

EMC Test Report

Industry Canada RSS-Gen Issue 3 / RSS 210 Issue 8 FCC Part 15 Subpart C

Model: EL806

IC CERTIFICATION #: FCC ID:	3738A-MDSEL806 E5MDS-EL806
APPLICANT:	GEMDS 175 Science Parkway Rochester, NY 14820
TEST SITE(S):	Elliott Laboratories 41039 Boyce Road.

IC SITE REGISTRATION #: 2845B-7

REPORT DATE: April 26, 2011

FINAL TEST DATES: March 25, 2011

AUTHORIZED SIGNATORY:

Fremont, CA. 94538-2435

Mark Briggs Staff Engineer Elliott Laboratories

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report, except where noted otherwise. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	04-21-2011	First release	
1	04-26-2011	Corrected all references to the model number.	Briggs

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	4
STATEMENT OF COMPLIANCE	5
DEVIATIONS FROM THE STANDARDS	5
TEST RESULTS SUMMARY	6
FREQUENCY HOPPING SPREAD SPECTRUM (902 – 928 MHZ, 50 CHANNELS OR MORE)	6
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	6
MEASUREMENT UNCERTAINTIES	7
EQUIPMENT UNDER TEST (EUT) DETAILS	8
GENERAL	8
ENCLOSURE	8
MODIFICATIONS	8
SUPPORT EQUIPMENT	8
	ð
	0
TEST SITE.	9
CONDUCTED EMISSIONS CONSIDER ATIONS	9
RADIATED EMISSIONS CONSIDERATIONS	9
MEASUDEMENT INSTDUMENTATION	10
RECEIVER SYSTEM	10
INSTRUMENT CONTROL COMPLITER	. 10
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	. 10
FILTERS/ATTENUATORS	. 11
ANTENNAS	. 11
ANTENNA MAST AND EQUIPMENT TURNTABLE	. 11
INSTRUMENT CALIBRATION	. 11
TEST PROCEDURES	. 12
EUT AND CABLE PLACEMENT	. 12
CONDUCTED EMISSIONS	. 12
RADIATED EMISSIONS	. 12
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	.15
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	15
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	.15
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS.	. 16
SAMPLE CALCULATIONS - RADIATED EMISSIONS	. 16
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	1
APPENDIX B TEST DATA	2
APPENDIX C PHOTOGRAPHS OF TEST CONFIGURATIONS	3
APPENDIX D RF EXPOSURE INFORMATION	4

SCOPE

An electromagnetic emissions test has been performed on the GEMDS model EL806, pursuant to the following rules:

Industry Canada RSS-Gen Issue 3 RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FCC DTS Measurement Procedure KDB558074, March 2005

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of GEMDS model EL806 complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 3 RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart B (Receivers) FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of GEMDS model EL806 and therefore apply only to the tested sample. The sample was selected and prepared by Jake Bryner of GEMDS.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report. It is to be noted that as the scope of testing was to evaluate a new antenna type only radiated spurious emissions were measured.

TEST RESULTS SUMMARY

FREQUENCY HOPPING SPREAD SPECTRUM (902 – 928 MHz, 50 channels or more)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247	RSS 210	20dB Bandwidth			
(a) (1)	A8.1 (1)	Channel Separation			
15.247 (a) (1) (i)	RSS 210 A8.1 (3)	Number of Channels	The scope of testing wa	s to evaluate a new ante	enna type
15.247 (a) (1) (i)	RSS 210 A8.1 (3)	Channel Dwell Time	power was verified to be within 0.5dB of the highest		
15.247 (a) (1)	RSS 210 A8.1 (1)	Channel Utilization performing the radiated tests. As the antenna gain in the of grind equipment in the performing the radiated tests.			gain is less
15.247 (b) (3)	RSS 210 A8.4 (1)	Output Power	power of 1 Watt (30dBr	n).	in rated
15.247 (c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 9.28 GHz			
15.247 (c) 15.209	RSS 210 A8.5 Table 2, 3	Radiated Spurious Emissions 30MHz – 9.28 GHz	53.6dBµV/m @ 2782.8MHz (-0.4dB)	15.209 in restricted bands, all others < -20dBc	Complies

