

September 8, 2004

ATCB 6731 Whittier Ave Suite C110 McLean, Va. 22101

Gentlemen:

The enclosed documents constitute a formal submittal and request for a Certification pursuant to Part 90 of FCC Rules (CFR 47) regarding to Public Mobile Service. Certification is being requested for Microwave Data Systems model MDS2710A/C. The MDS2710A/C has been tested and found to comply with FCC Part 90 limits.

Elliott Laboratories, as duly authorized agent prepared this submittal. A copy of the letter of our appointment as agent is enclosed.

If there are any questions or if further information is needed, please contact Elliott Laboratories for assistance.

Sincerely,

Senior EMC Engineer

JM/dmg

Enclosures: Agent Authorization Letter

Confidentiality Letter

Schematics

External and Internal Photos

Manual

Theory of Operations

FCC ID Label and Location

Emissions Test Report with Exhibits

September 8, 2004

Industry Canada, Certification Section Certification and Engineering Bureau 1241 Clyde Avenue Ottawa, Canada K2C 1Y3

Gentlemen:

The enclosed documents constitute a formal submittal and request for a Certification pursuant to RSS-119, Issue 6 (Land Mobile and Fixed Radio Transmitters and Receivers, 27.41 to 960 MHz). Certification is being requested for Microwave Data Systems model MDS2710A/C. The MDS2710A/C has been tested and found to comply with RSS-119, issue 6 limits.

Elliott Laboratories, as duly authorized agent prepared this submittal. A copy of the letter of our appointment as agent is enclosed.

If there are any questions or if further information is needed, please contact Elliott Laboratories for assistance.

Sincerely,

Juan Martinez

Senior EMC Engineer

guan marr

JM/dmg

Enclosures:

Schematics

External and Internal Photos

Manual

Theory of Operations Label and Location

Emissions Test Report with Exhibits

Electromagnetic Emissions Test Report In Accordance With Industry Canada Radio Standards Specification 119 Issue 6, FCC Part 90 on the Microwave Data Systems Transmitter Model: MDS2710A/C

FCC ID NUMBER:

E5MDS-2710AC

UPN:

3738A-2710AC

GRANTEE:

Microwave Data Systems

175 Science Parkway Rochester, NY 14620

TEST SITE:

Elliott Laboratories, Inc.

41039 Boyce Road Fremont, CA 41039

REPORT DATE:

September 8, 2004

FINAL TEST DATE:

August 27, August 28, August 30 and August

31, 2004

AUTHORIZED SIGNATORY:

Juan Martinez

Senior EMC Engineer

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

TABLE OF CONTENTS

COVER PAGE	1
TABLE OF CONTENTS	2
FCC CERTIFICATION INFORMATION	3
DECLARATIONS OF COMPLIANCE	5
SCOPE	6
OBJECTIVE	6
SUMMARY OF TEST RESULTS	7
PART 90 AND RSS-119 TEST SUMMARY	7
MEASUREMENT UNCERTAINTIES	8
EQUIPMENT UNDER TEST (EUT) DETAILS	9
GENERAL	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENTEUT INTERFACE PORTS	
EUT OPERATION DURING TESTING	10
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONSRADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
PEAK POWER METERFILTERS/ATTENUATORS	
ANTENNASANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	14
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	19
RADIATED EMISSIONS SPECIFICATION LIMITS	19
CALCULATIONS – EFFECTIVE RADIATED POWER	
EXHIBIT 1: Test Equipment Calibration Data	
EXHIBIT 2: Test Data Log Sheets	
EXHIBIT 3: Test Configuration Photographs	3
EXHIBIT 4: Theory of Operation Microwave Data Systems Model MDS2710A/C EXHIBIT 5: Proposed FCC ID Label & Label Location	4
EXHIBIT 5: Proposed FCC 1D Labet & Labet Location	 6
EXHIBIT 7: Installation Guide Microwave Data Systems Model MDS2710A/C	
EXHIBIT 8: Block Diagram Microwave Data Systems Model MDS2710A/C	8
EXHIBIT 9: Schematic Diagrams Microwave Data Systems Model MDS2710A/C	9
EXHIBIT 10: Advertising Literature	10

FCC CERTIFICATION INFORMATION

The following information is in accordance with FCC Rules, 47CFR Part 2, Subpart J, Section 2.1033(C) & to Industry Canada RSP-100.

2.1033(c)(1) Applicant:

Microwave Data Systems 175 Science Parkway Rochester, NY 14620

2.1033(c)(2) & RSP-100 (4) FCC ID: E5MDS-2710AC UPN: 3738A-2710AC

2.1033(c)(3) & RSP-100 (7.2(a)) Instructions/Installation Manual

Please refer to Exhibit 7: User Manual, Theory of Operation, and Tune-up Procedure

2.1033(c)(4) & RSP-100 (7.2(b)(iii)) Type of emissions

FCC 90 & RSS-119: **11K0F3D**, **9K13F2D**, **9K13F1D**, **11K0F3E** FCC 90: **11K0F3D**, **16K8F2D**, **16K8F1D**, **11K0F3E**

Analog: 2(D)+2(M) = 2(2.5) + 2(3) = 11kHz Data: 12.5kHz channel (99% BW) = 9.13 kHz Data: 25kHz channel (99% BW)= 16.8 kHz

2.1033(c)(5) & RSP-100 (7.2(a)) Frequency Range

FCC 90 & RSS-119: 216 – 220 MHz

2.1033(c)(6) & RSP-100 (7.2(a)) Range of Operation Power

FCC 90 & RSS-119: 0.09 - 2.0 Watts

2.1033(c)(7) & RSP-100 (7.2(a)) Maximum FCC & IC Allowed Power Level

FCC 90.210: Maximum power is 2 watt RSS-119: Maximum power is 30 watt

2.1033(c)(8) & RSP-100 (7.2(a)) Applied voltage and currents into the final transistor elements

+5Vdc, 1amp

2.1033(c)(9) & RSP-100 (7.2(a)) Tune-up Procedure

Please refer to Exhibit 7: User Manual, Theory of Operation, and Tune-up Procedure

File: R57075 Page 3 of 19 pages

Report Date: September 8, 2004

2.1033(c)(10) & RSP 100 (7.2(a)) Schematic Diagram of the Transmitter

Refer to Exhibit 6: Schematic diagram

2.1033(c)(10) & RSP-100 (7.2(a)) Means for Frequency Stabilization

Please refer to Exhibit 6: Schematic diagram.

2.1033(c)(10) & RSP-100 (7.2(a)) Means for Suppression of Spurious radiation

Please refer to Exhibit 6: Schematic diagram.

