

41039 Boyce Road Fremont, CA. 94538 510-578-3500 Phone 510-440-9525 Fax

Radio Test Report

FCC Part 90 (809-824 MHz and 854-869 MHz)

Model: LN900

FCC ID:	E5MDS-LN900-1
COMPANY:	GE Digital Energy - MDS 175 Science Pkwy Rochester, NY 14620
TEST SITE(S):	National Technical Systems 41039 Boyce Road. Fremont, CA. 94538-2435
PROJECT NUMBER:	PR093700
REPORT DATE:	March 28, 2019
FINAL TEST DATES:	March 11, 12 and 13, 2019
TOTAL NUMBER OF PAGES:	48

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

VALIDATING SIGNATORIES

PROGRAM MGR

David W. Bare Chief Engineer

TECHNICAL REVIEWER:

Bare

David W. Bare Chief Engineer

FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

QUALITY ASSURANCE DELEGATE

: lan

Gary Izard Technical Writer

REVISION HISTORY

Γ	Rev#	Date	Comments	Modified By
	0	March 28, 2019	First release	

TABLE OF CONTENTS

STATEMENT OF COMPLIANCE6DEVIATIONS FROM THE STANDARDS6TEST RESULTS7FCC PART 90.7MEASUREMENT UNCERTAINTIES8EQUIPMENT UNDER TEST (EUT) DETAILS9GENERAL9OTHER EUT DETAILS9ENCLOSURE9MODIFICATIONS9	COVER PAGE	1
TABLE OF CONTENTS4SCOPE5OBJECTIVE6STATEMENT OF COMPLIANCE6DEVIATIONS FROM THE STANDARDS6TEST RESULTS7FCC PART 907MEASUREMENT UNCERTAINTIES8EQUIPMENT UNCERTAINTIES9GENERAL9OTHER EUT DETAILS9OTHER EUT DETAILS9BENCLOSURE9MODIFICATIONS9EUTINTERFACE PORTS10EUT OPERATION10TESTING11GENERAL INFORMATION10TESTING11RF PORT MEASUREMENT PROCEDURES12OUTPUT POWER12BANDWIDTH MEASUREMENTS13CONDUCTED SPURIOUS EMISSIONS13CONDUCTED SPURIOUS EMISSIONS13RADIATED EMISSIONS MEASUREMENTS15ANTENNAS15ANTENNAS15ANTENNAS15ANTENNAS15ANTENNAS15ANTENNAS15ANTENNAS15ANTENNAS15ANTENNAS15ANTENNAS15ANTENNA MAST AND EQUIPMENT TURNTABLE15SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS16SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS - RADIATED POWER17APPENDIX A TEST EQUIPMENT CALIBRATION DATA18APPENDIX A TEST EQUIPMENT CALIBRATION DATA19	VALIDATING SIGNATORIES	2
SCOPE5OBJECTIVE6STATEMENT OF COMPLIANCE6DEVIATIONS FROM THE STANDARDS6TEST RESULTS7FCC PART 9077MEASUREMENT UNCERTAINTIES8EQUIPMENT UNDER TEST (EUT) DETAILS9GENERAL9OTHER EUT DETAILS9EOCLOSURE9MODIFICATIONS9SUPPORT EQUIPMENT99EUT INTERFACE PORTS10EUT OPERATION10TESTING11GENERAL INFORMATION12OUTPUT POWER12OUTPUT POWER13CONDUCTED SPURIOUS EMISSIONS13TRANSMITTER MASK MEASUREMENTS13RADIATED EMISSIONS MEASUREMENTS15ANTENNAS15ANTENNAS15ANTENNAS15SAMPLE CALCULATIONS16SAMPLE CALCULATIONS16 <td< th=""><th>REVISION HISTORY</th><th>3</th></td<>	REVISION HISTORY	3
OBJECTIVE6STATEMENT OF COMPLIANCE6DEVIATIONS FROM THE STANDARDS6TEST RESULTS7FCC PART 907MEASUREMENT UNCERTAINTIES8EQUIPMENT UNDER TEST (EUT) DETAILS9GENERAL9OTHER EUT DETAILS9ENCLOSURE9BNDPFORT EQUIPMENT9EUT INTERFACE PORTS10EUT OPERATION11GENERAL INFORMATION11REPORT MEASUREMENT PROCEDURES12OUTPUT POWER13TRANSMITTER MASK MEASUREMENTS13RADAWIDTH MEASUREMENTS13RADAWIDTH MEASUREMENTS14INSTRUMENTATION15FILTERS/ATTENUATORS15ANTENNAS15ANTENNAS15SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS16SAMPLE CALCULATIONS - CALIBRATION DATA18APPENDIX A TEST DATA19	TABLE OF CONTENTS	4
STATEMENT OF COMPLIANCE6DEVIATIONS FROM THE STANDARDS6TEST RESULTS7FCC PART 90.7MEASUREMENT UNCERTAINTIES8EQUIPMENT UNDER TEST (EUT) DETAILS9GENERAL9OTHER EUT DETAILS9ENCLOSURE9MODIFICATIONS9EUT INTERFACE PORTS10EUT INTERFACE PORTS10EUT INTERFACE PORTS10TESTING11GENERAL INFORMATION11RF PORT MEASUREMENT PROCEDURES12DANDWIDTH MEASUREMENTS13CONDUCTED SPURIOUS EMISSIONS13RADIATED EMISSIONS MEASUREMENTS13RADIATED EMISSIONS MEASUREMENTS15FILTERS/ATTENUATORS15ANTENNAS15ANTENNAS15SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS16SAMPLE CALCULATIONS - RADIATED FOWER17APPENDIX A TEST EQUIPMENT CALIBRATION DATA18APPENDIX B TEST DATA19	SCOPE	5
STATEMENT OF COMPLIANCE6DEVIATIONS FROM THE STANDARDS6TEST RESULTS7FCC PART 90.7MEASUREMENT UNCERTAINTIES8EQUIPMENT UNDER TEST (EUT) DETAILS9GENERAL9OTHER EUT DETAILS9ENCLOSURE9MODIFICATIONS9EUT INTERFACE PORTS10EUT INTERFACE PORTS10EUT INTERFACE PORTS10TESTING11GENERAL INFORMATION11RF PORT MEASUREMENT PROCEDURES12DANDWIDTH MEASUREMENTS13CONDUCTED SPURIOUS EMISSIONS13RADIATED EMISSIONS MEASUREMENTS13RADIATED EMISSIONS MEASUREMENTS15FILTERS/ATTENUATORS15ANTENNAS15ANTENNAS15SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS16SAMPLE CALCULATIONS - RADIATED FOWER17APPENDIX A TEST EQUIPMENT CALIBRATION DATA18APPENDIX B TEST DATA19	OBJECTIVE	6
TEST RESULTS		
FCC PART 90.7MEASUREMENT UNCERTAINTIES.8EQUIPMENT UNDER TEST (EUT) DETAILS.9GENERAL9OTHER EUT DETAILS9OTHER EUT DETAILS9ENCLOSURE.9MODIFICATIONS9SUPPORT EQUIPMENT9EUT INTERFACE PORTS10EUT OPERATION10TESTING11GENERAL INFORMATION.11RF PORT MEASUREMENT PROCEDURES.12DANDWIDTH MEASUREMENTS13CONDUCTED SPURIOUS EMISSIONS13TRANSMITTER MASK MEASUREMENTS13RADIATED EMISSIONS MEASUREMENTS15ANTENNAS15ANTENNAS15ANTENNAS15ANTENNAS15ANTENNAS15ANTENNAS16SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS16SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS - RADIATED POWER17APPENDIX A TEST EQUIPM	DEVIATIONS FROM THE STANDARDS	6
MEASUREMENT UNCERTAINTIES.8EQUIPMENT UNDER TEST (EUT) DETAILS.9GENERAL9OTHER EUT DETAILS.9ENCLOSURE9MODIFICATIONS.9SUPPORT EQUIPMENT9EUT INTERFACE PORTS10EUT OPERATION10TESTING11GENERAL INFORMATION.11RF PORT MEASUREMENT PROCEDURES12OUTPUT POWER12BANDWIDTH MEASUREMENTS13CONDUCTED SPURIOUS EMISSIONS13TRANSMITTER MASK MEASUREMENTS.13RADIATED EMISSIONS MEASUREMENTS.14INSTRUMENTATION15FILTERS/ATTENUATORS15ANTENNAS15ANTENNAS15ANTENNAS15ANTENNAS15ANTENNAS15ANTENNAS15ANTENNAS15ANTENNAS16SAMPLE CALCULATIONS -CONDUCTED SPURIOUS EMISSIONS16SAMPLE CALCULATIONS -RADIATED FIELD STRENGTH16SAMPLE CA	TEST RESULTS	7
EQUIPMENT UNDER TEST (EUT) DETAILS9GENERAL9OTHER EUT DETAILS9ENCLOSURE9MODIFICATIONS9SUPPORT EQUIPMENT9EUT INTERFACE PORTS10EUT OPERATION10THE OPERATION10EUT OPERATION11GENERAL INFORMATION11RF PORT MEASUREMENT PROCEDURES12DOUTPUT POWER12BANDWIDTH MEASUREMENTS13CONDUCTED SPURIOUS EMISSIONS13TRANSMITTER MASK MEASUREMENTS13RADIA TED EMISSIONS MEASUREMENTS15ANTENNAS15ANTENNAS15ANTENNAS15ANTENNAS15ANTENNAS16SAMPLE CALCULATIONS -CONDUCTED SPURIOUS EMISSIONS16SAMPLE CALCULATIONS -RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS -RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS -RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS -RADIATED FOWER17APPENDIX A TEST EQUIPMENT CALIBRATION DATA18APPENDIX B TEST DATA19		
GENERAL9OTHER EUT DETAILS9ENCLOSURE9MODIFICATIONS9SUPPORT EQUIPMENT9EUT INTERFACE PORTS10EUT OPERATION10TESTING11GENERAL INFORMATION11RF PORT MEASUREMENT PROCEDURES12OUTPUT POWER12BANDWIDTH MEASUREMENTS13CONDUCTED SPURIOUS EMISSIONS13TRANSMITTER MASK MEASUREMENTS13RADIATED EMISSIONS MEASUREMENTS15ANTENNAS15ANTENNAS15ANTENNAS15ANTENNAS15SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS16SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH16 <th></th> <th></th>		
OTHER EUT DETAILS9ENCLOSURE9MODIFICATIONS9SUPPORT EQUIPMENT9EUT INTERFACE PORTS10EUT OPERATION10TESTING11GENERAL INFORMATION11RF PORT MEASUREMENT PROCEDURES12OUTPUT POWER12BANDWIDTH MEASUREMENTS13CONDUCTED SPURIOUS EMISSIONS13TRANSMITTER MASK MEASUREMENTS13RADIATED EMISSIONS MEASUREMENTS13RADIATED EMISSIONS MEASUREMENTS15FILTERS/ATTENUATORS15ANTENNAS15SAMPLE CALCULATIONS16SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS16SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS16SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH <th></th> <th></th>		
ENCLOSURE9MODIFICATIONS9SUPPORT EQUIPMENT9EUT INTERFACE PORTS10EUT OPERATION10TESTING11GENERAL INFORMATION11RF PORT MEASUREMENT PROCEDURES12OUTPUT POWER12OUTPUT POWER13CONDUCTED SPURIOUS EMISSIONS13TRANSMITTER MASK MEASUREMENTS13RADIATED EMISSIONS MEASUREMENTS13RADIATED EMISSIONS MEASUREMENTS15FILTERS/ATTENUATORS15ANTENNAS15SAMPLE CALCULATIONS16SAMPLE CALCULATIONS -CONDUCTED SPURIOUS EMISSIONS16SAMPLE CALCULATIONS -RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS -RADIATED POWER17APPENDIX A TEST DATA19		
MODIFICATIONS.9SUPPORT EQUIPMENT.9EUT INTERFACE PORTS.10EUT OPERATION.10TESTING.11GENERAL INFORMATION.11RF PORT MEASUREMENT PROCEDURES.12OUTPUT POWER.12BANDWIDTH MEASUREMENTS.13CONDUCTED SPURIOUS EMISSIONS.13TRANSMITTER MASK MEASUREMENTS.13RADIATED EMISSIONS MEASUREMENTS.13RADIATED EMISSIONS MEASUREMENTS.15FILTERS/ATTENUATORS.15ANTENNAS.15SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS.16SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH.16SAMPLE CALCULATIONS - RADIATED POWER.17APPENDIX A TEST DATA.19		
SUPPORT EQUIPMENT9EUT INTERFACE PORTS10EUT OPERATION10TESTING11GENERAL INFORMATION11RF PORT MEASUREMENT PROCEDURES12OUTPUT POWER12BANDWIDTH MEASUREMENTS13CONDUCTED SPURIOUS EMISSIONS13TRANSMITTER MASK MEASUREMENTS13RADIATED EMISSIONS MEASUREMENTS14INSTRUMENTATION15ANTENNAS15ANTENNAS15ANTENNA MAST AND EQUIPMENT TURNTABLE15SAMPLE CALCULATIONS16SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS16SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS - RADIATED POWER17APPENDIX A TEST EQUIPMENT CALIBRATION DATA18APPENDIX B TEST DATA19		
EUT INTERFACE PORTS10EUT OPERATION10TESTING10TESTING11GENERAL INFORMATION11RF PORT MEASUREMENT PROCEDURES12OUTPUT POWER12BANDWIDTH MEASUREMENTS13CONDUCTED SPURIOUS EMISSIONS13TRANSMITTER MASK MEASUREMENTS13RADIATED EMISSIONS MEASUREMENTS13RADIATED EMISSIONS MEASUREMENTS15FILTERS/ATTENUATORS15ANTENNAS15ANTENNAS15SAMPLE CALCULATIONS16SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS16SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS - RADIATED POWER17APPENDIX A TEST EQUIPMENT CALIBRATION DATA18APPENDIX B TEST DATA19		
TESTING11GENERAL INFORMATION11RF PORT MEASUREMENT PROCEDURES12OUTPUT POWER12BANDWIDTH MEASUREMENTS13CONDUCTED SPURIOUS EMISSIONS13TRANSMITTER MASK MEASUREMENTS13RADIATED EMISSIONS MEASUREMENTS13RADIATED EMISSIONS MEASUREMENTS14INSTRUMENTATION15FILTERS/ATTENUATORS15ANTENNAS15ANTENNAS15SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS16SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS - RADIATED POWER17APPENDIX A TEST EQUIPMENT CALIBRATION DATA18APPENDIX B TEST DATA19		
GENERAL INFORMATION11 RF PORT MEASUREMENT PROCEDURES 12OUTPUT POWER12BANDWIDTH MEASUREMENTS13CONDUCTED SPURIOUS EMISSIONS13TRANSMITTER MASK MEASUREMENTS13 RADIATED EMISSIONS MEASUREMENTS 13 RADIATED EMISSIONS MEASUREMENTS 14INSTRUMENTATION15FILTERS/ATTENUATORS15ANTENNAS15ANTENNA MAST AND EQUIPMENT TURNTABLE15 SAMPLE CALCULATIONS 16SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS16SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS - RADIATED FOWER17APPENDIX A TEST EQUIPMENT CALIBRATION DATA18APPENDIX B TEST DATA19		
RF PORT MEASUREMENT PROCEDURES12OUTPUT POWER12BANDWIDTH MEASUREMENTS13CONDUCTED SPURIOUS EMISSIONS13TRANSMITTER MASK MEASUREMENTS13RADIATED EMISSIONS MEASUREMENTS13RADIATED EMISSIONS MEASUREMENTS14INSTRUMENTATION15FILTERS/ATTENUATORS15ANTENNAS15ANTENNAS15SAMPLE CALCULATIONS16SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS16SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS - RADIATED FOWER17APPENDIX A TEST EQUIPMENT CALIBRATION DATA18APPENDIX B TEST DATA19		
OUTPUT POWER12BANDWIDTH MEASUREMENTS13CONDUCTED SPURIOUS EMISSIONS13TRANSMITTER MASK MEASUREMENTS13RADIATED EMISSIONS MEASUREMENTS13RADIATED EMISSIONS MEASUREMENTS14INSTRUMENTATION15FILTERS/ATTENUATORS15ANTENNAS15ANTENNAS15SAMPLE CALCULATIONS16SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS16SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS16SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS - RADIATED FOWER17APPENDIX A TEST EQUIPMENT CALIBRATION DATA18APPENDIX B TEST DATA19		
BANDWIDTH MEASUREMENTS13CONDUCTED SPURIOUS EMISSIONS13TRANSMITTER MASK MEASUREMENTS13RADIATED EMISSIONS MEASUREMENTS13RADIATED EMISSIONS MEASUREMENTS14INSTRUMENTATION15FILTERS/ATTENUATORS15ANTENNAS15ANTENNA MAST AND EQUIPMENT TURNTABLE15SAMPLE CALCULATIONS16SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS16SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS - RADIATED POWER17APPENDIX A TEST EQUIPMENT CALIBRATION DATA18APPENDIX B TEST DATA19		
CONDUCTED SPURIOUS EMISSIONS13TRANSMITTER MASK MEASUREMENTS13 RADIATED EMISSIONS MEASUREMENTS 14INSTRUMENTATION15FILTERS/ATTENUATORS15ANTENNAS15ANTENNA MAST AND EQUIPMENT TURNTABLE15 SAMPLE CALCULATIONS 16SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS16SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS -RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS -RADIATED FOWER17APPENDIX A TEST EQUIPMENT CALIBRATION DATA18APPENDIX B TEST DATA19		
TRANSMITTER MASK MEASUREMENTS.13 RADIATED EMISSIONS MEASUREMENTS. 14INSTRUMENTATION15FILTERS/ATTENUATORS15ANTENNAS15ANTENNA MAST AND EQUIPMENT TURNTABLE15 SAMPLE CALCULATIONS 16SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS16SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS -RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS -RADIATED POWER17APPENDIX A TEST EQUIPMENT CALIBRATION DATA18APPENDIX B TEST DATA19		
INSTRUMENTATION15FILTERS/ATTENUATORS15ANTENNAS15ANTENNA MAST AND EQUIPMENT TURNTABLE15SAMPLE CALCULATIONS16SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS16SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS -RADIATED POWER17APPENDIX A TEST EQUIPMENT CALIBRATION DATA18APPENDIX B TEST DATA19		
INSTRUMENTATION15FILTERS/ATTENUATORS15ANTENNAS15ANTENNA MAST AND EQUIPMENT TURNTABLE15SAMPLE CALCULATIONS16SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS16SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH16SAMPLE CALCULATIONS -RADIATED POWER17APPENDIX A TEST EQUIPMENT CALIBRATION DATA18APPENDIX B TEST DATA19	RADIATED EMISSIONS MEASUREMENTS	14
ANTENNAS	INSTRUMENTATION	15
ANTENNA MAST AND EQUIPMENT TURNTABLE		
SAMPLE CALCULATIONS 16 SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS 16 SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH 16 SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH 16 SAMPLE CALCULATIONS - RADIATED FOWER 17 APPENDIX A TEST EQUIPMENT CALIBRATION DATA 18 APPENDIX B TEST DATA 19	ANTENNAS	15
SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS		
SAMPLE CALCULATIONS –RADIATED FIELD STRENGTH	SAMPLE CALCULATIONS	16
SAMPLE CALCULATIONS –RADIATED POWER		
APPENDIX A TEST EQUIPMENT CALIBRATION DATA		
APPENDIX B TEST DATA		

