

Radio Test Report

FCC Part 90 (3650 MHz to 3675 MHz)

Model: Mercury 3650 Outdoor Subscriber

COMPANY: GE MDS LLC

175 Science Parkway Rochester, NY 14620

TEST SITE(S): Elliott Laboratories

41039 Boyce Road.

Fremont, CA. 94538-2435

REPORT DATE: April 22, 2011

FINAL TEST DATES: January 19, 21, 28 and 31, February 3, 10, 11

and 14, 2011

AUTHORIZED SIGNATORY:

David W. Bare Chief Engineer Elliott Laboratories

Testing Cert #2016.01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report, except where noted otherwise. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

File: R82143 Page 1 of 19

Test Report Report Date: April 22, 2011

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	04-22-2011	First release	

File: R82143 Page 2 of 19

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	5
STATEMENT OF COMPLIANCE	5
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS	6
FCC PART 90Z – BASE AND FIXED STATIONS, 3650 – 3700 MHZ	6
EXTREME CONDITIONS	
MEASUREMENT UNCERTAINTIES	8
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
OTHER EUT DETAILS	
ENCLOSUREMODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TESTING	
GENERAL INFORMATION	11
RF PORT MEASUREMENT PROCEDURES	12
OUTPUT POWER	
BANDWIDTH MEASUREMENTS	
CONDUCTED SPURIOUS EMISSIONS	
TRANSMITTER MASK MEASUREMENTS	
FREQUENCY STABILITYTRANSIENT FREQUENCY BEHAVIOR:	
RADIATED EMISSIONS MEASUREMENTS	
INSTRUMENTATION	
FILTERS/ATTENUATORS	
ANTENNAS	16
ANTENNA MAST AND EQUIPMENT TURNTABLE	
SAMPLE CALCULATIONS	
SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS	
SAMPLE CALCULATIONS –RADIATED FIELD STRENGTH	
SAMPLE CALCULATIONS –RADIATED POWER	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	1
APPENDIX B TEST DATA	5

SCOPE

Tests have been performed on the GE MDS LLC model Mercury 3650 Outdoor Subscriber, pursuant to the relevant requirements of the following standard(s) in order to obtain device certification against the regulatory requirements of the Federal Communications Commission and Industry Canada.

- Code of Federal Regulations (CFR) Title 47 Part 2
- CFR 47 Part 90 (Private Land Mobile Radio Service) Subpart Z

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 ANSI TIA-603-C August 17, 2004

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the GE MDS LLC model Mercury 3650 Outdoor Subscriber and therefore apply only to the tested sample. The sample was selected and prepared by Dennis McCarthy of GE MDS LLC.

File: R82143 Page 4 of 19

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, the device requires certification. Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of GE MDS LLC model Mercury 3650 Outdoor Subscriber complied with the requirements of the standards and frequency bands declared in the scope of this test report.

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

File: R82143 Page 5 of 19

TEST RESULTS

FCC Part 90Z - Base and Fixed Stations, 3650 - 3700 MHz

\$ 90.1321(b) Clisted for each chainer spacing) S.75MHz S.75MHz S.65-3670MHz S.75MHz S.65-3670MHz S.75MHz S.65-3670MHz S.75MHz	FCC	Description	Measured	Limit	Result
Section Sect	Transmitter M	odulation, output power an	d other characteristics		
EIRP - Total power (Maximum for each chain chain for each chain place of the implementation.	§2.1033 (c) (5) § 90.1321(b)	(Listed for each channel	5.0MHz 3653-3672MHz 7.0MHz 3654-3671MHz 8.75MHz 3655-3670MHz	3650-3675 MHz Note 1	Complies
EIRP – PSD (Maximum) EIR Emission types GID Information only - Mask B Complies Eomission EIRP – PSD (Maximum) EIR S MHz: 32 MHz 5.0 MHz: 3.2 MHz 10.0 MHz: 4.5 MHz 7.0 MHz: 6.6 MHz 8.75 MHz: 8.2 MHz 10.0 MHz: 9.2 MHz Information only - 13 dBm/MHz Complies Complies Receiver spurious emissions EIR S MHz: 9.2 MHz To MHz: 9.2 MHz EIRP – PSD (Maximum) EIR S MHz: 10.0 MHz: 4.5 MHz To MHz: 4.5 MHz EIR S MHz To MHz: 4.5 MHz EIR S MHz To MHz: 4.5 MHz EIR S MHz To MHz: 9.2 MHz EIR S	\$2.1033 (c) (6) \$2.1033 (c) (7)	(Maximum for each	5.0 MHz: 35.8dBm 7.0 MHz: 37.5dBm 8.75 MHz: 38.5dBm	25 Watts	Complies
Device complies with spectral mask - refer to test data Spectral mask - refer to test data	§2.1046 § 90.1321	EIRP – PSD (Maximum)	5.0 MHz: 29.7dBm/MHz 7.0 MHz: 29.8dBm/MHz 8.75 MHz: 29.8dBm/MHz	30 dBm/MHz	Complies
\$2.1047 Emission mask spectral mask - refer to test data 3.5 MHz: 3.2 MHz 5.0 MHz: 4.5 MHz 5.0 MHz: 4.5 MHz 10.0 MHz: 8.2 MHz 10.0 MHz: 9.2 MHz 10.0 M	§2.1033 (c)	Emission types		Information only	-
\$2.1049 Occupied (99%) Bandwidth Solution 1	(4) §2.1047 § 90.210	Emission mask	spectral mask – refer to	Mask B	Complies
At the antenna terminals -19.3 dBm -13 dBm/MHz Complies	§2.1049		5.0 MHz: 4.5 MHz 7.0 MHz: 6.6 MHz 8.75 MHz: 8.2 MHz	Information only	-
At the antenna terminals -19.3 dBm -13 dBm/MHz Complies	Transmitter sp	urious emissions		1	•
Receiver spurious emissions Syn.1323	§2.1051		-19.3 dBm	-13 dBm/MHz	Complies
Not applicable, note 2 Other details	§90.1323	, 1,	-28.8 dBm	10 451411111	Complies
Other details Policies of use Refer to operational description for details of the implementation. Prequency stability Frequency stability S75 Hz / 0.16 ppm Although RF exposure compliance is addressed at the time of licensing an MPE calculation has been provided to demonstrate compliance with limits at distances of 25cm or more from the antennas. Final radio frequency amplifying circuit's de voltages and currents for normal operation over the power range Antenna Gain This application is for antennas of 18dBi gain.					
Refer to operational description for details of the implementation. Secondary Seconda		Field strength	Not applicable, note 2		
\$90.213(a) Frequency stability 573 HZ 7 0.16 ppm station authorization \$1.1307(b) \$2.1093 \$90.1335 RF Exposure Although RF exposure compliance is addressed at the time of licensing an MPE calculation has been provided to demonstrate compliance with limits at distances of 25cm or more from the antennas. Final radio frequency amplifying circuit's dc voltages and currents for normal operation over the power range Antenna Gain This application is for antennas of 18dBi gain.	§90.1319	Policies of use	description for details of	a contention-based protocol.	Complies
Although RF exposure compliance is addressed at the time of licensing an MPE calculation has been provided to demonstrate compliance with limits at distances of 25cm or more from the antennas. Final radio frequency amplifying circuit's de voltages and currents for normal operation over the power range Antenna Gain Although RF exposure compliance is addressed at the time of licensing an MPE calculation has been provided to demonstrate compliance with limits at distances of 25cm or more from the antennas.	§2.1055 §90.213(a)	Frequency stability	575 Hz / 0.16 ppm		-
amplifying circuit's dc voltages and currents for normal operation over the power range Antenna Gain Antenna Gain amplifying circuit's dc ovoltages and currents for normal operation over the power range This application is for antennas of 18dBi gain.	§1.1307(b) §2.1093 §90.1335	RF Exposure	licensing an MPE calculation compliance with limits at disconnections.	ipliance is addressed at the on has been provided to d	emonstrate
	§2.1033 (c) (8)	amplifying circuit's dc voltages and currents for normal operation over the power range	,		-
	- Notes	Antenna Gain	This application is for anter	nnas of 18dBi gain.	

Notes

File: R82143 Page 6 of 19

¹⁾ The upper part of the allocated band from 3675 – 3700 MHz requires the device to use an unrestricted contention-based protocol. This system does not have such a protocol and so cannot use the upper portion of the band.

²⁾ Receiver spurious emissions requirements only apply to devices that operate (tune) below 960MHz.

EXTREME CONDITIONS

Frequency stability is determined over extremes of temperature and voltage. The extremes of voltage were 85 to 115 percent of the nominal value.

The extremes of temperature were -30°C to +50°C as specified in FCC §2.1055(a)(1).

File: R82143 Page 7 of 19

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2) and were calculated in accordance with NAMAS document NIS 81 and M3003.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF frequency	Hz	25 to 7,000 MHz	1.7 x 10 ⁻⁷
RF power, conducted	dBm	25 to 7,000 MHz	± 0.52 dB
Conducted emission of transmitter	dBm	25 to 40,000 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 40,000 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 40,000 MHz	± 2.5 dB
Radiated emission (field strength)	dBμV/m	25 to 1,000 MHz 1 to 40 GHz	± 3.6 dB ± 6.0 dB

File: R82143 Page 8 of 19

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The GE MDS LLC model Mercury 3650 Outdoor Subscriber is a wireless transceiver which is designed to transmit and receive data. Normally, the EUT would be placed on a pole or tower using the panel antenna during operation. The EUT was, therefore, placed vertical in this position during emissions testing to simulate the end user environment. The electrical rating of the EUT is 10-60vdc or 48vdc using a POE device @ 3amps max.

The sample was received on January 19, 2011 and tested on January 19, 21, 28 and 31, February 3, 10, 11 and 14, 2011. The EUT consisted of the following component(s):

	Company	Model	Description	Serial Number	FCC ID
ĺ	GE MDS LLC	MERCURY	3650MHz	NA	E5MDS-
		3650 Outdoor	wireless		MERCODU3
		Subscriber	transceiver		

OTHER EUT DETAILS

The EUT antenna is a dual polarized panel integral to the device.

ENCLOSURE

The EUT enclosure is primarily constructed of die cast metal. It measures approximately 27 cm wide by 27cm deep by 8 cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Dell	Inspirion 3800	Laptop	-	DoC
Vantec	UGT-CR-920	Card Reader	-	DoC
Netgear	FS108	Network Switch	-	-

File: R82143 Page 9 of 19

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected	Cable(s)		
Foit	То	Description	Shielded or Unshielded	Length(m)
Serial	Laptop	Multiwire	Shielded	7
Ethernet	POE adapter	Cat 5	Shielded	7
POE Adapter	Network switch	Cat 5	Shielded	1
USB	Card Reader	Multiwire	Shielded	1.5
Antenna 0	50 ohm load	Direct connection	NA	NA
Antenna 1	50 ohm load	Direct connection	NA	NA

EUT OPERATION

During emissions testing the EUT set to transmit an OFDM modulated signal or set in receive mode depending on the test performed.

File: R82143 Page 10 of 19

TESTING

GENERAL INFORMATION

Antenna port measurements were taken at the Elliott Laboratories test site located at 41039 Boyce Road, Fremont, CA 94538-2435.

Radiated spurious emissions measurements were taken at the Elliott Laboratories Anechoic Chambers and/or Open Area Test Site(s) listed below. The sites conform to the requirements of ANSI C63.4: 2003 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz and CISPR 16-1-4:2007 - Specification for radio disturbance and immunity measuring apparatus and methods Part 1-4: Radio disturbance and immunity measuring apparatus Ancillary equipment Radiated disturbances. They are on file with the FCC and industry Canada.

Site	Registratio	n Numbers	Location
Site	FCC	Canada	Location
Chamber 3	769238	IC 2845B-3	41020 Daysa Band
Chamber 4	211948	IC 2845B-4	41039 Boyce Road Fremont,
Chamber 5	211948	IC 2845B-5	CA 94538-2435
Chamber 7	A2LA Accredited	IC 2845B-7	CA 94530-2433

In the case of Open Area Test Sites, ambient levels are at least 6 dB below the specification limits with the exception of predictable local TV, radio, and mobile communications traffic.

Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements.

File: R82143 Page 11 of 19

RF PORT MEASUREMENT PROCEDURES

Conducted measurements are performed with the EUT's rf input/output connected to the input of a spectrum analyzer, power meter or modulation analyzer. When required an attenuator, filter and/or dc block is placed between the EUT and the spectrum analyzer to avoid overloading the front end of the measurement device. Measurements are corrected for the insertion loss of the attenuators and cables inserted between the rf port of the EUT and the measurement equipment.