2.1033(c)(10) & RSP-100 (7.2(a)) Means for Limiting Modulation

Refer to Exhibit 6: Schematic diagram.

2.1033(c)(10) & RSP-100 (7.2(a)) Means for Limiting Power

Refer to Exhibit 6: Schematic diagram.

2.1033(c)(11) & RSP-100 (7.2(g)) Photographs or Drawing of the Equipment Identification Plate or Label

Refer to Exhibit 4

2.1033(c)(12) & RSP-100 (7.2(c)) Photographs of equipment

Refer to Exhibit 5

2.1033(c)(13) & RSP-100 (7.2(a)) Equipment Employing Digital Modulation & 90.203 (Certification Requirements)

N/A

2.1033(c)(14) & RSP-100 (7.2(b)(ii)) Data taken per Section 2.1046 to 2.1057 and RSS-133 issue 2, Rev. 1.

Refer to Exhibit 2

File: R57075 Page 4 of 19 pages

DECLARATIONS OF COMPLIANCE

Equipment Name and Model:

MDS2710A/C

Manufacturer:

Microwave Data Systems 175 Science Parkway Rochester, NY 14620

Tested to applicable standards:

RSS-119, Issue 6 (Land Mobile and Fixed Radio Transmitters and Receivers, 27.41 to 960 MHz).

FCC Part 90 (Private Land Mobile Radio Service)

Measurement Facility Description Filed With Department of Industry:

Departmental Acknowledgement Number: IC4549_3 Dated March 5, 2003 Departmental Acknowledgement Number: IC4549_5 Dated March 5, 2003 Departmental Acknowledgement Number: IC2845-2 Dated August 8, 2001

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above mentioned departmental standards (through the use of TIA/EIA-603 and the specific RSS standards applicable to this device); and that the equipment performed in accordance with the data submitted in this report.

Signature

Name

Juan Martinez

Title Senior EMC Engineer

Elliott Laboratories Inc.

Juan Marra

Address 684 W. Maude Ave

Sunnyvale, CA 94086

USA

Date: September 8, 2004

Maintenance of compliance with the above standards is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

File: R57075 Page 5 of 19 pages

SCOPE

FCC Part 90 & IC RSS-119 testing was performed for the equipment mentioned in this report. The equipment was tested in accordance with the procedures specified in Sections 2.1046 to 2.1057 of the FCC Rules & IC RSS-119. TIA-603 was also used as a test procedure guideline to perform some of the required tests.

The intentional radiator above was tested in a simulated typical installation to demonstrate compliance with the relevant FCC & RSS performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the FCC Part 90 & IC RSS-119. Certification of these devices is required as a prerequisite to marketing as defined in Section 2.1033 & RSP-100.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to FCC & Industry Canada. FCC & Industry Canada issues a grant of equipment authorization and a certification number upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product that may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

File: R57075 Page 6 of 19 pages

SUMMARY OF TEST RESULTS

Part 90 and RSS-119 Test Summary

Part 90 and RSS-1		<u>y</u>				
Measurement Required	FCC Part 2 & 90 Sections	RSS-119 Section	Test Performed	Measured Value	Test Procedure Used	Result
Modulation Tested	GMSK & Analog	GMSK & Analog	-	-	-	-
Modulation characteristic s	2.1047/	5.7	Modulated with appropriated signal	-	Н	-
Radiated RF power output (ERP/EIRP)	2.1046 / 90.259	5.4	Radiated Output Power Test	-	-	-
Conducted RF power output	2.1046 / 90.279 & 90.259(g)	5.4	Conducted Output Power Test	33dBm (2 Watts)	В	Complies
Spurious emissions at antenna Port	2.1051/ 90.210(d)	6.4(i)	Emission Limits and/or Unwanted Emission 30MHz – 5GHz (Antenna Conducted)	All spurious emissions < -20dBm	J	Complies
Occupied Bandwidth	2.1049/ 90.210(b)	6.4(i)	Emission Mask and 99% Bandwidth	Refer to Plots	C & D	Complies
Field strength of spurious radiation	2.1053 / 90.210(b)	6.4(i)	Radiated Spurious Emissions 30MHz – 5GHz	-54.4 dBuV/m @ 660.5 MHz (-23.9 dB)	N	Complies
Frequency stability	2.1055 / 90.213	7	Frequency Vs. Temperature	117 Hz	K	Complies
Frequency stability	2.1055 / 90.213	7	Frequency Vs. Voltage	25 Hz	L & M	Complies
Transient Frequency Behavior	90.214	6.5	Transient Behavior	N/A	N/A	N/A
Exposure to Mobile devices	2.1091	9	Exposure of Humans to RF Fields	MPE Calculation	-	
Receiver	15.109	8	Receiver Spurious Emissions	21.6 dBuV/m @ 216 MHz (-21.2 dB)	N/A	Complies

File: R57075 Page 7 of 19 pages

MEASUREMENT UNCERTAINTIES

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.6

File: R57075 Page 8 of 19 pages

Test Report Report Date: September 8, 2004

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Microwave Data Systems model MDS2710A/C is a VHF modem that operates in the 216 - 220 Mhz band. There are two versions of the device, one with a data rate of 9600 bps and a channel spacing of 12.5kHz, the other with a 19200bps data rate and channel spacing of 25kHz. Both versions are very similar, with differences only in the software and changes to the passive IF receive filters. The devices can operate in both simplex (tx and rx frequencies the same) and half-duplex mode (tx and rx on different channels). Normally, the EUT could be mounted to the wall or to the Remote Terminal Unit (RTU) it is used with. The EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 10.5 - 16 Vdc, 2.5 Amps.

The sample was received on August 27, 2004 and tested on August 27, August 28, August 30 and August 31, 2004. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
Microwave Data	MDS 2710 A	9600bps VHF	1207721	E5MDS-2710AC
Systems		Modem		
Microwave Data	MDS 2710 C	19200bps VHF	1248407	E5MDS-2710AC
Systems		Modem		

ENCLOSURE

The EUT enclosure is primarily constructed of metal. It measures approximately 14 cm wide by 17 cm deep by 5 cm high.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with the emission specifications.

File: R57075 Page 9 of 19 pages

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number
Microwave Data Systems	TT1EAR2-2	Handheld terminal	HH171101

No remote support equipment was used during emissions testing.

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port	Connected to Description		Shielded or	Length
			Unshielded	(m)
EUT Diag	Handheld terminal		Unshielded	2
EUT Data Interface	Resisitve termination		Shielded	3

Note: The Diag port is used for configuring the radio and would not be connected during normal operation. It was connected during testing for convenience to be able to set the operating mode.