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule	RSS Bula part	Description	Measured Value /	Limit / Requirement	Result
15.207	RUIE part RSS GEN Table 2	AC Conducted Emissions	Not evaluated – the pr not affect the conduc	roposed change in anter cted emissions from the	ma would module.
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	42.7dBµV/m @ 401.50MHz	Refer to page 16	Complies (-3.3 dB)
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	The antenna may be used in a body-worn host device - refer to SAR report and RSS 102 declarations for that specific exposure condition. MPE calculations provided for installation in mobile application	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual	Host manual provided to show English and French language statements.	Statement required regarding non- interference	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual	Not applicable	Statement for products with detachable antenna	N/A

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dBµV/m	25 to 1000 MHz 1000 to 40000 MHz	$\frac{\pm 3.6 \text{ dB}}{\pm 6.0 \text{ dB}}$
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The GEMDS model EL806 is a 902-928 MHz frequency hopping spread spectrum wireless module that is designed for OEM use. The scope of testing was to evaluate a 2dBi dipole antenna (Antenna Factor model number ANT-916-MHW) with this module. The module was configured for testing with the module exposed (outside of a host system) as required by Industry Canada and FCC rules for the approvals of modular transmitters.

The sample was received on March 25, 2011 and tested on March 25, 2011. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
GEMDS	EL806	900MHz FHSS	-	E5MDS-EL806
		module		

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer or system.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
		DC Power		
-	-	Source	-	-
GEMDS	-	Module fixture	-	-

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Dont	Connected		Cable(s)	
Pon	То	Description	Shielded or Unshielded	Length(m)
DC In	DC Power source	2-wire	Unshielded	0.8

EUT OPERATION

During testing for transmitter spurious emissions the EUT was configured to transmit continuously on the low, center or high channel as required. For receiver spurious emissions the receiver was tuned to the low, center or high frequency as required.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Sito	Registration Numbers		Location
Sile	FCC	Canada	Location
			41039 Boyce Road
Chamber 7	A2LA accreditation	2845B-7	Fremont,
			CA 94538-2435

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

Figure 1 Typical Conducted Emissions Test Configuration

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m).

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

 $F_d = 20*LOG_{10} (D_m/D_s)$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

 $R_c = R_r + F_d$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

$$F_d$$
 = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

Appendix A Test Equipment Calibration Data

Radiated Emissions , 3	0 - 9,300 MHz, 25-Mar-11			
Manufacturer	Description	<u>Model</u>	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	785	5/26/2011
Hewlett Packard	EMC Spectrum Analyzer, 9 KHz - 22 GHz	8593EM	1319	11/22/2011
Rohde & Schwarz	Test Receiver, 0.009-2750 MHz	ESN	1332	1/17/2012
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	4/14/2011
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1548	6/24/2012
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	6/22/2012
Com-Power Corp.	Preamplifier, 30-1000 MHz	PA-103A	2359	2/15/2012

Appendix B Test Data

T82623 8 Pages

Elliott	_	
	El	MC Test Data
Client: Control Chief / GE MDS	Job Number:	J82521
Model: EL 806	T-Log Number:	T82623
	Account Manager:	Susan Pelzl
Contact: Jake Bryner (Dennis McCarthy)	01	Mark Briggs
Emissions Standard(s): FCC Part 15 B, FCC 15.247, RSS 210	Class:	-
	Environment.	-
EMC lest Dat	а	
For The		
Control Chief / GE	MDS	
Model		
FL 904		
EL 800		
Date of Last Test: 3/31/201	1	

