

Radio Test Report

FCC Part 90 (3650 MHz to 3700 MHz)

Model: MERCURY2-MIMO

COMPANY: GE MDS LLC

175 Science Parkway Rochester, NY 14620

TEST SITE(S): Elliott Laboratories

41039 Boyce Road.

Fremont, CA. 94538-2435

REPORT DATE: December 13, 2010

FINAL TEST DATES: October 11, 13, 14 and 20, 2010

AUTHORIZED SIGNATORY:

Chief Engineer

Elliott Laboratories

Testing Cert #2016.01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report, except where noted otherwise. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

File: R80994 Rev 1 Page 1 of 18

Test Report Report Date: December 13, 2010

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	12/3/2010	First release	
1	12/13/2010	Correct typographical error in summary	dwb
		power values on page 6 and removed	
		references to RSS-GEN and RSS-197	

File: R80994 Rev 1 Page 2 of 18

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	5
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	5
TEST RESULTS	6
FCC PART 90Z – BASE AND FIXED STATIONS, 3650 – 3700 MHZ	
EXTREME CONDITIONS	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
OTHER EUT DETAILS ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT OPERATION	
TESTING	9
GENERAL INFORMATION	
RF PORT MEASUREMENT PROCEDURES	10
OUTPUT POWER	
BANDWIDTH MEASUREMENTS	
CONDUCTED SPURIOUS EMISSIONS	
TRANSMITTER MASK MEASUREMENTSFREQUENCY STABILITY	
RADIATED EMISSIONS MEASUREMENTS	
INSTRUMENTATION	
FILTERS/ATTENUATORS	
ANTENNAS	13
ANTENNA MAST AND EQUIPMENT TURNTABLE	13
SAMPLE CALCULATIONS	
SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS	
SAMPLE CALCULATIONS –RADIATED FIELD STRENGTH	
SAMPLE CALCULATIONS –RADIATED POWER	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	1
APPENDIX B TEST DATA	2

SCOPE

Tests have been performed on the GE MDS LLC model MERCURY2-MIMO, pursuant to the relevant requirements of the following standard(s) in order to obtain device certification against the regulatory requirements of the Federal Communications Commission and Industry Canada.

- Code of Federal Regulations (CFR) Title 47 Part 2
- CFR 47 Part 90 (Private Land Mobile Radio Service) Subpart Z

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 ANSI TIA-603-C August 17, 2004

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the GE MDS LLC model MERCURY2-MIMO and therefore apply only to the tested sample. The sample was selected and prepared by Dennis McCarthy of GE MDS LLC.

File: R80994 Rev 1 Page 4 of 18

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, the device requires certification. Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of GE MDS LLC model MERCURY2-MIMO complied with the requirements of the standards and frequency bands declared in the scope of this test report.

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

File: R80994 Rev 1 Page 5 of 18

TEST RESULTS

FCC Part 90Z - Base and Fixed Stations, 3650 - 3700 MHz

FCC	Description	Measured	Limit	Result
Transmitter Me	odulation, output power an	d other characteristics		•
\$2.1033 (c) (5) \$ 90.1321(b)	Frequency ranges (Listed for each channel spacing)	3.5MHz 3653-3672 MHz 5.0MHz 3653-3672MHz 7.0MHz 3654-3671MHz 8.75MHz 3655-3670MHz 10.0MHz 3656-3669MHz	3650-3675 MHz Note 1	Complies
\$2.1033 (c) (6) \$2.1033 (c) (7)	EIRP – Total power (Maximum for each channel spacing)	3.5 MHz: 34.8dBm 5.0 MHz: 36.1dBm 7.0 MHz: 37.6dBm 8.75 MHz: 38.4dBm 10.0 MHz: 38.9dBm	25 Watts	Complies
§2.1046 § 90.1321	EIRP – PSD (Maximum)	3.5 MHz: 29.7dBm/MHz 5.0 MHz: 29.8dBm/MHz 7.0 MHz: 29.9dBm/MHz 8.75 MHz: 29.7dBm/MHz 10.0 MHz: 29.8dBm/MHz	30 dBm/MHz	Complies
§2.1033 (c)	Emission types	G1D	Information only	-
(4) §2.1047 § 90.210	Emission mask	Device complies with spectral mask – refer to test data	Mask B	Complies
§2.1049	Occupied (99%) Bandwidth	3.5 MHz: 3.3 MHz 5.0 MHz: 4.6 MHz 7.0 MHz: 6.6 MHz 8.75 MHz: 8.2 MHz 10.0 MHz: 9.2 MHz	Information only	-
Transmitter sp	urious emissions		1	
§2.1051 §2.1057	At the antenna terminals	-21.3 dBm	-13 dBm/MHz	Complies
§90.1323	Radiated (eirp)	-34.4 dBm	13 dBill Wille	Complies
Receiver spurio				
15.109 Other details	Field strength	Not applicable, note 2		
§90.1319	Policies of use	Refer to operational description for details of the implementation.	Device must employ a contention-based protocol.	Complies
§2.1055 §90.213(a)	Frequency stability	760 Hz / .21 ppm	To be specified in the station authorization	-
\$1.1307(b) \$2.1093 \$90.1335	RF Exposure	Although RF exposure com- licensing an MPE calculation compliance with limits at disantennas.	on has been provided to d	emonstrate
§2.1033 (c) (8)	Final radio frequency amplifying circuit's de voltages and currents for normal operation over the power range	6Vdc, 1.2A for each chain	Information only	-
-	Antenna Gain	This application is for anter	nnas of 13 and 18dBi gair	l.
Notes				

Notes

- 1) The upper part of the allocated band from 3675 3700 MHz requires the device to use an unrestricted contention-based protocol. This system does not have such a protocol and so cannot use the upper portion of the band.
- 2) Receiver spurious emissions requirements only apply to devices that operate (tune) below 960MHz.

File: R80994 Rev 1 Page 6 of 18

EXTREME CONDITIONS

Frequency stability is determined over extremes of temperature and voltage. The extremes of voltage were 85 to 115 percent of the nominal value. The extremes of temperature were -30°C to +50°C as specified in FCC §2.1055(a)(1).

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2) and were calculated in accordance with NAMAS document NIS 81 and M3003.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF frequency	Hz	25 to 7,000 MHz	1.7×10^{-7}
RF power, conducted	dBm	25 to 7,000 MHz	± 0.52 dB
Conducted emission of transmitter	dBm	25 to 40,000 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 40,000 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 40,000 MHz	± 2.5 dB
Radiated emission (field strength)	dBμV/m	25 to 1,000 MHz 1 to 40 GHz	\pm 3.6 dB \pm 6.0 dB

File: R80994 Rev 1 Page 7 of 18

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The GE MDS LLC model MERCURY2-MIMO is a broadband wireless transceiver that is designed to transmit in the 3650-3700 MHz band using 2x2 spatial multiplexing MIMO with bandwidths of 3.3, 4.6, 6.6, 8.2 and 9.2 MHz. The electrical rating of the EUT is 10-30Vdc, 2.5 Amps.

The sample was received on October 11, 2010 and tested on October 11, 13, 14 and 20, 2010. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
GE MDS LLC	MERCURY2-	Broadband	-	E5MDS-
	MIMO	Wireless		MERCMIMO3
		Transceiver		

OTHER EUT DETAILS

The Mercury 3650 can be used with antennas of 13dBi or 18dBi. The test data accounted for a minimum feed cable loss of 6dB between the devices rf port and the antenna when calculating the eirp values for power and power spectral density from the values measured at the device's rf terminal.

ENCLOSURE

The EUT enclosure is primarily constructed of die cast metal. It measures approximately 20cm wide by 11cm deep by 5cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

The EUT output was connected to a load or through an attenuator to a spectrum analyzer during testing

EUT OPERATION

During emissions testing the EUT set to transmit a continuous OFDM modulated signal or set in receive mode depending on the test performed.

Preliminary measurements on all different data rates indicated that QAM16 was representative of the highest power, highest power spectral density and widest signal bandwidths for all modulations, therefore final measurements were made using this modulation.

File: R80994 Rev 1 Page 8 of 18

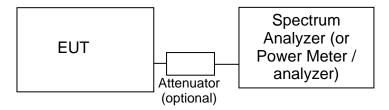
TESTING

GENERAL INFORMATION

Antenna port measurements were taken at the Elliott Laboratories test site located at 41039 Boyce Road, Fremont, CA 94538-2435.

Radiated spurious emissions measurements were taken at the Elliott Laboratories Anechoic Chambers and/or Open Area Test Site(s) listed below. The sites conform to the requirements of ANSI C63.4: 2003 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz and CISPR 16-1-4:2007 - Specification for radio disturbance and immunity measuring apparatus and methods Part 1-4: Radio disturbance and immunity measuring apparatus Ancillary equipment Radiated disturbances. They are on file with the FCC and industry Canada.

Site	Registratio	n Numbers	Location
	FCC	Canada	Location
			41039 Boyce Road
Chamber 3	769238	IC 2845B-3	Fremont,
			CA 94538-2435


In the case of Open Area Test Sites, ambient levels are at least 6 dB below the specification limits with the exception of predictable local TV, radio, and mobile communications traffic.

Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements.

File: R80994 Rev 1 Page 9 of 18

RF PORT MEASUREMENT PROCEDURES

Conducted measurements are performed with the EUT's rf input/output connected to the input of a spectrum analyzer, power meter or modulation analyzer. When required an attenuator, filter and/or dc block is placed between the EUT and the spectrum analyzer to avoid overloading the front end of the measurement device. Measurements are corrected for the insertion loss of the attenuators and cables inserted between the rf port of the EUT and the measurement equipment.

Test Configuration for Antenna Port Measurements

For devices with an integral antenna the output power and spurious emissions are measured as a field strength at a test distance of (typically) 3m and then converted to an eirp using a substitution measurement (refer to RADIATED EMISSIONS MEASUREMENTS). All other measurements are made as detailed below but with the test equipment connected to a measurement antenna directed at the EUT.

OUTPUT POWER

Output power is measured using a power meter and an average sensor head, a spectrum analyzer or a power meter and peak power sensor head as required by the relevant rule part(s). Where necessary measurements are gated to ensure power is only measured over periods that the device is transmitting.

Power measurements made directly on the rf power port are, when appropriate, converted to an EIRP by adding the gain of the highest gain antenna that can be used with the device under test, as specified by the manufacturer.

File: R80994 Rev 1 Page 10 of 18

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN. The measurement bandwidth is set to be at least 1% of the instrument's frequency span.

CONDUCTED SPURIOUS EMISSIONS

Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode measurements). Where the limits are expressed as an average power the spectrum analyzer is tunes to that frequency with a narrow span (wide enough to capture the emission and its sidebands) and the resolution and video bandwidths are adjusted as required by the reference measurement standards. For transmitter measurements the appropriate detector (average, peak, normal ,sample, quasi-peak) is used when making measurements for licensed devices. For receiver conducted spurious measurements the detector is set to peak.

TRANSMITTER MASK MEASUREMENTS

The transmitter mask measurements are made using resolution bandwidths as specified in the pertinent rule part(s). Where narrower bandwidths are used the measurement is corrected to account for the reduced bandwidth by either using the adjacent channel power function of the spectrum analyzer to sum the power across the required measurement bandwidth. The frequency span of the analyzer is set to ensure the fundamental signal and all significant sidebands are displayed.

The top of the mask may be set by the total output power of the signal, the power of the unmodulated signal or the peak value of the signal in the reference bandwidth being used for the mask measurement.

FREQUENCY STABILITY

The EUT is placed inside a temperature chamber with all support and test equipment located outside of the chamber. The temperature is varied across the specified frequency range in 10 degree increments with frequency measurements made at each temperature step. The EUT is allowed enough time to stabilize at each temperature variation.

The spectrum analyzer is configured to give a 5- or 6-digit display for the marker-frequency function. The spectrum analyzer's built-in frequency counter is used to measure the maximum deviation of the fundamental frequency at each temperature. Where possible the device is set to transmit an unmodulated signal. Where this is not possible the frequency drift is determined by finding a stable point on the signal (e.g. the null at the centre of an OFDM signal) or by calculating a centre frequency based on the upper and lower XdB points (where X is typically 6dB or 10dB) on the signal's skirts.