Note: The Data Interface port would connect to a remote terminal unit or master system, which is typically a complex monitoring system (for the remote terminal) or server system (for the master system). These were not available as support equipment and so a resistive load was used to simulate the electrical connection to the terminal device.

EUT OPERATION DURING TESTING

The device was configured to transmit or receive on the channel specified in the test description. The antenna port was terminated in a 50-ohm load during radiated emissions tests and connected to the analyzer, via a suitable attenuator, for receive mode tests.

File: R57075 Page 10 of 19 pages

Test Report
Report Date: September 8, 2004

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on August 27, August 28, August 30 and August 31, 2004 at the Elliott Laboratories Chamber 2 located at 684 West Maude Avenue, Sunnyvale, California and Chamber 4 located at 41039 Boyce Road, Fremont, California. Pursuant to Section 2.948 of the FCC Rules, construction, calibration, and equipment data has been filed with the Commission.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing are performed in conformance with Section 2 of FCC Rules. Measurements are made with the EUT connected to a spectrum analyzer through an attenuator to prevent overloading the analyzer.

RADIATED EMISSIONS CONSIDERATIONS

Radiated measurements are performed in an open field environment or Anechoic Chamber. The test site is maintained free of conductive objects within the CISPR 16-1 defined elliptical area.

File: R57075 Page 11 of 19 pages

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers are capable of measuring over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the particular detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. If average measurements above 1000MHz are performed, the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz is used.

INSTRUMENT CONTROL COMPUTER

A personal computer is utilized to record the receiver measurements of the field strength at the antenna, which is then compared directly with the appropriate specification limit. The receiver is programmed with appropriate factors to convert the received voltage into filed strength at the antenna. Results are printed in a graphic and/or tabular format, as appropriate.

The test receiver also provides a visual display of the signal being measured.

PEAK POWER METER

A peak power meter and thermister mount may be used for output power measurements from transmitters as they provide a broadband indication of the power output.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or EUT and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transmitters and transient events.

File: R57075 Page 12 of 19 pages

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor drive to vary the antenna height.

The requirements of ANSI C63.4 were used for configuration of the equipment turntable. It specifies that the test height above ground for table-mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An appendix of this report contains the list of test equipment used and calibration information.

File: R57075 Page 13 of 19 pages

TEST PROCEDURES

General: For Transmitters with detachable antenna, direct measurements for output power, modulation characterization, occupied bandwidth, and frequency stability are performed with the antenna port of the EUT connected to either the power meter, modulation analyzer, or spectrum analyzer via a suitable attenuator and/or filter. The attenuators and/or filters are used to ensure that the transmitter fundamental will not overload the front end of the measurement instrument.

Procedure B – Power Measurement (Conducted Method): The following procedure was used for transmitters that do use external antennas.

- 1) Set the EUT to maximum power and to the lowest channel.
- 2) Either a power meter or a spectrum analyzer was used to measure the power output.
- 3) If a spectrum analyzer was used a resolution and video bandwidth 10kHz was used to measure the power output. Corrected for any external attenuation used for the protection of the input of analyzer. In addition, For CDMA or TDMA modulations set spectrum analyzer resolution to 2MHz and video to 3 MHz.
- 4) If a power meter was used, corrected for any external attenuation used for the protection of the input of the sensor head. Also set the power sensor correction by setting up the frequency range that will be measured.
- 5) Repeat this for the high channel and all modulations that will be used and all output ports used for transmission

Procedure C - Occupied Bandwidth (Conducted Method): Either for analog, digital, or data modulations, occupied bandwidth was performed. The EUT was set to transmit the appropriate modulation at maximum power. The bandwidth was measured using following methods:

- 1) The built-in 99% function of the spectrum analyzer was used.
- 2) If the built-in 99% is not available then the following method is used:
 - 26-dB or 20-dB was subtracted to the maximum peak of the emission. Then the display line function was used, in conjunction with the marker delta function, to measure the emissions bandwidth.
- 3) For the above two methods a resolution and video bandwidth of 100 or 300 Hz was used to measure the emission's bandwidth.

File: R57075 Page 14 of 19 pages

Procedure D - Occupied Bandwidth (Conducted Emission Mask): Either for analog, digital, or data modulations, emission mask was performed. The EUT was set to transmit the appropriate modulation at maximum power. The following method was used:

- 1) The EUT was connected directly to the spectrum analyzer and used an attenuator to protect the input of the analyzer. The EUT antenna was removable, so conducted measurements was performed. The EUT was set to transmit continuous packets of data and the Fundamental Frequency set to the middle of the EUT frequency range.
- 2) Since EUT is designed with a 12.5 kHz channel Section 90.210 (b)(1)(2)(3) & RSS-119 (I) was used to show compliance to the emission mask.

The following Resolution and Video bandwidth was used to show compliance for the above requirement: 300 Hz.

3) Since EUT is designed with a 25 kHz channel Section 90.210 (b)(1)(2)(3) & RSS-119 (I) was used to show compliance to the emission mask.

The following Resolution and Video bandwidth was used to show compliance for the above requirement: 300 Hz.

Procedure H - Other Types of Equipment: Either digital or data modulated signals were simulated, by software or external sources, to performed the required tests. The EUT was set to transmit the appropriate digital modulation.

File: R57075 Page 15 of 19 pages

Test Report
Report Date: September 8, 2004

Procedure J – Antenna Conducted Emissions: For spurious emission measurements at the antenna terminal the following procedure was performed:

- 1) Set the transmitting signal at the middle of the operating range of the transmitter, as specified in the standard. Power is set to maximum and then to minimum.
- 2) Set the spectrum analyzer display line function to -20-dBm.
- 3) Set the spectrum analyzer bandwidth to 10kHz <1GHz and 1 MHz >1GHz.
- 4) For the spectrum analyzer, the start frequency was set to 30 MHz and the stop frequency set to the 10th harmonic of the fundamental. All spurious or intermodulation emission must not exceed the –20dBm limit.
- 5) Steps 1 to 4 were repeated for all modulations and output ports that will be used for transmission.

Procedure K - Frequency Stability: The EUT is placed inside a temperature chamber with all support and test equipment located outside of the chamber. The spectrum analyzer is configured to give a 6-digit display for the marker-frequency function. The spectrum analyzer's built-in frequency counter is used to measure the maximum deviation of the fundamental frequency at each temperature. The Temperature chamber was varied from -30 to $+50^{\circ}$ C (or $+60^{\circ}$ C for some IC RSS standards, if applicable) in 10 degrees increment. The EUT was allowed enough time to stabilize for each temperature variation.

