0 -9.5 PK 250 1.0 4521.900 42.2 H 54.0			Pol	15.209/	15.247	Detector	Azimuth	Height	Comments	
2711.300 52.9 H 54.0 -1.1 AVG 300 2.0 2711.300 70.2 H 74.0 -3.8 PK 300 2.0 2709.500 48.4 V 54.0 -5.6 AVG 205 1.0 2709.500 67.4 V 74.0 -6.6 PK 205 1.0 2709.500 67.4 V 74.0 -6.6 PK 205 1.0 3614.050 47.3 V 54.0 -6.8 AVG 250 1.0 3614.000 67.0 H 74.0 -7.2 AVG 0 1.0 3614.000 46.8 H 54.0 -7.2 AVG 0 1.0 3614.050 64.5 V 74.0 -9.5 PK 250 1.0 4521.900 42.2 H 54.0 -11.8 AVG 360 1.0 4521.900 53.9 H 74.0 -20.1 PK 360 1.0 4518.898 53.0 V 74.0								1	20	
2711.300 70.2 H 74.0 -3.8 PK 300 2.0 2709.500 48.4 V 54.0 -5.6 AVG 205 1.0 2709.500 67.4 V 74.0 -6.6 PK 205 1.0 3614.050 47.3 V 54.0 -6.8 AVG 250 1.0 3614.000 67.0 H 74.0 -7.0 PK 0 1.0 3614.000 46.8 H 54.0 -7.2 AVG 0 1.0 3614.000 46.8 H 54.0 -7.2 AVG 0 1.0 3614.050 64.5 V 74.0 -9.5 PK 250 1.0 4521.900 42.2 H 54.0 -11.8 AVG 360 1.0 4521.900 53.9 H 74.0 -20.1 PK 360 1.0 4521.900 53.9 H 74.0 -21.0 PK 0 1.0 For emissions in restricted bands, the limit of 15.209 was used. Fo										
2709.500 48.4 V 54.0 -5.6 AVG 205 1.0 2709.500 67.4 V 74.0 -6.6 PK 205 1.0 3614.050 47.3 V 54.0 -6.8 AVG 250 1.0 3614.000 67.0 H 74.0 -7.0 PK 0 1.0 3614.000 67.0 H 74.0 -7.2 AVG 0 1.0 3614.000 46.8 H 54.0 -7.2 AVG 0 1.0 3614.000 46.5 V 74.0 -9.5 PK 250 1.0 3614.050 64.5 V 74.0 -9.5 PK 250 1.0 4521.900 42.2 H 54.0 -11.8 AVG 360 1.0 4521.900 53.9 H 74.0 -20.1 PK 360 1.0 4518.898 53.0 V 74.0 -21.0 PK 0 1.0										
2709.500 67.4 V 74.0 -6.6 PK 205 1.0 3614.050 47.3 V 54.0 -6.8 AVG 250 1.0 3614.000 67.0 H 74.0 -7.0 PK 0 1.0 3614.000 67.0 H 74.0 -7.0 PK 0 1.0 3614.000 46.8 H 54.0 -7.2 AVG 0 1.0 3614.050 64.5 V 74.0 -9.5 PK 250 1.0 3614.050 64.5 V 74.0 -9.5 PK 250 1.0 4521.900 42.2 H 54.0 -11.8 AVG 360 1.0 4518.898 42.1 V 54.0 -12.0 AVG 0 1.0 4518.898 53.0 V 74.0 -20.1 PK 360 1.0		48.4	V	54.0	-5.6	AVG	205	1.0		
3614.000 67.0 H 74.0 -7.0 PK 0 1.0 3614.000 46.8 H 54.0 -7.2 AVG 0 1.0 3614.050 64.5 V 74.0 -9.5 PK 250 1.0 4521.900 42.2 H 54.0 -11.8 AVG 360 1.0 4518.898 42.1 V 54.0 -12.0 AVG 0 1.0 4521.900 53.9 H 74.0 -20.1 PK 360 1.0 4521.898 53.0 V 74.0 -21.0 PK 0 1.0	2709.500	67.4	V	74.0		PK	205	1.0		
3614.000 46.8 H 54.0 -7.2 AVG 0 1.0 3614.050 64.5 V 74.0 -9.5 PK 250 1.0 4521.900 42.2 H 54.0 -11.8 AVG 360 1.0 4518.898 42.1 V 54.0 -12.0 AVG 0 1.0 4521.900 53.9 H 74.0 -20.1 PK 360 1.0 4521.898 53.0 V 74.0 -21.0 PK 0 1.0	3614.050	47.3	V	54.0	-6.8	AVG	250	1.0		
3614.050 64.5 V 74.0 -9.5 PK 250 1.0 4521.900 42.2 H 54.0 -11.8 AVG 360 1.0 4518.898 42.1 V 54.0 -12.0 AVG 0 1.0 4521.900 53.9 H 74.0 -20.1 PK 360 1.0 4518.898 53.0 V 74.0 -21.0 PK 0 1.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB backstream set 3	3614.000	67.0	Н	74.0	-7.0	PK	0	1.0		
4521.900 42.2 H 54.0 -11.8 AVG 360 1.0 4518.898 42.1 V 54.0 -12.0 AVG 0 1.0 4521.900 53.9 H 74.0 -20.1 PK 360 1.0 4518.898 53.0 V 74.0 -21.0 PK 0 1.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB bar	3614.000	46.8	Н	54.0	-7.2	AVG	0	1.0		
4518.898 42.1 V 54.0 -12.0 AVG 0 1.0 4521.900 53.9 H 74.0 -20.1 PK 360 1.0 4518.898 53.0 V 74.0 -21.0 PK 0 1.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB be	3614.050	64.5	V	74.0	-9.5	PK	250	1.0		
4521.900 53.9 H 74.0 -20.1 PK 360 1.0 4518.898 53.0 V 74.0 -21.0 PK 0 1.0 Interview of the second	4521.900	42.2	Н	54.0	-11.8	AVG	360	1.0		
4518.898 53.0 V 74.0 -21.0 PK 0 1.0 Inter the second secon	4518.898	42.1		54.0	-12.0	AVG		1.0		
For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB be										