<u>Test Configuration for Antenna Port Measurements</u>

For devices with an integral antenna the output power and spurious emissions are measured as a field strength at a test distance of (typically) 3m and then converted to an eirp using a substitution measurement (refer to RADIATED EMISSIONS MEASUREMENTS). All other measurements are made as detailed below but with the test equipment connected to a measurement antenna directed at the EUT.

OUTPUT POWER

Output power is measured using a power meter and an average sensor head, a spectrum analyzer or a power meter and peak power sensor head as required by the relevant rule part(s). Where necessary measurements are gated to ensure power is only measured over periods that the device is transmitting.

Power measurements made directly on the rf power port are, when appropriate, converted to an EIRP by adding the gain of the highest gain antenna that can be used with the device under test, as specified by the manufacturer.

File: R82143 Page 12 of 19

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN. The measurement bandwidth is set to be at least 1% of the instrument's frequency span.

CONDUCTED SPURIOUS EMISSIONS

Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode measurements). Where the limits are expressed as an average power the spectrum analyzer is tunes to that frequency with a narrow span (wide enough to capture the emission and its sidebands) and the resolution and video bandwidths are adjusted as required by the reference measurement standards. For transmitter measurements the appropriate detector (average, peak, normal ,sample, quasi-peak) is used when making measurements for licensed devices. For receiver conducted spurious measurements the detector is set to peak.

File: R82143 Page 13 of 19

TRANSMITTER MASK MEASUREMENTS

The transmitter mask measurements are made using resolution bandwidths as specified in the pertinent rule part(s). Where narrower bandwidths are used the measurement is corrected to account for the reduced bandwidth by either using the adjacent channel power function of the spectrum analyzer to sum the power across the required measurement bandwidth. The frequency span of the analyzer is set to ensure the fundamental signal and all significant sidebands are displayed.

The top of the mask may be set by the total output power of the signal, the power of the unmodulated signal or the peak value of the signal in the reference bandwidth being used for the mask measurement.

FREQUENCY STABILITY

The EUT is placed inside a temperature chamber with all support and test equipment located outside of the chamber. The temperature is varied across the specified frequency range in 10 degree increments with frequency measurements made at each temperature step. The EUT is allowed enough time to stabilize at each temperature variation.

The spectrum analyzer is configured to give a 5- or 6-digit display for the marker-frequency function. The spectrum analyzer's built-in frequency counter is used to measure the maximum deviation of the fundamental frequency at each temperature. Where possible the device is set to transmit an unmodulated signal. Where this is not possible the frequency drift is determined by finding a stable point on the signal (e.g. the null at the centre of an OFDM signal) or by calculating a centre frequency based on the upper and lower XdB points (where X is typically 6dB or 10dB) on the signal's skirts.

TRANSIENT FREQUENCY BEHAVIOR:

The TIA/EIA 603 procedure is used to determine compliance with transient frequency timing requirements as the radio is keyed on and off.

The EUTs rf output is connected via a combiner/splitter to the test receiver/spectrum analyzer and to a diode detector. The test receiver or spectrum analyzer video output is connected to an oscilloscope, which is triggered by the output from the diode detector.

Plots showing Ton, T1, and T2 are made when turning on the transmitter and showing T3 when turning off the transmitter.

File: R82143 Page 14 of 19

RADIATED EMISSIONS MEASUREMENTS

Receiver radiated spurious emissions measurements are made in accordance with ANSI ANSI C63.4:2003 by measuring the field strength of the emissions from the device at a specific test distance and comparing them to a field strength limit. Where the field strength limit is specified at a longer distance than the measurement distance the measurement is extrapolated to the limit distance.

Transmitter radiated spurious emissions are initially measured as a field strength. The eirp or erp limit as specified in the relevant rule part(s) is converted to a field strength at the test distance and the emissions from the EUT are then compared to that limit. Emissions within 20dB of this limit are the subjected to a substitution measurement.

All radiated emissions measurements are performed in two phases. A preliminary scan of emissions is conducted in either an anechoic chamber or on an OATS during which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed across the complete frequency range of interest and at each operating frequency identified in the reference standard. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode).

During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit. For transmitter spurious emissions, where the limit is expressed as an effective radiated power, the eirp or erp is converted to a field strength limit.

Final measurements are made on an OATS or in a semi-anechoic chamber at the significant frequencies observed during the preliminary scan(s) using the same process of rotating the EUT and raising/lowering the measurement antenna to find the highest level of the emission. The field strength is recorded and, for receiver spurious emissions, compared to the field strength limit. For the final measurement the appropriate detectors (average, peak, normal, sample, quasi-peak) are used. For receiver measurements below 1GHz the detector is a Quasi-Peak detector, above 1GHz a peak detector is used and the peak value (RB=VB=1MHz) and average value (RB=1MHz, VB=10Hz) are recorded.

For transmitter spurious emissions, the radiated power of all emissions within 20dB of the calculated field strength limit are determined using a substitution measurement. The substitution measurement is made by replacing the EUT with an antenna of known gain (typically a dipole antenna or a double-ridged horn antenna), connected to a signal source. The output power of the signal generator is adjusted until the maximum field strength from the substitution antenna is similar to the field strength recorded from the EUT. The erp of the EUT is then calculated.

File: R82143 Page 15 of 19

INSTRUMENTATION

An EMI receiver as specified in CISPR 16-1-1 is used for radiated emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 7000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary.

For measurements above the frequency range of the receivers and for all conducted measurements a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis.

Measurement bandwidths for the test instruments are set in accordance with the requirements of the standards referenced in this document.

Software control is used to correct the measurements for transducer factors (e.g. antenna) and the insertion loss of cables, attenuators and other series elements to obtain the final measurement value. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are exported in a graphic and/or tabular format, as appropriate.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the EUT antenna port or receiving antenna and the test receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A combination of biconical, log periodic or bi-log antennas are used to cover the range from 30 MHz to 1000 MHz. Broadband antennas or tuned dipole antennas are used over the entire 25 to 1000 MHz frequency range as the reference antenna for substitution measurements.

Above 1000 MHz, a dual-ridge guide horn antenna or octave horn antenna are used as reference and measurement antennas.

The antenna calibration factors are included in site factors that are programmed into the test receivers and instrument control software when measuring the radiated field strength.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height.

Table mounted devices are placed on a non-conductive table at a height of 80 centimeters above the floor. Floor mounted equipment is placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. The EUT is positioned on a motorized turntable to allow it to be rotated during testing to determine the angel with the highest level of emissions.

File: R82143 Page 16 of 19

SAMPLE CALCULATIONS

SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS

Measurements are compared directly to the conducted emissions specification limit (decibel form). The calculation is as follows:

$$R_r - S = M$$

where:

 R_r = Measured value in dBm

S = Specification Limit in dBm

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH

Measurements of radiated field strength are compared directly to the specification limit (decibel form). The receiver and/or control software corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements

A distance factor is sued when measurements are made at a test distance that is different to the specified limit distance by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

File: R82143 Page 17 of 19

 F_d = Distance Factor in dB

 R_C = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS -RADIATED POWER

The erp/eirp limits for transmitter spurious measurements are converted to a field strength in free space using the following formula:

$$E = \frac{\sqrt{30 P G}}{d}$$

where:

E = Field Strength in V/m

P = Power in Watts

G = Gain of isotropic antenna (numeric gain) = 1

D = measurement distance in meters

The field strength limit is then converted to decibel form (dBuV/m) and the margin of a given emission peak relative to the limit is calculated (refer to *SAMPLE CALCULATIONS –RADIATED FIELD STRENGTH*).

When substitution measurements are required (all signals with less than 20dB of margin relative to the calculated field strength limit) the eirp of the spurious emission is calculated using:

$$P_{EUT} = P_{S-(E_S-E_{EUT)}}$$

$$P_S = G + P_{in}$$

where:

and

 P_S = effective isotropic radiated power of the substitution antenna (dBm)

Pin = power input to the substitution antenna (dBm)

G = gain of the substitution antenna (dBi)

 E_S = field strength the substitution antenna (dBm) at eirp P_S

 E_{EUT} = field strength measured from the EUT

Where necessary the effective isotropic radiated power is converted to effective radiated power by subtracting the gain of a dipole (2.2dBi) from the eirp value.

File: R82143 Page 18 of 19

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz - 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

File: R82143 Page 19 of 19

Appendix A Test Equipment Calibration Data

T81665

Radio Antenna Port (Power and Spurious Emissions), 11 through 13-Oct-10						
<u>Manufacturer</u>	<u>Description</u>	Model	Asset #	Cal Due		
Tektronix	500MHz, 2CH, 5GS/s Scope	TDS5052B	2118	9/29/2011		
Radiated Emissions 1	1000 - 37,000 MHz, 13-Oct-10					
Manufacturer	Description	Model	Asset #	Cal Due		
Hewlett Packard	Microwave Preamplifier, 1-	8449B	263	12/15/2010		
51100	26.5GHz	0.4.4. -	4440	0/0/0040		
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	8/2/2012		
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT	8564E (84125C)	1393	4/14/2011		
	(SA40) Blue	,				
Hewlett Packard	Head (Inc W1-W4, 1742, 1743) Blue	84125C	1620	5/4/2011		
A.H. Systems	Red System Horn, 18-40GHz	SAS-574, p/n: 2581	2161	3/5/2011		
Padiated Emissions 3	80 - 1,000 MHz, 14-Oct-10					
Manufacturer	Description	Model	Asset #	Cal Due		
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1549	6/4/2011		
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	3/31/2011		
Com-Power Corp.	Preamplifier, 30-1000 MHz	PA-103A	2204	2/26/2011		
Radiated Emissions 3	30 - 11,100 MHz, 15-Oct-10					
Manufacturer	Description	<u>Model</u>	Asset #	Cal Due		
Hewlett Packard	Microwave Preamplifier, 1-	8449B	870	6/25/2011		
	26.5GHz	•		0, = 0, = 0		
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	10/15/2010		
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	6/22/2012		
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	1771	8/26/2011		
Hewlett Packard	Preamplifier, 100 kHz - 1.3 GHz	8447D OPT 010	1826	5/27/2011		
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	2197	12/29/2011		
Radiated Emissions 3	30 - 1,000 MHz and Masks, 18-Oct	-10				
Manufacturer	Description	Model	Asset #	Cal Due		
Hewlett Packard	Preamplifier, 100 kHz - 1.3 GHz	8447E	1606	4/29/2011		
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1657	5/28/2012		
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	3/16/2011		
Radiated Emissions. 3	30 - 1,000 MHz, 19-Oct-10					
Manufacturer	Description	Model	Asset #	Cal Due		
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	11/15/2010		
Hewlett Packard	Preamplifier, 100 kHz - 1.3 GHz	8447D OPT 010	1826	5/27/2011		
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	2197	12/29/2011		
Frequency Stability, 2	0-Oct-10					
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due		
Fluke Mfg. Inc.	True RMS Multimeter	111	1557	3/9/2011		
Agilent	PSA, Spectrum Analyzer,	E4446A	2139	1/6/2011		
	(installed options, 111, 115, 123,					
Thermotron	1DS, B7J, HYX, Temp Chamber (w/ F4 Watlow	S1.2	2170	7/1/2011		
THEITHOUGH	Controller)	01.2	2110	1/1/2011		
Conducted Emissions	Conducted Emissions - AC Power Ports, 20-Oct-10					
Manufacturer	Description	<u>Model</u>	Asset #	Cal Due		
Eila: D92142		_ _		Dogo 1 of 5		