SCOPE

Tests have been performed on the GE Digital Energy - MDS model LN900, pursuant to the relevant requirements of the following standard(s) in order to obtain device certification against the regulatory requirements of the Federal Communications Commission and Innovation Science and Economic Development Canada.

- Code of Federal Regulations (CFR) Title 47 Part 2
- CFR 47 Part 90 (Private Land Mobile Radio Service) Subpart S

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in National Technical Systems test procedures:

ANSI C63.26:2015 ANSI TIA-603-D June 2010 FCC KDB 971168 Licensed Digital Transmitters

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Innovation Science and Economic Development Canada performance and procedural standards.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

National Technical Systems is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise.

The test results recorded herein are based on a single type test of the GE Digital Energy - MDS model LN900 and therefore apply only to the tested samples. The samples were selected and prepared by Dennis McCarthy of GE Digital Energy - MDS.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, the device requires certification. Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested samples of GE Digital Energy - MDS model LN900 complied with the requirements of the standards and frequency bands declared in the scope of this test report.

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report for the tests performed. Not all tests were performed for this permissive change.

TEST RESULTS

FCC Part 90

FCC		Description	Measured	Limit	Result
Transmitter M	odulation, output	power and other character	istics		
\$2.1033 (c) (5) \$90.35 \$90.613		Frequency range(s)	809-824 MHz / 854-869 MHz	809-824 MHz / 854-869 MHz	Pass
\$2.1033 (c) (6) \$2.1033 (c) (7) \$2.1046 \$90.205 \$90.635		RF power output at the antenna terminals	40.4 dBm	Up to 1000W ERP Determined at time of Licensing	Pass
§2.1033 (c) (4)		Emission types	D1D		N/A
\$2.1047 \$90.210		Emission mask	Within Mask	Mask D or G and §90.691	Pass
§90.221 §90.691		Adjacent Channel Power	> 65 dBc	-55 or -65 dBc	Pass
§2.1049 §90.209		Occupied Bandwidth	10.4 kHz 10.9 kHz 17.5 kHz 21.8 kHz	11.25 kHz 11.25 kHz 20 kHz 22 kHz	Pass
Transmitter sp	urious emissions				
§2.1051 §2.1057		At the antenna terminals	All emission < -20 dBm	-20 dBm	Pass
§2.1053 §2.1057		Field strength	-20.9 dBm @7821.3 MHz	-20 dBm	Pass
Other details					
§2.1055 §90.213	RSS-119	Frequency stability			
§2.1093	RSS-102	RF Exposure			
§2.1033 (c) (8)		Final radio frequency amplifying circuit's dc voltages and currents for normal operation over the power range Antenna Gain	No change fror	n original filing	N/A
- Notes	<u> </u> -		<u> </u>		

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2) and were calculated in accordance with NAMAS document NIS 81 and M3003.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF frequency	Hz	25 to 7,000 MHz	1.7 x 10 ⁻⁷
RF power, conducted	dBm	25 to 7,000 MHz	$\pm 0.52 \text{ dB}$
Conducted emission of transmitter	dBm	25 to 40,000 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of receiver	dBm	25 to 40,000 MHz	$\pm 0.7 \text{ dB}$
Radiated emission (substitution method)	dBm	25 to 40,000 MHz	± 2.5 dB
Radiated emission (field strength)	dBµV/m	25 to 1,000 MHz 1 to 40 GHz	$\begin{array}{c} \pm 3.6 \text{ dB} \\ \pm 6.0 \text{ dB} \end{array}$

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The GE Digital Energy - MDS model LN900 is an industrial radio module operating in 800 MHz bands that uses QAM modulations. Since the EUT could be placed in any position during operation, the EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 10.0-60.0 Volts DC, 1.5 Amps max.

The samples were received on March 11, 2019 and tested on March 11, 12 and 13, 2019. The following samples of the EUT were used for testing:

Company	Model	Description	Serial Number	FCC ID
GE MDS LLC	LN900	Industrial Radio Module	3319973	E5MDS-LN900-1
GE MDS LLC	LN900	Industrial Radio Module	3319975	E5MDS-LN900-1

OTHER EUT DETAILS

The following EUT details should be noted: 10.5, 10.9, 17.5 and 21.8 kHz D1D emission types depending on frequency band used. Serial # 3319975 used for radiated emissions tests. Serial # 3319973 used for antenna port tests.

ENCLOSURE

The EUT does not have an enclosure as it is intended to be installed in a complete product. The PCB measures approximately 11 cm wide by 3.8 cm deep 0.6 cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at National Technical Systems.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

	Test (Configuration #1		
Company	Model	Description	Serial Number	FCC ID
HP	Probook 6570b	Laptop	5CB2480TRQ	-
Power Designs	6150D	Power Supply	9106013	-
GE MDS	-	Test Fixture	2629712	-

Test Configuration #2

Company	Model	Description	Serial Number	FCC ID
HP	Probook 6570b	Laptop	5CB2480TRQ	-
Power Designs	6150D	Power Supply	9106013	-
Agilent	E3610A	Power Supply	MY40011740	-
GE MDS	-	Test Fixture	2629712	-

No remote support equipment was used during testing.

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

_	Configuration #1					
Port	Connected To		Cable(s)			
T OIL	Connected 10	Description	Shielded or Unshielded	Length(m)		
Test fixture power	Power Supply	two wire	Unshielded	1.5		
COM	Unterminated	Cat 5	Unshielded	1		

Configuration #2

Port	Connected To	Cable(s)			
1 OIT	Connected To	Description	Shielded or Unshielded	Length(m)	
Test fixture power	Power Supply	two wire	Unshielded	1.5	
Test fixture power (2)	Power Supply	two wire	Unshielded	1.5	
COM	Unterminated	Cat 5	Unshielded	1	

EUT OPERATION

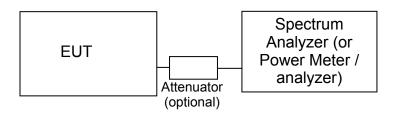
During emissions testing the EUT was set to transmit continuously at the frequency, power level and modulation indicated.