EMC Test Data

)	An A	ZAS company					
Client:	Control Chie	ef / GE MDS				Job Number:	J82521
Madal						T-Log Number:	T82623
Modei:	EL 806					Account Manager:	Susan Pelzl
Contact:	Jake Bryner	(Dennis Mc(Carthy)				
Standard:	FCC Part 15	5 B, FCC 15.2	247, RSS 21	0		Class:	N/A
	R	SS 210 a	Ind FCC	15.247 (I	DTS) Radiated Sp	ourious Emission	IS
Test Spec	ific Detai	ls					
	Objective:	The objective specification	e of this test listed above	session is to ».	perform final qualification	n testing of the EUT with r	espect to the
General T The EUT an For radiated	est Configues of the configues of the configue of the configure of the configur	guration pport equipm esting the me	ient were loc asurement a	ated on the tent of tent o	urntable for radiated spuri located 3 meters from the	ious emissions testing. EUT.	
Ambient (Condition	S: T(R(emperature: el. Humidity:	20.4 36	°C %		
Summary	of Result	is - Device	Operating	g in the 90	0 MHz Band		r
Run #	Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin
1a	Тх	902.2 MHz	30dBm	29.9	Radiated Emissions, 1000 MHz-9.3GHz	FCC Part 15.209 / 15.247(c)	50.5dBµV/m @ 8119.9MHz (-3.5dB)
1b	Тх	915.0 MHz	29.8dBm	29.7	Radiated Emissions, 1000 MHz-9.3GHz	FCC Part 15.209 / 15.247(c)	52.6dBµV/m @ 2745.0MHz (-1.4dB)
1c	Тх	927.6 MHz	29.7dBm	29.2	960 MHz Restricted Band Radiated Emissions, 1000 MHz-9.3GHz	FCC Part 15.209 / 15.247(c) FCC Part 15.209 / 15.247(c)	35.8dBµV/m @ 960.00MHz (-18.2dB) 53.6dBµV/m @ 2782.8MHz (-0.4dB)
Output powe Radiated err original tests at the anten	er measured nissions from performed na port.	using spectru the transmitt on the modul	Im analyzer ter limited to e showing no	(RB=1MHz, the frequenc c emissions i	VB=3MHz) or a peak pow :y range 1 - 10GHz and th n the restricted bands bel	er meter le restricted band 960 - 1 ow 902MHz and all emiss	240MHz based on the sions more than -20dBc
Run #	Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin
2a		902.2 MHz				FCC Part 15.109	42.4dBµV/m @ 401.50MHz (-3.6dB)
2b	receive	915.0 MHz			Radiated Emissions, 30 MHz-3GHz	FCC Part 15.109 / RSS GEN	41.8dBµV/m @ 401.50MHz (-4.2dB)
2c	<u> </u>	927.6 MHz				FCC Part 15.109	42.7dBµV/m @ 401.50MHz (-3.3dB)
Modificat	ions Made	e During T	estina				

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Elliott	
----------------	--

EMC Test Data

~	An A	A company							