File: R82143 Appendix Page 1 of 5

		R	eport Date: Ap	pril 22, 2011
EMCO EMCO Rohde & Schwarz Rohde & Schwarz	LISN, 10 kHz-100 MHz LISN, 10 kHz-100 MHz Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz	3825/2 3825/2 ESH3 Z2 ESIB7	1292 1293 1594 1630	3/12/2011 3/12/2011 5/27/2011 3/31/2011
Radiated Emissions, 3	30 - 1,000 MHz, 31-Dec-10			
Manufacturer Hewlett Packard	<u>Description</u> EMC Spectrum Analyzer, 9 KHz - 22 GHz	Model 8593EM	Asset # 1319	<u>Cal Due</u> 11/22/2011
Rohde & Schwarz Sunol Sciences Com-Power Corp.	Test Receiver, 9 kHz-2750 MHz Biconilog, 30-3000 MHz Preamplifier, 30-1000 MHz	ESCS 30 JB3 PAM-103	1337 1548 2234	11/24/2011 6/24/2012 5/19/2011
Radiated Spurious Em	nissions, 1000 - 37,000 MHz, 31-Ja	n-11		
Manufacturer EMCO Hewlett Packard	<u>Description</u> Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1- 26.5GHz	<u>Model</u> 3115 8449B	Asset # 487 785	<u>Cal Due</u> 7/6/2012 5/26/2011
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	7/12/2011
Conducted Emissions	s - AC Power Ports, 31-Jan-11			
<u>Manufacturer</u> EMCO	<u>Description</u> LISN, 10 kHz-100 MHz	Model 3825/2	Asset # 1293	<u>Cal Due</u> 3/12/2011
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	1398	1/18/2012
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	3/31/2011
Environmental Stabilit	tv. 04-Feb-11			
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
Agilent	PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	E4446A	2139	1/26/2012
Thermotron	Temp Chamber (w/ F4 Watlow Controller)	S1.2	2170	7/1/2011
T81815				
	Power and Spurious Emissions), 1	18-Jan-11	A 1 !!	0-1-0
<u>Manufacturer</u> Agilent	<u>Description</u> PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	<u>Model</u> E4446A	Asset # 2139	<u>Cal Due</u> 2/6/2011
Radiated Emissions, 3	30 - 1,000 MHz, 22-Jan-11			
Manufacturer Hewlett Packard	<u>Description</u> EMC Spectrum Analyzer, 9 KHz - 22 GHz	<u>Model</u> 8593EM	Asset # 1319	<u>Cal Due</u> 11/22/2011
Rohde & Schwarz Sunol Sciences	Test Receiver, 9 kHz-2750 MHz Biconilog, 30-3000 MHz	ESCS 30 JB3	1337 1548	11/24/2011 6/24/2012
Com-Power Corp.	Preamplifier, 30-1000 MHz	PAM-103	2234	5/19/2011
Ballata I Emiliation - 4	1000 07 000 MHz 00 Jan 44			
Manufacturer	1000 - 37,000 MHz, 22-Jan-11 <u>Description</u>	Model	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	9/21/2012
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	1771	8/26/2011
Hewlett Packard	Head (Inc W1-W4, 1946, 1947) Purple	84125C	1772	5/6/2011

File: R82143 Appendix Page 2 of 5

		Кер	ort Date: Ap	pril 22, 2011
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	1780	11/23/2011
A.H. Systems	Blue System Horn, 18-40GHz	SAS-574, p/n: 2581	2159	3/18/2011
Conducted Emissions	s - AC Power Ports, 26-Jan-11			
Manufacturer	Description	Model	Asset #	Cal Due
EMCO	LISN, 10 kHz-100 MHz	3825/2	1292	3/12/2011
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	3/31/2011
	30 - 18,000 MHz, 29-Jan-11			
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	786	12/11/2011
Hewlett Packard	EMC Spectrum Analyzer, 9 KHz - 22 GHz	8593EM	1319	11/22/2011
Rohde & Schwarz	Test Receiver, 0.009-2750 MHz	ESN	1332	1/17/2012
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1548	6/24/2012
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	1771	8/26/2011
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	2199	2/11/2011
Com-Power Corp.	Preamplifier, 30-1000 MHz	PAM-103	2234	5/19/2011
Radiated Emissions,	30 - 37,000 MHz, 03-Feb-11			
Manufacturer	<u>Description</u>	Model	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	786	12/11/2011
Rohde & Schwarz	Power Sensor, 1uW-100mW, DC-18 GHz, 50ohms	NRV-Z51	1069	7/19/2011
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	8/2/2012
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	4/14/2011
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	3/31/2011
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1657	5/28/2012
Rohde & Schwarz	Power Meter, Dual Channel	NRVD	1787	12/23/2011
Hewlett Packard	Preamplifier, 100 kHz - 1.3 GHz	8447D OPT 010	1826	5/27/2011
Agilent	PSG, Performance Signal	E8267C	2200	5/5/11
, tg	Generator, (installed options, HEH, HEC, 602, 420)	2020.0	2200	G, G, T T
Radiated Emissions,	30 - 37,000 MHz, 10-Feb-11			
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
Agilent	PSA, Spectrum Analyzer,	E4446A	2139	1/26/2012
	(installed options, 111, 115, 123, 1DS, B7J, HYX,			
Radiated Emissions	30 - 1,000 MHz, 11-Feb-11			
Manufacturer	Description	Model	Asset #	Cal Due
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1549	6/4/2011
Hewlett Packard	Preamplifier, 100 kHz - 1.3 GHz	8447E	1606	4/29/2011
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	3/16/2011
Radiated Emissions,	30 - 37,000 MHz, 12-Feb-11			
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	263	12/8/2011
EMCO	Antenna, Horn, 1-18 GHz	3115	786	12/11/2011
Hewlett Packard	EMC Spectrum Analyzer, 9 KHz	8593EM	1319	11/22/2011
Hewlett Packard	- 22 GHz SpecAn 9 kHz - 40 GHz, FT	8564E (84125C)	1393	4/14/2011
	•	, ,		

File: R82143 Appendix Page 3 of 5

Test Report Report Date: April 22, 2011

	(SA40) Blue						
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1548	6/24/2012			
Hewlett Packard	Head (Inc W1-W4, 1742, 1743)	84125C	1620	5/4/2011			
	Blue						
A.H. Systems	Red System Horn, 18-40GHz	SAS-574, p/n: 2581	2161	3/5/2011			
Com-Power Corp.	Preamplifier, 30-1000 MHz	PAM-103	2234	5/19/2011			
Radiated Spurious Emissions, 1-18 GHz, 14-Feb-11							
	,,						
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due			
-		<u>Model</u> 8449B	Asset # 263	<u>Cal Due</u> 12/8/2011			
<u>Manufacturer</u>	<u>Description</u>						
<u>Manufacturer</u>	<u>Description</u> Microwave Preamplifier, 1-						
Manufacturer Hewlett Packard	<u>Description</u> Microwave Preamplifier, 1- 26.5GHz Antenna, Horn, 1-18 GHz SpecAn 9 kHz - 40 GHz, FT	8449B	263	12/8/2011			
Manufacturer Hewlett Packard EMCO	<u>Description</u> Microwave Preamplifier, 1- 26.5GHz Antenna, Horn, 1-18 GHz	8449B 3115	263 786	12/8/2011 12/11/2011			

File: R82143 Appendix Page 4 of 5

Appendix B Test Data

T81665 3 Pages T81815 39 Pages

File: R82143 Appendix Page 5 of 5

Ellio	tt Ecompany	El	MC Test Data
Client:	GE MDS LLC	Job Number:	J81612
Model:	MERCURY ODU	T-Log Number:	T81665
		Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		-
Emissions Standard(s):	FCC Part 90, RSS-119	Class:	-
Immunity Standard(s):	-	Environment:	Radio

For The

GE MDS LLC

Model

MERCURY ODU

Date of Last Test: 2/3/2011

	Elliott An ATAS company	Radio	o Test Data
Client:	GE MDS LLC	Job Number:	J81612
Model	MERCURY ODU	T-Log Number:	umber: T81665
iviouei.	WERCORT ODO	Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	FCC Part 90, RSS-119	Class:	-

RSS 197 and FCC Part 90 Frequency Stability

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Config. Used: 1 Date of Test: 2/3/2011 Config Change: none Test Engineer: Rafael Varelas Test Location: FT EMC #4 EUT Voltage: 13.8 VDC

General Test Configuration

The EUT's RF port was connected to the measurement instrument's RF port, via an attenuator or dc-block if necessary. The EUT was placed inside an environmental chamber.

Ambient Conditions: Temperature: 21.3 °C

Rel. Humidity: 38 %

Summary of Results

Run #	Test Performed	Limit	Result	Value / Margin
1-2	Frequency and Voltage Stability	Part 90.213	Pass	575 Hz / 0.16 ppm

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Radio Test Data

	All 2022 Company		
Clien	: GE MDS LLC	Job Number:	J81612
Model:	MERCURY ODU	T-Log Number:	T81665
		Account Manager:	Susan Pelzl
Contact	Dennis McCarthy		
Standard	FCC Part 90, RSS-119	Class:	-

Run #1: Temperature Vs. Frequency (Fixed stations in the 3650-3675 MHz band)

	Note 1:	For all tests: Unmodulated signal using mode QAM16 at frequency 3662.5 MHz with power setting of 27 dBm was used.
		Analyzer settings were as follow: RBW=VBW= 1kHz and Span=5kHz.
	N - 1 - 1	

Note 2: Frequency stability is to be specified in the station authorization.

<u>Temperature</u>	Reference Frequency	Measured frequency	<u>Drift</u>	<u>Limit</u>
(Celsius)	(MHz)	(MHz)	(Hz)	(Hz)
-30	3662.492600	3662.498348	575	Note 2
-20	3662.492600	3662.498048	545	Note 2
-10	3662.492600	3662.497181	458	Note 2
0	3662.492600	3662.497448	485	Note 2
10	3662.492600	3662.497631	503	Note 2
20	3662.492600	3662.497948	535	Note 2
30	3662.492600	3662.497406	481	Note 2
40	3662.492600	3662.497164	456	Note 2
50	3662.492600	3662.496756	416	Note 2

Run #2: Voltage Vs. Frequency

Nominal Voltage is 13.8Vdc.

<u>Voltage</u>	Reference Frequency	Frequency Drift	<u>Drift</u>	<u>Limit</u>
(Dc)	(MHz)	(MHz)	(Hz)	(Hz)
85%	3662.492218	3662.497906	569	Note 2
115%	3662.492218	3662.497898	568	Note 2

Worst case drift: 574.8 Hz 0.16 ppm

Elliott EMC Test					
Client:	GE MDS	Job Number:	J81612		
Model:	Mercury ODU	T-Log Number:	T81815		
		Account Manager:	Susan Pelzl		
Contact:	Dennis McCarthy		-		
Emissions Standard(s):	FCC Part 90, RSS-119	Class:	-		
Immunity Standard(s):	-	Environment:	-		

For The

GE MDS

Model

Mercury ODU

Date of Last Test: 4/5/2011

EI	liott
----	-------

	An ZAZZZZ company		
Client:	GE MDS	Job Number:	J81612
Model:	Mercury ODU	T-Log Number:	T81815
		Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	FCC Part 90, RSS-119	Class:	-

RSS 197 and FCC Part 90 **Spurious Emissions**

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Config. Used: 1 Date of Test: 1/21/2011, 1/28/11& 2/3/11 Test Engineer: M. Birgani/R. Varelas/J.Caizzi Config Change: None Test Location: Chamber #7 EUT Voltage: PoE

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located outside the chamber.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: 20-25 °C Temperature:

> Rel. Humidity: 30-40 %

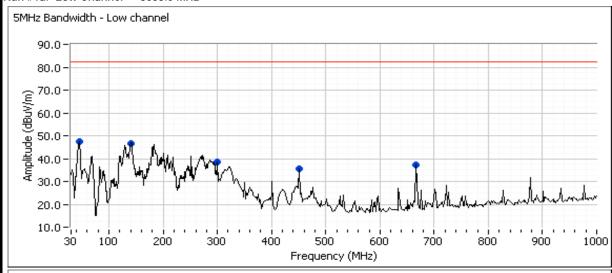
Summary of Results

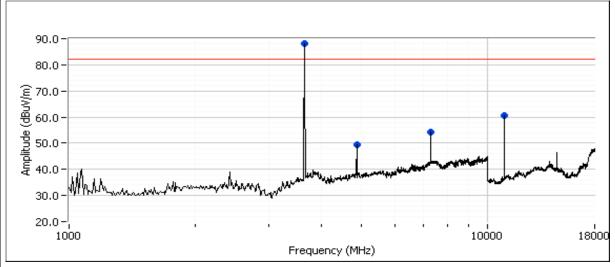
Run #	Mode	Channel	BW	Test Performed	Limit	Result / Margin
1-6	16QAM	All	All	Radiated Emissions, 30 MHz-37 GHz	FCC 90.210 Mask B	-28.8 dBm ERP @ 10957.520 MHz (-15.8 dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

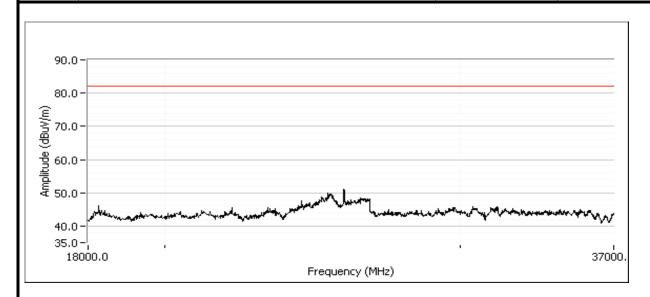
Deviations From The Standard


No deviations were made from the requirements of the standard.