Procedure L - Frequency Stability: For AC or DC operated devices the nominal voltage is varied to 85% and to 115% at either room temperature or at a controlled +20°C temperature.

Procedure M - Frequency Stability: For battery-powered devices the voltage battery end-point is determined by reducing the dc voltage until the unit ceases to function. This is performed at either room temperature or at a controlled +20°C temperature.

File: R57075 Page 16 of 19 pages

Test Report

Report Date: September 8, 2004

Procedure N - Field Strength Measurement: The EUT was set on the turntable and the search antenna position 3 meters away. The output antenna terminal was terminated with a 50-ohm terminator. The EUT was set at the middle of the frequency band and set at maximum output power.

For the first scan, a pre-liminary measurement is performed. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. One or more of these is with the antenna polarized vertically while the one or more of these are with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

For the final measurement, Substitution method is performed on spurious emissions not being 20-dB below the calculated radiated limit. Substitution method is performed by replacing the EUT with a transmit antenna and signal generator. The substitution antenna can be reference to a half-wave dipole in dBi. The signal generator is then set to a fix output level of either –10 or –20dBm. This is then injected into the substitution antenna. The field strength produced by the substitution antenna is then measured. This measured value is then used to determine the conversion factor to convert the EUTs field strength levels to a dBm value.

File: R57075 Page 17 of 19 pages

Procedure I – Transient Frequency Behavior: The TIA/EIA 603 procedure was used to determine compliance to radio being keyed on and off.

- 1) Connected the Test Receiver DOP or Video Output to Channel 1 of the oscilloscope. The output of the RF crystal detector was connected to Auxiliary channel 1, which served as a trigger input. The output of the combiner was connected to the Test Receiver.
- 2) Set the EUT to maximum power and connected as illustrated above. Set the signal generator to the assigned transmitter frequency and modulate it with a 1 kHz tone at 6.25kHz, 12.5 kHz, or 25 kHz deviation and set its output to -100 dBm, then turn on the EUT.
- 3) The Combiner output side was connected to the Test Receiver, which was used to measure the Power. Used enough external attenuation so that the output at the combiner was set to 40 dB below the maximum input of the Test Receiver, then turn off the EUT.
- 4) Set the signal generator output to the same level in step 3. This level was maintained for the remainder of the test.
- 5) Set the horizontal sweep rate on the storage oscilloscope to 10 milliseconds per division and adjusted the display to continuously view the 1 kHz tone from the DOP or Video Output. Adjusted the vertical amplitude control to display the 1 kHz at +/- 4 divisions vertically centered on the display.
- 6) Set the oscilloscope to trigger at the AUX channel 1 input port.
- 7) Removed enough external attenuation so that the input to the RF detector and combiner is increased by 30 dB.
- 8) Turn on the transmitter and plotted the result for **Ton**, **T1**, and **T2**.
- 9) Set the oscilloscope to trigger in decreasing magnitude from the RF crystal detector.
- 10) Turn off the transmitter and plotted the result for **T3**.

File: R57075 Page 18 of 19 pages

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

RADIATED EMISSIONS SPECIFICATION LIMITS

The limits for radiated emissions are based on the power of the transmitter at the operating frequency. Data is measured in the logarithmic form of decibels relative to one milliwatt (dBm) or one microvolt/meter (dBuV/m,). The field strength of the emissions from the EUT is measured on a test site with a receiver.

Below is a formula example used to calculate the attenuation requirement, relative to the transmitters power output, in dBuV/m. For this example an operating power range of 3 watts is used. The radiated emissions limit for spurious signals outside of the assigned frequency block is 43+10Log₁₀ (mean output power in watts) dB below the measured amplitude at the operating power.

CALCULATIONS - EFFECTIVE RADIATED POWER

$$E(V/m) = \frac{\sqrt{30 * P * G}}{d}$$

E= Field Strength in V/m

P= Power in Watts (for this example we use 3 watts)

G= Gain of antenna in numeric gain (Assume 1.64 for ERP)

d= distance in meters

$$E(V/m) = \frac{\sqrt{30 * 3 \text{ watts * 1.64 dB}}}{3 \text{ meters}}$$

$$20 * log (4.049 \text{ V/m} * 1,000,000) = 132.14 \text{ dBuV/m} @ 3 \text{ meters}$$

FCC Rules request an attenuation of $43 + 10 \log (3)$ or 47.8 dB for all emissions outside the assigned block, the limit for spurious and harmonic emissions is:

$$132.1 \text{ dBuV/m} - 47.8 \text{ dB} = 84.3 \text{ dBuV/m} \ \text{@} \ 3 \text{ meter}.$$

Note: Substitution Method is performed for spurious emission not being 20-dB below the calculated field strength.

File: R57075 Page 19 of 19 pages

EXHIBIT 1: Test Equipment Calibration Data

1 Page

File: R57075 Exhibit Page 1 of 10

Emissions, 30 - 6,500 MHz, 27-Aug-04 Engineer: Mark Briggs

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
Elliott Laboratories	Log Periodic Antenna 300-1000 MHz	EL300.1000	55	04-Dec-04
Elliott Laboratories	Biconical Antenna, 30-300 MHz	DM-105-T1	382	09-Sep-04
Hewlett Packard	EMC Spectrum Analyzer 9kHz - 6.5GHz	8595EM	787	10-Dec-04
Hewlett Packard	RF Preamplifier, 100 kHz - 1.3 GHz	8447E	1606	28-Jul-05

Radiated Emissions, 30 - 2300 MHz, 28-Aug-0	4
Engineer: Juan Martinez	

Manufacturer Hewlett Packard	<u>Description</u> EMC Spectrum Analyzer 9KHz-26.5GHz, non programmable	Model # 8563E	<u>Asset #</u> 284	<u>Cal Due</u> 15-Mar-05
Hewlett Packard	EMC Spectrum Analyzer 30Hz - 40 GHz, Sunnyvale	8564E (84125C)	1148	09-Jun-05
Miteq	Preamplifier, 1-18GHz	AFS44	1346	08-Jan-05
EMCO	Horn Antenna D. Ridge 1-18 GHz (SA40 horn)	3115	1386	24-Mar-05
Sunol Sciences	Biconilog, 30-3000MHz	JB3	1548	29-Mar-05
Com-Power	Pre Amplifier , 30-1000MHz	PA-103	1633	27-Jan-05