File: R80994 Rev 1 Page 11 of 18

RADIATED EMISSIONS MEASUREMENTS

Receiver radiated spurious emissions measurements are made in accordance with ANSI ANSI C63.4:2003 by measuring the field strength of the emissions from the device at a specific test distance and comparing them to a field strength limit. Where the field strength limit is specified at a longer distance than the measurement distance the measurement is extrapolated to the limit distance.

Transmitter radiated spurious emissions are initially measured as a field strength. The eirp or erp limit as specified in the relevant rule part(s) is converted to a field strength at the test distance and the emissions from the EUT are then compared to that limit. Emissions within 20dB of this limit are the subjected to a substitution measurement.

All radiated emissions measurements are performed in two phases. A preliminary scan of emissions is conducted in either an anechoic chamber or on an OATS during which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed across the complete frequency range of interest and at each operating frequency identified in the reference standard. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode).

During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit. For transmitter spurious emissions, where the limit is expressed as an effective radiated power, the eirp or erp is converted to a field strength limit.

Final measurements are made on an OATS or in a semi-anechoic chamber at the significant frequencies observed during the preliminary scan(s) using the same process of rotating the EUT and raising/lowering the measurement antenna to find the highest level of the emission. The field strength is recorded and, for receiver spurious emissions, compared to the field strength limit. For the final measurement the appropriate detectors (average, peak, normal, sample, quasi-peak) are used. For receiver measurements below 1GHz the detector is a Quasi-Peak detector, above 1GHz a peak detector is used and the peak value (RB=VB=1MHz) and average value (RB=1MHz, VB=10Hz) are recorded.

For transmitter spurious emissions, the radiated power of all emissions within 20dB of the calculated field strength limit are determined using a substitution measurement. The substitution measurement is made by replacing the EUT with an antenna of known gain (typically a dipole antenna or a double-ridged horn antenna), connected to a signal source. The output power of the signal generator is adjusted until the maximum field strength from the substitution antenna is similar to the field strength recorded from the EUT. The erp of the EUT is then calculated.

File: R80994 Rev 1 Page 12 of 18

INSTRUMENTATION

An EMI receiver as specified in CISPR 16-1-1 is used for radiated emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 7000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary.

For measurements above the frequency range of the receivers and for all conducted measurements a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis.

Measurement bandwidths for the test instruments are set in accordance with the requirements of the standards referenced in this document.

Software control is used to correct the measurements for transducer factors (e.g. antenna) and the insertion loss of cables, attenuators and other series elements to obtain the final measurement value. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are exported in a graphic and/or tabular format, as appropriate.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the EUT antenna port or receiving antenna and the test receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A combination of biconical, log periodic or bi-log antennas are used to cover the range from 30 MHz to 1000 MHz. Broadband antennas or tuned dipole antennas are used over the entire 25 to 1000 MHz frequency range as the reference antenna for substitution measurements.

Above 1000 MHz, a dual-ridge guide horn antenna or octave horn antenna are used as reference and measurement antennas

The antenna calibration factors are included in site factors that are programmed into the test receivers and instrument control software when measuring the radiated field strength.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height.

Table mounted devices are placed on a non-conductive table at a height of 80 centimeters above the floor. Floor mounted equipment is placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. The EUT is positioned on a motorized turntable to allow it to be rotated during testing to determine the angel with the highest level of emissions.

File: R80994 Rev 1 Page 13 of 18

SAMPLE CALCULATIONS

SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS

Measurements are compared directly to the conducted emissions specification limit (decibel form). The calculation is as follows:

$$R_r - S = M$$

where:

 R_r = Measured value in dBm

S = Specification Limit in dBm

M = Margin to Specification in +/- dB

File: R80994 Rev 1 Page 14 of 18

SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH

Measurements of radiated field strength are compared directly to the specification limit (decibel form). The receiver and/or control software corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor is sued when measurements are made at a test distance that is different to the specified limit distance by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_C = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

File: R80994 Rev 1 Page 15 of 18

SAMPLE CALCULATIONS -RADIATED POWER

The erp/eirp limits for transmitter spurious measurements are converted to a field strength in free space using the following formula:

$$E = \frac{\sqrt{30 PG}}{d}$$

where:

E = Field Strength in V/m

P = Power in Watts

G = Gain of isotropic antenna (numeric gain) = 1

D = measurement distance in meters

The field strength limit is then converted to decibel form (dBuV/m) and the margin of a given emission peak relative to the limit is calculated (refer to

File: R80994 Rev 1 Page 16 of 18

SAMPLE CALCULATIONS -RADIATED FIELD STRENGTH).

When substitution measurements are required (all signals with less than 20dB of margin relative to the calculated field strength limit) the eirp of the spurious emission is calculated using:

$$P_{EUT} = P_{S-(E_S-E_{EUT)}}$$

and

$$P_S = G + P_{in}$$

where:

 P_S = effective isotropic radiated power of the substitution antenna (dBm)

Pin = power input to the substitution antenna (dBm)

G = gain of the substitution antenna (dBi)

 E_S = field strength the substitution antenna (dBm) at eirp P_S

 E_{EUT} = field strength measured from the EUT

Where necessary the effective isotropic radiated power is converted to effective radiated power by subtracting the gain of a dipole (2.2dBi) from the eirp value.

File: R80994 Rev 1 Page 17 of 18

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz - 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

File: R80994 Rev 1 Page 18 of 18

Appendix A Test Equipment Calibration Data

Radio Antenna Port (F	Power and Spurious Emissions), 1	11 through 13-Oct-10		
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
Tektronix	500MHz, 2CH, 5GS/s Scope	TDS5052B	2118	9/29/2011
Radiated Emissions,	1000 - 37,000 MHz, 13-Oct-10			
Manufacturer	Description	Model	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-	8449B	263	12/15/2010
	26.5GHz			
EMCO	Antenna, Horn, 1-18 GHz	3115	1142	8/2/2012
	(SA40-Red)			5
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT	8564E (84125C)	1393	4/14/2011
	(SA40) Blue	(,		
Hewlett Packard	Head (Inc W1-W4, 1742, 1743)	84125C	1620	5/4/2011
	Blue			
A.H. Systems	Red System Horn, 18-40GHz	SAS-574, p/n: 2581	2161	3/5/2011
	30 - 1,000 MHz, 14-Oct-10	, ,		
Manufacturer	Description	Model	Asset #	Cal Due
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1549	6/4/2011
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	3/31/2011
Com-Power Corp.	Preamplifier, 30-1000 MHz	PA-103A	2204	2/26/2011
	30 - 11,100 MHz, 15-Oct-10			_,,_,
Manufacturer	Description	Model	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-	8449B	870	6/25/2011
	26.5GHz	002	0.0	0, 20, 20
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	10/15/2010
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	6/22/2012
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40)	8564E (84125C)	1771	8/26/2011
	Purple	(0.1.207)		5 5 5
Hewlett Packard	Preamplifier, 100 kHz - 1.3 GHz	8447D OPT 010	1826	5/27/2011
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	2197	12/29/2011
	30 - 1,000 MHz and Masks, 18-Oct			, ,
Manufacturer	Description	<u>Model</u>	Asset #	Cal Due
Hewlett Packard	Preamplifier, 100 kHz - 1.3 GHz	8447E	1606	4/29/2011
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1657	5/28/2012
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	3/16/2011
	30 - 1,000 MHz, 19-Oct-10	20.5.		0, 10, 20 1 1
Manufacturer	Description	<u>Model</u>	Asset #	Cal Due
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	11/15/2010
Hewlett Packard	Preamplifier, 100 kHz - 1.3 GHz	8447D OPT 010	1826	5/27/2011
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	2197	12/29/2011
Frequency Stability, 2				,,
Manufacturer	Description	Model	Asset #	Cal Due
Fluke Mfg. Inc.	True RMS Multimeter	111	1557	3/9/2011
Agilent	PSA, Spectrum Analyzer,	E4446A	2139	1/6/2011
, ig	(installed options, 111, 115, 123,	21116/1	2.00	1,0,2011
	1DS, B7J, HYX,			
Thermotron	Temp Chamber (w/ F4 Watlow	S1.2	2170	7/1/2011
momonom	Controller)	31.2	2170	77 172011
Conducted Emissions	s - AC Power Ports, 20-Oct-10			
Manufacturer	Description	Model	Asset #	Cal Due
EMCO	LISN, 10 kHz-100 MHz	3825/2	1292	3/12/2011
EMCO	LISN, 10 kHz-100 MHz	3825/2	1293	3/12/2011
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	1594	5/27/2011
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	3/31/2011
		z ·	•	

File: R80994 Rev 1 Appendix Page 1 of 2

Appendix B Test Data

T80830 35 Pages

File: R80994 Rev 1 Appendix Page 2 of 2

Ellio Ellio	tt Ecompany	El	MC Test Data
Client:	GE MDS LLC	Job Number:	J80799
Model:	MERCURY2	T-Log Number:	T80830
		Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		-
Emissions Standard(s):	FCC Part 90, RSS-119	Class:	-
Immunity Standard(s):	-	Environment:	Radio

EMC Test Data

For The

GE MDS LLC

Model

MERCURY2

Date of Last Test: 10/20/2010

Elliott EMC Test			
Client:	GE MDS LLC	Job Number:	J80799
Model	MERCURY2	T-Log Number:	T80830
Model.	WIERGURTZ	Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	FCC Part 90, RSS-119	Class:	-

RSS 197 and FCC Part 90 **Spurious Emissions**

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Config. Used: 1 Date of Test: 10/13-14/2010 Config Change: None Test Engineer: M. Birgani, R. Varelas Test Location: Chamber #3 EUT Voltage: 13.9VDC

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located outside the chamber.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 20-25 °C

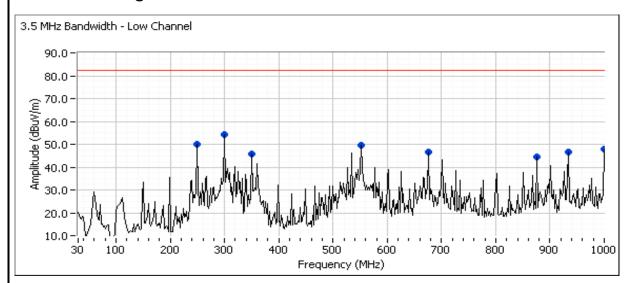
> Rel. Humidity: 30-40 %

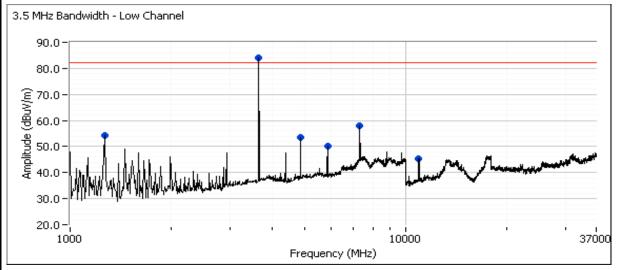
Summary of Results

Run#	Mode	Channel		Test Performed	Limit	Result / Margin
6	16QAM	All		Radiated Emissions, 30 MHz-37GHz	FCC 90.210 Mask B	All signal were more than 20dB below the limit

Modifications Made During Testing

No modifications were made to the EUT during testing


Deviations From The Standard


No deviations were made from the requirements of the standard.