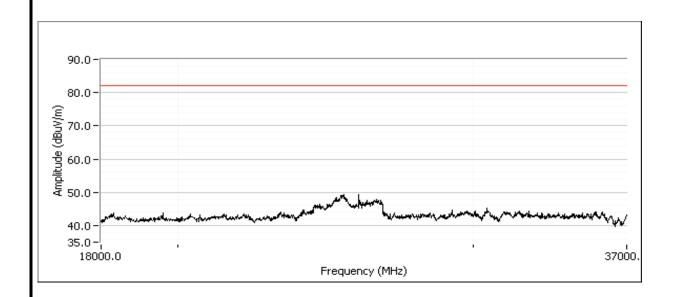


All Diller Company								
Client:	GE MDS	Job Number:	J81612					
Model:	Mercury ODU	T-Log Number:	T81815					
		Account Manager:	Susan Pelzl					
Contact:	Dennis McCarthy							
Standard:	FCC Part 90, RSS-119	Class:	-					

Run #1: Radiated Spurious Emissions, 30 - 37000 MHz. Operating Mode: 5.0 MHz BW


Run #1a: Low Channel @ 3653.0 MHz

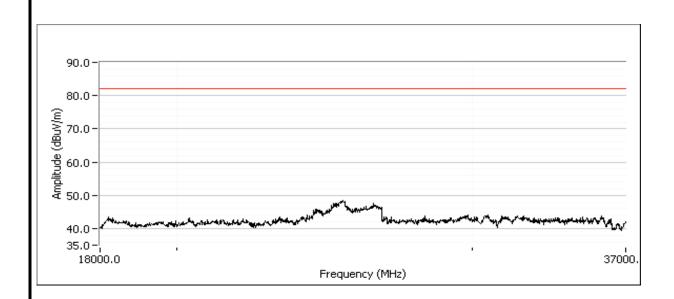
Client:	GE MDS	Job Number:	J81612
Model:	Moroupy ODII	T-Log Number:	T81815
	Mercury ODU	Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	FCC Part 90, RSS-119	Class:	-


Run #1a: Low Channel @ 3653.0 MHz, 5MHz BW

Frequency	Level	Pol	FCC 9	90.210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	5MHz BW
44.850	47.3	V	82.2	-34.9	Peak	11	1.0	5MHz BW
140.700	46.8	V	82.2	-35.4	Peak	146	1.0	5MHz BW
300.000	38.4	V	82.2	-43.8	Peak	164	1.5	5MHz BW
665.750	37.2	Н	82.2	-45.0	Peak	210	1.5	5MHz BW
450.500	35.6	V	82.2	-46.6	Peak	199	1.0	5MHz BW
4868.330	49.4	V	82.2	-32.8	Peak	168	1.3	5MHz BW
3653.000	96.9	V	N/A		PK	151	1.0	RB 1 MHz;VB 3 MHz;Pk 5MHz BW
3653.000	85.1	V	N/A		PK	151	1.0	RB 100 kHz;VB 100 kHz 5MHz BW
7304.000	58.7	V	82.2	-23.5	PK	202	1.9	RB 1 MHz;VB 3 MHz;Pk 5MHz BW
10957.520	70.1	V	82.2	-12.1	PK	177	1.0	RB 1 MHz;VB 3 MHz;Pk 5MHz BW

EMC Test Data Job Number: J81612 Client: GE MDS T-Log Number: T81815 Model: Mercury ODU Account Manager: Susan Pelzl Contact: Dennis McCarthy Standard: FCC Part 90, RSS-119 Class: Run #1b: Center Channel @ 3662.5 MHz 5MHz Bandwidth - Center channel 90.0 80.0 70.0 6.00 50.0 40.0 30.0 30.0 20.0 10.0 30 200 300 500 700 800 900 1000 100 600 Frequency (MHz) 90.0 80.0 Amplitude (dBuV/m) 60.00 50.00 40.00 30.0 20.0 -1000 10000 18000 Frequency (MHz)

Client:	GE MDS	Job Number:	J81612
Model:	Moroury ODII	T-Log Number:	T81815
	Mercury ODU	Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	FCC Part 90, RSS-119	Class:	-

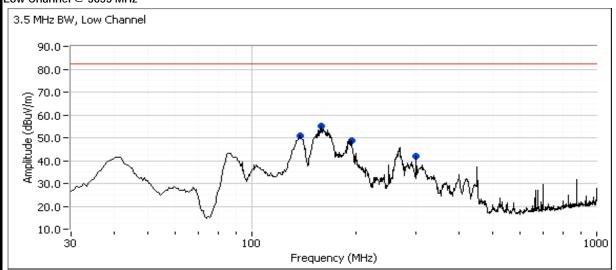

Run #1b: Center Channel @ 3662.5 MHz

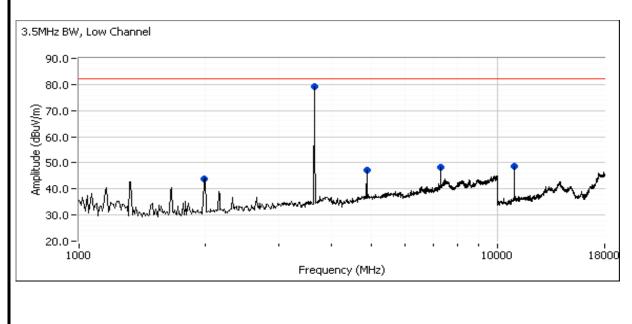
Frequency	Level	Pol	FCC 9	90.210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
44.175	47.2	V	82.2	-35.0	Peak	123	1.0	
130.575	48.6	Н	82.2	-33.6	Peak	206	2.5	
300.000	37.1	V	82.2	-45.1	Peak	151	1.5	
450.500	34.3	V	82.2	-47.9	Peak	224	1.0	
665.750	29.2	Н	82.2	-53.0	Peak	108	1.5	
10973.330	57.6	V	82.2	-24.6	Peak	232	1.3	
4877.500	50.9	V	82.2	-31.3	Peak	168	1.3	
7322.500	<i>55.3</i>	V	82.2	-26.9	Peak	144	1.0	
3662.500	97.8	V	N/A	-	PK	210	1.0	RB 1 MHz;VB 3 MHz;Pk
3662.500	86.1	V	N/A		PK	210	1.0	RB 100 kHz;VB 100 kHz;Pk

EMC Test Data Job Number: J81612 Client: GE MDS T-Log Number: T81815 Model: Mercury ODU Account Manager: Susan Pelzl Contact: Dennis McCarthy Standard: FCC Part 90, RSS-119 Class: Run #1c: High Channel @ 3672.0 MHz 90.0 80.0 70.00 70.00 90.00 50.00 30.00 30.00 20.0 10.0-200.0 30.0 100.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1000.0 Frequency (MHz) 90.0 80.0 wwbltrnde (dBuV/m) 50.00 30.0 20.0 -10000 18000 1000 Frequency (MHz)

Client:	GE MDS	Job Number:	J81612
Model:	Moroury ODII	T-Log Number:	T81815
	Mercury ODU	Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	FCC Part 90, RSS-119	Class:	-

Run #1c: High Channel @ 3672.0 MHz

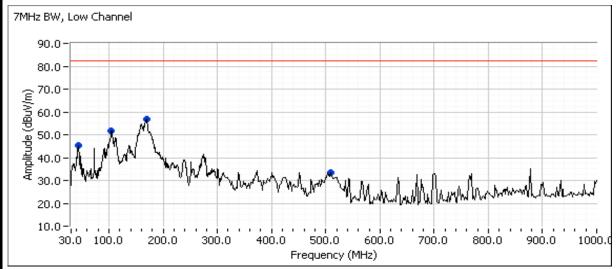

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
43.500	43.4	V	82.2	-38.8	Peak	10	1.0	
106.275	52.5	V	82.2	-29.7	Peak	19	1.0	
160.950	<i>55.2</i>	Н	82.2	-27.0	Peak	23	2.5	
168.375	56.9	Н	82.2	-25.3	Peak	1	1.5	
300.000	39.8	Н	82.2	-42.4	Peak	0	1.0	
401.500	35.5	Н	82.2	-46.7	Peak	138	2.5	
510.000	38.4	Н	82.2	-43.8	Peak	1	1.5	
665.750	33.7	Н	82.2	-48.5	Peak	59	3.0	
875.750	35.0	Н	82.2	-47.2	Peak	49	1.5	
1889.170	51.2	V	82.2	-31.0	Peak	202	1.6	
4895.830	52.8	V	82.2	-29.4	Peak	166	1.3	
11016.000	58.5	V	82.2	-23.7	Peak	232	1.3	
7345.830	53.2	V	82.2	-29.0	Peak	203	1.6	
3672.000	99.5	V	N/A	-	PK	198	1.0	RB 1 MHz;VB 3 MHz;Pk
3672.000	85.3	V	N/A	-	PK	198	1.0	RB 100 kHz;VB 100 kHz;Pk

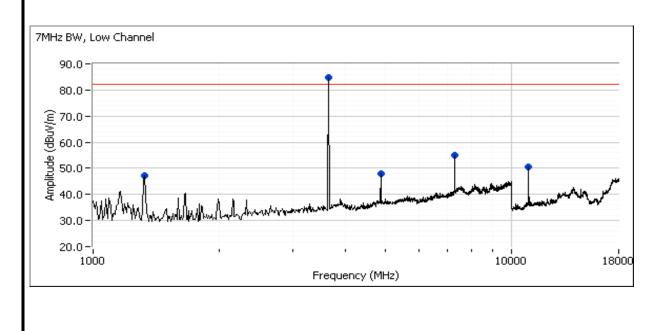


Client:	GE MDS	Job Number:	J81612
Model:	Moroury ODII	T-Log Number:	T81815
	Mercury ODU	Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	FCC Part 90, RSS-119	Class:	-

Run #2: Radiated Spurious Emissions, 30 - 18000 MHz. Operating Mode: 3.5 MHz

Low Channel @ 3653 MHz

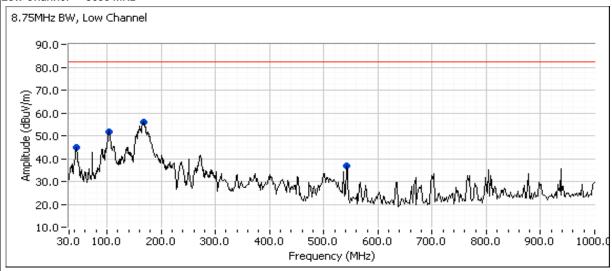

Client:	GE MDS	Á r°company						Job Number:	J81612
							T-	Log Number:	T81815
Model:	Mercury OD	U						unt Manager:	
Contact	Dennis McC	arthy					7.000	un managon	oudann die
	FCC Part 90	,						Class:	
Stariuaru.	I CC I alt 70	, 133-117						Ciass.	
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	0011111101110	
158.778	55.2	Н	82.2	-27.0	Peak	121	1.5		
138.216	50.9	Н	82.2	-31.3	Peak	144	2.0		
194.489	48.8	Н	82.2	-33.4	Peak	174	1.5		
300.000	41.9	Н	82.2	-40.3	Peak	111	1.0		
1990.000	43.8	V	82.2	-38.4	Peak	75	1.0		
3653.000	79.3	V	-	-	Peak	197	1.6	Fundamenta	al
4868.330	47.3	V	82.2	-34.9	Peak	159	1.6		
7305.000	48.2	V	82.2	-34.0	Peak	202	1.6		
0946.670	48.6	V	82.2	-33.6	Peak	202	1.3		