Client:	Control Chie	ef / GE MDS						Job Number:	J82521
							T-I	_og Number:	T82623
Model:	EL 806						Διτοι	Int Manager	Susan Pelzl
Contact	lako Drunor	(Donnie Me)	Cortby)					ant manayer.	
				2					N1/A
Standard:	FUC Part 15) В, FCC 15.2	247, RSS 210	J				Class:	IN/A
Run #1: Tr [ansmitter Ra Date of Test:	adiated Spur 3/25/2011	rious Emiss	ions, 960 - 9	9300 MHz				
	est Engineer:	Rafael Varel	as						
(Dum #1 - 1			「#/ -						
Run #1a: L	LOW Channel	@ 902.2 IVIF	1Z · Dooly and a		o moo ourod	:n 1 MI I	مط مع ماد برمایی	o moo oo urod	
Fundament	tal Signal Fie	ela Strengtn	15 200	verage value	es measured	IN I WIHZ, ar	na peak valu	e measured i	IN TUUKHZ
Frequency	Level	P01	15.2097	15.247	Delector	Azimuin	Height	Comments	
MHZ	dBμV/m	V/n	Limit	Margin	PK/QP/AVg	degrees	meters		
902.200	121.2	V	-	-	PK DK	12	1.0	PK (0.105)	
902.200	132.4	Н	-	-	PK	17	1.3	PK (U. 10S)	
F	undomoutal -	miccion	1@]m != 10	אומס – וואט	100 /		1		
۲۱		emission leve	i @ 3m in 10 teide of roots	UKHZ KBW:	132.4	aBhr/w	Limit in 20-	Do (Dook -	wor modeling manth
	Limit for (emissions ou	Iside of resu	icted bands:	112.4	dBµV/m	LIMITIS -200	вс (реак ро	wer measurement)
	missions								
Spurious E	missions	Dal	1E 000	15 017	Datastar	A – incusta	Lloight	Commonto	
		P0I	10.2097	10.247 Morain	Delector	Azimum	meigni	Comments	
	αΒμν/m	V/N	LIMIL	iviargin 2 r	PK/QP/AVg	degrees	meters		
0110.050	50.5	H	54.U	-3.5 10 F	AVG	254	1.0		
8119.850	54.5	H	74.0	- 19.5	PK	254	1.0		
3608.830	46.8	H	54.0	-1.2	AVG	355	1.0	RB I MHZ;V	/B TU HZ;PK
3008.850	49.8	H	/4.0	-24.2	PK	300	1.0		
1804.410	57.4		112.4 110.4	-55.0		300	1.0		
0310.410	00.4 40 E	H	F4.0	-40.U		244	1.U 1.1		
2706.640	48.0	V	54.0 74.0	-5.5 -72 7		32	1.1		
2700.000	50.3	V	74.0	-23.1	PK	32	1.1	KD I IVIHZ;V	/B 3 IVIHZ;PK
Note 1:	For emission level of the f	ns in restricte undamental	ed bands, the and measure	limit of 15.2 ed in 100kHz	09 was used	. For all othe	er emissions,	the limit was	s set 20dB below the
Low	Channel @ 9	902.2 MHz							
	80.0-		- 10	1.1.2			11 1	1	
	70.0								
	/0.0-							•	
(E)	60.0-								
BuV	00.0		•						
Pe	50.0-							_	
- Po					1	1			فنربغوا يمر
plit	40.0-						- I	Land and the same	
4			l	hinter a sec	my marker	hand the second	And the state of t	Sec. albud to day line.	
	30.0-	m	material la		F				
	20.0-								
	1000					1	1		9300
					Frequency	/ (MHz)			
									1