TESTING

GENERAL INFORMATION

Antenna port measurements were taken at the National Technical Systems test site located at 41039 Boyce Road, Fremont, CA 94538-2435.

Radiated spurious emissions measurements were taken at the National Technical Systems Anechoic Chambers and/or Open Area Test Site(s) listed below. The sites conform to the requirements of ANSI C63.4 *American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz* and CISPR 16-1-4:2007 - *Specification for radio disturbance and immunity measuring apparatus and methods Part 1-4: Radio disturbance and immunity measuring apparatus Ancillary equipment Radiated disturbances*. They are on file with the FCC and Innovation Science and Economic Development Canada.


Site	Designation / Reg FCC	istration Numbers Canada	Location
Chamber 7	US0027	US0027	41039 Boyce Road Fremont, CA 94538-2435

ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Results from testing performed in this chamber have been correlated with results from an open area test site. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4.

RF PORT MEASUREMENT PROCEDURES

Conducted measurements are performed with the EUT's rf input/output connected to the input of a spectrum analyzer, power meter or modulation analyzer. When required an attenuator, filter and/or dc block is placed between the EUT and the spectrum analyzer to avoid overloading the front end of the measurement device. Measurements are corrected for the insertion loss of the attenuators and cables inserted between the rf port of the EUT and the measurement equipment.

Test Configuration for Antenna Port Measurements

For devices with an integral antenna the output power and spurious emissions are measured as a field strength at a test distance of (typically) 3m and then converted to an eirp using a substitution measurement (refer to RADIATED EMISSIONS MEASUREMENTS). All other measurements are made as detailed below but with the test equipment connected to a measurement antenna directed at the EUT.

OUTPUT POWER

Output power is measured using a power meter and an average sensor head, a spectrum analyzer or a power meter and peak power sensor head as required by the relevant rule part(s). Where necessary measurements are gated to ensure power is only measured over periods that the device is transmitting.

Power measurements made directly on the rf power port are, when appropriate, converted to an EIRP by adding the gain of the highest gain antenna that can be used with the device under test, as specified by the manufacturer.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS-GEN. The measurement bandwidth is set to be at least 1% of the instrument's frequency span.

CONDUCTED SPURIOUS EMISSIONS

Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode measurements). Where the limits are expressed as an average power the spectrum analyzer is tunes to that frequency with a narrow span (wide enough to capture the emission and its sidebands) and the resolution and video bandwidths are adjusted as required by the reference measurement standards. For transmitter measurements the appropriate detector (average, peak, normal ,sample, quasi-peak) is used when making measurements for licensed devices. For receiver conducted spurious measurements the detector is set to peak.

TRANSMITTER MASK MEASUREMENTS

The transmitter mask measurements are made using resolution bandwidths as specified in the pertinent rule part(s). Where narrower bandwidths are used the measurement is corrected to account for the reduced bandwidth by either using the adjacent channel power function of the spectrum analyzer to sum the power across the required measurement bandwidth. The frequency span of the analyzer is set to ensure the fundamental signal and all significant sidebands are displayed.

The top of the mask may be set by the total output power of the signal, the power of the unmodulated signal or the peak value of the signal in the reference bandwidth being used for the mask measurement.

RADIATED EMISSIONS MEASUREMENTS

Receiver radiated spurious emissions measurements are made in accordance with ANSI C63.26:2015 by measuring the field strength of the emissions from the device at a specific test distance and comparing them to a field strength limit. Where the field strength limit is specified at a longer distance than the measurement distance the measurement is extrapolated to the limit distance.

Transmitter radiated spurious emissions are initially measured as a field strength. The eirp or erp limit as specified in the relevant rule part(s) is converted to a field strength at the test distance and the emissions from the EUT are then compared to that limit. Emissions within 20dB of this limit are the subjected to a substitution measurement.

All radiated emissions measurements are performed in two phases. A preliminary scan of emissions is conducted in either an anechoic chamber or on an OATS during which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed across the complete frequency range of interest and at each operating frequency identified in the reference standard. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode).

During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit. For transmitter spurious emissions, where the limit is expressed as an effective radiated power, the eirp or erp is converted to a field strength limit.

Final measurements are made on an in a semi-anechoic chamber at the significant frequencies observed during the preliminary scan(s) using the same process of rotating the EUT and raising/lowering the measurement antenna to find the highest level of the emission. The field strength is recorded and compared to the field strength limit. For the final measurement the appropriate detectors (average, peak, normal, sample, quasi-peak) are used. For receiver measurements below 1GHz the detector is a Quasi-Peak detector, above 1GHz a peak detector is used and the peak value (RB=VB=1MHz) and average value (RB=1MHz, VB=10Hz) are recorded.

For transmitter spurious emissions, the radiated power of all emissions within 20dB of the calculated field strength limit are determined using a substitution measurement. The substitution measurement is made by replacing the EUT with an antenna of known gain (typically a dipole antenna or a double-ridged horn antenna), connected to a signal source. The output power of the signal generator is adjusted until the maximum field strength from the substitution antenna is similar to the field strength recorded from the EUT. The erp of the EUT is then calculated.

INSTRUMENTATION

An EMI receiver as specified in CISPR 16-1-1 is used for radiated emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 7000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary.

For measurements above the frequency range of the receivers and for all conducted measurements a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis.

Measurement bandwidths for the test instruments are set in accordance with the requirements of the standards referenced in this document.

Software control is used to correct the measurements for transducer factors (e.g. antenna) and the insertion loss of cables, attenuators and other series elements to obtain the final measurement value. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are exported in a graphic and/or tabular format, as appropriate.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the EUT antenna port or receiving antenna and the test receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A combination of biconical, log periodic or bi-log antennas are used to cover the range from 30 MHz to 1000 MHz. Broadband antennas or tuned dipole antennas are used over the entire 25 to 1000 MHz frequency range as the reference antenna for substitution measurements.

Above 1000 MHz, a dual-ridge guide horn antenna or octave horn antenna are used as reference and measurement antennas.

The antenna calibration factors are included in site factors that are programmed into the instrument control software when measuring the radiated field strength.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

Table mounted devices are placed on a non-conductive table at a height of 80 or 150 centimeters above the floor. The EUT is positioned on a motorized turntable to allow it to be rotated during testing to determine the angel with the highest level of emissions.

SAMPLE CALCULATIONS

SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS

Measurements are compared directly to the conducted emissions specification limit (decibel form). The calculation is as follows:

$$R_r - S = M$$

where:

 R_r = Measured value in dBm

S = Specification Limit in dBm

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS -RADIATED FIELD STRENGTH

Measurements of radiated field strength are compared directly to the specification limit (decibel form). The receiver and/or control software corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor is sued when measurements are made at a test distance that is different to the specified limit distance by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

- R_r = Receiver Reading in dBuV/m
- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS -RADIATED POWER

The erp/eirp limits for transmitter spurious measurements are converted to a field strength in free space using the following formula:

$$E = \frac{\sqrt{30 P G}}{d}$$

where:

Е	=	Field Strength in V/m
Р	=	Power in Watts
G	=	Gain of isotropic antenna (numeric gain) = 1
D	=	measurement distance in meters

The field strength limit is then converted to decibel form (dBuV/m) and the margin of a given emission peak relative to the limit is calculated (refer to *SAMPLE CALCULATIONS – RADIATED FIELD STRENGTH*).

When substitution measurements are required (all signals with less than 20dB of margin relative to the calculated field strength limit) the eirp of the spurious emission is calculated using: $P_{EUT} = P_{S-}(E_{S} - E_{EUT})$

and

$$P_s = G + P_{in}$$

where:

- P_{S} = effective isotropic radiated power of the substitution antenna (dBm)
- P_{in} = power input to the substitution antenna (dBm)
- G = gain of the substitution antenna (dBi)

 E_S = field strength the substitution antenna (dBm) at eirp P_S

 E_{EUT} = field strength measured from the EUT

Where necessary the effective isotropic radiated power is converted to effective radiated power by subtracting the gain of a dipole (2.2dBi) from the eirp value.

Appendix A Test Equipment Calibration Data

Manufacturer	Description	Model	<u>Asset #</u>	<u>Calibrated</u>	<u>Cal Due</u>
Radio Antenna Port National Technical	(Power and Spurious Emission NTS EMI Software (rev 2.10)	ns), 11-Mar-19 N/A	0		N/A
Systems National Technical	NTS Mask Software (rev 3.8)	N/A	0		N/A
Systems					
National Technical Systems	NTS Capture Analyzer Software (rev 3.8)	N/A	0		N/A
Rohde & Schwarz	Power Meter, Dual Channel	NRVD	1071	4/4/2018	4/4/2019
Rohde & Schwarz	Peak Power Sensor 100 uW - 2 Watts (w/ 20 dB pad, SN BJ5155)	NRV-Z32	1536	6/21/2018	6/21/2019
Agilent	PSA, Spectrum Analyzer,	E4446A	2139	7/27/2018	7/27/2019
Technologies	(installed options, 111, 115, 123, 1DS, B7J, HYX,				
	, 30 - 9,000 MHz, 12-Mar-19				
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	0		N/A
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	785	9/5/2018	9/5/2019
EMCO	Antenna, Horn, 1-18GHz	3115	868	7/9/2018	7/9/2020
Hewlett Packard	Spectrum Analyzer (SA40) Red 30 Hz -40 GHz	8564E (84125C)	1148	9/27/2018	9/27/2019
Sunol Sciences Rohde & Schwarz	Biconilog, 30-3000 MHz	JB3 ESI 40	2237 2493	7/3/2018 3/22/2018	7/3/2020 3/22/2019
Ronde & Schwarz	EMI Test Receiver, 20 Hz-40 GHz	ESI 40	2493	3/22/2016	5/22/2019
Substitution Measur					
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	0		N/A
Rohde & Schwarz	Power Meter, Single Channel, +1795+1796	NRVS	1534	7/25/2018	7/25/2019
Rohde & Schwarz	Power Sensor, 1 nW-20 mW, 10 MHz-18 GHz, 50ohms	NRV-Z1	2114	11/7/2018	11/7/2019
EMCO	Antenna, Horn, 1-18 GHz	3115	2870	8/24/2017	8/24/2019
Agilent Technologies	PSG, Vector Signal Generator, (250kHz - 20GHz)	E8267D	3011	2/28/2019	2/28/2020
recimologies	Generator, (250kmz - 206mz)				
National Technical	, 9 kHz - 30 MHz, 13-Mar-19 NTS EMI Software (rev 2.10)	N/A	0		N/A
Systems Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB 7	9482	10/13/2018	10/13/2019
Rhode & Schwarz	Magnetic Loop Antenna, 9 kHz-30 MHz	HFH2-Z2	WC062 457	1/5/2018	1/5/2020

Appendix B Test Data

TL093700-RA Pages 20 - 47

EMC Test Data

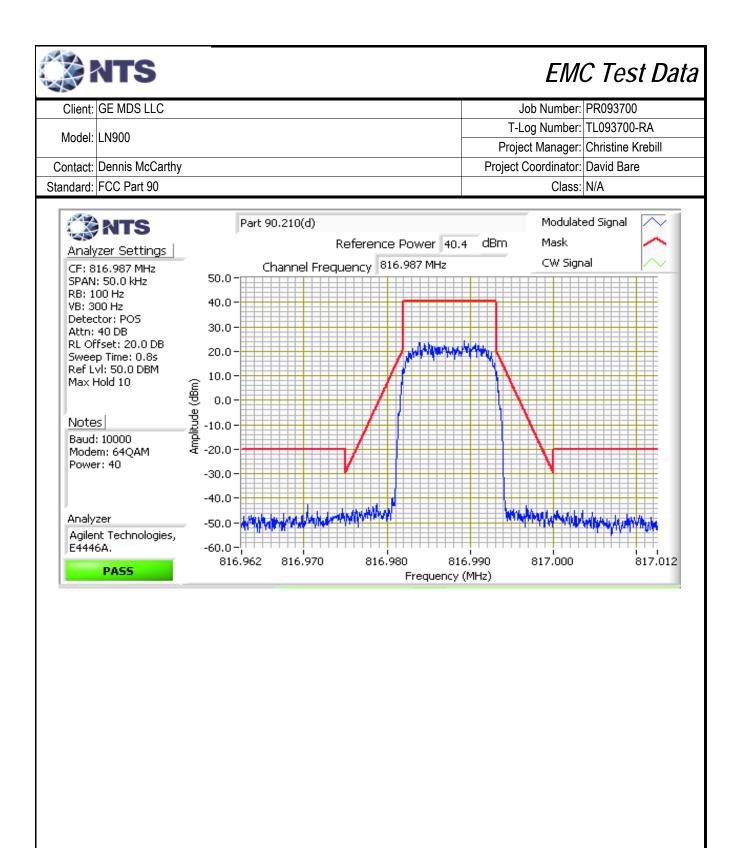
Client:	GE MDS LLC	PR Number:	PR093700
Product	LN900	T-Log Number:	TL093700-RA
System Configuration:	-	Project Manager:	Christine Krebill
Contact:	Dennis McCarthy	Project Engineer:	David Bare
Emissions Standard(s):	FCC Part 90	Class:	
Immunity Standard(s):		Environment:	Radio