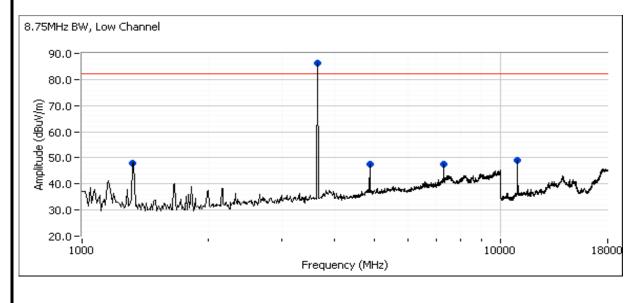


	Time de la company		
Client:	GE MDS	Job Number:	J81612
Model	Morcury ODII	T-Log Number:	T81815
Model: Mercury ODI Contact: Dennis McC	iniercury ODO	Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	FCC Part 90, RSS-119	Class:	-

Run #3: Radiated Spurious Emissions, 30 - 18000 MHz. Operating Mode: 7 MHz

Low Channel @ 3654 MHz


Cliont	GE MDS	2 Company						Job Number:	191612	
Clicit.	OL WIDS									
Model:	Mercury OD	U						Log Number:		
	,						Acco	unt Manager:	Susan Pelzl	
Contact:	Dennis McC	arthy								
Standard:	FCC Part 90), RSS-119						Class:	-	
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
42.825	45.2	V	82.2	-37.0	Peak	214	1.0			7MHz B
104.250	51.8	V	82.2	-30.4	Peak	88	1.0			7MHz B
167.623	55.7	Н	82.2	-26.5	PK	117	2.0	PK (0.10s)		7MHz B
508.250	33.6	Н	82.2	-48.6	Peak	110	1.5			7MHz B
1330.000	47.2	V	82.2	-35.0	Peak	32	1.6			7MHz B
3654.250	84.7	V	•	-	Peak	204	1.0	Fundamenta	al	7MHz B
4868.330	48.0	V	82.2	-34.2	Peak	176	1.6			7MHz B
7308.070	64.6	V	82.2	-17.6	PK	205	1.4	RB 1 MHz;V	B 3 MHz;Pk	7MHz B
0965.320	66.3	V	82.2	-15.9	PK	178	1.0	RB 1 MHz;V	B 3 MHz;Pk	7MHz B

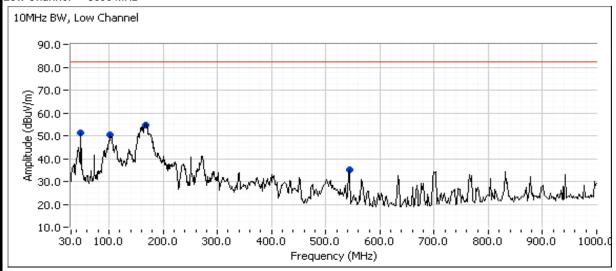


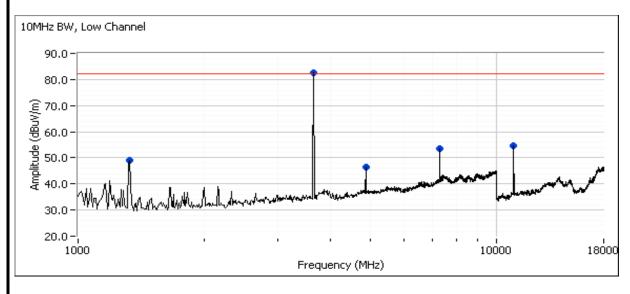
	Time de la company		
Client:	GE MDS	Job Number:	J81612
Model	Morcury ODII	T-Log Number:	T81815
Model: Mercury ODI Contact: Dennis McC	iniercury ODO	Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	FCC Part 90, RSS-119	Class:	-

Run #4: Radiated Spurious Emissions, 30 - 18000 MHz. Operating Mode: 8.75 MHz

Low Channel @ 3655 MHz

Elliott EMC Test Data Job Number: J81612 Client: GE MDS T-Log Number: T81815 Model: Mercury ODU Account Manager: Susan Pelzl Contact: Dennis McCarthy Standard: FCC Part 90, RSS-119 Class: -Level Pol 15.209 / 15.247 Azimuth Height Comments Frequency Detector Pk/QP/Avg MHz dBμV/m v/h Limit Margin degrees meters 43.500 45.1 V 82.2 -37.1 Peak 102 1.0 8.75 BW 102.900 51.6 V 82.2 -30.6 144 1.0 8.75 BW Peak 167.623 55.6 Н 82.2 -26.6 PK 117 2.0 PK (0.10s) 8.75 BW 541.500 37.0 ٧ 82.2 -45.2 Peak 28 1.0 8.75 BW 8.75 BW 1320.830 47.8 ٧ 82.2 -34.4 Peak 168 1.3 3655.000 86.4 ٧ Peak 202 1.0 8.75 BW **Fundamental** 4868.330 47.5 ٧ 82.2 -34.7 Peak 168 1.3 8.75 BW 47.4 200 1.9 7310.830 ٧ 82.2 -34.8 Peak 8.75 BW 10958.530 65.0 ٧ 82.2 -17.2 PK 176 1.1 RB 1 MHz;VB 3 MHz;Pk 8.75 BW Based on the measurements at the three channels using 5 MHz mode, only measurements at the low channel and form 30-


Note 1: 18000 MHz were considered necessary in the 8.75 MHz mode.



Client:	GE MDS	Job Number:	J81612
Madalı	Moroury ODII	T-Log Number:	T81815
wouei.	Mercury ODU	Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	FCC Part 90, RSS-119	Class:	-

Run #5: Radiated Spurious Emissions, 30 - 18000 MHz. Operating Mode: 10 MHz

Low Channel @ 3656 MHz

	7111 2000)tt								
Client:	GE MDS							Job Number:		
Model	Mercury OD	11					T-	Log Number:	T81815	
wouei.	iviercury OD	U					Acco	unt Manager:	Susan Pelzl	
Contact:	Dennis McC	arthy						-		
	FCC Part 90							Class:	-	
Otaniaa a.		71.00 1.7						0.000		
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
167.623	55.6	Н	82.2	-26.6	PK	117	2.0	PK (0.10s)		10MHz BV
48.225	51.2	V	82.2	-31.0	Peak	345	1.0			10MHz BV
101.550	50.3	V	82.2	-31.9	Peak	102	1.0			10MHz BV
543.250	35.1	V	82.2	-47.1	Peak	57	1.0			10MHz BV
1330.000	49.2	V	82.2	-33.0	Peak	81	1.0			10MHz BV
3656.000	82.5	V	-	-	Peak	217	1.6	Fundamenta	al	10MHz BV
4868.330	46.5	V	82.2	-35.7	Peak	180	1.6			10MHz BV
7309.990	62.4	V	82.2	-19.8	PK	210	1.4	RB 1 MHz;V	/B 3 MHz;Pk	10MHz BV
	64.6	V	82.2	-17.6	PK	170	1.3	RB 1 MHz;V	/D 2 MH I J. DI	10MHz DV

Cliont	GE MDS	A company						Job Number:	I81612		
Cilent.	GE IVIDS										
Model:	Mercury OD	U					T-Log Number: T81815 Account Manager: Susan Pelzl				
							ACCOL	ınt Manager:	Susan Peizi		
	Dennis McC										
Standard:	FCC Part 90), RSS-119						Class:	-		
					Substitution						
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
7308.070	64.6	V	82.2	-17.6	PK	205	1.4			7MHz B	
7309.990	62.4	V	82.2	-19.8	PK	210	1.4			10MHz E	
10957.520	70.1	V	82.2	-12.1	PK	177	1.0			5MHz B	
10958.530	65.0	V	82.2	-17.2	PK	176	1.1			8.75 B\	
10964.790	64.6	V	82.2	-17.6	PK	170	1.3			10MHz E	
10965.320	66.3	V	82.2	-15.9	PK	178	1.0			7MHz B	
/ertical								_			
Frequency	i	tion measu		Site		T measurem	•	eirp Limit	erp Limit	Margir	
MHz	Pin ¹	Gain ²	FS ³	Factor ⁴	FS ⁵	eirp (dBm)	erp (dBm)	dBm	dBm	dB	
7308.070	-3.1	10.0	105.6	98.7	64.6	-34.1	-36.3		-13.0	-23.3	
7309.990	-3.1	10.0	105.8	98.9	62.4	-36.5	-38.7		-13.0	-25.7	
10957.520	-2.7	12.2	107.5	98.0	70.1	-27.9	-30.1		-13.0	-17.1	
10958.530	-2.7	12.2	107.9	98.4	65.0	-33.4	-35.6		-13.0	-22.6	
10964.790	-2.7	12.2	107.5	98.0	64.6	-33.4	-35.6		-13.0	-22.6	
10965.320	-2.7	12.2	107.7	98.2	66.3	-31.9	-34.1		-13.0	-21.1	
Horizontal											
7308.070	-3.1	10.0	104.3	97.4	64.6	-32.8	-35.0		-13.0	-22.0	
7309.990	-3.1	10.0	104.2	97.3	62.4	-34.9	-37.1		-13.0	-24.1	
10957.520	-2.7	12.2	106.2	96.7	70.1	-26.6	-28.8		-13.0	-15.8	
10958.530	-2.7	12.2	106.1	96.6	65.0	-31.6	-33.8		-13.0	-20.8	
10964.790	-2.7	12.2	105.7	96.2	64.6	-31.6	-33.8		-13.0	-20.8	

Note 1:	Pin is the input power (dBm) to the substitution antenna
Note 2:	Gain is the gain (dBi) for the substitution antenna. A dipole has a gain of 2.2dBi.
Note 3:	FS is the field strength (dBuV/m) measured from the substitution antenna.
Note 4:	Site Factor - this is the site factor to convert from a field strength in dBuV/m to an eirp in dBm.
Note 5:	EUT field strength as measured during initial run.

An DEE company	(EII	iott
----------------	------	------

	An 2(22) company		
Client:	GE MDS LLC	Job Number:	J81612
Model	MERCURY ODU	T-Log Number:	J81815
Model.	WERCORT ODO	Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	FCC Part 90, RSS-119	Class:	-

RSS-197 and FCC 90Z - Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 1/19/2011 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: none
Test Location: Lab 4 EUT Voltage: PoE

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
2	Power	Part 90	Pass	39.0 dBm (8.0 Watts)
2	PSD	1 Watt/MHz 90.1321(a)	Pass	30 dBm (1 Watt)
2	99% Bandwidth	-	N/A	3.2, 4,5, 6.6, 8.2 & 9.2 MHz
3	Emissions Mask	90.210 Mask	Pass	All emissions within the Mask
4	Antenna Conducted Out of Band Spurious	90.210 Mask	Pass	All spurious emissions less than -13 dBm

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions: Temperature: 20.9 °C

Rel. Humidity: 35 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

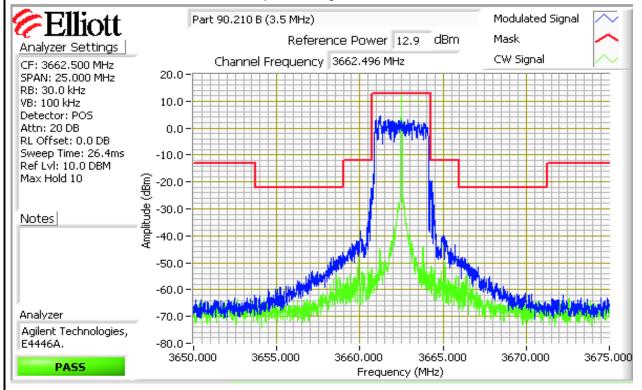
Client:	GE MDS LL	_C						Job Number:	J81612	
Model	MERCURY	ODII					T-	Log Number:	J81815	
wouei.	WERCURT	ODO					Acco	unt Manager:	Susan Pelzl	
Contact:	Dennis Mc(Carthy								
Standard:	FCC Part 9	0, RSS-119						Class:	-	
Run #1: Ba Power		utput Power a		•						
Frequency	Software	Modulation	Measure	d Output Pov	wer ² dBm	To	tal	Limit (dBm)	Max Power	Pass o
(MHz)	Setting ¹	iviodulation	Chain 1	Chain 2	Chain 3	mW	dBm	Liiiiit (ubiii)	(W)	Fail
MHz Mode										
3662	1750	QPSK	12.8	12.3		36.0	15.6	-	-	-
3662	1750	16QAM	12.6	12.1		34.4	15.4	-	-	-
3662	1750	64QAM	12.8	12.3		36.0	15.6	-	-	-
SD						_				
requency	99% ⁴	Modulation	Р	SD ³ dBm/Ml	łz	Total	PSD	Li	mit	Pass o
(MHz)	BW	Modulation	Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz			Fail
MHz Mode	e									
3662	6.60	QPSK	5.0	4.6		6.0	7.8	-	-	-
3662	6.60	16QAM	4.9	4.4		5.8	7.7	-	-	-
3662	6.60	64QAM	5.0	4.6		6.0	7.8	-	-	-
Note 1:	Dowar satti	ng is the softw	ıara sattina ı	usad to sat th	na quitnut no	MΩr				
NOIC 1.		er measured					s sween tim	ne 10 second	s may hold	The total
Note 2:		integrated over	•				•			
11010 2.		ired with a ga								io analyz
		s measured u	•			<u> </u>				10 secon
Note 3:		Multiple swee	•		•			ticcioi – IIIIs	sweep une	10 366011
Note 4:		vidth measure			. ,			QvDR		
		systems the to							of the individu	al chains
Note 5:	(in linear te	,	iai output pt	AND UITU LULC	ii i ob aic c	alouidiou iUIII	i ino sum ui	TIO POWOIS	A THE HIGHNIGH	ui viiaiil3
		bove results,	Power and F	PSD for all tvi	oes of modu	lations. QPSk	K had the hid	hest PSD an	d Power valu	es, 16
Note 6:							•	ormed using		,