Client: GE MDS LLC Job Number: J80799 Model: MERCURY2 T-Log Number: T80830 Contact: Dennis McCarthy Account Manager: Susan Pelzl Standard: FCC Part 90, RSS-119 Class:

Run #1: Radiated Spurious Emissions, 30 - 37000 MHz. Operating Mode: 3.5 MHz

Run #1a: Low Channel @ 3653.0 MHz

EMC Test			
Client:	GE MDS LLC	Job Number:	J80799
Model	MERCURY2	T-Log Number:	T80830
Model.	WERGUR 12	Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	FCC Part 90, RSS-119	Class:	-

Run #1a: Low Channel @ 3653.0 MHz

Frequency	Level	Pol	FCC 9	90.210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
3649.170	84.2	V	-	-	Peak	198	1.3	Fundamental
7305.000	58.0	V	82.2	-24.2	Peak	188	1.3	
1265.830	54.2	V	82.2	-28.0	Peak	176	1.3	
300.200	54.1	V	82.2	-28.1	Peak	237	2.0	
4868.330	53.6	V	82.2	-28.6	Peak	180	1.0	
5849.170	50.2	V	82.2	-32.0	Peak	194	1.0	
249.659	50.0	V	82.2	-32.2	Peak	214	1.0	
550.962	49.4	V	82.2	-32.8	Peak	357	1.0	
1000.000	47.9	Н	82.2	-34.3	Peak	269	1.5	
675.371	46.7	Н	82.2	-35.5	Peak	89	1.0	
933.908	46.6	Н	82.2	-35.6	Peak	128	1.5	
350.741	45.8	Н	82.2	-36.4	Peak	234	1.0	
10946.670	45.2	Н	82.2	-37.0	Peak	197	1.0	
875.591	44.4	Н	82.2	-37.8	Peak	66	1.0	

Elliott **EMC Test Data** Client: GE MDS LLC Job Number: J80799 T-Log Number: T80830 Model: MERCURY2 Account Manager: Susan Pelzl Contact: Dennis McCarthy Standard: FCC Part 90, RSS-119 Class: Run #1b: Center Channel @ 3662.5 MHz 3.5 MHz Bandwidth - Center Channel 90.0 80.0 70.0 60.0 50.0 40.0 30.0 30.0 20.0 10.0 700 1000 300 800 900 Frequency (MHz) 3.5 MHz Bandwidth - Center Channel 90.0 80.0 Amplitude (dBuV/m) 60.09 50.09 40.09 30.0 20.0-37000 10000 1000 Frequency (MHz)

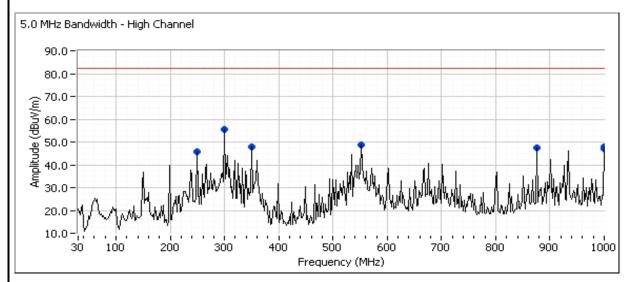
	Elliott m DE company	EMO	C Test Data
Client:	GE MDS LLC	Job Number:	J80799
Model	MERCURY2	T-Log Number:	T80830
Model.	WENGUN 12	Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	FCC Part 90, RSS-119	Class:	-

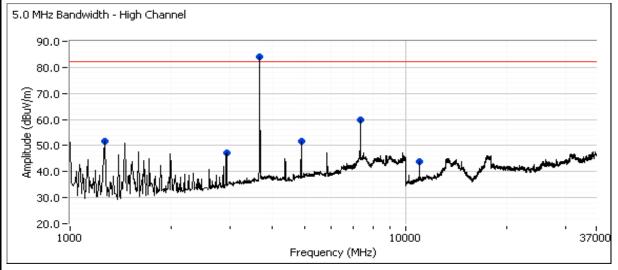
Run #1b: Center Channel @ 3662.5 MHz

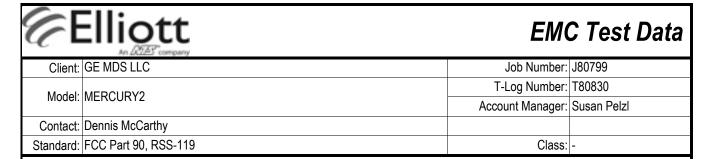
Frequency	Level	Pol	FCC 9	90.210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
3658.330	75.2	Н	-	-	Peak	112	1.1	Fundamental
1265.830	54.9	V	82.2	-27.3	Peak	172	1.3	
7328.330	54.5	V	82.2	-27.7	Peak	181	2.0	
5876.670	53.2	V	82.2	-29.0	Peak	191	1.0	
300.200	52.6	Η	82.2	-29.6	Peak	25	1.0	
4877.500	51.9	V	82.2	-30.3	Peak	178	1.0	
2943.330	49.5	V	82.2	-32.7	Peak	140	1.0	
550.962	48.9	V	82.2	-33.3	Peak	34	1.0	
1000.000	48.2	Η	82.2	-34.0	Peak	265	1.5	
675.371	47.8	Η	82.2	-34.4	Peak	92	1.5	
10973.330	46.1	V	82.2	-36.1	Peak	209	1.3	
933.908	46.0	Η	82.2	-36.2	Peak	78	1.5	
875.591	45.8	Η	82.2	-36.4	Peak	82	1.0	

Elliott **EMC Test Data** Client: GE MDS LLC Job Number: J80799 T-Log Number: T80830 Model: MERCURY2 Account Manager: Susan Pelzl Contact: Dennis McCarthy Standard: FCC Part 90, RSS-119 Class: Run #1c: High Channel @ 3672.0 MHz 3.5 MHz Bandwidth - High Channel 90.0 80.0 70.0 6.00 50.0 40.0 30.0 30.0 20.0 10.0 1000 30 700 800 900 200 300 500 Frequency (MHz) 3.5 MHz Bandwidth - High Channel 90.0 80.0 Amplitude (dBuV/m) 60.09 50.09 40.09 30.0 $20.0 - \frac{1}{1}$ 10000 37000 1000 Frequency (MHz)

	Elliott m DE company	EMO	C Test Data
Client:	GE MDS LLC	Job Number:	J80799
Model	MERCURY2	T-Log Number:	T80830
Model.	WENGUN 12	Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	FCC Part 90, RSS-119	Class:	-


Run #1c: High Channel @ 3672.0 MHz


Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
3667.500	83.7	V	-	-	Peak	197	1.3	Fundmental
7345.830	60.8	V	82.2	-21.4	Peak	198	1.3	
300.200	55.1	Н	82.2	-27.1	Peak	262	1.0	
1265.830	53.4	V	82.2	-28.8	Peak	184	1.3	
4886.670	51.1	V	82.2	-31.1	Peak	177	1.0	
550.962	49.4	V	82.2	-32.8	Peak	360	1.5	
5830.830	48.5	V	82.2	-33.7	Peak	332	1.0	
675.371	47.3	Н	82.2	-34.9	Peak	118	2.5	
1000.000	46.9	Н	82.2	-35.3	Peak	281	1.5	
350.741	46.7	Н	82.2	-35.5	Peak	87	1.0	
2915.830	46.6	V	82.2	-35.6	Peak	0	1.3	
933.908	46.4	Н	82.2	-35.8	Peak	103	1.5	
249.659	45.6	V	82.2	-36.6	Peak	288	1.0	
11013.330	44.0	V	82.2	-38.2	Peak	160	1.3	

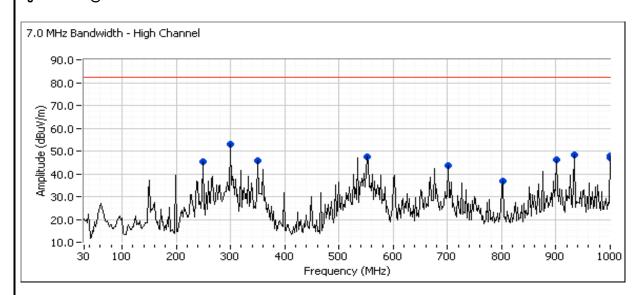

Client: GE MDS LLC Job Number: J80799 Model: MERCURY2 T-Log Number: T80830 Contact: Dennis McCarthy Account Manager: Susan Pelzl Standard: FCC Part 90, RSS-119 Class:

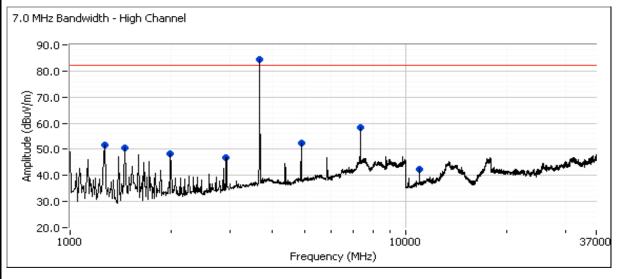
Run #2: Radiated Spurious Emissions, 30 - 37000 MHz. Operating Mode: 5 MHz

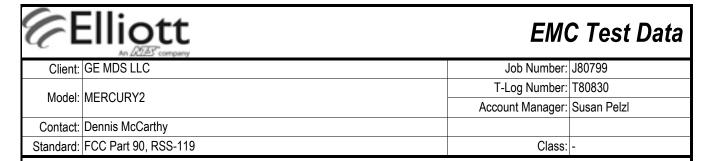
High Channel @ 3672.0 MHz

Run #2: Radiated Spurious Emissions, 30 - 37000 MHz. Operating Mode: 5 MHz

High Channel @ 3672.0 MHz


Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
3667.500	84.2	V	-	-	Peak	199	1.3	Fundamental
7345.830	59.8	V	82.2	-22.4	Peak	150	1.9	
300.200	55.5	Н	82.2	-26.7	Peak	255	1.0	
1265.830	51.7	V	82.2	-30.5	Peak	18	1.3	
4886.670	51.6	V	82.2	-30.6	Peak	159	1.3	
550.962	48.7	V	82.2	-33.5	Peak	360	1.5	
350.741	47.8	Н	82.2	-34.4	Peak	102	1.0	
875.591	47.4	Н	82.2	-34.8	Peak	265	1.0	
1000.000	47.0	Н	82.2	-35.2	Peak	264	1.5	
2925.000	47.0	V	82.2	-35.2	Peak	129	2.0	
249.659	45.6	Н	82.2	-36.6	Peak	294	1.0	
11013.330	44.0	V	82.2	-38.2	Peak	232	1.3	


Note 1: Based on the measurements at the three channels using 3.5 MHz mode, only measurements at the high channel were considered necessary in the 5 MHz mode.

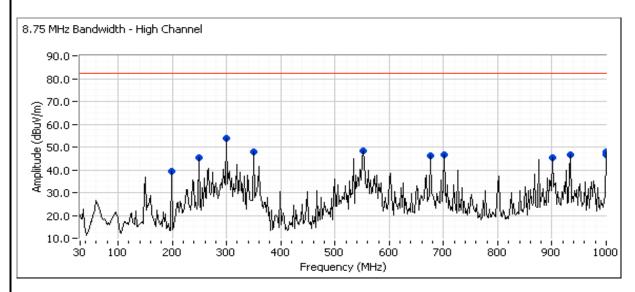

Client: GE MDS LLC Job Number: J80799 Model: MERCURY2 T-Log Number: T80830 Contact: Dennis McCarthy Standard: FCC Part 90, RSS-119 Class:

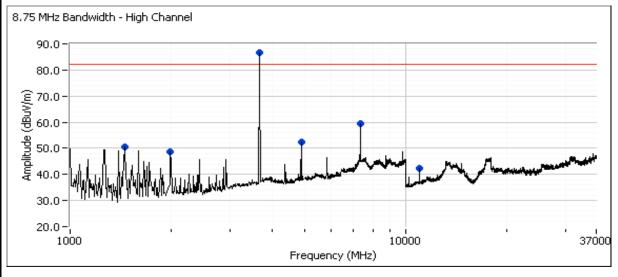
Run #3: Radiated Spurious Emissions, 30 - 37000 MHz. Operating Mode: 7 MHz