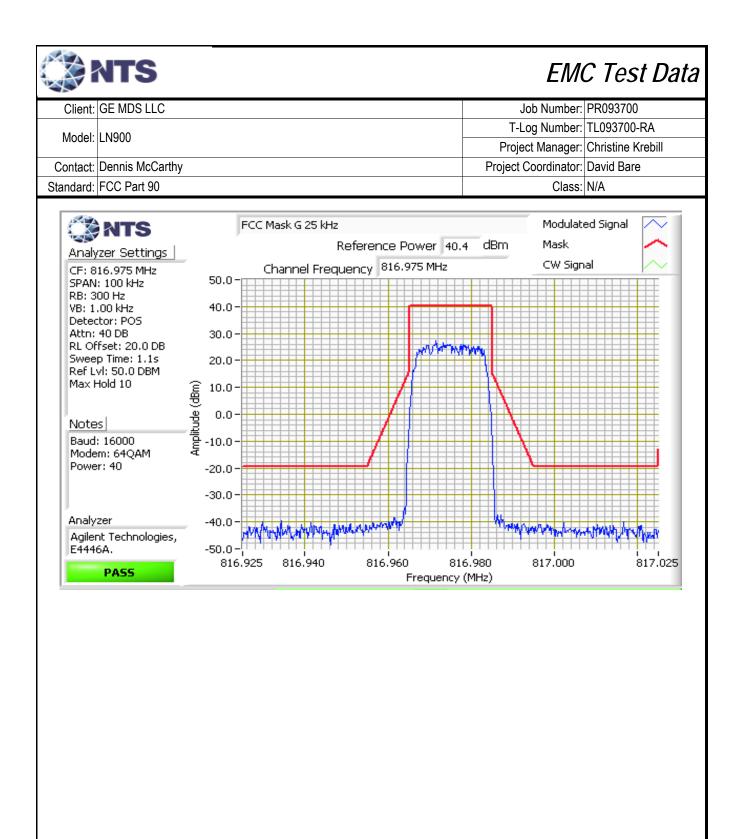
EMC Test Data

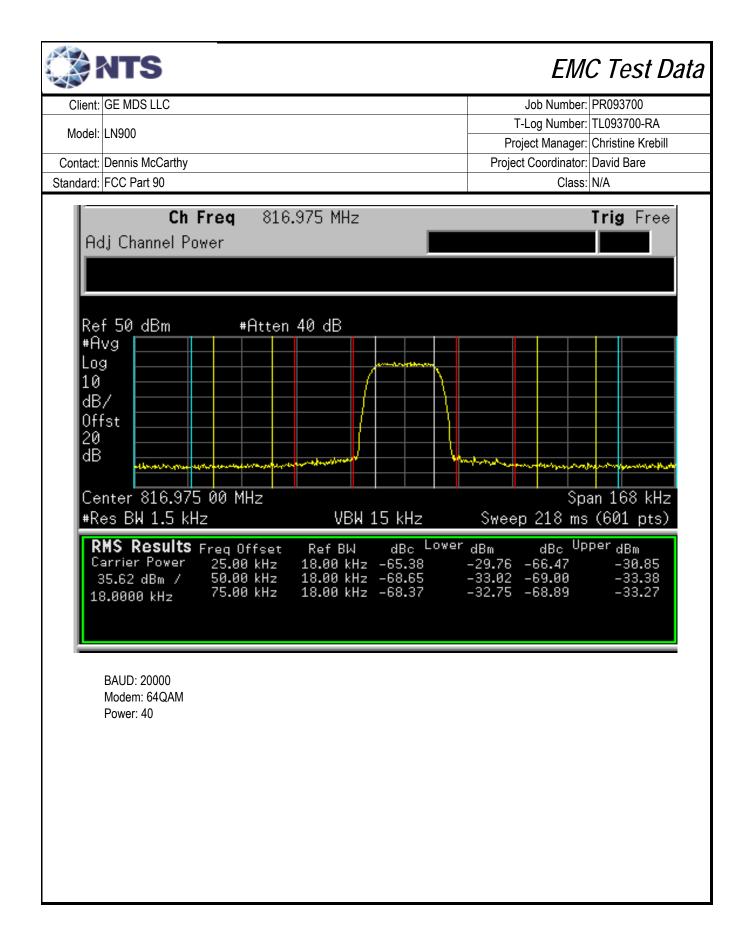
For The

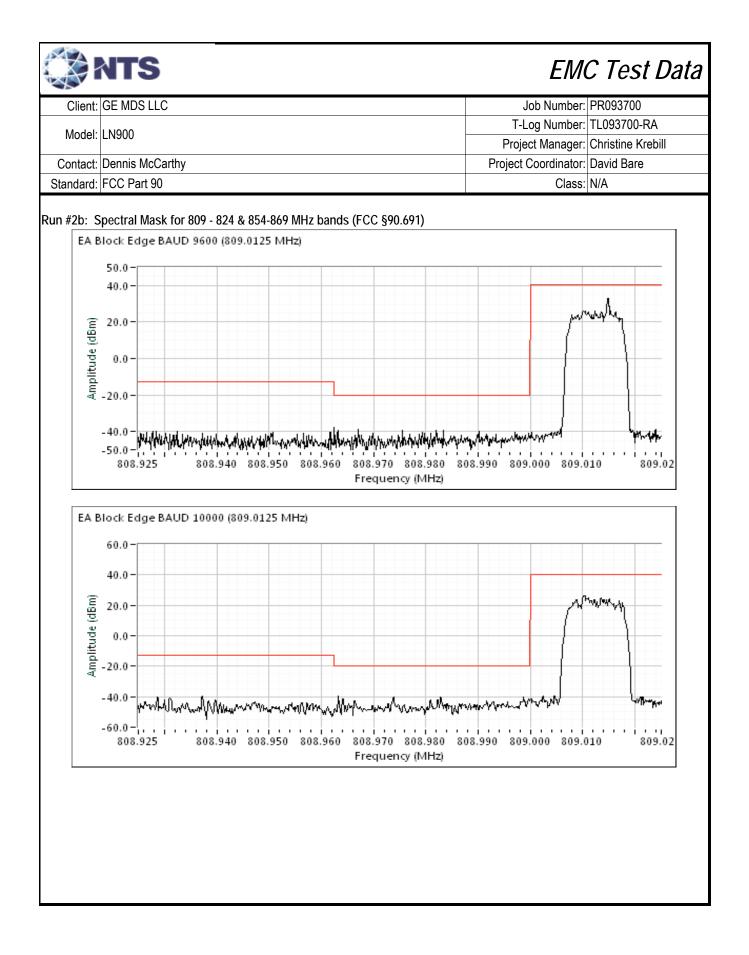
GE MDS LLC

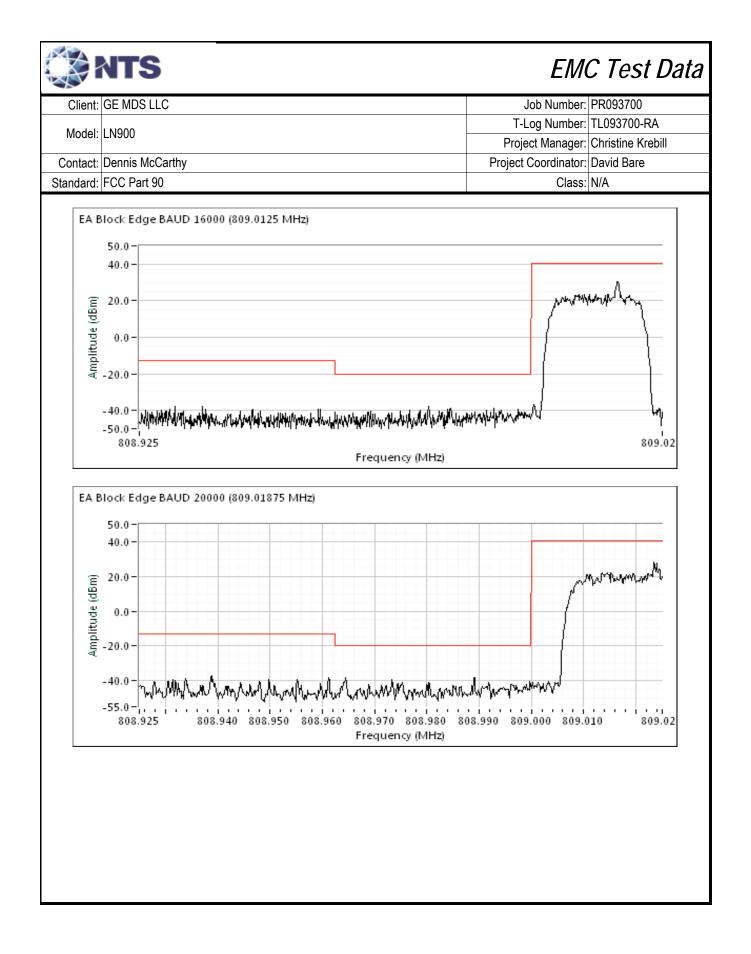
Product

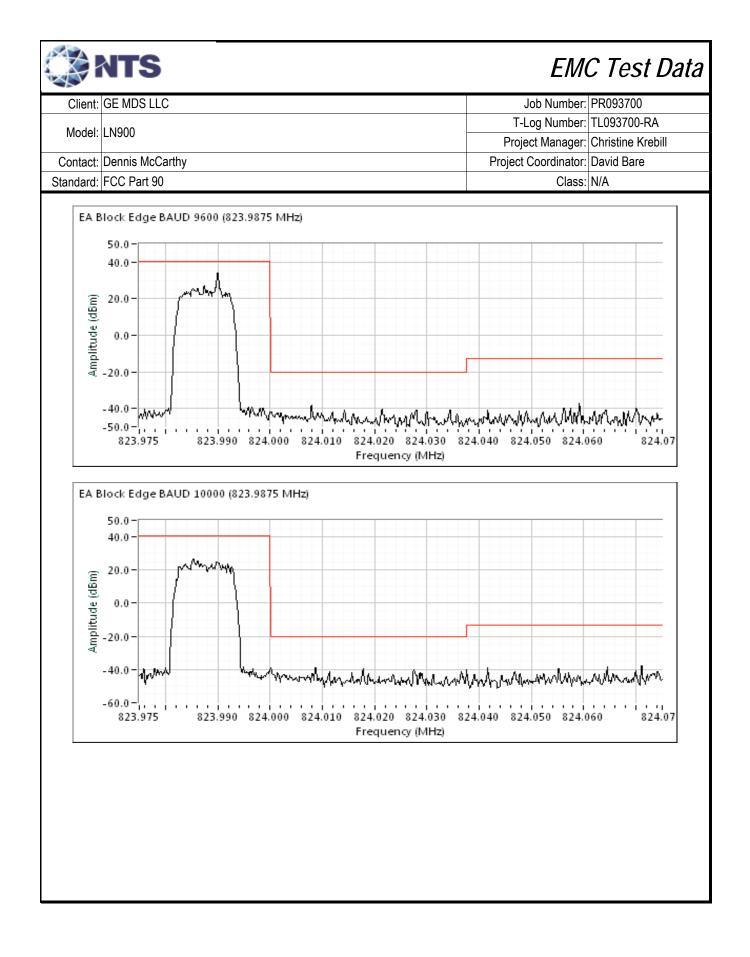

LN900

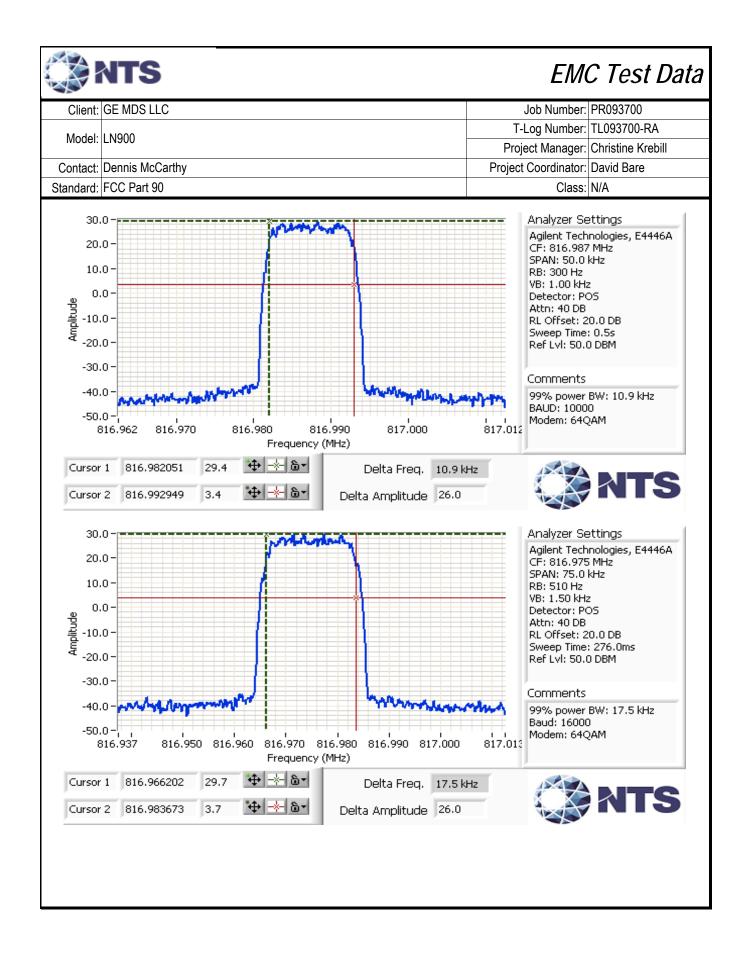

Date of Last Test: 3/11/2019

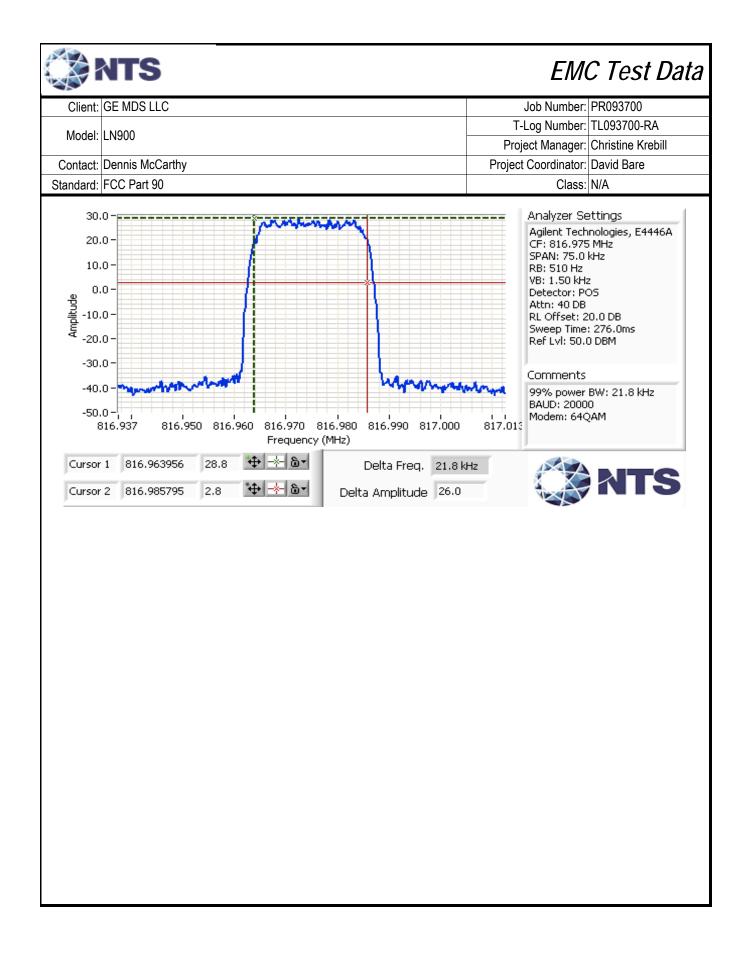

	NTS			EM	C Test Data
Client:	GE MDS LLC			Job Number:	PR093700
Madal			T-I	Log Number:	TL093700-RA
Modei.	LN900		Proje	ect Manager:	Christine Krebill
Contact:	Dennis McCarthy		Project	Coordinator:	David Bare
Standard:	FCC Part 90			Class:	N/A
		FCC Part Power and Spurious			
General 1	Test Configuration	ive of this test session is to perform fina on listed above. I spurious emissions tests, all measurer			
measurer attenuatic environme	nent instrument via an a on between EUT and me ental chamber.	ttenuator or dc-block if necessary. All a asuring instrument. For frequency stat	amplitude measurements pility measurements the E	are adjusted UT was place	to account for the e inside an
Radiated	measurements are mac	e with the EUT located on a non-condu	ctive table, 3m from the n	neasurement	antenna.
	Conditions:	Temperature: 19-21 Rel. Humidity: 38-40			
	/ of Results	Test Performed	Limit		Decult / Margin
Run #			Limit Determined at time of	Pass / Fail	Result / Margin
1		Output Power	Licensing	Pass	40.4 dBm
2		Spectral Mask	Within Mask	-	
3		99% or Occupied Bandwidth	11.25/20 kHz	-	21.8 kHz