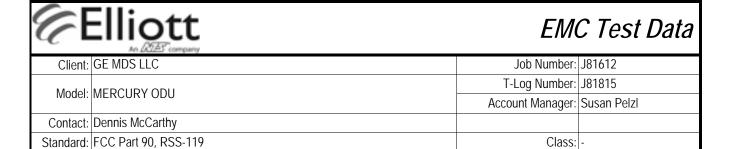
E	liott
0" 0"	MDCILC

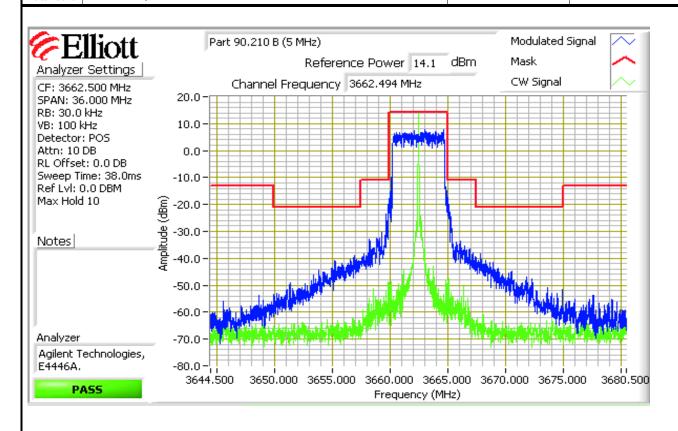
	An 2022 company		
Client:	GE MDS LLC	Job Number:	J81612
Model:	MERCURY ODU	T-Log Number:	J81815
	INIERCURT ODO	Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	FCC Part 90, RSS-119	Class:	-

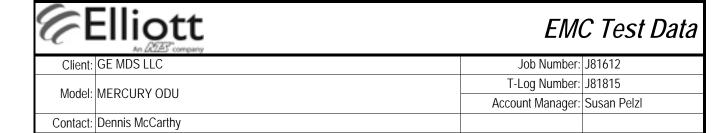
Run #2: Bandwidth, Output Power and Power Spectral Density - MIMO Systems

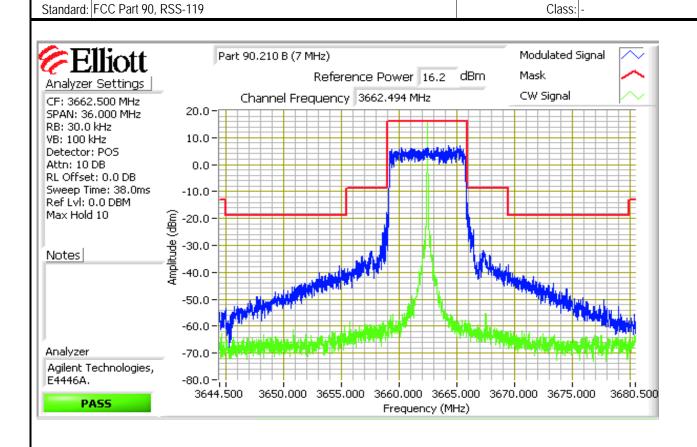
Limits from 90.321(a): Base and fixed stations are limited to 25 watts/25 MHz equivalent isotropically radiated power (EIRP). In any event, the peak EIRP power density shall not exceed 1 Watt in any one-megahertz slice of spectrum (30dBm/MHz).

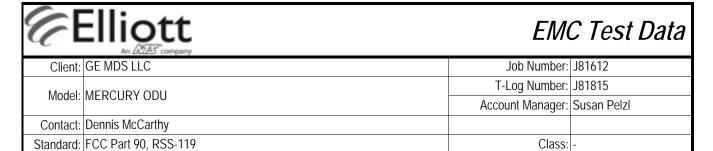

			Chain 1	Chain 2	Chain 3	Coherent	Effective ⁵	FIRP (mW)	EIRP (dBm)	
	Δnt∈nna	a Gain (dBi):	18	18	Ondino	Yes	21.0	8014.9	39.0	
Power - Lim		for maximu			nower settir		21.0	0014.7	37.0	
Frequency	Software		`	d Output Pov			otal	EIRP	Limit (eirp)	Pass or
(MHz)	Setting ¹	Modulation	Chain 1	Chain 2	Chain 3	mW	dBm	dBm	dBm	Fail
3.5MHz Mod	3		Chain	Chain 2	Chains	IIIVV	ubili	ubili	ubili	ı alı
		ODCI/	0.7	10 Г		20.2	101	241	140	DACC
3653	1140/1240	QPSK	9.6	10.5		20.3	13.1	34.1	44.0	PASS
3662	1140/1140		10.4	10.2		21.4	13.3	34.3	44.0	PASS
3672	1140/1140	QPSK	10.6	10.0		21.5	13.3	34.3	44.0	PASS
5.0MHz Mod	de									
3653	1700/1900	QPSK	11.1	12.3		29.9	14.8	35.8	44.0	PASS
3662	1700/1700	QPSK	11.6	12.0		30.2	14.8	35.8	44.0	PASS
3672	1700/1700	QPSK	11.9	11.6		29.9	14.8	35.8	44.0	PASS
7.0MHz Mod	de									
3654	2000/2000	QPSK	13.8	13.0		43.9	16.4	37.4	44.0	PASS
3662	1900/2000	QPSK	13.3	13.7		44.8	16.5	37.5	44.0	PASS
3671	1900/1900	QPSK	13.5	13.1		42.8	16.3	37.3	44.0	PASS
8.75MHz M	o d e									
3655	2100/2100	QPSK	14.6	13.9		53.4	17.3	38.3	44.0	PASS
3662	2100/2100	QPSK	14.4	14.4		55.1	17.4	38.4	44.0	PASS
3670	2000/2100	QPSK	14.2	14.8		56.5	17.5	38.5	44.0	PASS
10.0MHz M	o d e									
3656	2300/2300	QPSK	15.4	14.6		63.5	18.0	39.0	44.0	PASS
3662	2200/2300	QPSK	14.8	15.1		62.6	18.0	39.0	44.0	PASS
3669	2200/2200	QPSK	15.0	14.5		59.8	17.8	38.8	44.0	PASS

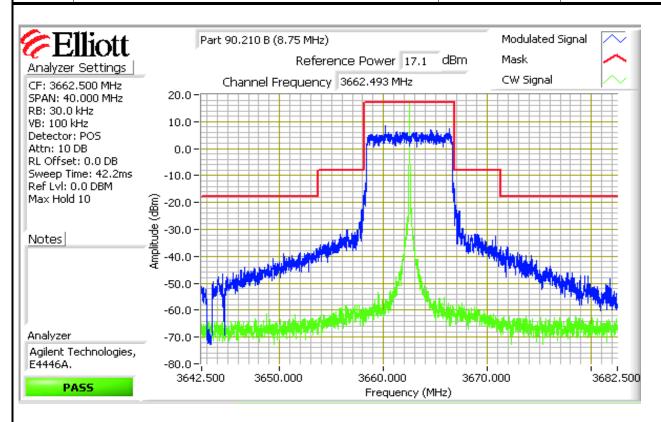

Client:	GE MDS L	LC					Job Number: J81612			
							T-I	_og Number:	J81815	
Model:	MERCUR'	/ ODU							Susan Pelzl	
Contact:	Dennis Mo	Carthy						-		
Standard:	FCC Part	90, RSS-119						Class:	-	
PSD										
requency	99% ⁴		D	SD ³ dBm/MF	J-7	Total	PSD	PSD EIRP	Limit (eirp)	Pass o
	99% BW	Modulation						dBm/MHz	. ' ' '	Fail
(MHz)			Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz	aru/iviHZ	dBm/MHz	Ган
2.5MHz Mo		ODCK	ГЭ	/ 2		7 -	0.7	20.7	20.0	DACC
3653 3662	3.2	QPSK QPSK	5.2 5.8	6.2 5.8		7.5 7.6	8.7 8.8	29.7 29.8	30.0 30.0	PASS PASS
3672	3.2	QPSK	6.2	5.7		7.0	9.0	30.0	30.0	PASS
.0MHz Mo		UPSK	0.2	3.7		1.9	9.0	30.0	30.0	PASS
3653	4.5	QPSK	5.0	6.2		7.3	8.6	29.6	30.0	PASS
3662	4.5	QPSK	5.4	5.9		7.4	8.7	29.7	30.0	PASS
3672	4.5	QPSK	5.7	5.5		7.3	8.6	29.6	30.0	PASS
OMHz Mo		QI SIX	0.7	0.0		7.0	0.0	27.0	00.0	17100
3654	6.6	QPSK	6.1	5.4		7.5	8.8	29.8	30.0	PASS
3662	6.6	QPSK	5.6	6.0		7.6	8.8	29.8	30.0	PASS
3671	6.6	QPSK	5.8	5.4		7.3	8.6	29.6	30.0	PASS
75MHz M	ode	•				•	•	•		
3655	8.2	QPSK	5.9	5.2		7.2	8.6	29.6	30.0	PASS
3662	8.2	QPSK	5.8	5.7		7.5	8.8	29.8	30.0	PASS
3670	8.2	QPSK	5.5	6.1		7.6	8.8	29.8	30.0	PASS
0.0MHz M	ode									
3656	9.2	QPSK	6.3	5.6		7.9	9.0	30.0	30.0	PASS
3662	9.2	QPSK	5.8	6.1		7.9	9.0	30.0	30.0	PASS
3669	9.2	QPSK	5.9	5.5		7.4	8.7	29.7	30.0	PASS
Note 1.	Daa. a.44	! !- !b fb.								
Note 1:		ing is the softw ver measured o					s suson tim	o 10 cocond	c may hald	The total
		integrated ove	•				•			
Note 2:										
	any one display point was less than the "on-time" for the transmitter (4ms). The plot for the channel with the highest power is provided below.									
		vas measured	usina the fol	lowing analy	zer settinas:	RR=1MHz	VB=3MHz d	etector = rms	s sween time	10
		nax hold. Multi								
Note 3:		wer is provided								
		or the transmit		owoop umo	Was saon ti	at the amon	uno por ung	ono display	point was lost	o triari tri
Note 4:		width measure		nce with RSS	S GFN - RB	> 1% of spar	and VB >=3	BxRB		
		systems the to							of the individu	al chains
		erms). The ant						-		
N1.1 =		e MIMO device	-				-			-
Note 5:		e highest gain o								
		are coherent,								
	_	e product of the			•	. ,	,	g 31		

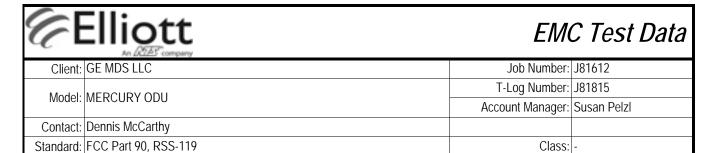


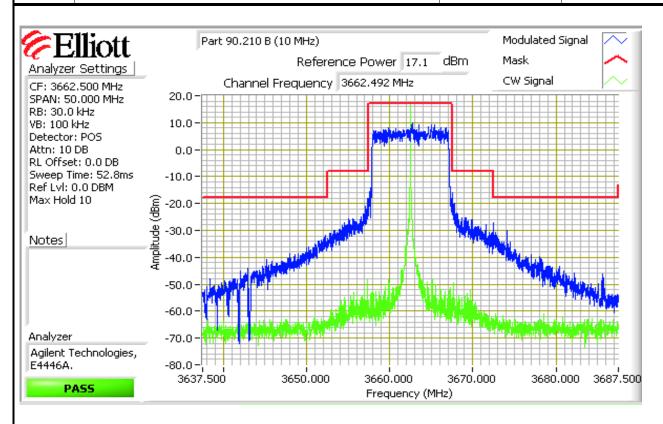

	Prizazzo company		
Client:	GE MDS LLC	Job Number:	J81612
Model:	MERCURY ODU	T-Log Number:	J81815
	WIERCORT ODO	Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	FCC Part 90, RSS-119	Class:	-