	4518.898	53.0	V	74.0	-21.0	PK	0	1.0		
					ds, the limi	t of 15.209 w	as used. Fo	r all other e	missions, the	e limit was set 30dB belo

Client:	Microwave	e Data S	ystems					Job Number:	J63298
Madal	Manager 6						T-L	og Number:	T63365
Model:	Mercury P	roject					Accou	int Manager:	Esther Zhu
Contact:	Rich								
Spec:	FCC 15.24	47 / FCC	15 B					Class:	N/A
Run #1b:	Radiated S	Spurious	s Emission	s, 1000 - 10)000 MHz. C	enter Chanr	nel @ 915 N	MHz	
	missions								
Frequency		Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
4575.683	42.0	Н	54.0	-12.1	AVG	0	1.0		
4573.598	40.1	V	54.0	-13.9	AVG	360	1.0		
3661.380	38.9	H	54.0	-15.1	AVG	0	1.0		
3659.858	38.9	V	54.0	-15.1	AVG	0	1.0		
2744.288	35.7	V	54.0	-18.3	AVG	360	1.0		
2740.250	35.4	H	54.0	-18.6	AVG	35	1.0		
4575.683	53.3	H	74.0	-20.7	PK	0	1.0		
4573.598	51.1	V	74.0	-22.9	PK	360	1.0		
0050 050			// ()	-24.1	PK	0	1.0		
	49.9	V	74.0			0			
3659.858 3661.380	49.8	Н	74.0	-24.2	PK	0	1.0		
3661.380 2740.250 2744.288	49.8 47.6 46.2	H H V	74.0 74.0 74.0	-24.2 -26.4 -27.9	PK PK PK	35 360	1.0 1.0 1.0	missions, the	e limit was set 30dB
3661.380 2740.250 2744.288 Note 1: Run #1c: I	49.8 47.6 46.2 For emiss the level o	H H V ions in re	74.0 74.0 74.0 estricted bar damental.	-24.2 -26.4 -27.9 nds, the lim	PK PK PK	35 360 as used. Fo	1.0 1.0 1.0 r all other e		e limit was set 30dB
3661.380 2740.250 2744.288 Note 1: Run #1c: I Spurious E	49.8 47.6 46.2 For emiss the level o Radiated S Emissions	H H V ions in re if the fun	74.0 74.0 74.0 estricted bar damental.	-24.2 -26.4 -27.9 nds, the lim s, 1000 - 10	PK PK It of 15.209 w	35 360 as used. Fo igh Channel	1.0 1.0 1.0 r all other e	lz	e limit was set 30dB
3661.380 2740.250 2744.288 Note 1: Run #1c: I Spurious E Frequency	49.8 47.6 46.2 For emiss the level o Radiated S Emissions Level	H H V ions in re f the fun Spurious Pol	74.0 74.0 74.0 estricted bar damental. 5 Emissions 15.209	-24.2 -26.4 -27.9 nds, the lim s, 1000 - 10 / 15.247	PK PK PK it of 15.209 w 0000 MHz. H	35 360 as used. Fo igh Channel Azimuth	1.0 1.0 1.0 r all other e		e limit was set 30dB
3661.380 2740.250 2744.288 Note 1: Run #1c: I Spurious E Frequency MHz	49.8 47.6 46.2 For emiss the level o Radiated S Emissions Level dBμV/m	H H V ions in re f the fun Spurious Pol V/h	74.0 74.0 74.0 estricted bar damental. 5 Emissions 15.209 Limit	-24.2 -26.4 -27.9 nds, the lim s, 1000 - 10 / 15.247 Margin	PK PK PK it of 15.209 w 0000 MHz. H Detector Pk/QP/Avg	35 360 as used. Fo igh Channel Azimuth degrees	1.0 1.0 1.0 r all other e I @ 926 MH Height meters	lz	e limit was set 30dB
3661.380 2740.250 2744.288 Note 1: Run #1c: I Spurious E Frequency MHz 4630.143	49.8 47.6 46.2 For emiss the level of Radiated S Emissions Level dBμV/m 41.9	H H V fons in re f the fun Spurious Pol V/h V	74.0 74.0 74.0 estricted bar damental. 5 Emissions 15.209 Limit 54.0	-24.2 -26.4 -27.9 nds, the lim s, 1000 - 10 / 15.247 Margin -12.2	PK PK PK it of 15.209 w D000 MHz. H Detector Pk/QP/Avg AVG	35 360 as used. Fo igh Channel Azimuth degrees 360	1.0 1.0 1.0 r all other e I @ 926 MH Height Height 1.0	lz	e limit was set 30dB
3661.380 2740.250 2744.288 Note 1: Run #1c: I Spurious E Frequency MHz 4630.143 4630.548	49.8 47.6 46.2 For emiss the level of Radiated S Emissions Level dBμV/m 41.9 41.8	H H V ions in re f the fun Spurious Pol V/h V H	74.0 74.0 74.0 estricted bar damental. 5 Emissions 15.209 Limit 54.0 54.0	-24.2 -26.4 -27.9 nds, the lim s, 1000 - 10 / 15.247 Margin -12.2 -12.2	PK PK PK it of 15.209 w D000 MHz. H Detector Pk/QP/Avg AVG AVG	35 360 as used. Fo igh Channel Azimuth degrees 360 360	1.0 1.0 1.0 r all other e 0 926 MH Height meters 1.0 1.0	lz	e limit was set 30dB