4		Spurious Emissions (conducted)	-20 dBm	Pass	all emission < the limit
5		Spurious emissions (radiated)	-20 dBm	Pass	-20.9 dBm@7821.3 MHz (-0.9 dB)
No modifi Deviation	tions Made During cations were made to the to From The Stand ions were made from the	e EUT during testing			

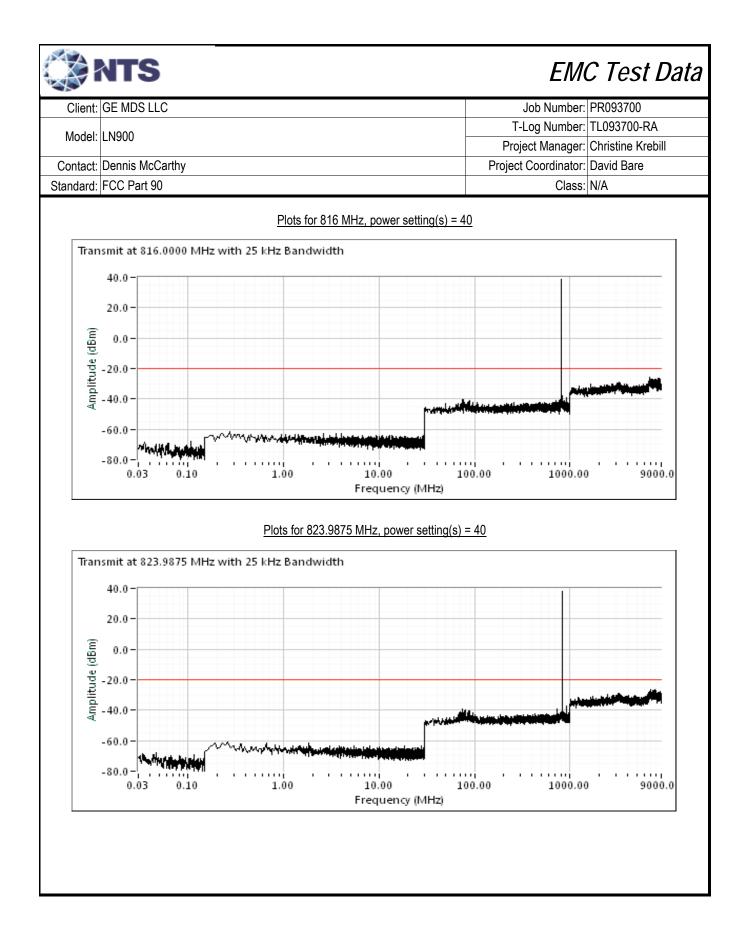

	NTS						EM	C Test Data
Client:	GE MDS LLC						Job Number:	PR093700
	1 1 1 0 0 0					T-I	Log Number:	TL093700-RA
Model:	LN900					Proje	ect Manager:	Christine Krebill
Contact:	Dennis McCarthy					Project	Coordinator:	David Bare
Standard:	FCC Part 90						Class:	N/A
[Te	utput Power Date of Test: 3/11/2018 est Engineer: David Bare est Location: Fremont EN	IC Lab #4A			onfig. Used: ure Voltage:			
	Cable Loss: 0.0 dB			Attenuator:	20.0 dB		Total Loss:	20.0 dB
	Cable ID(s):	-	At	tenuator IDs:	WC06	68107		
Dever		<u></u>	Dower	A reference -		E.	RP	1
Power Setting ²	Frequency (MHz)	(dBm) ¹	Power mW	Antenna Gain (dBi)	Result	dBm	w w	
40	809	40.1	10233	16.5	Pass	56.6		FB 23
40	816	40.1	10233	16.5	Pass	56.6		FB 23
40	824	40.2	10471	16.5	Pass	56.7		FB 23
40	854	40.4	10965	16.5	Pass	56.9		FB 23
40	861	40.3	10715	16.5	Pass	56.8		FB 23
40	869	40.1	10233	16.5	Pass	56.6	457.09	FB 23
Note 1:	Output power measured	using a peak	power mete	ər				
Note 2:	Power setting - the softw				included for	reference or	nly.	
Note 3:	Power and antenna sele which the device is used	ction are set	by licensee	and power is	reduced as r	ecessary to		its for the rule part for