Run #3a: Unwanted emissions (Masks), QPSK at power setting used for Power measurements





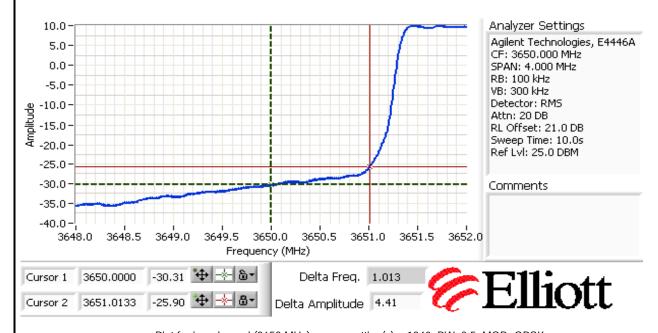




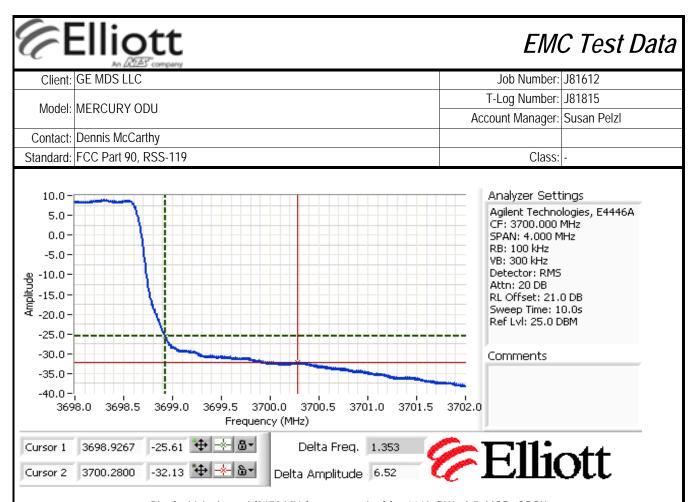
An DAZED company				
Client:	GE MDS LLC	Job Number:	J81612	
Madal	MERCURY ODU	T-Log Number:	J81815	
wouei.	WERCURT ODU	Account Manager:	Susan Pelzl	
Contact:	Dennis McCarthy			
Standard:	FCC Part 90, RSS-119	Class:	-	

Run #3b: Unwanted emissions, QPSK at power setting used for Power measurements

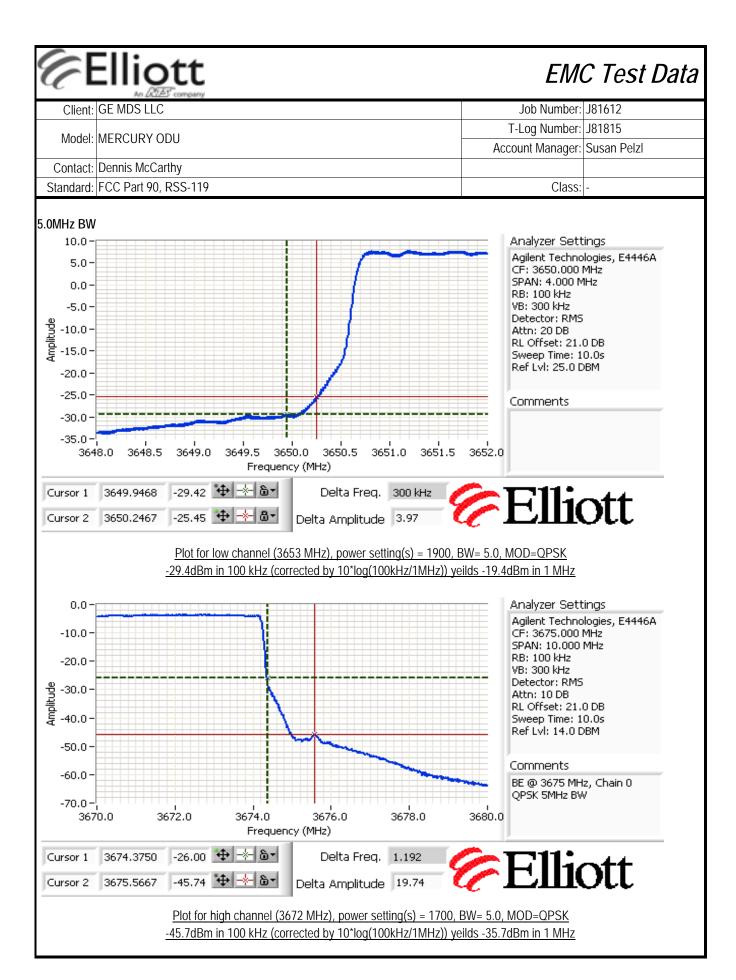
Number of transmit chains: 2

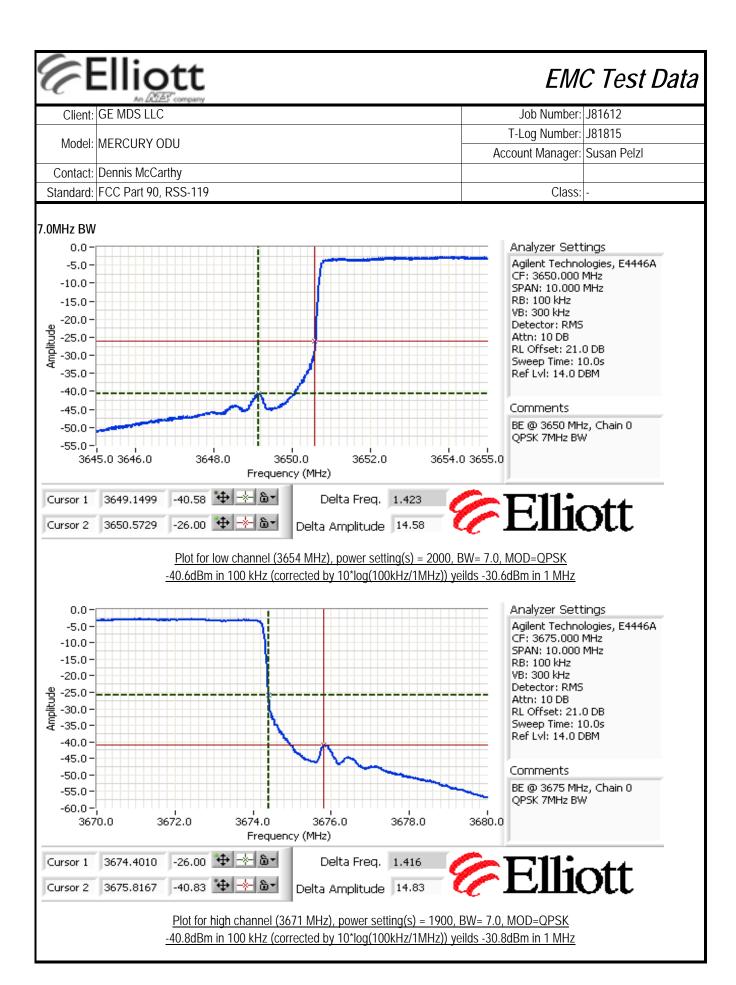

Spurious Limit: -23.0 dBm/100kHz (-13dBm/MHz) eirp
Adjustment for 2 chains: -3.0 dB adjustment for multiple chains.

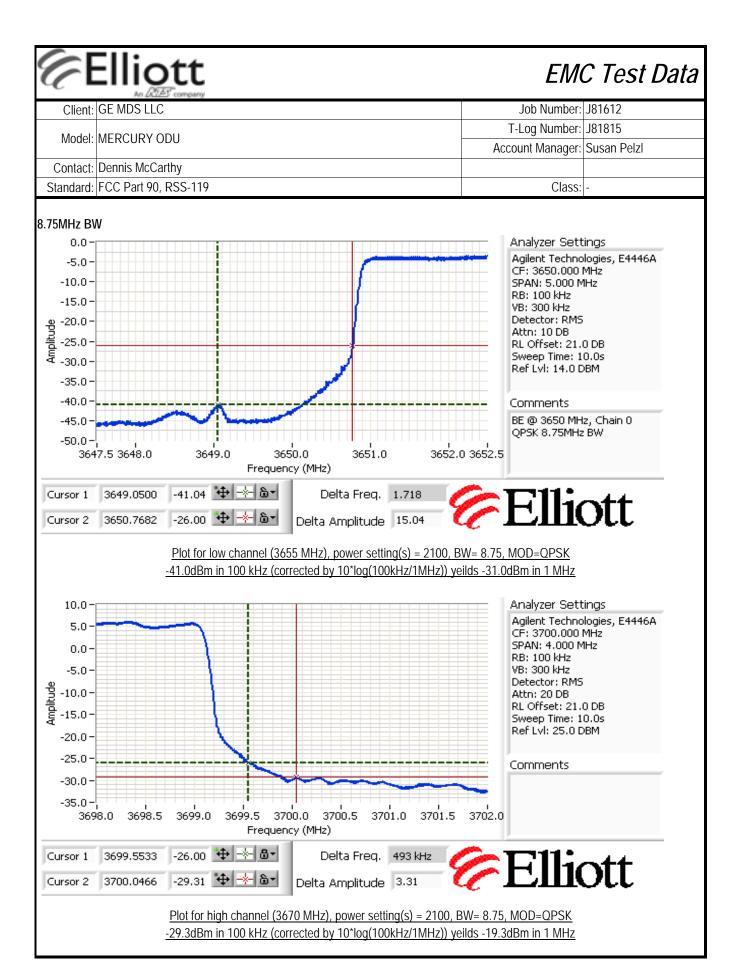
Limit Used On Plots -26.0 dBm/100 kHz

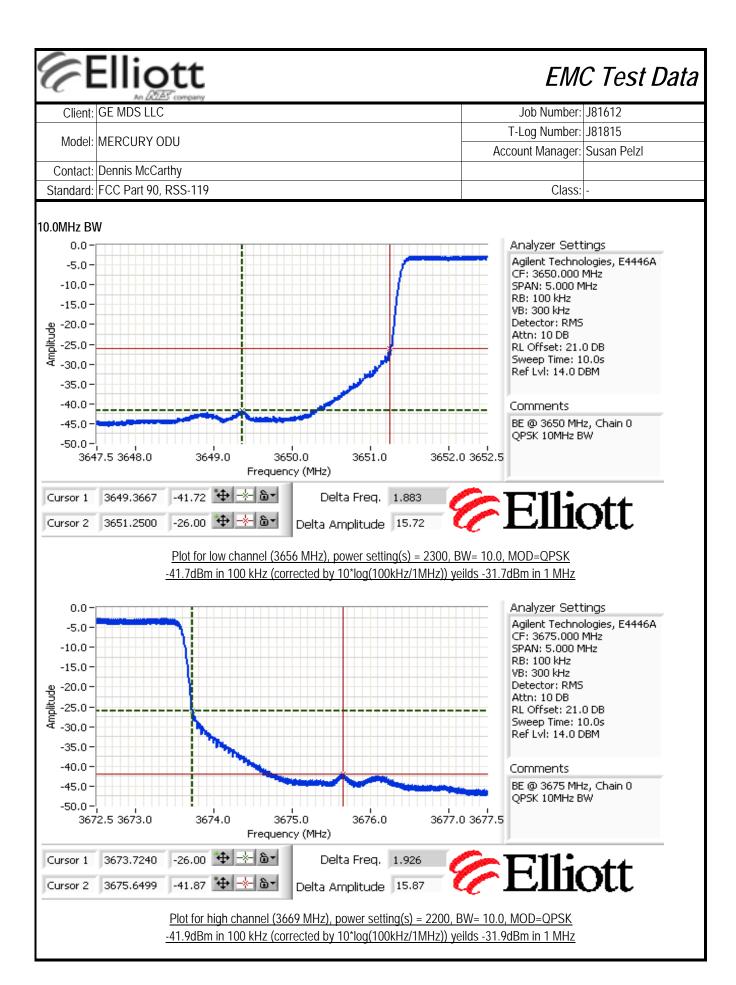

MIMO Devices: The plots were obtained for the chain with the highest PSD and the limit was adjusted to account for all chains transmitting simultaneously