3661.380 2740.250 2744.288 Note 1: Run #1c: I Spurious E Frequency MHz 4630.143 4630.548 3704.383	49.8 47.6 46.2 For emiss the level of Radiated S Emissions Level dBμV/m 41.9 41.8 38.9	H H V ions in re f the fun Spurious Spurious V V H H H	74.0 74.0 74.0 estricted bar damental. 5 Emissions 15.209 Limit 54.0 54.0 54.0	-24.2 -26.4 -27.9 nds, the lim s, 1000 - 10 / 15.247 Margin -12.2 -12.2 -15.1	PK PK PK it of 15.209 w D000 MHz. H Detector Pk/QP/Avg AVG AVG AVG	35 360 as used. Fo igh Channel Azimuth degrees 360 360 360	1.0 1.0 1.0 r all other e 1 @ 926 MH Height Height 1.0 1.0 1.0	lz	e limit was set 30dB
3661.380 2740.250 2744.288 Note 1: Run #1c: I Spurious E Frequency MHz 4630.143 4630.548 3704.383 3704.203	49.8 47.6 46.2 For emiss the level of Radiated S Emissions Level dBμV/m 41.9 41.8 38.9 38.9	H H V Spurious Pol V/h V H H V	74.0 74.0 74.0 estricted bar damental. 5 Emissions 15.209 Limit 54.0 54.0 54.0 54.0 54.0	-24.2 -26.4 -27.9 nds, the lim s, 1000 - 10 / 15.247 Margin -12.2 -12.2 -15.1 -15.1	PK PK PK it of 15.209 w Dotector Pk/QP/Avg AVG AVG AVG AVG AVG	35 360 as used. Fo igh Channel Azimuth degrees 360 360 360 360	1.0 1.0 1.0 r all other e 1 @ 926 MH Height meters 1.0 1.0 1.0 1.0	lz	e limit was set 30dB
3661.380 2740.250 2744.288 Note 1: Run #1c: I Spurious E Frequency MHz 4630.143 4630.548 3704.383 3704.203 2777.370	49.8 47.6 46.2 For emiss the level of Radiated S Emissions Level dBμV/m 41.9 41.8 38.9 38.9 38.9 35.2	H H V Spurious Pol V/h V H H H V V	74.0 74.0 74.0 estricted bar damental. 5 Emissions 15.209 Limit 54.0 54.0 54.0 54.0 54.0 54.0	-24.2 -26.4 -27.9 nds, the lim s, 1000 - 10 / 15.247 Margin -12.2 -12.2 -15.1 -15.1 -15.1 -18.8	PK PK PK it of 15.209 w Dotector Pk/QP/Avg AVG AVG AVG AVG AVG AVG	35 360 as used. Fo igh Channel Azimuth degrees 360 360 360 360 0	1.0 1.0 1.0 r all other e 0 926 MH Height Meters 1.0 1.0 1.0 1.0 1.0	lz	e limit was set 30dB
3661.380 2740.250 2744.288 Note 1: Run #1c: I Spurious E Frequency MHz 4630.143 4630.548 3704.383 3704.203 2777.370 2777.340	49.8 47.6 46.2 For emiss the level of Radiated S Emissions Level dBμV/m 41.9 41.8 38.9 35.2 35.2	H H V ions in re f the fun Spurious Spurious V V H H V V H H V V H	74.0 74.0 74.0 estricted bar damental. 5 Emissions 15.209 Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0	-24.2 -26.4 -27.9 nds, the lim s, 1000 - 10 / 15.247 Margin -12.2 -12.2 -15.1 -15.1 -18.8 -18.8	PK PK PK it of 15.209 w Dotector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG	35 360 as used. Fo igh Channel Azimuth degrees 360 360 360 360 0 360	1.0 1.0 1.0 r all other e 0 926 MH Height Meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0	lz	e limit was set 30dB
3661.380 2740.250 2744.288 Note 1: Run #1c: I Spurious E Frequency MHz 4630.143 4630.548 3704.383 3704.203 2777.370 2777.370 4630.548	49.8 47.6 46.2 For emiss the level of Radiated S Emissions Level dBμV/m 41.9 41.8 38.9 35.2 35.2 53.6	H H V ions in re f the fun Spurious Pol V/h V H H V V H H V V H H H	74.0 74.0 74.0 estricted bar damental. 5 Emissions 15.209 Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	-24.2 -26.4 -27.9 nds, the lim s, 1000 - 10 / 15.247 Margin -12.2 -12.2 -15.1 -15.1 -15.1 -18.8 -18.8 -20.4	PK PK PK it of 15.209 w Dotector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	35 360 as used. Fo igh Channel Azimuth degrees 360 360 360 360 360 360 360 360 360	1.0 1.0 1.0 r all other e 0 926 MH Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	lz	e limit was set 30dB