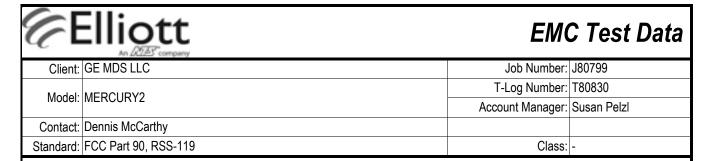
High Channel @ 3671.0 MHz

Run #3: Radiated Spurious Emissions, 30 - 37000 MHz. Operating Mode: 7 MHz

High Channel @ 3671.0 MHz


Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments
dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
84.4	V	-	•	Peak	196	1.3	Fundamental
58.3	Н	82.2	-23.9	Peak	205	1.7	
53.0	Н	82.2	-29.2	Peak	93	1.0	
52.3	V	82.2	-29.9	Peak	155	1.0	
51.5	V	82.2	-30.7	Peak	31	1.3	
50.7	Н	82.2	-31.5	Peak	250	1.0	
48.4	Н	82.2	-33.8	Peak	273	1.5	
48.4	Н	82.2	-33.8	Peak	243	1.0	
47.4	V	82.2	-34.8	Peak	191	1.0	
47.3	Н	82.2	-34.9	Peak	273	1.5	
46.9	V	82.2	-35.3	Peak	133	1.0	
46.1	Н	82.2	-36.1	Peak	237	2.5	
45.6	Н	82.2	-36.6	Peak	239	1.0	
45.4	Η	82.2	-36.8	Peak	127	1.0	
43.5	Н	82.2	-38.7	Peak	102	2.0	
42.2	Н	82.2	-40.0	Peak	234	1.2	
36.8	Н	82.2	-45.4	Peak	150	1.0	
	BμV/m 84.4 58.3 53.0 52.3 51.5 50.7 48.4 47.4 47.3 46.9 46.1 45.6 45.4 43.5 42.2	dBμV/m v/h 84.4 V 58.3 H 53.0 H 52.3 V 51.5 V 50.7 H 48.4 H 47.4 V 47.3 H 46.9 V 46.1 H 45.6 H 45.4 H 43.5 H 42.2 H	dBμV/m v/h Limit 84.4 V - 58.3 H 82.2 53.0 H 82.2 52.3 V 82.2 51.5 V 82.2 50.7 H 82.2 48.4 H 82.2 47.4 V 82.2 47.3 H 82.2 46.9 V 82.2 46.1 H 82.2 45.6 H 82.2 45.4 H 82.2 45.5 H 82.2 42.2 H 82.2	dBμV/m v/h Limit Margin 84.4 V - - 58.3 H 82.2 -23.9 53.0 H 82.2 -29.2 52.3 V 82.2 -29.9 51.5 V 82.2 -30.7 50.7 H 82.2 -31.5 48.4 H 82.2 -33.8 48.4 H 82.2 -33.8 47.4 V 82.2 -34.8 47.3 H 82.2 -34.9 46.9 V 82.2 -35.3 46.1 H 82.2 -36.1 45.6 H 82.2 -36.6 45.4 H 82.2 -36.8 43.5 H 82.2 -36.8 42.2 H 82.2 -40.0	dBμV/m v/h Limit Margin Pk/QP/Avg 84.4 V - - Peak 58.3 H 82.2 -23.9 Peak 53.0 H 82.2 -29.2 Peak 52.3 V 82.2 -29.9 Peak 51.5 V 82.2 -30.7 Peak 50.7 H 82.2 -31.5 Peak 48.4 H 82.2 -33.8 Peak 48.4 H 82.2 -33.8 Peak 47.4 V 82.2 -34.8 Peak 47.3 H 82.2 -34.9 Peak 46.9 V 82.2 -35.3 Peak 46.1 H 82.2 -36.1 Peak 45.6 H 82.2 -36.6 Peak 45.4 H 82.2 -36.8 Peak 45.4 H 82.2 -36.8 Peak <tr< td=""><td>dBμV/m v/h Limit Margin Pk/QP/Avg degrees 84.4 V - - Peak 196 58.3 H 82.2 -23.9 Peak 205 53.0 H 82.2 -29.2 Peak 93 52.3 V 82.2 -29.9 Peak 155 51.5 V 82.2 -30.7 Peak 31 50.7 H 82.2 -31.5 Peak 250 48.4 H 82.2 -33.8 Peak 273 48.4 H 82.2 -34.8 Peak 243 47.4 V 82.2 -34.8 Peak 191 47.3 H 82.2 -34.9 Peak 273 46.9 V 82.2 -35.3 Peak 133 46.1 H 82.2 -36.1 Peak 237 45.6 H 82.2 -36.8 Peak<!--</td--><td>dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 84.4 V - - Peak 196 1.3 58.3 H 82.2 -23.9 Peak 205 1.7 53.0 H 82.2 -29.2 Peak 93 1.0 52.3 V 82.2 -29.9 Peak 155 1.0 51.5 V 82.2 -30.7 Peak 31 1.3 50.7 H 82.2 -31.5 Peak 250 1.0 48.4 H 82.2 -33.8 Peak 273 1.5 48.4 H 82.2 -33.8 Peak 243 1.0 47.4 V 82.2 -34.8 Peak 191 1.0 47.3 H 82.2 -34.9 Peak 273 1.5 46.9 V 82.2 -35.3 Peak 133 1.0 <t< td=""></t<></td></td></tr<>	dBμV/m v/h Limit Margin Pk/QP/Avg degrees 84.4 V - - Peak 196 58.3 H 82.2 -23.9 Peak 205 53.0 H 82.2 -29.2 Peak 93 52.3 V 82.2 -29.9 Peak 155 51.5 V 82.2 -30.7 Peak 31 50.7 H 82.2 -31.5 Peak 250 48.4 H 82.2 -33.8 Peak 273 48.4 H 82.2 -34.8 Peak 243 47.4 V 82.2 -34.8 Peak 191 47.3 H 82.2 -34.9 Peak 273 46.9 V 82.2 -35.3 Peak 133 46.1 H 82.2 -36.1 Peak 237 45.6 H 82.2 -36.8 Peak </td <td>dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 84.4 V - - Peak 196 1.3 58.3 H 82.2 -23.9 Peak 205 1.7 53.0 H 82.2 -29.2 Peak 93 1.0 52.3 V 82.2 -29.9 Peak 155 1.0 51.5 V 82.2 -30.7 Peak 31 1.3 50.7 H 82.2 -31.5 Peak 250 1.0 48.4 H 82.2 -33.8 Peak 273 1.5 48.4 H 82.2 -33.8 Peak 243 1.0 47.4 V 82.2 -34.8 Peak 191 1.0 47.3 H 82.2 -34.9 Peak 273 1.5 46.9 V 82.2 -35.3 Peak 133 1.0 <t< td=""></t<></td>	dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 84.4 V - - Peak 196 1.3 58.3 H 82.2 -23.9 Peak 205 1.7 53.0 H 82.2 -29.2 Peak 93 1.0 52.3 V 82.2 -29.9 Peak 155 1.0 51.5 V 82.2 -30.7 Peak 31 1.3 50.7 H 82.2 -31.5 Peak 250 1.0 48.4 H 82.2 -33.8 Peak 273 1.5 48.4 H 82.2 -33.8 Peak 243 1.0 47.4 V 82.2 -34.8 Peak 191 1.0 47.3 H 82.2 -34.9 Peak 273 1.5 46.9 V 82.2 -35.3 Peak 133 1.0 <t< td=""></t<>


Note 1: Based on the measurements at the three channels using 3.5 MHz mode, only measurements at the high channel were considered necessary in the 7 MHz mode.

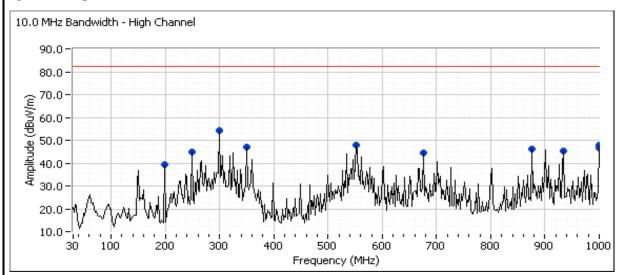

Client: GE MDS LLC Job Number: J80799 Model: MERCURY2 T-Log Number: T80830 Contact: Dennis McCarthy Standard: FCC Part 90, RSS-119 Class:

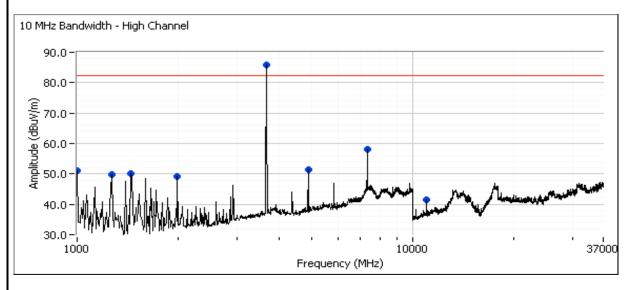
Run #4: Radiated Spurious Emissions, 30 - 37000 MHz. Operating Mode: 8.75 MHz

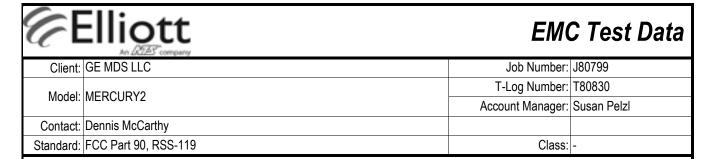
High Channel @ 3670.0 MHz

Run #4: Radiated Spurious Emissions, 30 - 37000 MHz. Operating Mode: 8.75 MHz

High Channel @ 3670.0 MHz


Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
3667.500	86.6	V	-	-	Peak	197	1.3	Fundamental
7345.830	59.5	V	82.2	-22.7	Peak	177	1.0	
300.200	54.0	Н	82.2	-28.2	Peak	93	1.0	
4886.670	52.5	V	82.2	-29.7	Peak	154	1.0	
1458.330	50.5	Н	82.2	-31.7	Peak	254	1.0	
1990.000	48.6	Н	82.2	-33.6	Peak	246	1.0	
550.962	48.2	V	82.2	-34.0	Peak	24	1.0	
350.741	47.9	Н	82.2	-34.3	Peak	247	1.0	
1000.000	46.8	Н	82.2	-35.4	Peak	262	1.5	
933.908	46.7	Н	82.2	-35.5	Peak	286	1.5	
700.641	46.5	Н	82.2	-35.7	Peak	298	2.5	
675.371	46.2	Н	82.2	-36.0	Peak	76	1.5	
900.862	45.5	Н	82.2	-36.7	Peak	153	1.5	
249.659	45.2	Н	82.2	-37.0	Peak	132	1.0	
11000.000	42.2	Н	82.2	-40.0	Peak	233	1.2	
199.118	39.5	Н	82.2	-42.7	Peak	60	1.5	


Note 1: Based on the measurements at the three channels using 3.5 MHz mode, only measurements at the high channel were considered necessary in the 8.75 MHz mode.


ŒE	Elliott	ЕМО	C Test Data
Client:	GE MDS LLC	Job Number:	J80799
Model	MERCURY2	T-Log Number:	T80830
Model.	WIERCORTZ	Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	FCC Part 90 RSS-119	Class:	_

Run #5: Radiated Spurious Emissions, 30 - 37000 MHz. Operating Mode: 10 MHz

High Channel @ 3669.0 MHz

Run #5: Radiated Spurious Emissions, 30 - 37000 MHz. Operating Mode: 10 MHz

High Channel @ 3669.0 MHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
3658.330	85.7	V	-	-	Peak	193	1.3	Fundamental
7340.000	58.0	V	82.2	-24.2	Peak	148	2.0	
300.200	54.4	Н	82.2	-27.8	Peak	250	1.5	
4886.670	51.3	V	82.2	-30.9	Peak	161	1.0	
1000.000	51.2	V	82.2	-31.0	Peak	133	1.0	
1449.170	50.1	Н	82.2	-32.1	Peak	249	1.0	
1265.830	49.9	V	82.2	-32.3	Peak	15	1.3	
1990.000	49.3	Н	82.2	-32.9	Peak	249	1.0	
550.962	47.9	٧	82.2	-34.3	Peak	8	1.0	
350.741	47.2	Η	82.2	-35.0	Peak	242	1.0	
875.591	46.3	Ξ	82.2	-35.9	Peak	260	1.0	
933.908	45.2	Ξ	82.2	-37.0	Peak	275	1.5	
249.659	45.0	Ξ	82.2	-37.2	Peak	120	1.0	
675.371	44.4	Н	82.2	-37.8	Peak	116	2.5	
11000.000	41.5	Н	82.2	-40.7	Peak	201	1.0	
199.118	39.5	Н	82.2	-42.7	Peak	38	1.5	

Note 1: Based on the measurements at the three channels using 3.5 MHz mode, only measurements at the high channel were considered necessary in the 10 MHz mode.