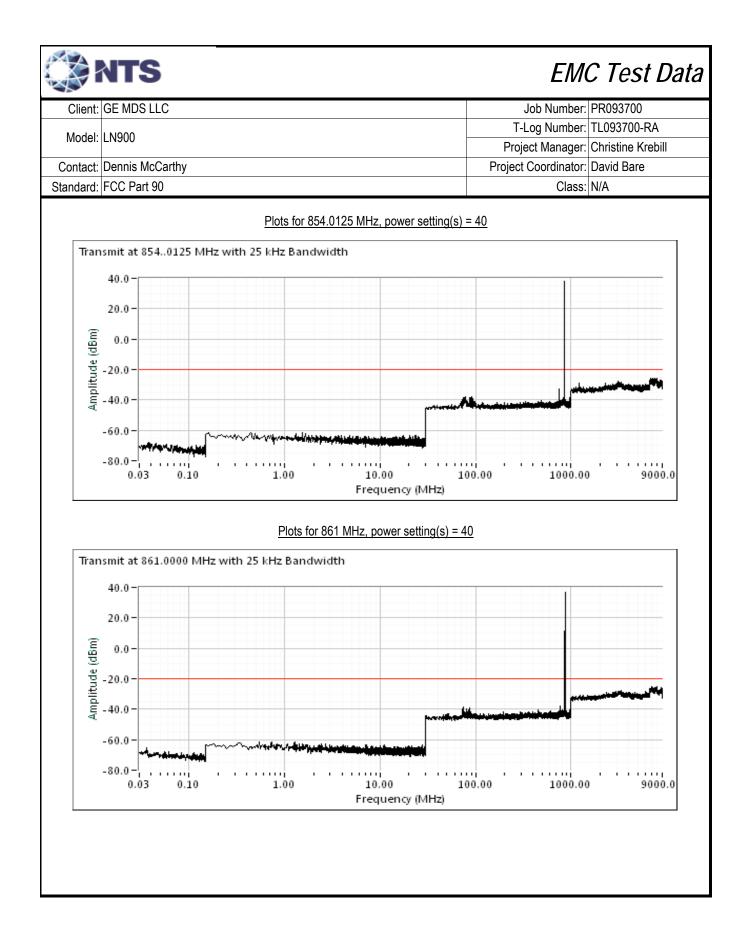

								C Test Da
Client:	GE MDS LLC)					Job Number:	PR093700
						T-l	_og Number:	TL093700-RA
Model:	LN900					Proie	ect Manager:	Christine Krebill
ontact:	Dennis McCa	arthy				,	Coordinator:	
	FCC Part 90					110,000	Class:	
muaru.	FCC Fail 90						Ciass.	N/A
isk D fo [Te		nannels and 3/11/2018 David Bare	Mask G for		824 & 854 - 869 MH: hels, ACP for 22 kHz Config. L Fixture Vol	c Channel Bandwid	dth	
	FUT does	not transmi	tunmodulate	ed carrier with	full power setting.	The measured nov	ver levels (us	sing neak nower me
te 1:	are higher	than the de	clared nomi		every channel frequ	•		• •
# 2	`no atral Maal	(for 000 0			o (ECC Dout 00)			
#za: 5	Power	Data	Channel	Modulation	s (FCC Part 90)	、Emission	Result	1
	setting	rate	plan	Modulation	Frequency (MH	z) mask	Result	
	40	9.6 ksps	12.5 kHz	64QAM	816.9875	D	Pass	-
	40	10 ksps	12.5 kHz	64QAM	816.9875	D	Pass	-
	40	16 ksps	25 kHz	64QAM	816.975	G	Pass	1
	40	20 ksps	25 kHz	64QAM	816.975	§90.221	Pass	
				4 B				-
	NTS		Part 90).210(d)				ed Signal 🔨
Analy	yzer Setting	IS		F	Reference Power	40.4 dBm	Mask	\sim
CF: 8	316.987 MHz		Cł	nannel Frequ	uency 816.9875 M	MHz	CW Sign	nal 📈
	I: 50.0 kHz	50	0.0-					
	.00 Hz :00 Hz	41	0.0-					
	ctor: POS	3	0.0-					
	40 DB ffset: 20.0 DB	в						
Swee	p Time: 0.8s	21	0.0-		1000	and address of		
	vl: 50.0 DBM Hold 10	_ 1/	0.0-		//			
PIGX F	1010 10	ШЩ, I						
J		ر ب (ن	0.0-					
Note		<u>j</u> -1	0.0-					
Baud	l: 9600 em: 64QAM	11 1 - Whittude (dBm) 12- Amplitude (dBm)	n.n –		1			
	en: 64QAM er: 40						N	
Mode		-31	0.0-					
Mode		-4!	0.0-					
Mode				ANT AN IN A SOLL	WARNAW .		MANNAL MAL	ALL BALLING
Mode Powe	zer		0.0-	. I DELMANANT .				A PART AND A PART A
Mode Powe Analy	zer nt Technologi							
Mode Powe Analy	nt Technologi	ies,	0.0-					
Mode Powe Analy Agiler	nt Technologi	ies,		816.970	816.980	816.990 ency (MHz)	817.000	817.012

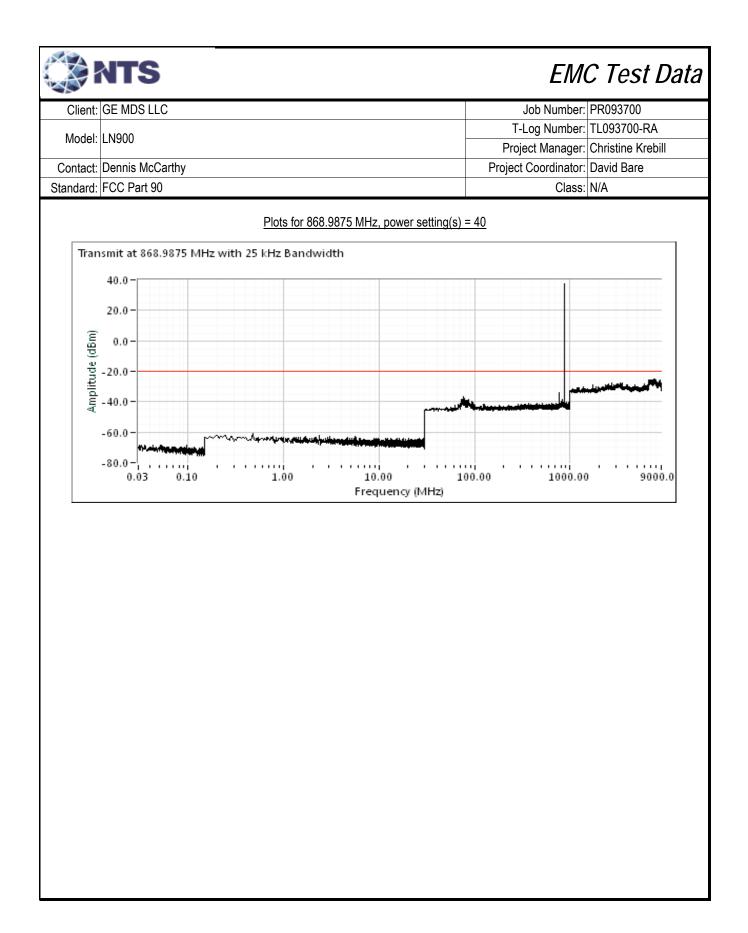




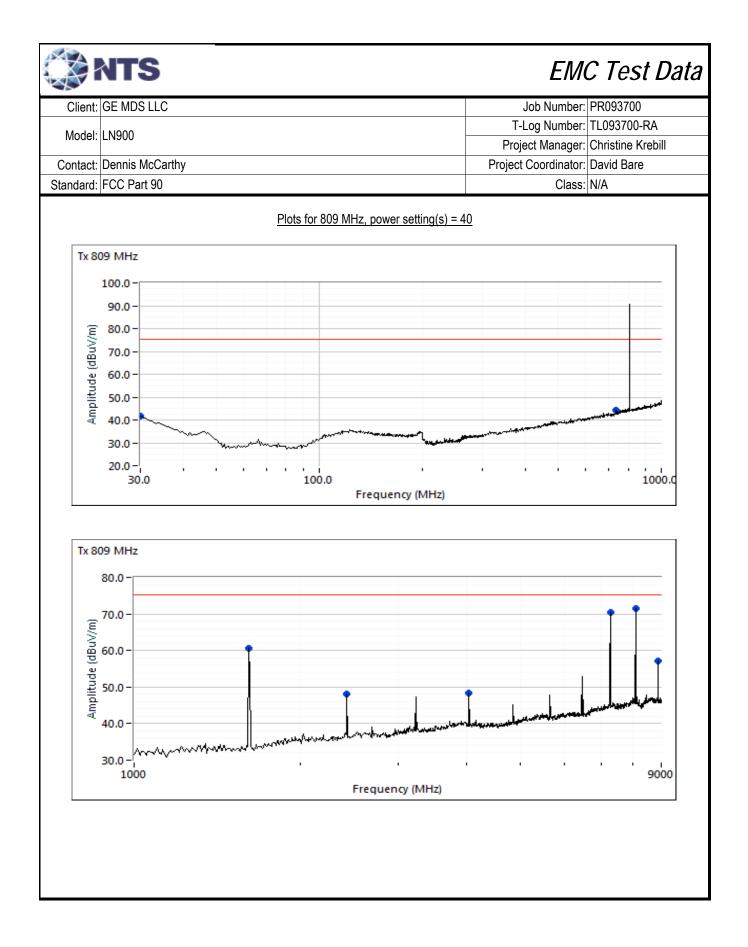


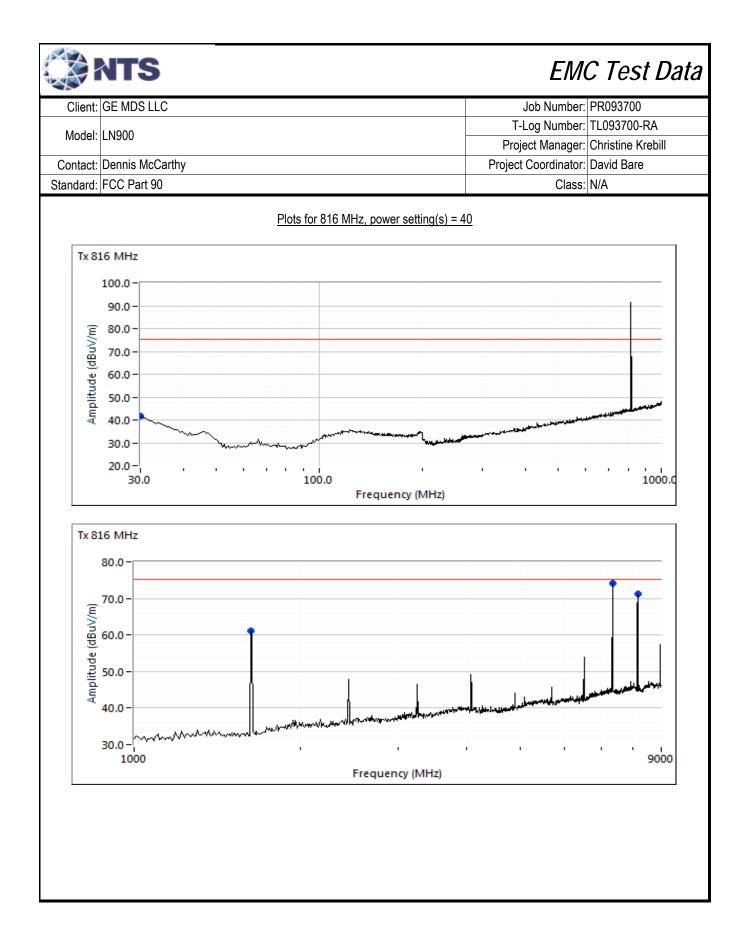


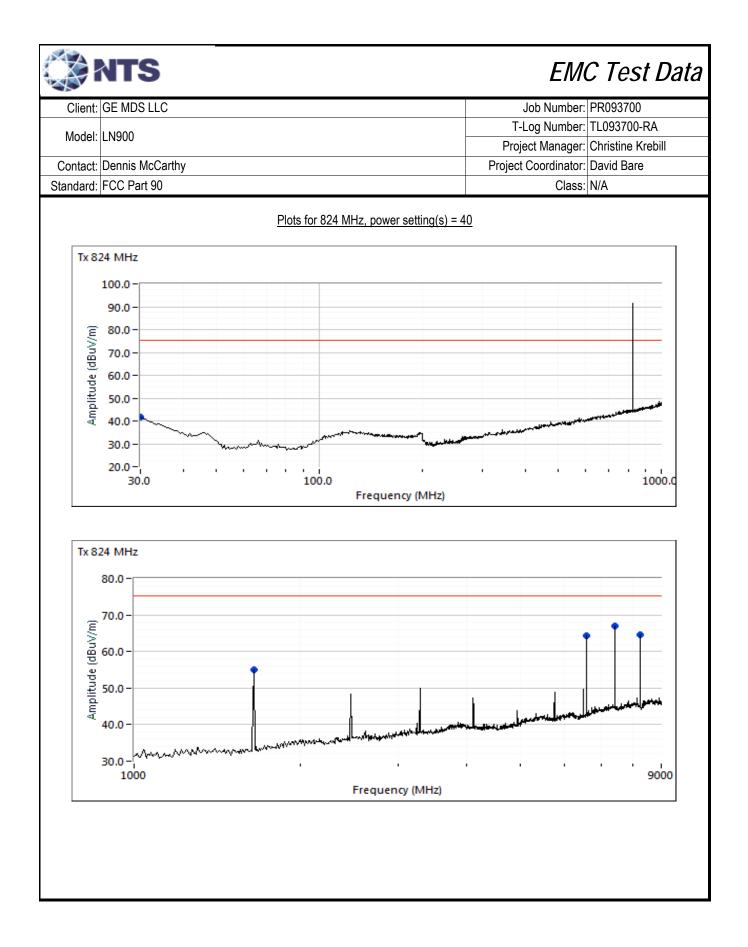

	: GE MDS LL	С				J	ob Number:	PR093700
Madal	: LN900					T-L	og Number:	TL093700-RA
woder.	LIN900					Proje	ct Manager:	Christine Krel
Contact	: Dennis McC	arthy				Project (Coordinator:	David Bare
Standard:	FCC Part 90)					Class:	N/A
Te	ignal Bandw Date of Test: est Engineer: est Location:	3/11/2018 David Bare	IC Lab #4A		Config. Used Fixture Voltage			
	Power	Data	Channel	Modulation	Frequency (MHz)	Resolution	Bandwic	· · ·
	setting	rate	plan 12.5 k⊟z	640414		Bandwidth		99% 10.4
	40 dBm 40 dBm	9.6 ksps 10.0 ksps	12.5 kHz 12.5 kHz	64QAM 64QAM	816.9875 816.9875	300 Hz 300 Hz		10.4 10.9
	40 dBm	16.0 ksps	25.0 kHz	64QAM	816.975	500 Hz		10.9
	40 dBm	20.0 ksps	25.0 kHz	64QAM	816.975	500 Hz		21.8
40 30	≥ 3*RB and			nce with ANSI of measured ba	C63.10, with RB between and width.		Analyzer Se Agilent Tech CF: 816.987	ettings nologies, E444 MHz
30 20 10 9pnjifnde -10 -20 -30 -40 -50	≥ 3*RB and 1.0 - 1.0 -	Span ≥ 1.5%	6 and ≤ 5% c	ef measured ba	andwidth.		Analyzer Se Agilent Tech CF: 816.987 SPAN: 50.0 l RB: 300 Hz VB: 1.00 kHz Detector: PC Attn: 40 DB RL Offset: 2 Sweep Time: Ref Lvl: 50.0	ettings MHz KHZ 2 0 0 0 0 0 0 0 0 0 0 0 0 0
40 30 20 10 900 10 -10 -20 -30 -40 -50	≥ 3*RB and 0.0 - 0.0	<u>Span ≥ 1.5%</u> 16.970 2217 30.1	6 and ≤ 5% c 816.980 Fre 5 ↔ -*	816.990 equency (MHz)	andwidth.	817.012 kHz	Analyzer Se Agilent Tech CF: 816.987 SPAN: 50.01 RB: 300 Hz VB: 1.00 kHz Detector: PC Attn: 40 DB RL Offset: 2 Sweep Time: Ref Lvl: 50.0 Comments 99% power BAUD: 9600	ettings MHz KHZ 2 0 0 0 0 0 0 0 0 0 0 0 0 0