3661.380 2740.250 2744.288 Note 1: Run #1c: I Spurious E Frequency MHz 4630.143 4630.548 3704.383 3704.203 2777.370 2777.340 4630.548 4630.143	49.8 47.6 46.2 For emiss the level of missions Level dBμV/m 41.9 41.8 38.9 35.2 35.2 53.6 53.4	H H V Spurious Spurious Pol V/h V H H H V V H H H V V	74.0 74.0 74.0 estricted bar damental. 5 Emissions 15.209 Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 74.0 74.0	-24.2 -26.4 -27.9 nds, the lim s, 1000 - 10 / 15.247 Margin -12.2 -12.2 -15.1 -15.1 -15.1 -18.8 -18.8 -20.4 -20.6	PK PK PK it of 15.209 w Dotector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	35 360 as used. Fo igh Channel Azimuth degrees 360 360 360 360 360 360 360 360 360 360	1.0 1.0 1.0 r all other e 926 MH Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	lz	e limit was set 30dB
3661.380 2740.250 2744.288 Jote 1: Run #1c: I Spurious E Trequency MHz 4630.143 4630.548 3704.383 3704.203 2777.340 4630.548 4630.143 3704.383	49.8 47.6 46.2 For emiss the level of missions Level dBμV/m 41.9 41.8 38.9 38.9 35.2 35.2 53.6 53.4 50.3	H H V Spurious Spurious Pol V/h V H H V V H H H V V H H H H H	74.0 74.0 74.0 estricted bar damental. 5 Emissions 15.209 Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 74.0 74.0 74.0 74.0	-24.2 -26.4 -27.9 nds, the lim s, 1000 - 10 / 15.247 Margin -12.2 -12.2 -15.1 -15.1 -15.1 -18.8 -18.8 -20.4 -20.6 -23.7	PK PK PK it of 15.209 w Dotector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	35 360 as used. Fo igh Channel Azimuth degrees 360 360 360 360 360 360 360 360 360 360	1.0 1.0 1.0 r all other e 1 @ 926 MH Height Meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	lz	e limit was set 30dB
3661.380 2740.250 2744.288 Note 1: Run #1c: I Spurious E Frequency MHz 4630.143 4630.548 3704.203 2777.370 2777.340 4630.548 4630.143 3704.383 3704.203	49.8 47.6 46.2 For emisss the level of Radiated S Emissions Level dBμV/m 41.9 41.8 38.9 38.9 35.2 35.2 53.6 53.4 50.3 50.3	H H V Spurious Spurious Pol V/h V H H H V V H H V V H H V V V V V	74.0 74.0 74.0 estricted bar damental. Emissions 15.209 Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 74.0 74.0 74.0 74.0 74.0	-24.2 -26.4 -27.9 nds, the lim s, 1000 - 10 / 15.247 Margin -12.2 -12.2 -15.1 -15.1 -15.1 -18.8 -18.8 -20.4 -23.7 -23.8	PK PK PK it of 15.209 w Dotector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG AVG PK PK PK PK PK	35 360 as used. Fo igh Channel Azimuth degrees 360 360 360 360 360 360 360 360 360 360	1.0 1.0 1.0 r all other e 926 MH Height Meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	lz	e limit was set 30dB
3661.380 2740.250 2744.288 Note 1: Run #1c: I Spurious E Frequency MHz 4630.143 4630.548 3704.383 3704.203 2777.370 2777.370 2777.340 4630.548 4630.143 3704.203 2777.340	49.8 47.6 46.2 For emiss the level of Radiated S Emissions Level dBμV/m 41.9 41.8 38.9 35.2 35.2 35.2 53.6 53.4 50.3 50.3 47.8	H H V ions in re f the fun Spurious Spurious V V H H V H H V V H H V V H H V V H H V V H H V V	74.0 74.0 74.0 estricted bar damental. Emissions 15.209 Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 74.0 74.0 74.0 74.0 74.0 74.0	-24.2 -26.4 -27.9 nds, the lim s, 1000 - 10 / 15.247 Margin -12.2 -12.2 -15.1 -18.8 -18.8 -20.4 -20.6 -23.7 -23.8 -26.2	PK PK PK it of 15.209 w DOOO MHz. H Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG AVG PK PK PK PK PK PK	35 360 as used. Fo igh Channel Azimuth degrees 360 360 360 360 360 360 360 360 360 360	1.0 1.0 1.0 r all other e 0 926 MH Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	lz	e limit was set 30dB