Radiated Emissions, 30 - 2300 MHz, 30-Aug-04 Engineer: Vishal Narayan

Liigilieer. Visilai Narayan				
<u>Manufacturer</u>	Description	Model #	Asset #	Cal Due
EMCO	Biconical Antenna, 30-300 MHz	3110B	801	09-Jul-05
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	12-Jan-05
Filtek	High Pass Filter, 1GHz	HP12/1000-5BA	957	26-Mar-05
EMCO	Horn antenna, D. Ridge 1-18GHz (SA40 system antenna)30Hz sunnyvale	3115	1142	11-Jun-05
Hewlett Packard	EMC Spectrum Analyzer, 9KHz - 22GHz	8593EM	1319	20-Nov-04
Rohde & Schwarz	Test Receiver, 9kHz-2750MHz	ESCS 30	1337	05-Jan-05
EMCO	Log Periodic Antenna, 0.2-2 GHz	3148	1347	28-Oct-04

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T56950 31 Pages

File: R57075 Exhibit Page 2 of 10

Ellio	t	EM	C Test Data
Client:	Microwave Data Systems	Job Number:	J56783
Model:	MDS2710A/C	T-Log Number:	
		Project Engineer	Juan Martinez
Contact:	Dennis McCarthy		
Emissions Spec:	FCC 15B, FCC 90, RSS 119	Class:	В
Immunity Spec:	N/A	Environment:	-

EMC Test Data

For The

Microwave Data Systems

Model

MDS2710A/C

Date of Last Test: 8/31/2004

Elliot	t	EM	C Test Data
Client:	Microwave Data Systems	Job Number:	J56783
Model:	MDS2710A/C	T-Log Number:	T56950
		Account Manager:	Juan Martinez
Contact:	Dennis McCarthy		
Emissions Spec:	FCC 15B, FCC 90, RSS 119	Class:	В
Immunity Spec:	N/A	Environment:	-

EUT INFORMATION

General Description

The EUT is a VHF modem that operates in the 216 - 220 Mhz band. There are two versions of the device, one with a data rate of 9600 bps and a channel spacing of 12.5kHz, the other with a 19200bps data rate and channel spacing of 25kHz. Both versions are very similar, with differences only in the software and changes to the passive IF receive filters. The devices can operate in both simplex (tx and rx frequencies the same) and half-duplex mode (tx and rx on different channels). Normally, the EUT could be mounted to the wall or to the Remote Terminal Unit (RTU) it is used with. The EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 10.5 - 16 Vdc, 2.5 Amps.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Microwave Data	MDS 2710 A	9600bps VHF Modem	1207721	E5MDS-2710AC
Microwave Data	MDS 2710 C	19200bps VHF Modem	1248407	E5MDS-2710AC

Other EUT Details

EUT Enclosure

The EUT enclosure is primarily constructed of metal. It measures approximately 14 cm wide by 17 cm deep by 5 cm high.

Modification History

Mod. #	Test	Date	Modification
1			
2			
3			

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

Ellion	tt	EM	C Test Data
Client:	Microwave Data Systems	Job Number:	J56783
Model:	MDS2710A/C	T-Log Number:	T56950
		Account Manager:	Juan Martinez
Contact:	Dennis McCarthy		
Emissions Spec:	FCC 15B, FCC 90, RSS 119	Class:	В
Immunity Spec:	N/A	Environment:	-

Test Configuration #1

Local Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
Microwave Data	TT1EAR2-2	Handheld terminal	HH171101	N/A
Systems				

Remote Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
None				

Interface Cabling and Ports

Port	Connected To	Cable(s)			
FUIL	Connected to	Description	Shielded or Unshielded	Length(m)	
EUT Diag	Handheld terminal	RJ-11	Unshielded	2	
EUT Data Interface	Resisitve termination	Multiwire	Shielded	3	

Note: The Diag port is used for configuring the radio and would not be connected during normal operation. It was connected during testing for convenience to be able to set the operating mode.

Note: The Data Interface port would connect to a remote terminal unit or master system, which is typically a complex monitoring system (for the remote terminal) or server system (for the master system). These were not available as support equipment and so a resistive load was used to simulate the electrical connection to the terminal device.

EUT Operation During Emissions

The device was configured to transmit or receive on the channel specified in the test description. The antenna port was terminated in a 50-ohm load during radiated emissions tests and connected to the analyzer, via a suitable attenuator, for receive mode tests.

Elliott EMC Test			C Test Data
Client:	Microwave Data Systems	Job Number:	J56783
Model	MDS2710A/C	T-Log Number:	T56950
wouel.	INID327 TOA/C	Account Manager:	Juan Martinez
Contact:	Dennis McCarthy		
Spec:	FCC 15B, FCC 90, RSS 119	Class:	N/A

Radio Performance Test - FCC 90.210 RF Port Measurements (25kHz Channel)

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 8/31/2004 Config. Used: 1 Config Change: None Test Engineer: Juan Martinez Test Location: SVOATS #2 EUT Voltage: 13Vdc

General Test Configuration

The EUT's rf port was connected to the measurement instrument's rf port, via an attenuator or dc-block if necessary.

Ambient Conditions: Temperature: 18 °C

Rel. Humidity: 40 %

Summary of Results

Run #	Test Performed	Limit	Result	Value / Margin
1	Output Power	FCC 90.210	Pass	33 dBm
2	Modulation Limiting	FCC 90.210	Pass	Refer to run
3	Emission Mask	FCC 90.210 (B)	Pass	Refer to run
4	Conducted spurious emissions, 30MHz - 2300MHz, Transmit mode	FCC 90.210 (B)	Pass	Refer to run

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

CI	Elliott	EMC Test Data
Client:	Microwave Data Systems	Job Number: J56783
Madalı	MDS2710A/C	T-Log Number: T56950
wodei.	WID32710A/C	Account Manager: Juan Martinez
Contact:	Dennis McCarthy	
Spec:	FCC 15B, FCC 90, RSS 119	Class: N/A

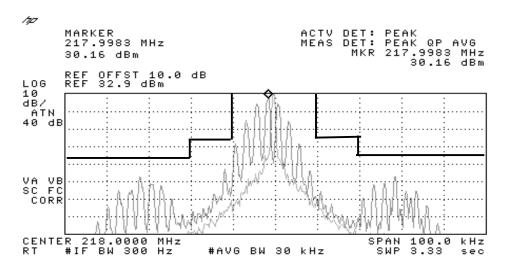
Run #1: Power Measurements

Freq.	Setting	Pmeas	Duty Cycle	Pout
216	33	33.0	1	33.0
217	33	33.0	1	33.0
217	20	19.6	1	19.6
220	33	32.8	1	32.8