ŒE	Ellic	ott						EMO	C Test	Data
Client:	GE MDS LL	С					,	Job Number:	J80799	
							T-I	Log Number:	T80830	
Model:	MERCURY2	IERCURY2						ınt Manager:		
Contact:	Dennis McC	arthy					7,0000	ant manager.	Outdit i C.E.	
	FCC Part 90	*						Class:		
			·	/ 15.247	Detector			Comments		
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
7345.830	60.8	V	82.2	-21.4	Peak	198	1.3			
300.200	55.1	Н	82.2	-27.1	Peak	262	1.0			
1265.830	53.4	V	82.2	-28.8	Peak	184	1.3			
4886.670	51.1	V	82.2	-31.1	Peak	177	1.0			
550.962	49.4	V	82.2	-32.8	Peak	360	1.5	<u> </u>		
Horizontal	& Vertical									
Frequency	Substitu	ution measur	ements	Site	EU ⁻	T measureme	ents	eirp Limit	erp Limit	Margin
MHz	Pin ¹	Gain ²	FS^3	Factor ⁴	FS ⁵	eirp (dBm)	erp (dBm)	dBm	dBm	dB
All signals	s were more t	than 20dB be	elow the com	puted FS lin	nit					
Note 1:	Pin is the input power (dBm) to the substitution antenna									
Note 2:					. A dipole has	a gain of 2.2	PdBi			
Note 3:					the substitution					
Note 4:					a field strengt		to an eirp in	dBm.		
Note 5:		rength as me					I			

	Elliott Radio Test			
	GE MDS LLC	Job Number:	J80799	
Model	MERCURY2	T-Log Number:	T80830	
wodei.	WERCORT2	Account Manager:	Susan Pelzl	
Contact:	Dennis McCarthy			
Standard:	FCC Part 90, RSS-119	Class:	-	

RSS 197 and FCC Part 90 **Frequency Stability**

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Config. Used: 1 Date of Test: 10/20/2010 Config Change: none Test Engineer: John Caizzi Test Location: FT EMC #4 EUT Voltage: 13.8 VDC

General Test Configuration

The EUT's RF port was connected to the measurement instrument's RF port, via an attenuator or dc-block if necessary. The EUT was placed inside an environmental chamber.

Ambient Conditions: Temperature: 23 °C

Rel. Humidity: 42 %

Summary of Results

Run#	Test Performed	Limit	Result	Value / Margin
1-2	Frequency and Voltage Stability	Part 90.213	NA	760 Hz / .21 ppm

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Radio Test Data

		All 2022 Company		
	Client:	GE MDS LLC	Job Number:	J80799
Model	MERCURY2	T-Log Number:	T80830	
	lviodei:	WERGUR 12	Account Manager:	Susan Pelzl
	Contact:	Dennis McCarthy		
	Standard:	FCC Part 90, RSS-119	Class:	-

Run #1: Temperature Vs. Frequency (Fixed stations in the 3650-3675 MHz band)

Note 1:	For all tests: Unmodulated signal using mode QAM16 at frequency 3662.5 MHz with power setting of 27 dBm was used.
	Analyzer settings were as follow: RBW=VBW= 1kHz and Span=5kHz.
N (0	

Note 2: Frequency stability is to be specified in the station authorization.

<u>Temperature</u>	Reference Frequency	Measured frequency	<u>Drift</u>	<u>Limit</u>
(Celsius)	(MHz)	(MHz)	(Hz)	(Hz)
-30	3662.492600	3662.491840	760	Note 2
-20	3662.492600	3662.491970	630	Note 2
-10	3662.492600	3662.492220	380	Note 2
0	3662.492600	3662.493145	545	Note 2
10	3662.492600	3662.493245	645	Note 2
20	3662.492600	3662.492600	0	Note 2
30	3662.492600	3662.492243	357	Note 2
40	3662.492600	3662.492042	558	Note 2
50	3662.492600	3662.492268	332	Note 2

Run #2: Voltage Vs. Frequency

Nominal Voltage is 13.8Vdc.

<u>Voltage</u>	Reference Frequency	Frequency Drift	<u>Drift</u>	<u>Limit</u>
(Dc)	(MHz)	(MHz)	(Hz)	(Hz)
85%	3662.492218	3662.492192	26	Note 2
115%	3662.492218	3662.492167	51	Note 2

Worst case drift: 760.0 Hz 0.21 ppm

	Elliott	EMO	EMC Test Data			
Client:	GE MDS LLC	Job Number:	J80799			
Model	MERCURY2	T-Log Number:	T80830			
wodei.	IMERCOR12	Account Manager:	Susan Pelzl			
Contact:	Dennis McCarthy					
Standard:	FCC Part 90 RSS-119	Class:	-			

RSS-197 and FCC 90Z - Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 10/11/2010 Config. Used: 1 Config Change: none Test Engineer: M. Birgani/R. Varelas Test Location: FT Lab #4 EUT Voltage: 13.8Vdc

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin			
				3.5 MHz: 34.8dBm			
				5.0 MHz: 36.1dBm			
2	Power	Part 90	Pass	7.0 MHz: 37.6dBm			
				8.75 MHz: 38.4dBm			
				10.0 MHz: 38.9dBm			
				3.5 MHz: 29.7dBm/MHz			
		1 Watt/MHz		5.0 MHz: 29.8dBm/MHz			
2	PSD	90.1321(a)	Pass	7.0 MHz: 29.9dBm/MHz			
		00.1021(u)		8.75 MHz: 29.7dBm/MHz			
				10.0 MHz: 29.8dBm/MHz			
				3.5 MHz: 3.3 MHz			
				5.0 MHz: 4.6 MHz			
2	99% Bandwidth	-	N/A	7.0 MHz: 6.6 MHz			
				8.75 MHz: 8.2 MHz			
				10.0 MHz: 9.2 MHz			
3	Emissions Mask	90.210 Mask		All emissions within the Mask for			
		30.2.10 WIGGR		each BW			
4	Antenna Conducted	90.210 Mask	Pass	All emissions below the			
1	Out of Band Spurious	00.2 10 Masik	1 433	-13dBm/MHz limit			

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions: Temperature: 22.1 °C

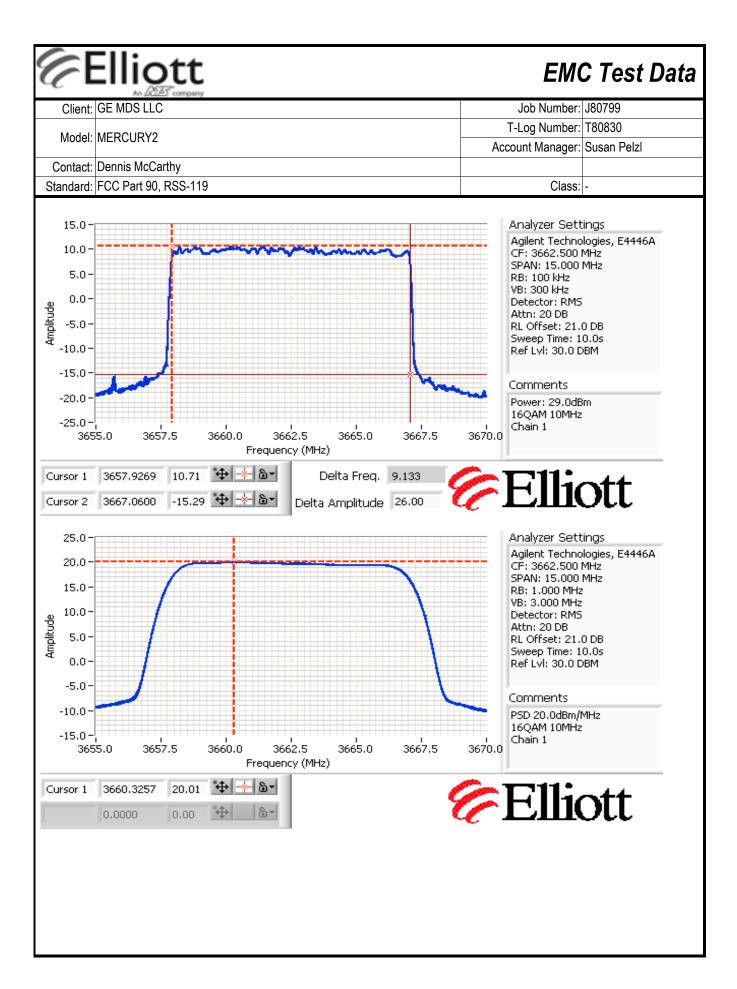
> Rel. Humidity: 41 %

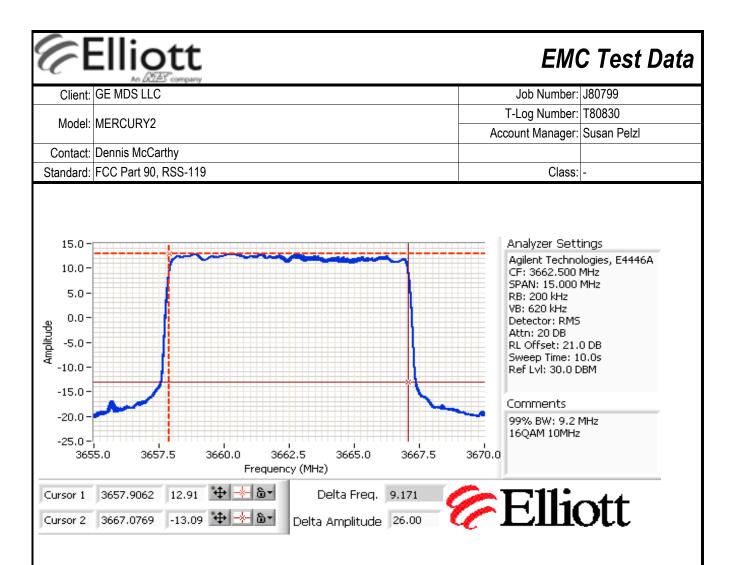
Elliott		EMC Test Date		
Client:	GE MDS LLC	Job Number:	J80799	
Madal	MEDOLIDVO	T-Log Number:	T80830	
Model:	MERCURY2	Account Manager:	Susan Pelzl	
Contact:	Dennis McCarthy			
Standard:	FCC Part 90, RSS-119	Class:	-	

Deviations From The Standard No deviations were made from the requirements of the standard.										
Run #1: Ba	ndwidth, Oເ	utput Power a	and Power	Spectral Der	nsity - MIMC	Systems				
Power										
Frequency	Software	Modulation	Measure	d Output Pov	wer ² dBm	To	otal	Limit (dBm)	Max Power	Pass or
(MHz)	Setting ¹	Modulation	Chain 1	Chain 2	Chain 3	mW	dBm	Liffiit (abifi)	(W)	Fail
7MHz Mode)	<u>.</u>		ı	J.					
3662	2750	QPSK	26.7	26.9		957.5	29.8	-		-
3662	2800	16QAM	27.6	27.6		1150.9	30.6	-	- [-
3662	2800	64QAM	27.2	27.3		1061.8	30.3	-		-
PSD										
Frequency	99% ⁴	Modulation	Р	SD ³ dBm/MF	łz	Total	PSD	Li	mit	Pass or
(MHz)	BW	Wodulation	Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz			Fail
7MHz Mode)					•	•			
3662	6.85	QPSK	19.2	19.2		165.4	22.2	-	-	-
3662	6.90	16QAM	19.8	20.0		196.4	22.9	-	-	-
3662	6.90	64QAM	19.4	19.6		178.3	22.5	-	-	-
N.C. A	D "			11 111						
Note 1:		ng is the softw						40	1 1.1	Tt - (-(-)
		er measured	•							
Note 2:		integrated over								
	was configured with a gated sweep such that the analyzer was only sweeping when the device was transmitting. The plot for the channel with the highest power is provided below.									
		s measured u				RR=1MHz \/	/R=3MHz de	tactor = rms	sween time	10 seconds
Note 3:		Multiple sweep								
11010 0.	is provided		ps were mad	ie unui une un	spiay riau ric	TIEW PEAKS	. The plot is	or the channe	or with the ring	nest power
Note 4:		<u>idth measure</u>	d in accorda	nce with RSS	S GEN - RB	> 1% of spar	and VB >=3	BxRB		
		systems the to							of the individu	al chains
Note 5:	(in linear ter	•						F		
		bove results,	Power and F	SD for all typ	pes of modu	ations. 16-Q	AM had high	est PSD and	Power values	s. QPSK
Note 6:		PSD and Pow		,,						
							•			

