Radio Test Data
Job Number: J81612

Client:	GE MDS LLC	Job Number: J81612
Model:	MERCURY ODU	T-Log Number:
	T81665	
Contact:	Dennis McCarthy	Account Manager:
Susan Pelzl		
Standard:	FCC Part 90, RSS-119	

Maximum Permissible Exposure

Test Specific Details

Objective:
The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Evaluation 2/2/2011
Test Engineer David Bare

General Test Configuration

Calculation uses the free space transmission formula:

$$
S=(P G) /\left(4 \pi d^{2}\right)
$$

Where: S is power density $\left(W / m^{2}\right), P$ is output power $(W), G$ is antenna gain relative to isotropic, d is separation distance from the transmitting antenna (m).

Summary of Results

$$
\text { Minimum separation distance for } 18 \mathrm{dBi} \text { ant. (in } \mathrm{cm} \text {): } 25.0 \text { (Note - manual states } 25 \mathrm{~cm} \text { required) }
$$

Modifications Made During Testing

No modifications were made to the EUT during testing
Deviations From The Standard
No deviations were made from the requirements of the standard.

Radio Test Data

Client:	GE MDS LLC						Job Number:	J81612
Model:	MERCURY ODU						T-Log Number:	T81665
							Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy							
Standard:	FCC Part 90, RSS-119						Class:	-
Use:	General		Antenna: Panel 18dBi					
Freq. MHz	Tot dBm	$\begin{gathered} \hline \text { wer* } \\ \mathrm{mW} \\ \hline \end{gathered}$	Cable Loss Loss dB	Ant Gain dBi	Power at Ant dBm	$\begin{aligned} & \text { EIRP } \\ & \mathrm{mW} \\ & \hline \end{aligned}$	Power Density (S) at 20 cm $\mathrm{mW} / \mathrm{cm}^{\wedge} 2$	MPE Limit at 20 cm $\mathrm{mW} / \mathrm{cm}^{\wedge} 2$
$\begin{gathered} 3652- \\ 3673 \\ \hline \end{gathered}$	18.0	62.4	0	21	18.0	7852.36	1.562	1.000

For the cases where $S>$ the MPE Limit

Freq. MHz	Power Density (S) at 20 cm $\mathrm{~mW} / \mathrm{cm}^{\wedge} 2$	MPE Limit at 20 cm $\mathrm{~mW} / \mathrm{cm}^{\wedge} 2$	Distance where $\mathrm{S}<=$ MPE Limit cm
$3652-$ 3673	1.562	1.000	25.0

* Maximum measured total output power from the radio for this antenna. The total power is integrated over the 99% bandwidth of the output.