Client: Cor Model: EL Contact: Jak Standard: FCO Run #1b: Cent Funda I Spurious Emiss Frequency MHz MHz dI 2745.030 3660.030 3660.040 6405.000 7319.990 8235.010 8234.920 1830.020	An Ω22 ontrol Chief .806 ke Bryner (.C Part 15 ter Chann lamental er Limit for e Ssions Level BµV/m 52.6 53.7 48.2 50.8 60.9 47.6 52.2	Company / GE MDS (Dennis McC B, FCC 15.2 el @ 915 M mission leve missions ou Pol V/h V V H H H V V V	Carthy) 247, RSS 21 Hz el @ 3m in 10 tside of restr 15.209 Limit 54.0 74.0 54.0 74.0	0 00kHz RBW: icted bands: / 15.247 Margin -1.4 -20.3 -5.8 -23.2	129.9 109.9 Detector Pk/QP/Avg AVG PK	dBµV/m dBµV/m Azimuth degrees 324 324	T- Accor Limit is -200 Height meters 1.1	Job Number: Log Number: unt Manager: Class: dBc (Peak po Comments RB 1 MHz;V	J82521 T82623 Susan Pelzl N/A wer measurement)
Model: EL Contact: Jak Standard: FCO Run #1b: Cent Funda I Spurious Emiss Frequency MHz dl 2745.030 3660.030 3660.040 6405.000 7319.990 8235.010 8234.920 1830.020	. 806 ke Bryner (CC Part 15 ter Chann lamental er Limit for e ssions Level JBμV/m 52.6 53.7 48.2 50.8 60.9 47.6 52.2 40.0	(Dennis McC B, FCC 15.2 el @ 915 M mission leve missions ou Pol V/h V V H H H V V V V	Carthy) 247, RSS 21 Hz el @ 3m in 10 tside of restr 15.209 Limit 54.0 74.0 54.0 74.0	0 00kHz RBW: icted bands: / 15.247 Margin -1.4 -20.3 -5.8 -23.2	129.9 109.9 Detector Pk/QP/Avg AVG PK	dBµV/m dBµV/m Azimuth degrees 324 324	T- Accor Limit is -200 Height meters 1.1	Log Number: unt Manager: Class: dBc (Peak po Comments RB 1 MHz;V	T82623 Susan Pelzl N/A wer measurement) /B 10 Hz:Pk
Model: EL Contact: Jak Standard: FCC Run #1b: Cent Funda Funda Spurious Emiss Frequency MHz dl 2745.030 2745.050 3660.030 3660.040 6405.000 7320.000 7319.990 8235.010 8234.920 1830.020	.806 ke Bryner (CC Part 15 ter Chann lamental en Limit for e ssions Level JBµV/m 52.6 53.7 48.2 50.8 60.9 47.6 52.2	(Dennis McC B, FCC 15.2 el @ 915 M mission leve missions ou Pol V/h V V H H H V V V	Carthy) 247, RSS 21 Hz el @ 3m in 10 tside of restr 15.209 Limit 54.0 74.0 54.0 74.0	0 00kHz RBW: icted bands: / 15.247 Margin -1.4 -20.3 -5.8 -23.2	129.9 109.9 Detector Pk/QP/Avg AVG PK	dBµV/m dBµV/m Azimuth degrees 324 324	Accor Limit is -200 Height meters 1.1 1 1	dBc (Peak po	Susan Pelzl N/A wer measurement) /B 10 Hz:Pk
Contact: Jak Standard: FCC Run #1b: Cent Funda Funda Funda 2745.030 2745.030 2745.030 3660.030 3660.040 6405.000 7320.000 7319.990 8235.010 8234.920 1830.020	ke Bryner (CC Part 15 ter Chann lamental er Limit for e ssions Level dBμV/m 52.6 53.7 48.2 50.8 60.9 47.6 52.2 40.0	(Dennis McC B, FCC 15.2 el @ 915 M mission leve missions ou Pol V/h V V H H H H V V	Carthy) 247, RSS 21 Hz el @ 3m in 10 tside of restr 15.209 Limit 54.0 74.0 54.0 74.0	0 0 0 0 0 0 1 0 1 0 1 1 2 1 5 8 -23 2 0 0 0 0 0 0 0 0 0 0 0 0 0	129.9 109.9 Detector Pk/QP/Avg AVG PK	dBµV/m dBµV/m Azimuth degrees 324 324	Limit is -200 Height meters 1.1 1 1	Class: dBc (Peak po Comments RB 1 MHz;V	N/A wer measurement) /B 10 Hz:Pk