EMC Test Data

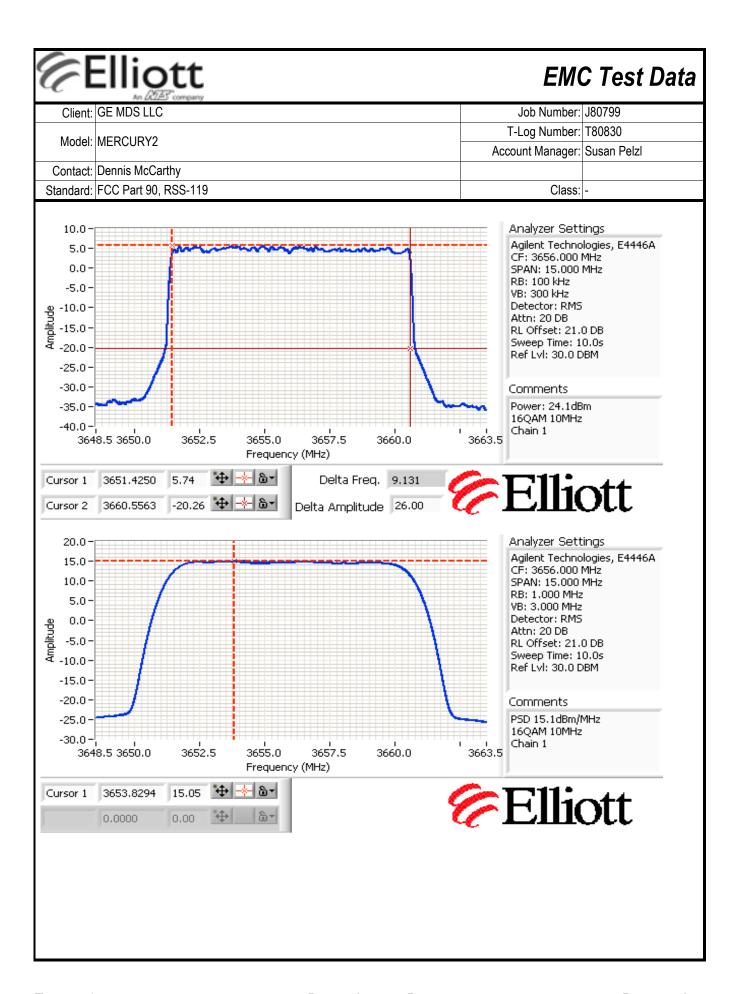
	An DCLES company		
Client:	GE MDS LLC	Job Number:	J80799
Madalı	MERCURY2	T-Log Number:	T80830
wodei.	WERGUR 12	Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	FCC Part 90, RSS-119	Class:	-

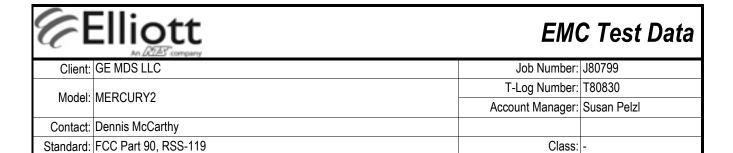

Run #2: Bandwidth, Output Power and Power Spectral Density - MIMO Systems

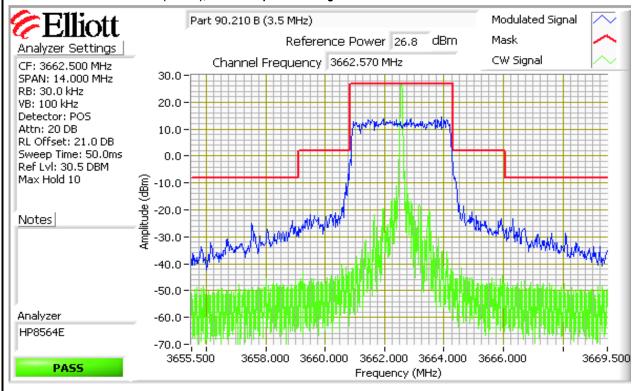

Note - the gain of 7dBi includes the minimum cable loss between antenna port and antenna.

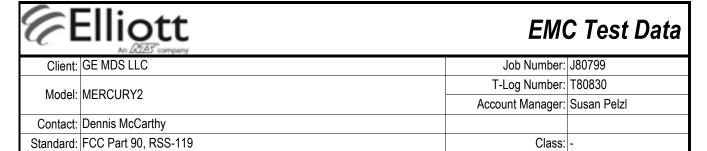
Limits from 90.321(a): Base and fixed stations are limited to 25 watts/25 MHz equivalent isotropically radiated power (EIRP). In any event, the peak EIRP power density shall not exceed 1 Watt in any one-megahertz slice of spectrum (30dBm/MHz).

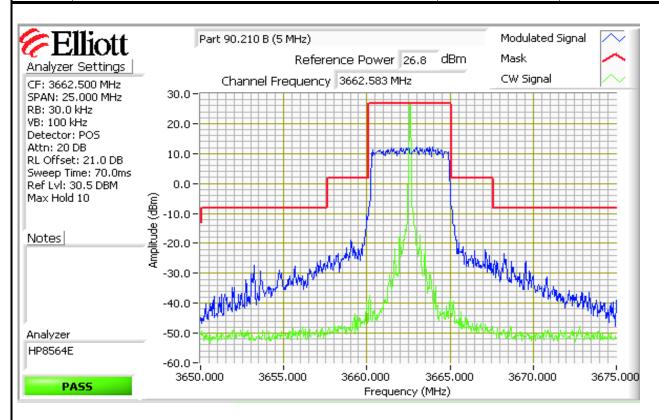
			Chain 1	Chain 2	Chain 3	Coherent	Effective ⁵	EIRP (mW)	EIRP (dBm)	
	Antenna	a Gain (dBi):	7	7		No	7.0	220522.4	53.4	
Power - Lim	nit accounts	for maximu	m antenna	gain at this	power settir	ıg.				
Frequency	Software	Madulation	Measure	d Output Pov	wer ² dBm	To	otal	EIRP	Limit (eirp)	Pass or
(MHz)	Setting ¹	Modulation	Chain 1	Chain 2	Chain 3	mW	dBm	dBm	dBm	Fail
3.5MHz Mod	de	<u>l</u>	L						1	
3653	2350	16-QAM	24.0	24.4		526.6	27.2	34.2	44.0	PASS
3662	2450	16-QAM	24.5	24.7		577.0	27.6	34.6	44.0	PASS
3672	2450	16-QAM	24.4	24.5		557.3	27.5	34.5	44.0	PASS
5.0MHz Mod	de									
3653	2450	16-QAM	25.6	25.9		752.1	28.8	35.8	44.0	PASS
3662	2450	16-QAM	25.2	25.7		702.7	28.5	35.5	44.0	PASS
3672	2500	16-QAM	25.8	26.3		806.8	29.1	36.1	44.0	PASS
7.0MHz Mod	de									
3654	2750	16-QAM	26.8	27.1		991.5	30.0	37.0	44.0	PASS
3662	2800	16-QAM	27.6	27.6		1150.9	30.6	37.6	44.0	PASS
3671	2800	16-QAM	27.2	27.4		1074.3	30.3	37.3	44.0	PASS
8.75MHz Mode										
3655	2800,2700	16-QAM	28.6	27.8		1327.0	31.2	38.2	44.0	PASS
3662	2800,2700	16-QAM	28.2	28.0		1291.7	31.1	38.1	44.0	PASS
3670	2800	16-QAM	28.0	28.1		1276.6	31.1	38.1	44.0	PASS
10.0MHz Mo	ode						_			
3656	2850	16-QAM	28.4	28.8		1450.4	31.6	38.6	44.0	PASS
3662	2900,2850	16-QAM	29.0	28.6		1518.8	31.8	38.8	44.0	PASS
3669	2900	16-QAM	28.9	28.5		1484.2	31.7	38.7	44.0	PASS

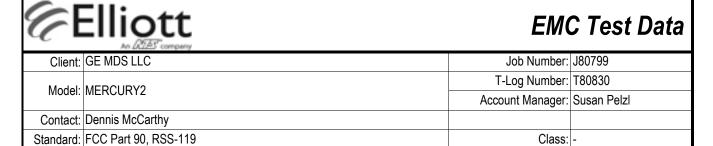

CE	Ellig	ott						EM	C Test	Data	
Client:	GE MDS LL	.C					,	Job Number:	J80799		
	MEDOLIDY	^					T-Log Number: T80830				
Model:	MERCURY	2					Accou	ınt Manager:	Susan Pelzl		
Contact:	Dennis Mc0	Carthy									
Standard:	FCC Part 9	0, RSS-119						Class:	-		
PSD											
Frequency	99% ⁴		P	SD ³ dBm/MF		Total	PSD	PSD EIRP	Limit (eirp)	Pass or	
(MHz)	BW	Modulation	Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz	dBm/MHz	dBm/MHz	Fail	
3.5MHz Mo	de					1					
3653	3.3	16-QAM	19.2	19.4		170.3	22.3	29.3	30.0	PASS	
3662	3.3	16-QAM	19.6	19.8		186.7	22.7	29.7	30.0	PASS	
3672	3.3	16-QAM	19.4	19.8		182.6	22.6	29.6	30.0	PASS	
5.0MHz Mo	de	•		•		•		•			
3653	4.6	16-QAM	19.4	19.8		182.6	22.6	29.6	30.0	PASS	
3662	4.6	16-QAM	19.1	19.4		168.4	22.3	29.3	30.0	PASS	
3672	4.6	16-QAM	19.7	19.9		191.0	22.8	29.8	30.0	PASS	
7.0MHz Mo											
3654	6.6	16-QAM	19.0	19.5		168.6	22.3	29.3	30.0	PASS	
3662	6.6	16-QAM	19.8	20.0		195.5	22.9	29.9	30.0	PASS	
3671	6.6	16-QAM	19.5	19.7		182.5	22.6	29.6	30.0	PASS	
8.75MHz M				1	•			1	1		
3655	8.2	16-QAM	20.1	19.3		187.4	22.7	29.7	30.0	PASS	
3662	8.2	16-QAM	19.8	19.6		186.7	22.7	29.7	30.0	PASS	
3670	8.2	16-QAM	19.5	19.6		180.3	22.6	29.6	30.0	PASS	
10.0MHz M				100		1000					
3656	9.2	16-QAM	19.5	19.9		186.8	22.7	29.7	30.0	PASS	
3662	9.2	16-QAM	20.0	19.6		191.2	22.8	29.8	30.0	PASS	
3669	9.2	16-QAM	19.9	19.6	ae output po	188.9	22.8	29.8	30.0	PASS	
14010 1.		er measured					s swaan tim	a 10 sacond	e may hold	The total	
		integrated ove	•								
Note 2:		play piont wa									
	provided be		o logo triair ti	no on time	ioi tilo tialioi	mittor (41110).	The plot loi	the charmer	with the riight	oot power to	
		as measured	using the fol	lowing analy	zer settinas:	RB=1MHz. \	VB=3MHz. d	etector = rms	s. sweep time	10	
			-	• .	-				•		
Note 3:	te 3: seconds, max hold. Multiple sweeps were made until the display had no new "peaks". The plot for the channel with the highest power is provided below. The sweep time was such that the dwell itme per any one display point was less than the										
		r the transmit		o on oop anno	mao odom a		and por any	one diopidy i	301111 Was 1001	o andir and	
Note 4:				nce with RS	S GEN - RB	> 1% of span	and VB >=3	xRB			
	99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chains										
	(in linear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating										
	mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determine										
Note 5:		the highest g	-						-		
		e signals are						-			
		the product o			-	10 tilo oall	. ,		J 10 101 00011	J. Idaii Gild	
	IN CHIN IO	o broduct o	, and oncour	S GUILL GILG IC	ZIGI DOWOI.						