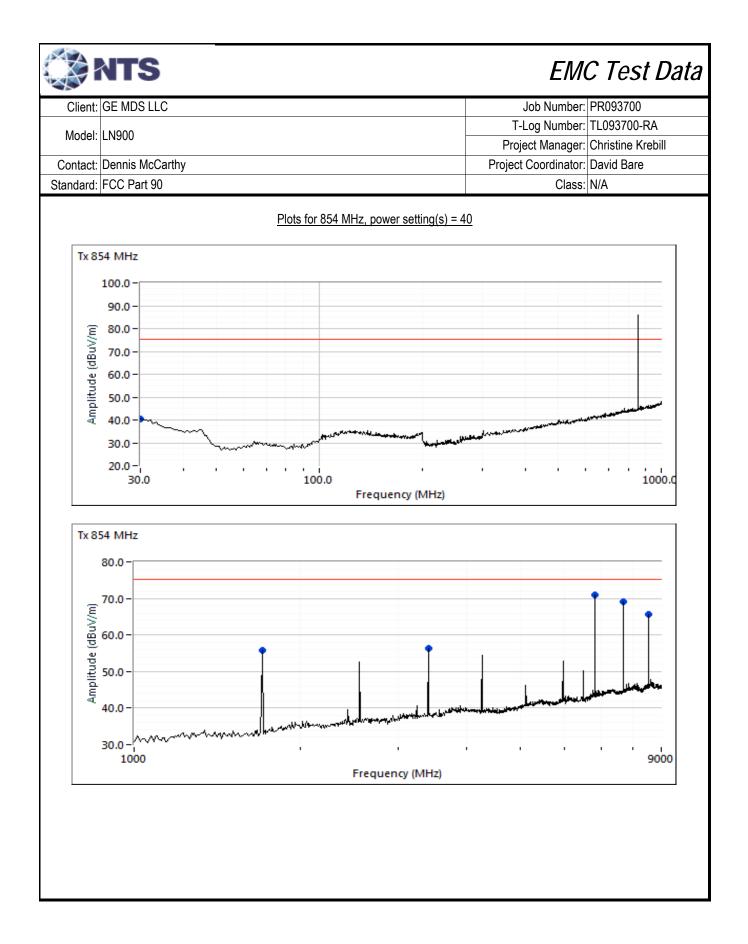


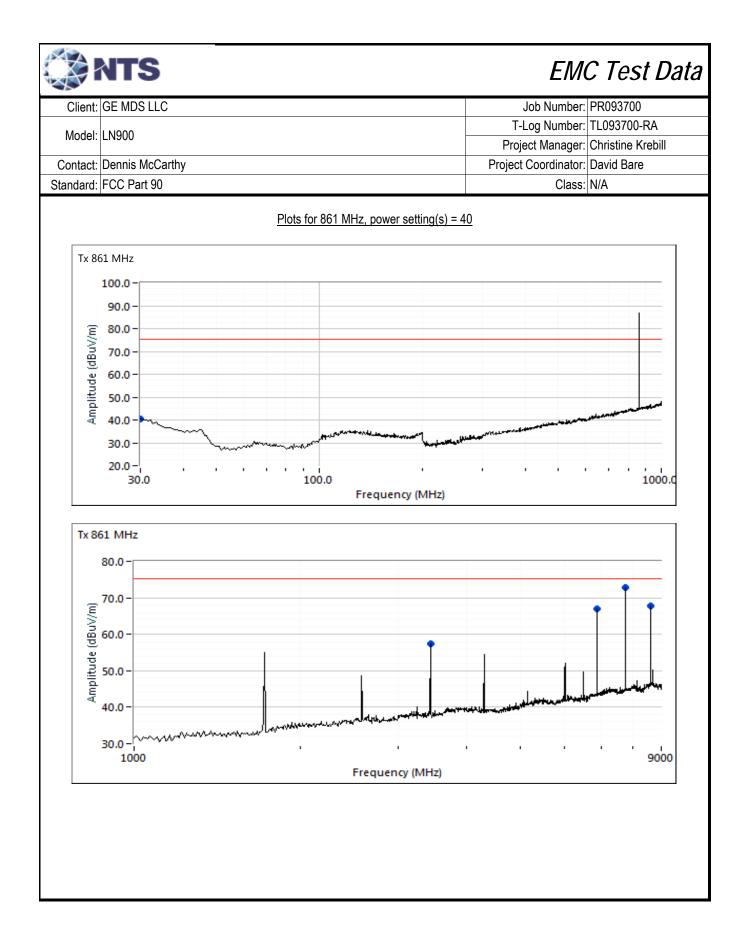
•	GE MDS L	LC		Job Number	: PR093700
Andalı				T-Log Number	: TL093700-RA
viouei.	LN900			Project Manager	: Christine Krebill
	Dennis Mc			Project Coordinator	: David Bare
ndard:	FCC Part 9	00		Class	:: N/A
#4: Ou	ut of Band	Spurious Emissions, Cor	nducted		
		: 3/11/2018	Config. Us		
		: Mehran Birgani : Fremont EMC Lab #4A	Fixture Volta	ge: 13.8 VDC	
		Frequency (MHz)	Limit	Result	
		809.0125	50+10log(P)	Pass	4
		816.0000	50+10log(P)	Pass	4
		823.9875 854.0125	50+10log(P) 50+10log(P)	Pass Pass	4
		861.0000	50+10log(P)	Pass	-
SA setti	ings: Peak o	Any emisisons observed a	50+10log(P) ow 150 kHz, 9 kHz below 30 MHz a bove 1 GHz were measured using is for 809.0125 MHz, power setting	a 1 MHz RBW.	with video bandwid
SA setti he resc	ings: Peak o olution BW.	CC Part 90 Mask D. detector, RBW = 1 kHz belo Any emisisons observed a	ow 150 kHz, 9 kHz below 30 MHz a bove 1 GHz were measured using <u>is for 809.0125 MHz, power setting</u>	and 100 kHz above 30 MHz a 1 MHz RBW.	with video bandwid
SA setti he resc	ings: Peak o olution BW.	CC Part 90 Mask D. detector, RBW = 1 kHz bele Any emisisons observed a <u>Plot</u>	ow 150 kHz, 9 kHz below 30 MHz a bove 1 GHz were measured using <u>is for 809.0125 MHz, power setting</u>	and 100 kHz above 30 MHz a 1 MHz RBW.	with video bandwid
SA setti he resc	ings: Peak o olution BW.	CC Part 90 Mask D. detector, RBW = 1 kHz bele Any emisisons observed a <u>Plot</u>	ow 150 kHz, 9 kHz below 30 MHz a bove 1 GHz were measured using <u>is for 809.0125 MHz, power setting</u>	and 100 kHz above 30 MHz a 1 MHz RBW.	with video bandwid
A setti ne resc	tings: Peak of olution BW. nsmit at 809 40.0 - 20.0 -	CC Part 90 Mask D. detector, RBW = 1 kHz bele Any emisisons observed a <u>Plot</u>	ow 150 kHz, 9 kHz below 30 MHz a bove 1 GHz were measured using <u>is for 809.0125 MHz, power setting</u>	and 100 kHz above 30 MHz a 1 MHz RBW.	with video bandwid
A setti ne resc	tings: Peak of olution BW. nsmit at 809 40.0 - 20.0 -	CC Part 90 Mask D. detector, RBW = 1 kHz bele Any emisisons observed a <u>Plot</u>	ow 150 kHz, 9 kHz below 30 MHz a bove 1 GHz were measured using <u>is for 809.0125 MHz, power setting</u>	and 100 kHz above 30 MHz a 1 MHz RBW.	with video bandwid
A setti ne resc	tings: Peak of olution BW. nsmit at 809 40.0 - 20.0 -	CC Part 90 Mask D. detector, RBW = 1 kHz bele Any emisisons observed a <u>Plot</u>	ow 150 kHz, 9 kHz below 30 MHz a bove 1 GHz were measured using <u>is for 809.0125 MHz, power setting</u>	and 100 kHz above 30 MHz a 1 MHz RBW.	with video bandwid
A setti ne resc Tran	tings: Peak of olution BW. nsmit at 809 40.0 - 20.0 -	CC Part 90 Mask D. detector, RBW = 1 kHz bele Any emisisons observed a <u>Plot</u>	ow 150 kHz, 9 kHz below 30 MHz a bove 1 GHz were measured using <u>is for 809.0125 MHz, power setting</u>	and 100 kHz above 30 MHz a 1 MHz RBW.	with video bandwid
With the resort of the resort	tings: Peak of olution BW. nsmit at 809 40.0 - 20.0 -	CC Part 90 Mask D. detector, RBW = 1 kHz bele Any emisisons observed a <u>Plot</u>	ow 150 kHz, 9 kHz below 30 MHz a bove 1 GHz were measured using <u>is for 809.0125 MHz, power setting</u>	and 100 kHz above 30 MHz a 1 MHz RBW.	with video bandwid
A setti ne resc Tran (Ugp)	tings: Peak of olution BW. 15mit at 80 40.0 - 20.0 - -20.0 - -40.0 - -60.0 -	CC Part 90 Mask D. detector, RBW = 1 kHz bele Any emisisons observed a <u>Plot</u>	ow 150 kHz, 9 kHz below 30 MHz a bove 1 GHz were measured using <u>is for 809.0125 MHz, power setting</u> Bandwidth	and 100 kHz above 30 MHz a 1 MHz RBW. (s) = 40	
A setti ne resc Tran (Ugp)	ings: Peak o olution BW. 15mit at 809 40.0 - 20.0 -	CC Part 90 Mask D. detector, RBW = 1 kHz belo Any emisisons observed a <u>Plot</u> 9.0125 MHz with 25 kHz	ow 150 kHz, 9 kHz below 30 MHz a bove 1 GHz were measured using <u>is for 809.0125 MHz, power setting</u>	and 100 kHz above 30 MHz a 1 MHz RBW. (s) = 40	
A setti ne resc Tran (Ugp)	tings: Peak of olution BW.	CC Part 90 Mask D. detector, RBW = 1 kHz belo Any emisisons observed a <u>Plot</u> 9.0125 MHz with 25 kHz	ow 150 kHz, 9 kHz below 30 MHz a bove 1 GHz were measured using <u>s for 809.0125 MHz, power setting</u> Bandwidth	and 100 kHz above 30 MHz a 1 MHz RBW. (s) = 40	