3661.380 2740.250 2744.288 Note 1: Run #1c: I Spurious E Frequency MHz 4630.143 4630.548 3704.203 2777.370 2777.370 2777.340 4630.548 4630.143 3704.203 2777.340	49.8 47.6 46.2 For emisss the level of Radiated S Emissions Level dBμV/m 41.9 41.8 38.9 38.9 35.2 35.2 53.6 53.4 50.3 50.3	H H V Spurious Spurious Pol V/h V H H H V V H H V V H H V V V V V	74.0 74.0 74.0 estricted bar damental. Emissions 15.209 Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 74.0 74.0 74.0 74.0 74.0	-24.2 -26.4 -27.9 nds, the lim s, 1000 - 10 / 15.247 Margin -12.2 -12.2 -15.1 -15.1 -15.1 -18.8 -18.8 -20.4 -23.7 -23.8	PK PK PK it of 15.209 w Dotector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG AVG PK PK PK PK PK	35 360 as used. Fo igh Channel Azimuth degrees 360 360 360 360 360 360 360 360 360 360	1.0 1.0 1.0 r all other e 926 MH Height Meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	lz	e limit was set 30dB
3661.380 2740.250 2744.288 Note 1: Run #1c: I Spurious E Frequency MHz	49.8 47.6 46.2 For emiss the level of missions Level dBμV/m 41.9 41.8 38.9 35.2 35.2 53.6 53.4 50.3 50.3 47.8 47.1	H H V Spurious Spurious Pol V/h V H H V V H H V V H H V V H V V V H V V	74.0 74.0 74.0 estricted bar damental. Emissions 15.209 Limit 54.0 54.0 54.0 54.0 54.0 54.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0	-24.2 -26.4 -27.9 nds, the lim s, 1000 - 10 / 15.247 Margin -12.2 -12.2 -15.1 -15.1 -15.1 -18.8 -18.8 -20.4 -20.6 -23.7 -23.8 -26.2 -26.9	PK PK PK it of 15.209 w Dotector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG AVG PK PK PK PK PK PK PK	35 360 as used. Fo igh Channel Azimuth degrees 360 360 360 360 360 360 360 360 360 360	1.0 1.0 1.0 1.0 r all other e I @ 926 MH Height meters 1.0	Z Comments	e limit was set 30dB

	Microwave) Data S	ystems				J	lob Number:	J63298
							T-L	og Number:	T63365
Model:	Mercury P	roject					Accou	nt Manager:	Esther Zhu
Contact:	Rich								
Spec:	FCC 15.24	17 / FCC	15 B					Class:	N/A
Run #2: R	adiated Sp	ourious	Emissions,	30MHz - 10	0GHz				
		purious	Emissions	s, 1000 - 10	000MHz. Lo	w Channel (@ 904 MHz	2	
x antenn									
Max. Pout									
- requency	Emissions Level	Pol	15.209/	15 247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Commenta	
3615.753	49.4	H	54.0	-4.6	AVG	191	1.0		
3615.753	68.2	H	74.0	-5.8	PK	191	1.0		
2711.950	47.4	V	54.0	-6.6	AVG	191	1.0		
3615.895	47.0	V	54.0	-7.0	AVG	135	1.0		
3615.895	65.8	V	74.0	-8.2	PK	135	1.0		
2711.950	65.4	V	74.0	-8.6	PK	191	1.0		
2710.988	44.1	Н	54.0	-9.9	AVG	184	1.0		
4518.860	42.1	V	54.0	-11.9	AVG	0	1.0		
4518.703	42.1	Н	54.0	-11.9	AVG	0	1.0		
2710.988	60.4	Н	74.0	-13.6	PK	184	1.0		
4518.860	52.9	V	74.0	-21.1	PK	0	1.0		
4518.703	52.8	Н	74.0	-21.2	PK	0	1.0		
	For emissi	ions in re	stricted har	ds the limi	t of 15 209 w	as used Fo	r all other e	missions the	e limit was set 30dB be
Note 1:	the level o				101 10.200 W	43 4364. 10		1110010110, 111	
		n me ium	damentai						
		i the lun	damental.						