Standard: FC0 Run #1b: Cent Funda I Spurious Emiss Frequency MHz dl 2745.050 3660.030 3660.040 6405.000 7320.000 7319.990 8235.010 8234.920 1830.020	CC Part 15 ter Chann lamental er Limit for e ssions Level IBµV/m 52.6 53.7 48.2 50.8 60.9 47.6 52.2	B, FCC 15.2 el @ 915 M mission leve missions ou Pol V/h V V V H H H V V V	247, RSS 21 Hz el @ 3m in 10 tside of restr 15.209 Limit 54.0 74.0 54.0 74.0	0 00kHz RBW: icted bands: / 15.247 Margin -1.4 -20.3 -5.8 -23.2	129.9 109.9 Detector Pk/QP/Avg AVG PK	dBµV/m dBµV/m Azimuth degrees 324 324	Limit is -200 Height meters 1.1 1 1	Class: dBc (Peak po Comments RB 1 MHz;V	N/A wer measurement) /B 10 Hz:Pk
Funda Funda Funda Spurious Emiss Frequency MHz dl 2745.030 2745.050 3660.030 3660.040 6405.000 7320.000 7319.990 8235.010 8234.920 1830.020	ter Chann lamental er Limit for e ssions Level BμV/m 52.6 53.7 48.2 50.8 60.9 47.6 52.2 40.0	el @ 915 M mission leve missions ou Pol V/h V V V H H H V V V	Hz 1 @ 3m in 10 tside of restr 15.209 Limit 54.0 74.0 54.0 74.0 100.0	00kHz RBW: icted bands: / 15.247 Margin -1.4 -20.3 -5.8 -23.2	129.9 109.9 Detector Pk/QP/Avg AVG PK	dBµV/m dBµV/m Azimuth degrees 324 324	Limit is -200 Height meters 1.1 1 1	Bc (Peak po Comments RB 1 MHz;V	wer measurement) /B 10 Hz:Pk
Fundation Fundation Fundation Spurious Emiss Frequency MHz dl 2745.050 3660.030 3660.040 6405.000 7320.000 7319.990 8235.010 8234.920 1830.020 1830.020	ter Chann lamental er Limit for e ssions Level BμV/m 52.6 53.7 48.2 50.8 60.9 47.6 52.2 40.0	el @ 915 M mission leve missions ou Pol V/h V V V H H H V V V	Hz el @ 3m in 10 tside of restr 15.209 Limit 54.0 74.0 54.0 74.0	00kHz RBW: icted bands: / 15.247 Margin -1.4 -20.3 -5.8 -23.2	129.9 109.9 Detector Pk/QP/Avg AVG PK	dBµV/m dBµV/m Azimuth degrees 324 324	Limit is -200 Height meters 1.1 1 1	Bc (Peak po Comments RB 1 MHz;V	wer measurement) /B 10 Hz:Pk
Funda purious Emiss Frequency MHz dl 2745.030 2745.050 3660.030 3660.040 6405.000 7320.000 7319.990 8235.010 8234.920 1830.020	lamental er Limit for e ssions Level BμV/m 52.6 53.7 48.2 50.8 60.9 47.6 52.2 40.0	mission leve missions ou Pol V/h V V V H H H V V V	el @ 3m in 10 tside of restr 15.209 Limit 54.0 74.0 54.0 74.0	00kHz RBW: icted bands: / 15.247 Margin -1.4 -20.3 -5.8 -23.2	129.9 109.9 Detector Pk/QP/Avg AVG PK	dBµV/m dBµV/m Azimuth degrees 324 324	Limit is -200 Height meters 1.1 1 1	Bc (Peak po Comments RB 1 MHz;V	wer measurement)
purious Emis: requency MHz 2745.030 2745.050 3660.030 3660.040 6405.000 7320.000 7319.990 8235.010 8234.920 1830.020	Limit for e ssions Level IBµV/m 52.6 53.7 48.2 50.8 60.9 47.6 52.2 40.0	Pol v/h V V H H V V V V V	15.209 Limit 54.0 74.0 54.0 74.0	/ 15.247 Margin -1.4 -20.3 -5.8 -23.2	Detector Pk/QP/Avg AVG PK	Azimuth dBµV/m Azimuth degrees 324 324	Limit is -200 Height meters 1.1 1 1	Comments	wer measurement) /B 10 Hz:Pk
purious Emis: requency MHz 2745.030 2745.050 3660.030 3660.040 6405.000 7319.990 3235.010 3234.920 1830.020	ssions Level JBμV/m 52.6 53.7 48.2 50.8 60.9 47.6 52.2	Pol V/h V V H H V V V	15.209 Limit 54.0 74.0 54.0 74.0	/ 15.247 Margin -1.4 -20.3 -5.8 -23.2	Detector Pk/QP/Avg AVG PK	Azimuth degrees 324 324	Height meters 1.1 1 1	Comments RB 1 MHz;V	/B 10 Hz:Pk