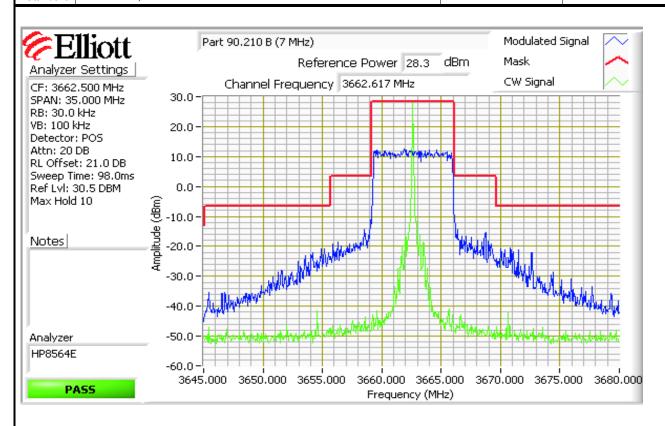


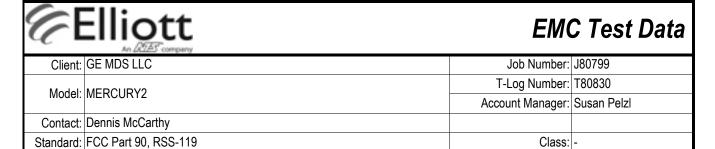

(MHz) Setting¹ Modulation Chain 1 Chain 2 Chain 3 mW dBm dBm dBm Fai 3.5MHz Mode 3653 1850 16-QAM 19.7 19.9 191.0 22.8 34.8 44.0 PAS 3662 1850 16-QAM 19.3 19.6 176.3 22.5 34.5 44.0 PAS 3672 1900,1850 16-QAM 19.9 19.1 179.0 22.5 34.5 44.0 PAS 5.0MHz Mode 3653 1900 16-QAM 21.0 21.2 257.7 24.1 36.1 44.0 PAS 3662 1900 16-QAM 20.6 20.7 232.3 23.7 35.7 44.0 PAS 3672 2000,1950 16-QAM 21.2 20.4 241.5 23.8 35.8 44.0 PAS 3674 2200,2150 16-QAM 22.6 21.9 336.9 25.3 37.3 44.0 PAS		Ellic	DTT E company						EM(C Test	Data
Mode: MERCURY2 Account Manager: Susan Pelz	Client:	GE MDS LL	С						Job Number:	J80799	
Contact Dennis McCarthy Standard: FCC Part 90, RSS-119 Class: -								T-L	og Number:	T80830	
Class Chain 1 Chain 2 Chain 3 Coherent Effective 5 No 12.0	Model: MERCURY2								ınt Manager:	Susan Pelzl	
Chain 1 Chain 2 Chain 3 Coherent Effective	Contact:	Dennis McC	arthy								
Antenna Gain (dBi): 12	Standard:	FCC Part 90), RSS-119						Class:	-	
Antenna Gain (dBi): 12			,								
Antenna Gain (dBi): 12				Chain 1	Chain 2	Chain 3	Coherent	Effective ⁵			
Note Court Court		Antenna	a Gain (dBi):	12	12						
Frequency Software Setting Modulation Measured Output Power dBm mW dBm dBm dBm Fai SMHz Mode	ower - Lim					power settir			1		
(MHz) Setting¹ Modulation Chain 1 Chain 2 Chain 3 mW dBm dBm dBm Fai 8.5MHz Mode 3653 1850 16-QAM 19.7 19.9 191.0 22.8 34.8 44.0 PAS 3662 1850 16-QAM 19.3 19.6 176.3 22.5 34.5 44.0 PAS 3672 1900,1850 16-QAM 19.9 19.1 179.0 22.5 34.5 44.0 PAS 3.653 1900 16-QAM 21.0 21.2 257.7 24.1 36.1 44.0 PAS 3.662 1900 16-QAM 20.6 20.7 232.3 23.7 35.7 44.0 PAS 3.672 2000,1950 16-QAM 21.2 20.4 241.5 23.8 35.8 44.0 PAS 3.674 2200,2150 16-QAM 22.6 21.9 336.9 25.3 37.3 44.0 PAS								otal	EIRP	Limit (eirp)	Pass or
3653 1850 16-QAM 19.7 19.9 191.0 22.8 34.8 44.0 PAS 3662 1850 16-QAM 19.3 19.6 176.3 22.5 34.5 44.0 PAS 3672 1900,1850 16-QAM 19.9 19.1 179.0 22.5 34.5 44.0 PAS 3672 1900 16-QAM 21.0 21.2 257.7 24.1 36.1 44.0 PAS 3662 1900 16-QAM 20.6 20.7 232.3 23.7 35.7 44.0 PAS 3672 2000,1950 16-QAM 21.2 20.4 241.5 23.8 35.8 44.0 PAS 3662 2200 16-QAM 22.2 22.6 347.9 25.4 37.4 44.0 PAS 3671 2200,2250 16-QAM 21.9 22.1 317.1 25.0 37.0 44.0 PAS 3671 2200,2250 16-QAM 21.9 22.1 317.1 25.0 37.0 44.0 PAS 3662 2250 16-QAM 23.1 23.3 418.0 26.2 38.2 44.0 PAS 3662 2250 16-QAM 22.8 23.9 436.0 26.4 38.4 44.0 PAS 3670 2300,2250 16-QAM 23.5 23.0 423.4 26.3 38.3 44.0 PAS 3662 2350,2250 16-QAM 23.5 23.0 423.4 26.3 38.3 44.0 PAS 3662 2350,2250 16-QAM 23.7 24.0 485.6 26.9 38.9 44.0 PAS 3662 2350,2300 16-QAM 23.7 24.0 485.6 26.9 38.9 44.0 PAS 3662 2350,2300 16-QAM 23.7 24.0 485.6 26.9 38.9 44.0 PAS 3662 2350,2300 16-QAM 23.7 24.0 485.6 26.9 38.9 44.0 PAS 3662 2350,2300 16-QAM 23.7 24.0 485.6 26.9 38.9 44.0 PAS 3662 2350,2300 16-QAM 23.7 24.0 485.6 26.9 38.9 44.0 PAS 3662 2350,2300 16-QAM 23.7 24.0 485.6 26.9 38.9 44.0 PAS 3662 2350,2300 16-QAM 23.7 24.0 485.6 26.9 38.9 44.0 PAS 3662 2350,2300 16-QAM 23.7 24.0 485.6 26.9 38.9 44.0 PAS 3662 2350,2300 16-QAM 23.7 24.0 485.6 26.9 38.9 44.0 PAS 3662 2350,2300 16-QAM 23.7 24.0 485.6 26.9 38.9 44.0 PAS 3662 2350,2300 16-QAM 23.7 24.0 485.6 26.9 38.9 44.0 PAS 3662 2350,2300 16-QAM 23.7 24.0 485.6 26.9 38.9 44.0 PAS 3662 2350,2300 16-QAM 23.7 24.0 485.6 26.9 38.9 44.0 PAS	(MHz)	Setting ¹	Modulation			•	mW	dBm	dBm	dBm	Fail
3662 1850 16-QAM 19.3 19.6 176.3 22.5 34.5 44.0 PAS 3672 1900,1850 16-QAM 19.9 19.1 179.0 22.5 34.5 44.0 PAS .0MHz Mode 3653 1900 16-QAM 21.0 21.2 257.7 24.1 36.1 44.0 PAS 3662 1900 16-QAM 20.6 20.7 232.3 23.7 35.7 44.0 PAS 3672 2000,1950 16-QAM 21.2 20.4 241.5 23.8 35.8 44.0 PAS 3.00 200,1950 16-QAM 21.2 20.4 241.5 23.8 35.8 44.0 PAS 3.00 2200,2150 16-QAM 22.6 21.9 336.9 25.3 37.3 44.0 PAS 3.75 2200,2250 16-QAM 22.2 22.6 347.9 25.4 37.4 44.0 PAS 3.75 24.0 <td< td=""><td>.5MHz Mod</td><td>de</td><td></td><td></td><td></td><td></td><td><u> </u></td><td>ı</td><td></td><td></td><td></td></td<>	.5MHz Mod	de					<u> </u>	ı			
3672 1900,1850 16-QAM 19.9 19.1 179.0 22.5 34.5 44.0 PAS	3653	1850	16-QAM	19.7	19.9		191.0	22.8	34.8	44.0	PASS
JOMHz Mode 3653 1900 16-QAM 21.0 21.2 257.7 24.1 36.1 44.0 PAS 3662 1900 16-QAM 20.6 20.7 232.3 23.7 35.7 44.0 PAS 3672 2000,1950 16-QAM 21.2 20.4 241.5 23.8 35.8 44.0 PAS JOMHz Mode 3654 2200,2150 16-QAM 22.6 21.9 336.9 25.3 37.3 44.0 PAS 3662 2200 16-QAM 22.2 22.6 347.9 25.4 37.4 44.0 PAS 3671 2200,2250 16-QAM 21.9 22.1 317.1 25.0 37.0 44.0 PAS 75MHz Mode 3655 2250,2200 16-QAM 23.1 23.3 418.0 26.2 38.2 44.0 PAS 3670 2300,2250 16-QAM 23.5 23.0 423.4 26.3 38.3 44.0	3662	1850	16-QAM	19.3	19.6		176.3	22.5	34.5	44.0	PASS
3653 1900 16-QAM 21.0 21.2 257.7 24.1 36.1 44.0 PAS 3662 1900 16-QAM 20.6 20.7 232.3 23.7 35.7 44.0 PAS 3672 2000,1950 16-QAM 21.2 20.4 241.5 23.8 35.8 44.0 PAS .OMHz Mode 3654 2200,2150 16-QAM 22.6 21.9 336.9 25.3 37.3 44.0 PAS 3662 2200 16-QAM 22.2 22.6 347.9 25.4 37.4 44.0 PAS 3671 2200,2250 16-QAM 21.9 22.1 317.1 25.0 37.0 44.0 PAS .75MHz Mode 3655 2250,2200 16-QAM 23.1 23.3 418.0 26.2 38.2 44.0 PAS 3662 2250 16-QAM 23.5 23.0 423.4 26.3 38.3 44.0 PAS	3672	1900,1850	16-QAM	19.9	19.1		179.0	22.5	34.5	44.0	PASS
3662 1900 16-QAM 20.6 20.7 232.3 23.7 35.7 44.0 PAS	.0MHz Mod	de									
3672 2000,1950 16-QAM 21.2 20.4 241.5 23.8 35.8 44.0 PAS											PASS
3654 2200,2150 16-QAM 22.6 21.9 336.9 25.3 37.3 44.0 PAS											PASS
3654 2200,2150 16-QAM 22.6 21.9 336.9 25.3 37.3 44.0 PAS 3662 2200 16-QAM 22.2 22.6 347.9 25.4 37.4 44.0 PAS 3671 2200,2250 16-QAM 21.9 22.1 317.1 25.0 37.0 44.0 PAS 7.5MHz Mode 3655 2250,2200 16-QAM 23.1 23.3 418.0 26.2 38.2 44.0 PAS 3662 2250 16-QAM 22.8 23.9 436.0 26.4 38.4 44.0 PAS 3670 2300,2250 16-QAM 23.5 23.0 423.4 26.3 38.3 44.0 PAS 0.0MHz Mode 3656 2350,2250 16-QAM 24.1 23.3 470.8 26.7 38.7 44.0 PAS 3662 2350,2300 16-QAM 23.7 24.0 485.6 26.9 38.9 44.0 PAS <td></td> <td></td> <td>16-QAM</td> <td>21.2</td> <td>20.4</td> <td></td> <td>241.5</td> <td>23.8</td> <td>35.8</td> <td>44.0</td> <td>PASS</td>			16-QAM	21.2	20.4		241.5	23.8	35.8	44.0	PASS
3662 2200 16-QAM 22.2 22.6 347.9 25.4 37.4 44.0 PAS 3671 2200,2250 16-QAM 21.9 22.1 317.1 25.0 37.0 44.0 PAS 3.75MHz Mode 3655 2250,2200 16-QAM 23.1 23.3 418.0 26.2 38.2 44.0 PAS 3662 2250 16-QAM 22.8 23.9 436.0 26.4 38.4 44.0 PAS 3670 2300,2250 16-QAM 23.5 23.0 423.4 26.3 38.3 44.0 PAS 0.0MHz Mode 3656 2350,2250 16-QAM 24.1 23.3 470.8 26.7 38.7 44.0 PAS 3662 2350,2300 16-QAM 24.1 23.3 470.8 26.7 38.7 44.0 PAS 3662 2350,2300 16-QAM 23.7 24.0 485.6 26.9 38.9 44.0 PAS </td <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>ı</td> <td>T</td> <td>T</td> <td>1</td> <td></td>			1				ı	T	T	1	
3671 2200,2250 16-QAM 21.9 22.1 317.1 25.0 37.0 44.0 PAS .75MHz Mode 3655 2250,2200 16-QAM 23.1 23.3 418.0 26.2 38.2 44.0 PAS 3662 2250 16-QAM 22.8 23.9 436.0 26.4 38.4 44.0 PAS 3670 2300,2250 16-QAM 23.5 23.0 423.4 26.3 38.3 44.0 PAS 0.0MHz Mode 3656 2350,2250 16-QAM 24.1 23.3 470.8 26.7 38.7 44.0 PAS 3662 2350,2300 16-QAM 23.7 24.0 485.6 26.9 38.9 44.0 PAS											PASS
.75MHz Mode 3655 2250,2200 16-QAM 23.1 23.3 418.0 26.2 38.2 44.0 PAS 3662 2250 16-QAM 22.8 23.9 436.0 26.4 38.4 44.0 PAS 3670 2300,2250 16-QAM 23.5 23.0 423.4 26.3 38.3 44.0 PAS 0.0MHz Mode 3656 2350,2250 16-QAM 24.1 23.3 470.8 26.7 38.7 44.0 PAS 3662 2350,2300 16-QAM 23.7 24.0 485.6 26.9 38.9 44.0 PAS								_	_		PASS
3655 2250,2200 16-QAM 23.1 23.3 418.0 26.2 38.2 44.0 PAS 3662 2250 16-QAM 22.8 23.9 436.0 26.4 38.4 44.0 PAS 3670 2300,2250 16-QAM 23.5 23.0 423.4 26.3 38.3 44.0 PAS 0.0MHz Mode 3656 2350,2250 16-QAM 24.1 23.3 470.8 26.7 38.7 44.0 PAS 3662 2350,2300 16-QAM 23.7 24.0 485.6 26.9 38.9 44.0 PAS			16-QAM	21.9	22.1		317.1	25.0	37.0	44.0	PASS
3662 2250 16-QAM 22.8 23.9 436.0 26.4 38.4 44.0 PAS 3670 2300,2250 16-QAM 23.5 23.0 423.4 26.3 38.3 44.0 PAS 0.0MHz Mode 3656 2350,2250 16-QAM 24.1 23.3 470.8 26.7 38.7 44.0 PAS 3662 2350,2300 16-QAM 23.7 24.0 485.6 26.9 38.9 44.0 PAS				20.4	00.0		1400	20.0	20.0	140	D. 1.00
3670 2300,2250 16-QAM 23.5 23.0 423.4 26.3 38.3 44.0 PAS 0.0MHz Mode 3656 2350,2250 16-QAM 24.1 23.3 470.8 26.7 38.7 44.0 PAS 3662 2350,2300 16-QAM 23.7 24.0 485.6 26.9 38.9 44.0 PAS											
0.0MHz Mode 3656 2350,2250 16-QAM 24.1 23.3 470.8 26.7 38.7 44.0 PAS 3662 2350,2300 16-QAM 23.7 24.0 485.6 26.9 38.9 44.0 PAS								_		_	
3656 2350,2250 16-QAM 24.1 23.3 470.8 26.7 38.7 44.0 PAS 3662 2350,2300 16-QAM 23.7 24.0 485.6 26.9 38.9 44.0 PAS		•	Tb-QAM	23.5	23.0		423.4	26.3	38.3	44.0	PASS
3662 2350,2300 16-QAM 23.7 24.0 485.6 26.9 38.9 44.0 PAS			16 0 4 14	24.4	02.2		470.0	26.7	20.7	44.0	DACO
	3669	2350,2300	16-QAM	23.4	24.0		470.0	26.9	38.7	44.0	PASS