				, 1000 - 10	000 MHz. C	enter Chanr	nel @ 915 N	ЛНz	
Run #2b:				s, 1000 - 10	000 MHz. C	enter Chanr	nel @ 915 N	ЛНz	
Run #2b: Spurious I	Radiated S Emissions			-	000 MHz. C	enter Chanr Azimuth	n el @ 915 N Height	//Hz Comments	
Run #2b: Spurious I Frequency MHz	Radiated S Emissions Level dBµV/m	Spurious Pol v/h	s Emissions 15.209 / Limit	/ 15.247 Margin	Detector Pk/QP/Avg		Height meters		
Run #2b: Spurious I Frequency MHz 4575.743	Radiated S Emissions Level dBµV/m 41.5	Spurious Pol v/h H	s Emissions 15.209 / Limit 54.0	/ 15.247 Margin -12.5	Detector Pk/QP/Avg AVG	Azimuth degrees 0	Height meters 1.0		
Run #2b: Spurious I Frequency MHz 4575.743 4575.578	Radiated S Emissions Level dBμV/m 41.5 39.9	Spurious Pol v/h H V	5 Emissions 15.209 / Limit 54.0 54.0	/ 15.247 Margin -12.5 -14.1	Detector Pk/QP/Avg AVG AVG	Azimuth degrees 0 0	Height meters 1.0 1.0		
Run #2b: Spurious I Frequency MHz 4575.743 4575.578 3658.710	Radiated S missions Level dBµV/m 41.5 39.9 39.1	Spurious Pol V/h H V H	5 Emissions 15.209 / Limit 54.0 54.0 54.0	/ 15.247 Margin -12.5 -14.1 -14.9	Detector Pk/QP/Avg AVG AVG AVG	Azimuth degrees 0 0 135	Height meters 1.0 1.0 1.0		
Run #2b: Spurious I Frequency MHz 4575.743 4575.578 3658.710 3666.100	Radiated S Emissions Level dBμV/m 41.5 39.9 39.1 39.0	Spurious Pol v/h H V H V V V	5 Emissions 15.209 / Limit 54.0 54.0 54.0 54.0 54.0	/ 15.247 Margin -12.5 -14.1 -14.9 -15.0	Detector Pk/QP/Avg AVG AVG AVG AVG	Azimuth degrees 0 0 135 360	Height meters 1.0 1.0 1.0 1.0		
Run #2b: Spurious I Frequency MHz 4575.743 4575.578 3658.710 3666.100 2745.930	Radiated S Emissions Level dBμV/m 41.5 39.9 39.1 39.0 35.5	Pol V/h H V H V H	5 Emissions 15.209 / Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0	/ 15.247 Margin -12.5 -14.1 -14.9 -15.0 -18.5	Detector Pk/QP/Avg AVG AVG AVG AVG AVG	Azimuth degrees 0 0 135 360 0	Height meters 1.0 1.0 1.0 1.0 1.0		
Run #2b: purious I requency MHz 4575.743 4575.578 3658.710 3666.100 2745.930 2745.608	Radiated S Emissions Level dBμV/m 41.5 39.9 39.1 39.0 35.5 35.4	Pol V/h H V H V H V V	5 Emissions 15.209 / Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	/ 15.247 Margin -12.5 -14.1 -14.9 -15.0 -18.5 -18.6	Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG	Azimuth degrees 0 0 135 360 0 0	Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0		
Run #2b: purious I requency MHz 4575.743 4575.578 3658.710 3666.100 2745.930 2745.608 4575.578	Radiated S missions Level dBμV/m 41.5 39.9 39.1 39.0 35.5 35.4 52.1	Pol V/h H V H V H V V V V V	5 Emissions 15.209 / Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 74.0	/ 15.247 Margin -12.5 -14.1 -14.9 -15.0 -18.5 -18.6 -21.9	Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG PK	Azimuth degrees 0 0 135 360 0 0 0 0 0	Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0		
Run #2b: purious I requency MHz 4575.743 4575.578 3658.710 3666.100 2745.930 2745.608 4575.578 4575.743	Radiated S missions Level dBμV/m 41.5 39.9 39.1 39.0 35.5 35.4 52.1 52.0	Pol V/h H V H V H V H V H V H	5 Emissions 15.209 / Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 74.0 74.0 74.0	/ 15.247 Margin -12.5 -14.1 -14.9 -15.0 -18.5 -18.6 -21.9 -22.0	Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG PK PK	Azimuth degrees 0 0 135 360 0 0 0 0 0 0	Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		