Band edge Measurements


3.5MHz BW




<u>Plot for low channel (3653 MHz), power setting(s) = 1240, BW=3.5, MOD=QPSK -30.3dBm in 100 kHz (corrected by 10*log(100kHz/1MHz)) yeilds -20.3dBm in 1 MHz</u>



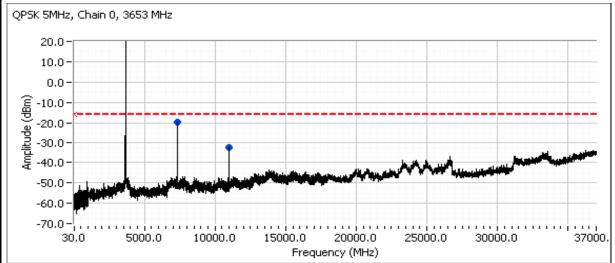
Plot for high channel (3672 MHz), power setting(s) = 1140, BW= 3.5, MOD=QPSK -32.1dBm in 100 kHz (corrected by 10*log(100kHz/1MHz)) yeilds -22.1dBm in 1 MHz

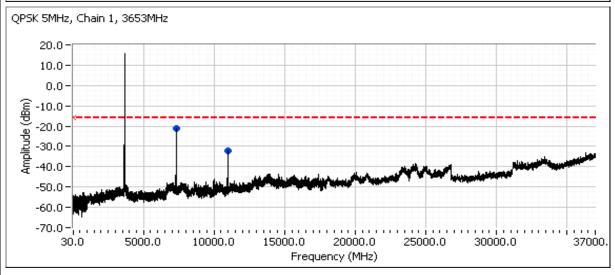
	An 2022 company		
Client:	GE MDS LLC	Job Number:	J81612
Model:	MERCURY ODU	T-Log Number:	J81815
	INIERCURT ODO	Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	FCC Part 90, RSS-119	Class:	-

Run #4: Out Of Band Spurious Emissions - Antenna Conducted

Number of transmit chains:

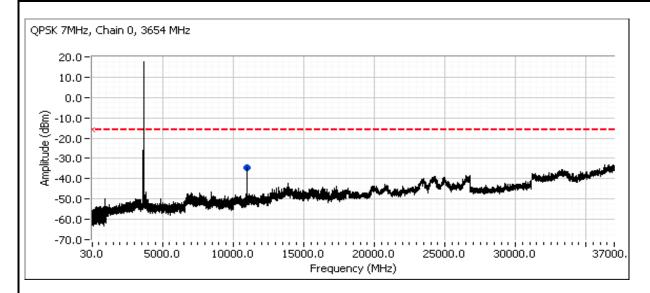
Spurious Limit: -13.0 dBm/MHz eirp

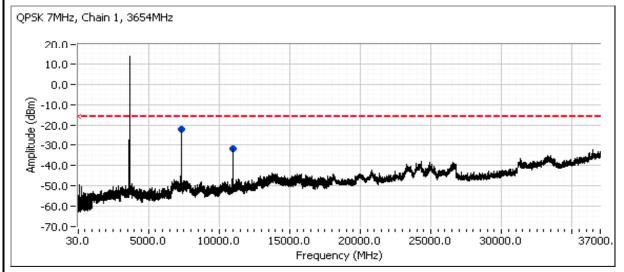

Adjustment for 2 chains: -3.0 dB adjustment for multiple chains.


Limit Used On Plots -16.0 dBm/MHz

MIMO Devices: The plots were obtained for each chain individually and the limit was adjusted to account for all chains transmitting simultaneously

Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz above 1 GHz and 120 kHz below 1 GHz)


Low channel



	Prizazzo company		
Client:	GE MDS LLC	Job Number:	J81612
Model:	MERCURY ODU	T-Log Number:	J81815
	WERCORT ODO	Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	FCC Part 90, RSS-119	Class:	-

Note: As all the emissions were similar between 5 and 7 Mhz BW modes, testing in the other BW modes was not considered necessary.

Elliott EMC Test Data Client: GE MDS LLC Job Number: J81612 T-Log Number: J81815 Model: MERCURY ODU Account Manager: Susan Pelzl Contact: Dennis McCarthy Standard: FCC Part 90, RSS-119 Class: Center channel QPSK 5MHz, Chain 0, 3662 MHz 30.0 20.0 0.00 -20.00 -40.00 0.0 -60.0 -70.0 -| | 37000 30.0 5000.0 10000.0 15000.0 20000.0 25000.0 30000.0 Frequency (MHz) QPSK 5MHz, Chain 1, 3662 MHz 20.0 10.0 0.0 (mg) -10.00 -20.00 -30.00 -40.00

-50.0 -60.0 -70.0

30.0

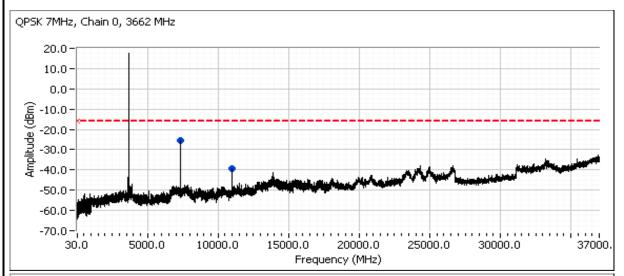
5000.0

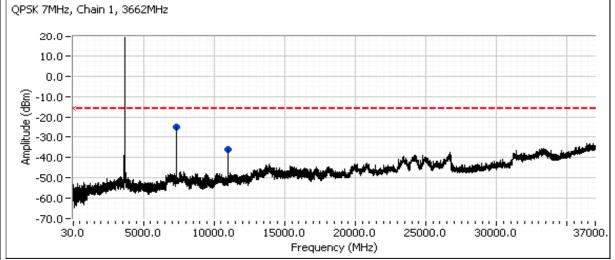
10000.0

20000.0

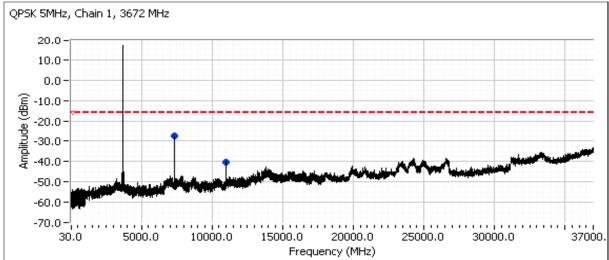
Frequency (MHz)

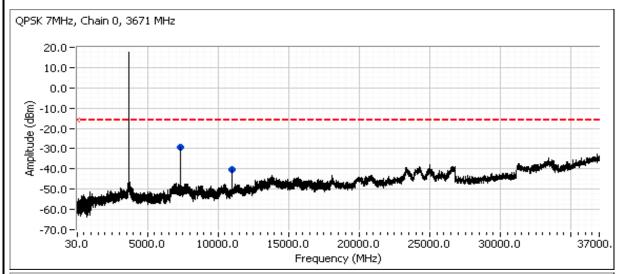
25000.0

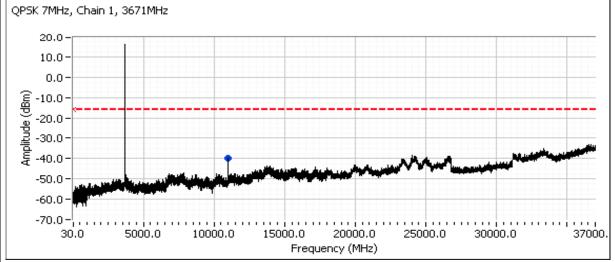

30000.0


15000.0

37000.


	AN IALES Company		
Client:	GE MDS LLC	Job Number:	J81612
Model:	MERCURY ODU	T-Log Number:	J81815
	WERCORT ODO	Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	FCC Part 90, RSS-119	Class:	-


Note: As all the emissions were similar between 5 and 7 Mhz BW modes, testing in the other BW modes was not considered necessary.


Elliott EMC Test Data Client: GE MDS LLC Job Number: J81612 T-Log Number: J81815 Model: MERCURY ODU Account Manager: Susan Pelzl Contact: Dennis McCarthy Standard: FCC Part 90, RSS-119 Class: High channel QPSK 5MHz, Chain 0, 3672 MHz 30.0 20.0 0.00 -20.00 -40.00 0.0 -60.0 -70.0 -| | 37000 30.0 5000.0 10000.0 15000.0 20000.0 25000.0 30000.0 Frequency (MHz) QPSK 5MHz, Chain 1, 3672 MHz

An DOLES company					
Client:	GE MDS LLC	Job Number:	J81612		
Model:	MERCURY ODU	T-Log Number:	J81815		
	WERCORY ODO	Account Manager:	Susan Pelzl		
Contact:	Dennis McCarthy				
Standard:	FCC Part 90, RSS-119	Class:	-		

Note: As all the emissions were similar between 5 and 7 Mhz BW modes, testing in the other BW modes was not considered necessary.

	An 2022 company		
Client:	GE MDS LLC	Job Number:	J81612
Model:	MERCURY ODU	T-Log Number:	J81815
	INIERCURT ODO	Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	FCC Part 90, RSS-119	Class:	-

Frequency	Level	Port	FCC F	Part 90	Detector	Channel	Mode	Comments
MHz	dBm		Limit	Margin	2 0.00.0.	0.101.1101		
7323.110	-25.0	RF	-16.0	-9.0	Peak	QPSK 5MHz	z, chain 0, 3	662 MHz
10989.660	-33.0	RF	-16.0	-17.0	Peak	QPSK 5MHz	z, chain 0, 3	662 MHz
7326.110	-23.0	RF	-16.0	-7.0	Peak	QPSK 5MHz	z, chain 0, 3	672 MHz
10989.660	-35.8	RF	-16.0	-19.8	Peak	QPSK 5MHz	z, chain 0, 3	672 MHz
7305.100	-19.7	RF	-16.0	-3.7	Peak	QPSK 5MHz	z, chain 0, 3	653 MHz
10957.650	-32.3	RF	-16.0	-16.3	Peak	QPSK 5MHz	z, chain 0, 3	653 MHz
7323.110	-24.0	RF	-16.0	-8.0	Peak	QPSK 5MHz	z, chain 1, 3	662 MHz
10989.660	-35.9	RF	-16.0	-19.9	Peak	QPSK 5MHz	z, chain 1, 3	662 MHz
7344.110	-27.5	RF	-16.0	-11.5	Peak	QPSK 5MHz	z, chain 1, 3	672 MHz
11013.670	-40.2	RF	-16.0	-24.2	Peak	QPSK 5MHz	z, chain 1, 3	672 MHz
7305.100	-21.2	RF	-16.0	-5.2	Peak	QPSK 5MHz	z, chain 1, 3	653 MHz
10957.650	-32.0	RF	-16.0	-16.0	Peak	QPSK 5MHz	z, chain 1, 3	653 MHz
7323.110	-24.8	RF	-16.0	-8.8	Peak	QPSK 7MHz	z, chain 1, 3	662 MHz
10989.660	-36.0	RF	-16.0	-20.0	Peak	QPSK 7MHz	z, chain 1, 3	662 MHz
11013.670	-40.0	RF	-16.0	-24.0	Peak	QPSK 7MHz	z, chain 1, 3	671 MHz
7308.100	-22.3	RF	-16.0	-6.3	Peak	QPSK 7MHz	z, chain 1, 3	654 MHz
10962.990	-31.8	RF	-16.0	-15.8	Peak	QPSK 7MHz	z, chain 1, 3	654 MHz
7326.110	-25.7	RF	-16.0	-9.7	Peak	QPSK 7MHz	z, chain 0, 3	662 MHz
10984.330	-39.5	RF	-16.0	-23.5	Peak	QPSK 7MHz	z, chain 0, 3	662 MHz
7338.110	-29.3	RF	-16.0	-13.3	Peak	QPSK 7MHz	z, chain 0, 3	671 MHz
11008.340	-40.3	RF	-16.0	-24.3	Peak	QPSK 7MHz	z, chain 0, 3	671 MHz
10960.320	-34.7	RF	-16.0	-18.7	Peak	QPSK 7MHz	z, chain 0, 3	654 MHz