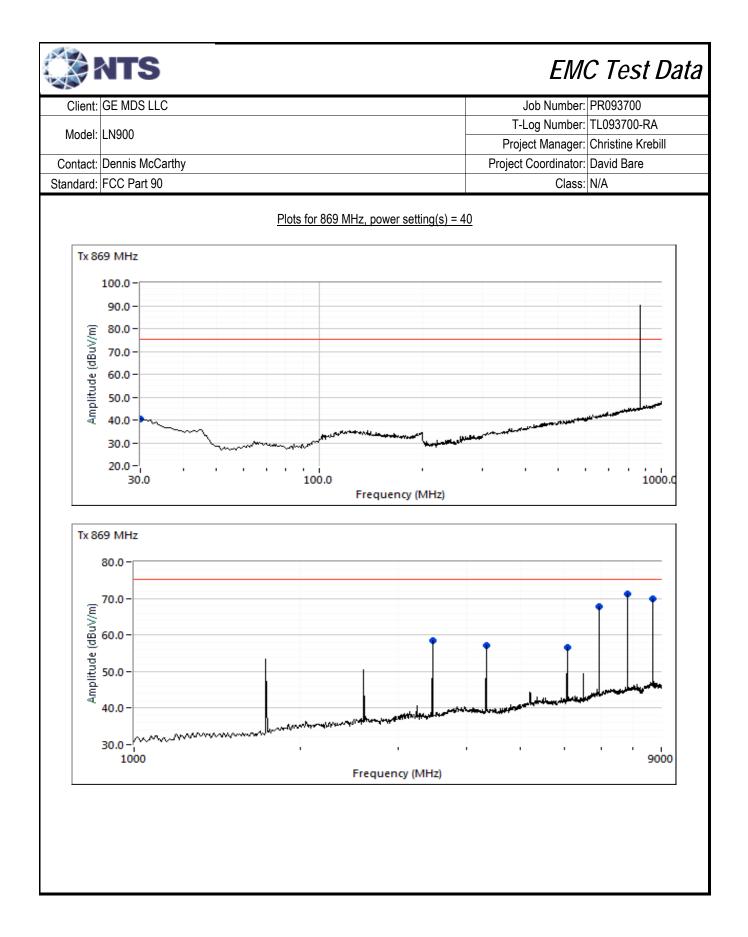







Client:	GE MDS LLO	0		Job Number: PR093700					
Model:				T-Log Number: TL093700-RA					
MOUEI.	LINGUU			Project Manager: Christine Krebill					
Contact:	Dennis McC	arthy		Project Coordinator: David Bare					
	FCC Part 90	-		Class: N/A					
D				Patad					
Run #5: OU	it of Band S		limit (dBm):	liated -20		The limit is t	aken from F	CC Part 90 Mask D)
A	Approximate f		. ,						
		0	Ũ	77.5					
	reliminary m		ts						
	Date of Test:					onfig. Used:			
	st Engineer:				Fixt	ure Voltage:	13.8 VDC a	and 5.25 VDC	
le	est Location:	Fremont Cha	amber #7						
Frequency	Level	Pol	FCC	Part 90	Detector	Azimuth	Height	Comments	Channe
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments	Channe
736.273	44.2	V	75.3	-31.1	Peak	63	1.0	Noise floor	
30.000	41.5	V	75.3	-33.8	Peak	145	3.0	Noise floor	
1000.000	54.3	V	75.3	-21.0	Peak	360	1.0	Noise floor	
1618.000	60.6	V	75.3	-14.7	Peak	200	1.0		809 MHz
2427.000	48.2	V	75.3	-27.1	Peak	232	2.2		809 MHz
4045.000	48.4	V	75.3	-26.9	Peak	214	2.5		809 MHz
7281.000	70.3	V	75.3	-5.0	Peak	176	2.2		809 MHz
8090.000	71.5	V	75.3	-3.8	Peak	195	1.9		809 MHz
1632.000	61.0	V V	75.3	-14.3	Peak	254	1.9		816 MHz
7344.000 8160.000	74.2 71.1	V	75.3 75.3	-1.1 -4.2	Peak Peak	12 194	2.5 1.9		816 MHz 816 MHz
1648.000	55.0	V	75.3	-4.2	Peak	248	1.9		824 MHz
6592.000	64.4	V	75.3	-10.9	Peak	198	1.0		824 MHz
7416.000	66.9	V	75.3	-8.4	Peak	8	1.3		824 MHz
8240.000	64.7	V	75.3	-10.6	Peak	58	2.5		824 MHz
1708.000	55.9	V	75.3	-19.4	Peak	253	2.5		854 MHz
3416.000	56.2	V	75.3	-19.1	Peak	240	2.2		854 MHz
6832.000	71.0	V	75.3	-4.3	Peak	8	2.2		854 MHz
7686.000	69.1	V	75.3	-6.2	Peak	69	1.9		854 MHz
8540.000	65.6	V	75.3	-9.7	Peak	238	2.2		854 MHz
3444.000	57.4	V	75.3	-17.9	Peak	240	2.5		861 MHz
6888.000	67.1	V	75.3	-8.2	Peak	195	1.6		861 MHz
7749.000	72.7	V	75.3	-2.6	Peak	321	1.0		861 MHz
8610.000	67.7	V	75.3	-7.6	Peak	16	2.2		861 MHz
6083.000	56.7	V	75.3	-18.6	Peak	190	2.2		869 MHz
7001 000	71.3	H V	75.3 75.3	-4.0 -5.5	Peak Peak	208 231	1.3 1.9		869 MHz 869 MHz
7821.000 8690.000	69.8			-()()	геак	231	1.9	1	


	GE MDS LLO	C						Job Number:	PR093700	
	l: LN900							Log Number:		
Model:								Project Manager: Christine Krel		
Contact:	Dennis McC	arthy		Project Coordinator: David Bare						
Standard:	FCC Part 90			Class: N/A						
Frequency	Level	Pol	FCC F	Part 90	Detector	Azimuth	Height	Comments	Channe	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
3476.000	58.5	V	75.3	-16.8	Peak	234	1.3		869 MHz	
4345.000	57.2	V	75.3	-18.1	Peak	154	2.2		869 MHz	
Note 2: Note 3:	Measurem	ients are ma	de with the a	intenna port	etermined usir terminated. I from 30 kHz		in measuren	iento.		



Client:	GE MDS LLC)		Job Number: PR093700					
				T-Log Number: TL093700-RA					
Model:	LN900			Project Manager: Christine Krebill					
Contact:	Dennis McCa	arthy		Project Coordinator: David Bare					
	FCC Part 90	artiry		Class: N/A					
Stanuaru.	1001 at 30							01033. 14/7	
Run #5b: -	Final Field St	trength and	Substitutio	n Measurer	nents				
	Date of Test:				С	onfig. Used:			
	st Engineer:			13.8 VDC and 5.25 VDC					
Te	est Location:	Fremont Cha	amber #7						
UT Field S	Strength								
Frequency	Level	Pol	FCC F	Part 90	Detector	Azimuth	Height	Comments	Channe
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
30.000	48.0	V	75.3	-27.3	PK	360	1.0	PK (0.10s)	
736.273	50.6	V	75.3	-24.7	PK	360	1.0	PK (0.10s)	
1000.000	54.9	V	75.3	-20.4	PK	360	1.0	PK (0.10s)	
1618.680	61.2	V	75.3	-14.1	PK	200	1.0	RB 1 MHz;VB 3 M	Hz;Peak
7282.330	71.6	V	75.3	-3.7	PK	168	2.0	RB 1 MHz;VB 3 M	
8090.290	73.4	V	75.3	-1.9	PK	195	1.9	RB 1 MHz;VB 3 M	
1631.220	61.6	V	75.3	-13.7	PK	245	1.9	RB 1 MHz;VB 3 M	
7344.100	75.6	V	75.3	0.3	PK	6	2.4	RB 1 MHz;VB 3 M	
8160.170	71.8	V	75.3	-3.5	PK	194	1.9	RB 1 MHz;VB 3 M	
6592.260	69.9	V	75.3	-5.4	PK	198	1.9	RB 1 MHz;VB 3 M	
7416.020	74.7	V V	75.3	-0.6	PK	6	2.4	RB 1 MHz;VB 3 M	
8239.960 1708.030	69.6 56.9	V	75.3 75.3	-5.7 -18.4	PK PK	58 253	2.5 2.5	RB 1 MHz;VB 3 M	
3415.940	50.9 60.0	V	75.3	-16.4	PK	233	2.3	RB 1 MHz;VB 3 M RB 1 MHz;VB 3 M	
6832.230	73.1	V	75.3	-15.5	PK	8	2.2	RB 1 MHz;VB 3 M	
7686.200	73.4	V	75.3	-2.2	PK	67	1.9	RB 1 MHz;VB 3 M	
8539.830	74.1	V	75.3	-1.2	PK	238	2.2	RB 1 MHz;VB 3 M	
3442.590	60.1	V	75.3	-15.2	PK	240	2.5	RB 1 MHz;VB 3 M	
6888.260	73.1	V	75.3	-2.2	PK	195	1.6	RB 1 MHz;VB 3 M	
7749.030	73.8	V	75.3	-1.5	PK	321	1.1	RB 1 MHz;VB 3 M	
8609.920	71.9	V	75.3	-3.4	PK	16	2.2	RB 1 MHz;VB 3 M	
3475.530	60.6	V	75.3	-14.7	PK	234	1.3	RB 1 MHz;VB 3 M	Hz;Peak
4344.790	65.2	V	75.3	-10.1	PK	154	2.2	RB 1 MHz;VB 3 M	Hz;Peak
6952.060	74.7	V	75.3	-0.6	PK	174	2.2	RB 1 MHz;VB 3 M	Hz;Peak
7821.270	78.0	Н	75.3	2.7	PK	208	1.3	RB 1 MHz;VB 3 M	Hz;Peak
8689.870	76.5	V	75.3	1.2	PK	231	1.9	RB 1 MHz;VB 3 M	Hz;Peak
	The field stre	nath limit in	the tables a	hove was ca	Iculated from	the ern/eirn	limit detaile	d in the standard usi	ng the free snac
								presence of the gro	
lote 1:								nals with less than 2	
					ing substitutio	•	•		o de or margin
lote 2:	Measuremer	,			<u> </u>		ionto.		

Client:	GE MDS LL	С			Job Number: PR093700 Log Number: TL093700-RA						
Model:	LN900			Project Manager:							
Contact:	Dennis McC	arthy		Project	Coordinator:	David Bare					
Standard:	FCC Part 90)			Class: N/A						
Substitution	n measurem	ents									
Vertical											
Frequency		ution measur		Site		T measurem		eirp Limit	erp Limit	Margin	
MHz	Pin ¹	Gain ²	FS ³	Factor ⁴	FS⁵	eirp (dBm)	erp (dBm)	dBm	dBm	dB	
1618.680	-20.0	8.6	84.6	96.0	61.2	-34.8	-37.0		-20.0	-17.0	
7282.330	-20.0	11.0	87.4	96.4	71.6	-24.8	-27.0		-20.0	-7.0	
8090.290	-20.0	11.3	88.0	96.7	73.4	-23.3	-25.5		-20.0	-5.5	
1631.220	-20.0	8.8	84.7	95.9	61.6	-34.3	-36.5		-20.0	-16.5	
7344.100	-20.0	10.8	87.3	96.5	75.6	-20.9	-23.1		-20.0	-3.1	
8160.170	-20.0	11.4	88.1	96.7	71.8	-24.9	-27.1		-20.0	-7.1	
6592.260	-20.0	12.0	87.4	95.4	69.9	-25.5	-27.7		-20.0	-7.7	
7416.020	-20.0	10.9	88.0	97.1	74.7	-22.4	-24.6		-20.0	-4.6	
8239.960 1708.030	-20.0 -20.0	11.5 8.9	88.2	96.7	69.6 56.9	-27.1 -39.0	-29.3 -41.2		-20.0	-9.3 -21.2	
3415.940	-20.0	0.9 9.8	84.8 85.0	95.9 95.2	56.9 60.0	-39.0	-41.2		-20.0 -20.0	-21.2	
6832.230	-20.0	9.0 11.5	87.4	95.2 95.9	73.1	-35.2	-37.4		-20.0	-17.4	
7686.200	-20.0	11.5	88.2	95.9 96.7	73.4	-22.0	-25.5		-20.0	-5.5	
8539.830	-20.0	11.3	88.3	96.9	74.1	-22.8	-25.0		-20.0	-5.0	
3442.590	-20.0	9.9	85.4	95.5	60.1	-35.4	-37.6		-20.0	-17.6	
6888.260	-20.0	11.6	87.6	96.0	73.1	-22.9	-25.1		-20.0	-5.1	
7749.030	-20.0	11.4	88.1	96.7	73.8	-22.9	-25.1		-20.0	-5.1	
8609.920	-20.0	11.3	88.5	97.2	71.9	-25.3	-27.5		-20.0	-7.5	
3475.530	-20.0	9.9	85.8	95.9	60.6	-35.3	-37.5		-20.0	-17.5	
4344.790	-20.0	10.9	86.7	95.8	65.2	-30.6	-32.8		-20.0	-12.8	
6952.060	-20.0	11.6	88.2	96.6	74.7	-21.9	-24.1		-20.0	-4.1	
8689.870	-20.0	11.4	88.7	97.3	76.5	-20.8	-23.0		-20.0	-3.0	
Horizonta	I										
requency	Substit	ution measur	ements	ents	eirp Limit	erp Limit	Margin				
MHz	Pin ¹	Gain ²	FS ³	Factor ⁴	FS⁵	eirp (dBm)	erp (dBm)	dBm	dBm	dB	
7821.270	-20.0	11.6	88.3	96.7	78.0	-18.7	-20.9		-20.0	-0.9	
Note 1:	Pin is the	input power	(dBm) to the	substitution a	antenna						
Note 2:		Gain is the gain (dBi) for the substitution antenna.									
Note 3:	FS is the	field strength	(dBuV/m) m	easured from	n the substit	ution antenna	1.				
Note 4:	Site Facto		site factor to			ngth in dBuV		in dBm.			

End of Report

This page is intentionally blank and marks the last page of this test report.