Run #2b: Spurious I Frequency MHz 4575.743 4575.578 3658.710 3666.100 2745.930 2745.608 4575.578 4575.743 3658.710	Radiated S missions Level dBμV/m 41.5 39.9 39.1 39.0 35.5 35.4 52.1 52.0 50.2	Pol V/h H V H V H V H V H H H	54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	/ 15.247 Margin -12.5 -14.1 -14.9 -15.0 -18.5 -18.6 -21.9 -22.0 -23.8	Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG PK PK PK	Azimuth degrees 0 0 135 360 0 0 0 0 0 0 135	Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		
Run #2b: Spurious I Frequency	Radiated S missions Level dBμV/m 41.5 39.9 39.1 39.0 35.5 35.4 52.1 52.0	Pol V/h H V H V H V H V H V H	5 Emissions 15.209 / Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 74.0 74.0 74.0	/ 15.247 Margin -12.5 -14.1 -14.9 -15.0 -18.5 -18.6 -21.9 -22.0	Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG PK PK	Azimuth degrees 0 0 135 360 0 0 0 0 0 0	Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		

	Ellic		ystems					Job Number:	J63298
			·				T-L	og Number:	T63365
Model:	Mercury P	roject					Accou	int Manager:	Esther Zhu
Contact:									
Spec:	FCC 15.24	7 / FCC	15 B					Class:	N/A
		purious	Emissions	s, 1000 - 10	000 MHz. H	igh Channel	@ 926 MH	z	
	missions	D	45.000			A : (1			
equency		Pol	15.209 /		Detector	Azimuth	Height	Comments	
MHz 630.428	dBµV/m 41.8	v/h H	Limit 54.0	Margin -12.2	Pk/QP/Avg AVG	degrees 360	meters 1.0		
630.428 629.738	41.8	н Н	54.0 54.0	-12.2	AVG	360	1.0		
704.008	38.8	H	54.0 54.0	-12.2	AVG	360	1.0		
04.000 703.588	38.8	H	54.0	-15.2	AVG	360	1.0		
77.948	35.2	H	54.0	-18.8	AVG	360	1.0	1	
76.755	35.2	H	54.0	-18.8	AVG	360	1.0		
	53.2	H	74.0	-20.8	PK	360	1.0	1	
29.738		H	74.0	-21.6	PK	360	1.0	1	
	52.4	п		-				1	
630.428	52.4 49.8	H	74.0	-24.2	PK	360	1.0		
30.428 04.008				-24.2 -24.5	PK PK	360 360	1.0 1.0		
530.428 704.008 703.588	49.8	Н	74.0						
629.738 630.428 704.008 703.588 777.948 776.755 ote 1:	49.8 49.5 46.2 45.9	H H H Ons in re	74.0 74.0 74.0 74.0 stricted ban	-24.5 -27.8 -28.2	PK PK PK	360 360 360	1.0 1.0 1.0	missions, the	e limit was set 30dB b
630.428 704.008 703.588 777.948 776.755	49.8 49.5 46.2 45.9 For emissi	H H H Ons in re	74.0 74.0 74.0 74.0 stricted ban	-24.5 -27.8 -28.2	PK PK PK	360 360 360	1.0 1.0 1.0	missions, the	e limit was set 30dB b
630.428 704.008 703.588 777.948 776.755	49.8 49.5 46.2 45.9 For emissi	H H H Ons in re	74.0 74.0 74.0 74.0 stricted ban	-24.5 -27.8 -28.2	PK PK PK	360 360 360	1.0 1.0 1.0	missions, the	e limit was set 30dB b
630.428 704.008 703.588 777.948 776.755	49.8 49.5 46.2 45.9 For emissi	H H H Ons in re	74.0 74.0 74.0 74.0 stricted ban	-24.5 -27.8 -28.2	PK PK PK	360 360 360	1.0 1.0 1.0	missions, the	e limit was set 30dB b
630.428 704.008 703.588 777.948 776.755	49.8 49.5 46.2 45.9 For emissi	H H H Ons in re	74.0 74.0 74.0 74.0 stricted ban	-24.5 -27.8 -28.2	PK PK PK	360 360 360	1.0 1.0 1.0	missions, the	e limit was set 30dB b
30.428 704.008 703.588 777.948 776.755	49.8 49.5 46.2 45.9 For emissi	H H H Ons in re	74.0 74.0 74.0 74.0 stricted ban	-24.5 -27.8 -28.2	PK PK PK	360 360 360	1.0 1.0 1.0	missions, the	e limit was set 30dB b