purious Emiss requency MHz 2745.030 2745.050 3660.030 3660.040 5405.000 7320.000 7319.990 3235.010 3234.920 1830.020	ssions Level β βBμV/m 52.6 53.7 48.2 50.8 60.9 47.6 52.2	Pol v/h V V H H V V	15.209 Limit 54.0 74.0 54.0 74.0	/ 15.247 Margin -1.4 -20.3 -5.8 -23.2	Detector Pk/QP/Avg AVG PK	Azimuth degrees 324 324	Height meters 1.1 1 1	Comments RB 1 MHz;V	/B 10 Hz:Pk
requency MHz dl 2745.030 2745.050 3660.030 3660.040 5405.000 7320.000 7319.990 3235.010 3234.920 1830.020	Level IBµV/m 52.6 53.7 48.2 50.8 60.9 47.6 52.2 40.0	Pol v/h V V H H V V V	15.209 Limit 54.0 74.0 54.0 74.0	/ 15.247 Margin -1.4 -20.3 -5.8 -23.2	Detector Pk/QP/Avg AVG PK	Azimuth degrees 324 324	Height meters 1.1 1 1	Comments RB 1 MHz;V	/B 10 Hz:Pk
MHz dl 2745.030 2745.050 3660.030 3660.040 5405.000 7320.000 7319.990 3235.010 3234.920 1830.020	BµV/m 52.6 53.7 48.2 50.8 60.9 47.6 52.2 40.0 <t< td=""><td>V/h V H H V V V</td><td>Limit 54.0 74.0 54.0 74.0</td><td>Margin -1.4 -20.3 -5.8</td><td>Pk/QP/Avg AVG PK</td><td>degrees 324 324</td><td>meters 1.1 1 1</td><td>RB 1 MHz;V</td><td>/B 10 Hz:Pk</td></t<>	V/h V H H V V V	Limit 54.0 74.0 54.0 74.0	Margin -1.4 -20.3 -5.8	Pk/QP/Avg AVG PK	degrees 324 324	meters 1.1 1 1	RB 1 MHz;V	/B 10 Hz:Pk
2745.030 2745.050 3660.030 3660.040 5405.000 7320.000 7319.990 3235.010 3234.920 1830.020	52.6 53.7 48.2 50.8 60.9 47.6 52.2	V V H V V V	54.0 74.0 54.0 74.0	-1.4 -20.3 -5.8 -23.2	AVG PK	324 324	1.1	RB 1 MHz;V	/B 10 Hz:Pk
2745.050 3660.030 3660.040 5405.000 7320.000 7319.990 3235.010 3234.920 1830.020	53.7 48.2 50.8 60.9 47.6 52.2	V H H V V	74.0 54.0 74.0	-20.3 -5.8 -23.2	PK	324	11		
3660.030 3660.040 5405.000 7320.000 7319.990 3235.010 3234.920 1830.020	48.2 50.8 60.9 47.6 52.2 40.0	H H V V	54.0 74.0	-5.8	AN 10	40	1.1	RB I MHZ;V	/B 3 MHz;Pk
3680.040 5405.000 7320.000 7319.990 3235.010 3234.920 1830.020	50.8 60.9 47.6 52.2 40.0	H V V	74.0	-/3/	AVG	42	1.0	RB 1 MHZ;V	
7320.000 7320.000 7319.990 3235.010 3234.920 1830.020	47.6 52.2	V		40.0	PK DV	42	1.U 1.E		
320.000 7319.990 3235.010 3234.920 1830.020	47.0 52.2	V	F4.0	-49.0		40	1.0		//////////////////////////////////////
317.770 2235.010 3234.920 830.020	JZ.Z	V	74.0	-0.4		294	1.2		/B 3 MHz·Dk
3234.920 830.020	4911	V	54.0	-21.0	AVG	274	1.2	RB 1 MHz·\	/B 10 Hz·Pk
830.020	54.2	V	74.0	-19.8	PK	319	1.3	RB 1 MHz·V	/B 3 MHz·Pk
	59.7	H	109.9	-50.2	PK	345	1.6	RB 100 kHz	;;VB 100 kHz;Pk
									· · ·
ote 1: For	r emission: vel of the fu	s in restricte Indamental	ed bands, the and measure	e limit of 15.2 ed in 100kHz	09 was used	. For all oth	er emissions	, the limit was	s set 20dB below the
Center (Channel @	915 MHz							
	_								
80.	.0		- 11						
70.1	.0-								
5 60.	.0-							•	
- B								U	
မွ ⁽⁾ 50.1	.0-				1	•			
			1				-		and a start and a start and a start and a start
E 40.	.0-					when the server	mindown	المجافظية وبالمقود يتحقيده	•
30.1	.0- /~-		under ball	wayna ha hy	\ ₂ ,λ, σ [,1], β ₂ , ² ,2 ^{−1,2}				
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								
20.	.0-¦								,
	1000				<b>F</b>	. (641.1-3			9300
					Frequency	y (19182)			