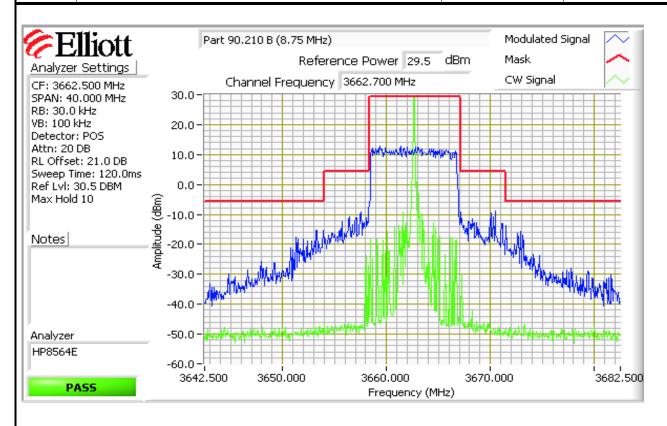

6	=HII	ott						EM	C Test	Data	
Client:	GE MDS L	LC					,	Job Number:	J80799		
Madal	MEDOLIDVO							_og Number:	T80830		
Model:	MERCURY	2		Accou	ınt Manager:	Susan Pelzl					
	Dennis Mc	•									
Standard:	FCC Part 9	0, RSS-119						Class:	-		
PSD											
Frequency	99% ⁴	Madage	Р	SD ² dBm/MF	·lz	Total	PSD	PSD EIRP	Limit (eirp)	Pass or	
(MHz)	BW	Modulation	Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz	dBm/MHz	dBm/MHz	Fail	
3.5MHz Mo	de	1		ı	ı						
3653	3.3	16-QAM	14.8	15.0		61.8	17.9	29.9	30.0	PASS	
3662	3.3	16-QAM	14.5	14.8		58.4	17.7	29.7	30.0	PASS	
3672	3.3	16-QAM	15.0	14.3		58.5	17.7	29.7	30.0	PASS	
5.0MHz Mo	de			•			•	•			
3653	4.6	16-QAM	14.7	14.9		60.4	17.8	29.8	30.0	PASS	
3662	4.6	16-QAM	14.3	14.5		55.1	17.4	29.4	30.0	PASS	
3672	4.6	16-QAM	15.0	14.2		57.9	17.6	29.6	30.0	PASS	
.0MHz Mo	de										
3654	6.6	16-QAM	15.0	14.3		58.5	17.7	29.7	30.0	PASS	
3662	6.6	16-QAM	14.9	14.9		61.8	17.9	29.9	30.0	PASS	
3671	6.6	16-QAM	14.2	14.5		54.5	17.4	29.4	30.0	PASS	
8.75MHz M	ode										
3655	8.2	16-QAM	14.6	14.7		58.4	17.7	29.7	30.0	PASS	
3662	8.2	16-QAM	14.2	15.4		61.0	17.9	29.9	30.0	PASS	
3670	8.2	16-QAM	14.9	14.6		59.7	17.8	29.8	30.0	PASS	
0.0MHz M							_				
3656	9.2	16-QAM	15.1	14.4		59.9	17.8	29.8	30.0	PASS	
3662	9.2	16-QAM	14.7	15.1		61.9	17.9	29.9	30.0	PASS	
3669	9.2	16-QAM	14.4	15.1		59.9	17.8	29.8	30.0	PASS	
Note 1:	Power sett	ing is the softw	/are setting ι	used to set th	ne output pov	ver.					
		ver measured	-								
Note 2:	•	integrated over		•		•	-			-	
11010 2.	_	ured with a gat	•		•	only sweepi	ng when the	device was t	ransmitting.	The plot for	
		I with the high									
		as measured u									
Note 3:		max hold. Multiple sweeps were made until the display had no new "peaks". The plot for the channel with the highest power									
Nists A.	is provided		12 1.		OCN DD	40/		DD			
Note 4:		vidth measure							f (1	.1 .12	
	For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chains (in linear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating										
	•	•	-								
Note 5:		e MIMO device	-						-		
		the highest ga						-			
		e signals are o			_	ain is the sun	n (in linear te	rms) of the g	ains for each	chain and	
	Ithe EIRP is	the product o	f the effectiv	e gain and to	otal power.						

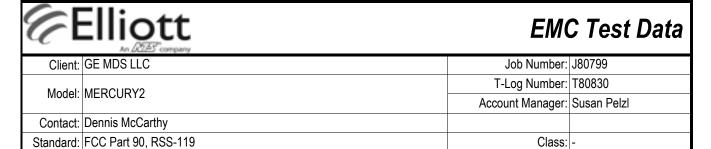


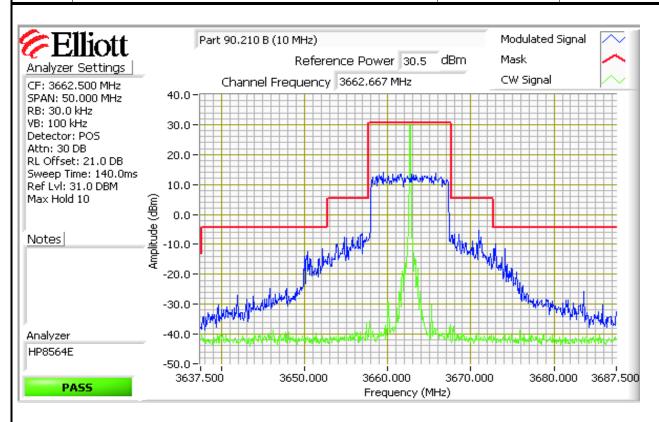



Run #3: Unwanted emissions (Masks), QAM16 at power setting used for Power measurements









Client:	GE MDS LLC

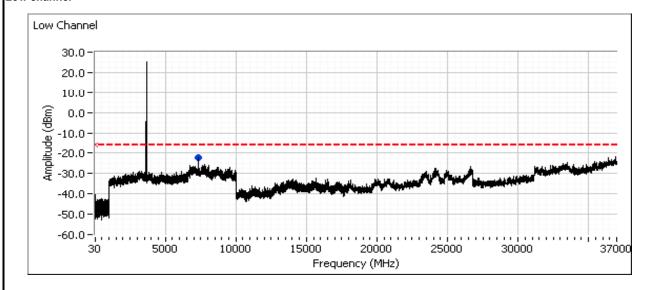
EMC Test Data

	An Dillo Company		
Client:	GE MDS LLC	Job Number:	J80799
Madal	MERCURY2	T-Log Number:	T80830
wodei.	WIENCONTZ	Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	FCC Part 90, RSS-119	Class:	-

Run #4: Out Of Band Spurious Emissions - Antenna Conducted

Number of transmit chains: 2

Spurious Limit: -13.0 dBm/MHz eirp

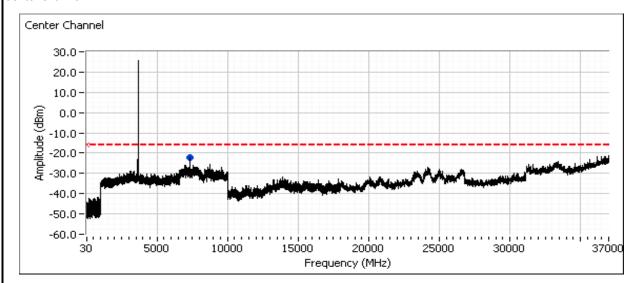

Adjustment for 2 chains: -3.0 dB adjustment for multiple chains.

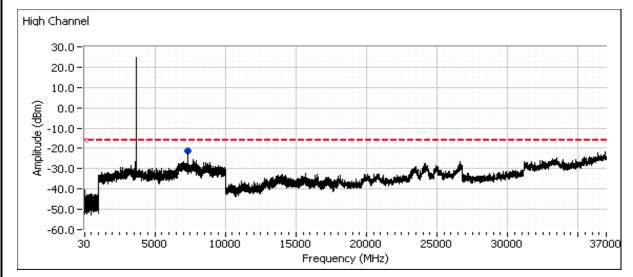
Limit Used On Plots -16.0 dBm/MHz

MIMO Devices: The plots were obtained for each chain individually and the limit was adjusted to account for all chains transmitting simultaneously

Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz above 1 GHz and 120 kHz below 1 GHz)

Low channel




EMC Test Data

	An DAZED Company		
Client:	GE MDS LLC	Job Number:	J80799
Model:	MERCURY2	T-Log Number:	T80830
	WERGORTZ	Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	FCC Part 90, RSS-119	Class:	-

Center channel

High channel

Frequency	Level	Port	FCC F	Part 90	Detector	Channel	Mode	Comments
MHz	dBm		Limit	Margin				
7341.110	-21.3	RF	-16.0	-5.3	Peak	High	16QAM	
7326.110	-21.8	RF	-16.0	-5.8	Peak	Center	16QAM	
7308.100	-22.0	RF	-16.0	-6.0	Peak	Low	16QAM	