30.428 04.008 03.588 77.948 76.755	49.8 49.5 46.2 45.9 For emissi	H H H Ons in re	74.0 74.0 74.0 74.0 stricted ban	-24.5 -27.8 -28.2	PK PK PK	360 360 360	1.0 1.0 1.0	missions, the	e limit was set 30dB b
30.428 04.008 03.588 77.948 76.755	49.8 49.5 46.2 45.9 For emissi	H H H Ons in re	74.0 74.0 74.0 74.0 stricted ban	-24.5 -27.8 -28.2	PK PK PK	360 360 360	1.0 1.0 1.0	missions, the	e limit was set 30dB b
30.428 04.008 03.588 77.948 76.755	49.8 49.5 46.2 45.9 For emissi	H H H Ons in re	74.0 74.0 74.0 74.0 stricted ban	-24.5 -27.8 -28.2	PK PK PK	360 360 360	1.0 1.0 1.0	missions, the	e limit was set 30dB b
30.428 04.008 03.588 77.948 76.755	49.8 49.5 46.2 45.9 For emissi	H H H Ons in re	74.0 74.0 74.0 74.0 stricted ban	-24.5 -27.8 -28.2	PK PK PK	360 360 360	1.0 1.0 1.0	missions, the	e limit was set 30dB b
30.428 04.008 03.588 77.948 76.755	49.8 49.5 46.2 45.9 For emissi	H H H Ons in re	74.0 74.0 74.0 74.0 stricted ban	-24.5 -27.8 -28.2	PK PK PK	360 360 360	1.0 1.0 1.0	missions, the	e limit was set 30dB b
30.428 04.008 03.588 77.948 76.755	49.8 49.5 46.2 45.9 For emissi	H H H Ons in re	74.0 74.0 74.0 74.0 stricted ban	-24.5 -27.8 -28.2	PK PK PK	360 360 360	1.0 1.0 1.0	missions, the	e limit was set 30dB b
30.428 04.008 03.588 77.948 76.755	49.8 49.5 46.2 45.9 For emissi	H H H Ons in re	74.0 74.0 74.0 74.0 stricted ban	-24.5 -27.8 -28.2	PK PK PK	360 360 360	1.0 1.0 1.0	missions, the	e limit was set 30dB b
30.428 04.008 03.588 77.948 76.755	49.8 49.5 46.2 45.9 For emissi	H H H Ons in re	74.0 74.0 74.0 74.0 stricted ban	-24.5 -27.8 -28.2	PK PK PK	360 360 360	1.0 1.0 1.0	missions, the	e limit was set 30dB b
30.428 04.008 03.588 77.948 76.755	49.8 49.5 46.2 45.9 For emissi	H H H Ons in re	74.0 74.0 74.0 74.0 stricted ban	-24.5 -27.8 -28.2	PK PK PK	360 360 360	1.0 1.0 1.0	missions, the	e limit was set 30dB b
30.428 04.008 03.588 77.948 76.755	49.8 49.5 46.2 45.9 For emissi	H H H Ons in re	74.0 74.0 74.0 74.0 stricted ban	-24.5 -27.8 -28.2	PK PK PK	360 360 360	1.0 1.0 1.0	missions, the	e limit was set 30dB b
630.428 704.008 703.588 777.948 776.755	49.8 49.5 46.2 45.9 For emissi	H H H Ons in re	74.0 74.0 74.0 74.0 stricted ban	-24.5 -27.8 -28.2	PK PK PK	360 360 360	1.0 1.0 1.0	missions, the	e limit was set 30dB b
630.428 704.008 703.588 777.948 776.755	49.8 49.5 46.2 45.9 For emissi	H H H Ons in re	74.0 74.0 74.0 74.0 stricted ban	-24.5 -27.8 -28.2	PK PK PK	360 360 360	1.0 1.0 1.0	missions, the	e limit was set 30dB b
30.428 704.008 703.588 777.948 776.755	49.8 49.5 46.2 45.9 For emissi	H H H Ons in re	74.0 74.0 74.0 74.0 stricted ban	-24.5 -27.8 -28.2	PK PK PK	360 360 360	1.0 1.0 1.0	missions, the	e limit was set 30dB b

EXHIBIT 3: Photographs of Test Configurations

EXHIBIT 4: Proposed FCC ID Label & Label Location

EXHIBIT 5: Detailed Photographs of Microwave Data Systems Model Mercury OFDM Construction

EXHIBIT 6: Operator's Manual for Microwave Data Systems Model Mercury OFDM

EXHIBIT 7: Block Diagram of Microwave Data Systems Model Mercury OFDM

EXHIBIT 8: Schematic Diagrams for Microwave Data Systems Model Mercury OFDM

EXHIBIT 9: Theory of Operation for Microwave Data Systems Model Mercury OFDM

EXHIBIT 10: RF Exposure Information

Pages