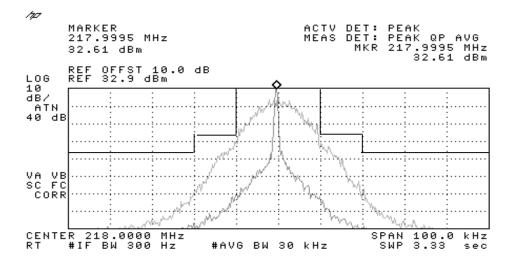
Setting: software power setting of EUT Pmeas: Measured output power (average)
Duty Cycle: Duty cycleof transmissions (1 = 100%)

Run #2: Modulation Limiting (Total Deviation +/-2.5 kHz)

Frequency: 218 MHz


ricquency	. Z IO WII IZ			
	300 Hz	1kHz	2.5 kHz	3 kHz
	(dBm)	(dBm)	(dBm)	(dBm)
10%	-21.0	-21.1	-19.8	-20.1
20%	-21.8	-21.5	-18.4	-19.5
30%	-22.0	-22.0	-18.1	-19.1
40%	-15.8	-18.4	-18.0	-18.4
50%	-15.3	-18.1	-17.9	-18.0
60%	-15.4	-18.0	-17.7	-17.2
70%	-15.1	-17.9	-17.2	-17.1
80%	N/A	-17.7	-17.0	N/A
90%	N/A	-17.2	N/A	N/A
100%	N/A	-17.0	N/A	N/A
110%	N/A	N/A	N/A	N/A
120%	N/A	N/A	N/A	N/A

Note: N/A - Input level was increased but modulation deviation remained constant.

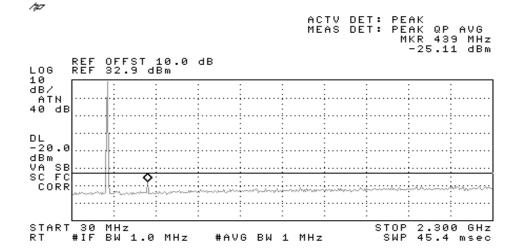

CI CI	Elliott	EM	C Test Data
Client:	Microwave Data Systems	Job Number:	J56783
Model	MDS2710A/C	T-Log Number:	T56950
wodei.	IVID327 TUA/C	Account Manager:	Juan Martinez
Contact:	Dennis McCarthy		
Snec:	FCC 15B FCC 90 RSS 119	Class:	N/A

Run #3: Emission Mask

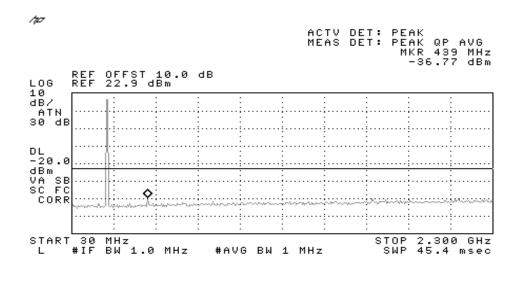
Analog Plot (11K0F3D, 11K0F3E)

Data Plot (16K8F1D, 16K8F2D)

EMC Test Data Client: Microwave Data Systems Job Number: J56783 T-Log Number: T56950 Model: MDS2710A/C Account Manager: Juan Martinez Contact: Dennis McCarthy Class: N/A Spec: FCC 15B, FCC 90, RSS 119 Run #4a: Antenna Port Conducted Spurious Emissions, Transmit Mode, 30 - 2300 MHz. EUT on 216MHz **PWR = 33** ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 433 MHz -24.53 dBm 190 REF OFFST 10.0 dB REF 32.9 dBm LOG 10 dB/ ATN 40 dB DL -20.0 dBm VA SB SC FC CORR START 30 MHz RT #IF BW 1.0 MHz STOP 2.300 GHz SWP 45.4 msec #AVG BW 1 MHz **PWR = 20** 10 ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 433 MHz -38.22 dBm REF OFFST 10.0 dB REF 22.9 dBm L06 10 dB/ ATN 30 dB DL -20.0 dBm VA SB SC FC CORR START 30 MHz RT #IF BW 1.0 MHz STOP 2.300 GHz SWP 45.4 msec #AVG BW 1 MHz


Œ	Elliott
Cliant. N	liorougous Data C

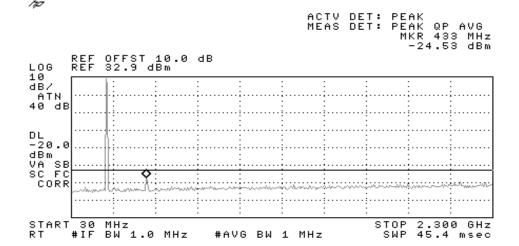
EMC Test Data


Client: Microwave Data Systems	Job Number:	J56783	
Model: MDS2710A/C	T-Log Number:	T56950	
	Account Manager:	Juan Martinez	
Contact: Dennis McCarthy			
Spec: FCC 15B, FCC 90, RSS 119	Class:	N/A	

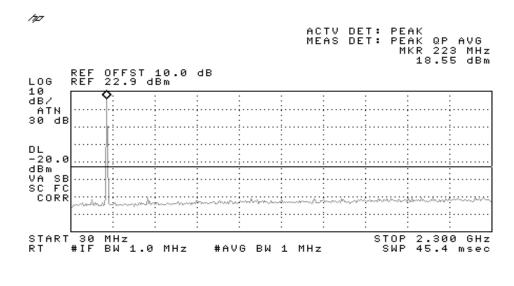
Run #4b: Antenna Port Conducted Spurious Emissions, Transmit Mode, 30 - 2300 MHz. EUT on 217 MHz