6 Ell	iott
-------	------

EMC Test Data

	An A	A company							
Client:	Control Chie	ef / GE MDS						Job Number:	J82521
							T-I	_og Number:	T82623
Model:	EL 806						Αссоι	unt Manager:	Susan Pelzl
Contact:	Jake Bryner	(Dennis Mc	Carthy)						
Standard:	FCC Part 15	5 B, FCC 15.	247, RSS 21	0				Class:	N/A
Run #1c: Hi	ah Channel	@ 927.6 Mł	Ηz						
Fundament	al Signal Fi	eld Strength	: Peak and a	iverage value	es measured	in 1 MHz, ar	nd peak valu	e measured i	in 100kHz
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
927.600	118.0	V	-	-	PK	110	1.0	PK (0.10s)	
927.600	130.3	Н	-	-	PK	28	1.3	PK (0.10s)	
							1		
Fι	Indamental e	emission leve	el @ 3m in <b>10</b>	<u>0kHz RBW:</u>	130.3	dBµV/m			N
	Limit for	emissions ou	itside of restr	icted bands:	110.3	dBµV/m	Limit is -200	IBc (Peak po	wer measurement)
Courier- F	minglars								
Spurious E		Dal	15 000	15 017	Detector	A zimi ith	Holaht	Commonte	
		P01	15.209	Marain		AZIIIIUUII	meters	Comments	
101112 2782 800	0Bμv/m 53.6	V/11 V	54.0	101aryin	AVG	27	1.0	DR 1 MH7·\	/B 10 Hz·Dk
2702.000	54.8	V	74.0	-0.4	PK AVG	37	1.0		/B 3 MHz·Pk
960.000	35.8	H	54.0	-18.2	PK	289	1.0	PK (0.10s)	
960.057	27.4	V	54.0	-26.6	PK	228	2.5	PK (0.10s)	
1855.220	61.8	H	110.3	-48.5	PK	340	1.5	RB 100 kHz	::VB 100 kHz:Pk
8348.400	52.1	Н	54.0	-1.9	AVG	329	1.0	RB 1 MHz;\	/B 10 Hz;Pk
8348.380	56.2	Н	74.0	-17.8	PK	329	1.0	RB 1 MHz;\	/B 3 MHz;Pk
7420.830	49.7	V	54.0	-4.3	AVG	274	1.1	RB 1 MHz;\	/B 10 Hz;Pk
7420.860	53.7	V	74.0	-20.3	PK	274	1.1	RB 1 MHz;\	/B 3 MHz;Pk
3710.420	47.8	V	54.0	-6.2	AVG	143	1.0	RB 1 MHz;\	/B 10 Hz;Pk
3710.340	50.6	V	74.0	-23.4	PK	143	1.0	RB 1 MHz;\	/B 3 MHz;Pk
6493.190	59.9	Н	110.3	-50.4	PK	13	1.0	RB 100 kHz	;;VB 100 kHz;Pk
Note 1:	For emission	ns in restricte	ed bands, the	e limit of 15.2	09 was used.	For all othe	er emissions	the limit was	s set 20dB below the
	level of the f	undamental	and measure	ed in 100kHz	•				
High	Channel @	927.6 MHz							
	80.0							11	
				1.4.4		JI		1	
	70.0-				<b></b>	-#	- 11 - 1	4	
<u></u>									
1/An	60.0-			·				1	
- B	F0.0				• •	10			
nde	50.0-					1		.	
plit	40.0-				1	- I			
4				والمراجع والمراجع	a water and	www.w.w.	highlight		
	30.0-	~~~~*	and the second	and	0-041				
	20.0-								
	1000								9300
					Frequency	/ (MHz)			



# EMC Test Data

	An AZ	る [*] company						LIVI	
Client:	Control Chie	f/GEMDS						Job Number:	J82521
Madal							T-Log Number: T82623		
Model:	EL 806						Acco	unt Manager:	Susan Pelzl
Contact:	Jake Bryner	(Dennis McC	Carthy)						
Standard:	FCC Part 15	B, FCC 15.2	247, RSS 21	0				Class:	N/A
Run #2: Re [ Te	ceiver Radia Date of Test: st Engineer:	ated Spuriou 3/25/2011 Rafael Varel	us Emission	ıs, 30 - 3000	) MHz				
IE	est location:	F I Chambei	ſ# <b>/</b>						
Run #2a: L	ow Channel	@ 902.2 MF	15 200	115 017	Datastas	A _ '	11.2.4.1	0	
Frequency		P0I	15.209 Limit	/ 15.247 Morain	Detector	Azimuth	Height	Comments	
101 500	α <u>β</u> μν/m	V/П Ц	16 0	2.6	PK/QP/AVy Doak	uegrees	1.0		
69.825	33.8	V	40.0	-6.2	Peak	247	1.0		
81.300	31.5	V	40.0	-8.5	Peak	32	1.0		
241.275	39.4	H	46.0	-6.6	Peak	134	1.5		
793.500	35.2	Н	46.0	-10.8	Peak	358	1.0		
Amplitude (dBuV/m)	Channel @ 9 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 10.0 - 30.0	902.2 MHz	V. ^m	100.0	Frequence				ioo'o.c







# Appendix C Photographs of Test Configurations

Uploaded as a separate exhibit

# Appendix D RF Exposure Information

Uploaded as a separate exhibit