PWR = 33

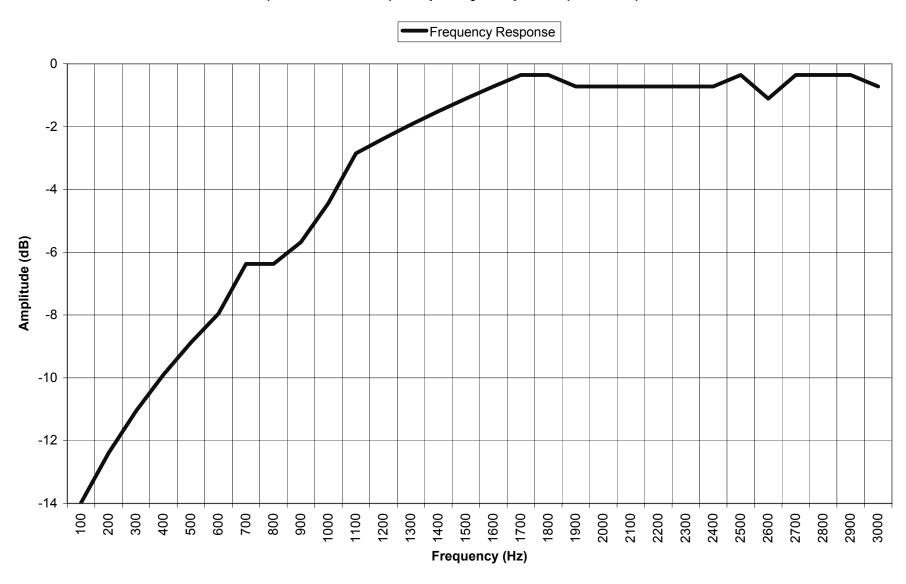
PWR = 20


(F	Elliott
Client:	Microwave Data Systems

EMC Test Data


Client: Microwave Data Systems	Job Number:	J56783	
Model: MDS2710A/C	T-Log Number:	T56950	
	Account Manager:	Juan Martinez	
Contact: Dennis McCarthy			
Spec: FCC 15B, FCC 90, RSS 119	Class:	N/A	

Run #4c: Antenna Port Conducted Spurious Emissions, Transmit Mode, 30 - 2300 MHz. EUT on 220 MHz


PWR = 33

PWR = 20

(25 kHz Channel) Frequency Response (.1 - 3kHz)

(25kHz Channel) Frequency Response (3 - 30Khz)

6	Elliott EMC Test D		C Test Data
Client:	Microwave Data Systems	Job Number:	J56783
Model:	MDS2710A/C	T-Log Number:	T56950
		Account Manager:	Juan Martinez
Contact:	Dennis McCarthy		
Spec:	FCC 15B, FCC 90, RSS 119	Class:	N/A

Radio Performance Test - FCC 90.210 & RSS-119 RF Port Measurements (12.5 kHz Channel)

Test Specifics

· ---

The objective of this test session is to perform final qualification testing of the EUT with respect to the Objective: specification listed above.

Date of Test: 8/31/2004 Config. Used: 1 Test Engineer: Juan Martinez Config Change: None Test Location: SVOATS #2 EUT Voltage: 13Vdc

General Test Configuration

The EUT's rf port was connected to the measurement instrument's rf port, via an attenuator or dc-block if necessary.

Temperature: Ambient Conditions: 18 °C

Rel. Humidity: 40 %

Summary of Results

Run #	Test Performed	Limit	Result	Value / Margin
1	Output Power	FCC 90.210 & RSS 119	Pass	33 dBm
2	Modulation Limiting	FCC 90.210 & RSS 119	Pass	Refer to run
3	Emission Mask	FCC 90.210 (B) & RSS 119 (I)	Pass	Refer to run
4	Conducted spurious emissions, 30MHz - 2300MHz, Transmit mode	FCC 90.210 (B) & RSS 119 (I)	Pass	Refer to run

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

C	Elliott	EM	C Test Data
Client:	Microwave Data Systems	Job Number:	J56783
Model	MDS2710A/C	T-Log Number:	T56950
wodei.		Account Manager:	Juan Martinez
Contact:	Dennis McCarthy		
Spec:	FCC 15B, FCC 90, RSS 119	Class:	N/A

Run #1: Power Measurements

Freq.	Setting	Pmeas	Duty Cycle	Pout
216	33	33.0	1	33.0
217	33	33.0	1	33.0
217	20	19.6	1	19.6
220	33	32.8	1	32.8

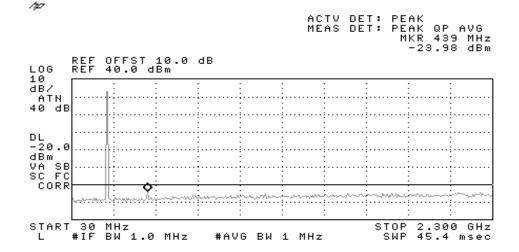
Setting: software power setting of EUT Pmeas: Measured output power (average) Duty Cycle: Duty cycleof transmissions (1 = 100%)

Run #2: Modulation Limiting (Total Deviation +/- 2.6 kHz)

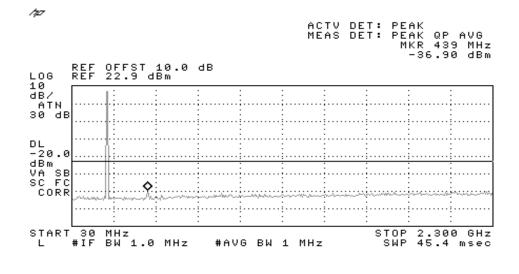
Frequency: 218 MHz

ricqueric	. Z IO WII IZ			
	300 Hz	1kHz	2.5 kHz	3 kHz
	(dBm)	(dBm)	(dBm)	(dBm)
10%	-21.0	-23.0	-22.1	-20.1
20%	-21.8	-22.4	-21.7	-20.0
30%	-22.0	-22.0	-21.0	-19.4
40%	-15.8	-18.4	-19.2	-18.7
50%	-15.3	-18.1	-18.4	-18.1
60%	-15.4	-18.0	-18.1	-17.5
70%	-15.1	-17.9	-17.5	-17.4
80%	N/A	-17.7	N/A	N/A
90%	N/A	-17.2	N/A	N/A
100%	N/A	-17.0	N/A	N/A
110%	N/A	N/A	N/A	N/A
120%	N/A	N/A	N/A	N/A

Note: N/A - Input level was increased but modulation deviation remained constant.


EMC Test Data Client: Microwave Data Systems Job Number: J56783 T-Log Number: T56950 Model: MDS2710A/C Account Manager: Juan Martinez Contact: Dennis McCarthy Spec: FCC 15B, FCC 90, RSS 119 Class: N/A Run #3: Emission Mask Analog Plot (11K0F3D, 11K0F3E) 10 ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 217.9998 MHz 32.91 dBm 90.210 (B) & RSS-119 (6.4(i)) REF OFFST 10.0 dB REF 32.9 dBm LOG 10 dB/ ATN 40 dB VA VB SC FC CORR CENTER 217.9998 MHz L #IF BW 300 Hz SPAN 100.0 SWP 3.33 #AVG BW 30 kHz Data Plot (9K13F1D, 9K13F2D) 190 ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 217.9998 MHz 32.94 dBm 90.210 (B) & RSS-119 (6.4(i)) REF OFFST 10.0 dB REF 32.9 dBm L06 10 dB/ ÄTN 40 dB VA VB SC FC CORR CENTER 217.9998 MHz RT #IF BW 300 Hz SPAN 100.0 kHz SWP 3.33 sec #AVG BW 30 kHz

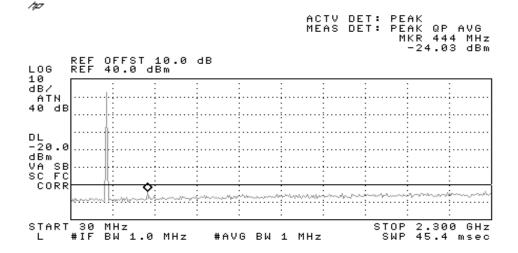
EMC Test Data Client: Microwave Data Systems Job Number: J56783 T-Log Number: T56950 Model: MDS2710A/C Account Manager: Juan Martinez Contact: Dennis McCarthy Spec: FCC 15B, FCC 90, RSS 119 Class: N/A Run #4a: Antenna Port Conducted Spurious Emissions, Transmit Mode, 30 - 2300 MHz. EUT on 216 MHz **PWR = 33** 190 ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 433 MHz -23.05 dBm DISPLAY LINE -20.0 dBm REF OFFST 10.0 dB REF 40.0 dBm LOG 10 dB/ atn 40 dB DL -20.0 dBm VA SB SC FC CORR START 30 L #IF MHz BW 1.0 MHz STOP 2.300 GHz SWP 45.4 msec #AVG BW 1 MHz **PWR = 20** ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 439 MHz -36.68 dBm 10


Elliott	EMC Test Data
Client: Microwave Data Systems	Job Number: J56783
Model: MDS2710A/C	T-Log Number: T56950
Widder: WIDS27 TOA/C	Account Manager: Juan Martinez
Contact: Dennis McCarthy	
Spec: FCC 15B, FCC 90, RSS 119	Class: N/A

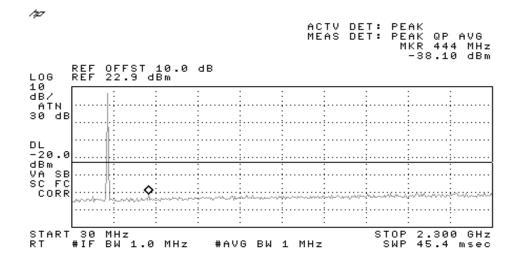
Run #4b: Antenna Port Conducted Spurious Emissions, Transmit Mode, 30 - 2300 MHz. EUT on 217 MHz

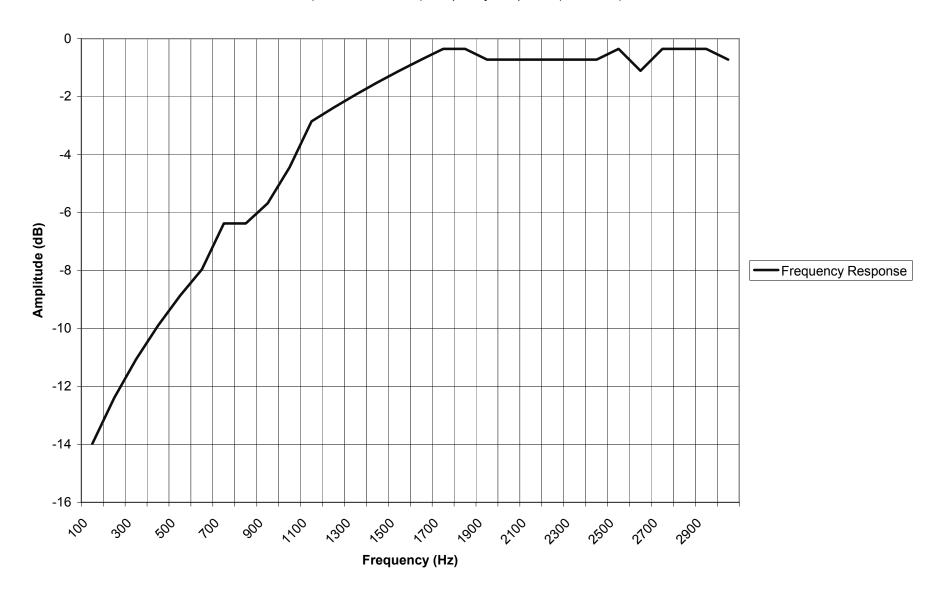
PWR = 33

PWR = 20

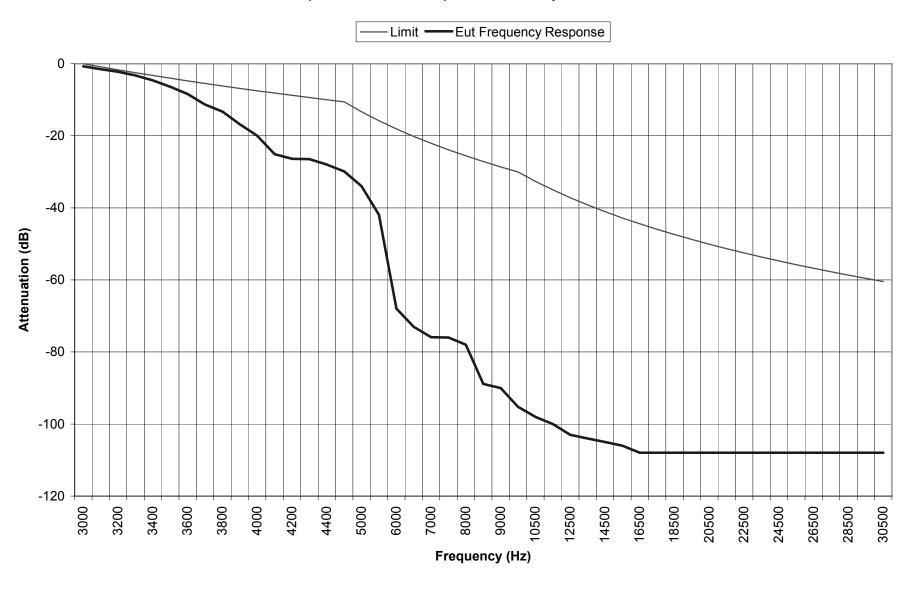

CI.	Elliott
Client:	Microwave Data Sy

EMC Test Data


-			
Client:	Microwave Data Systems	Job Number:	J56783
Model:	MDS2710A/C	T-Log Number:	T56950
	IVIDS27 TUA/C	Account Manager:	Juan Martinez
Contact:	Dennis McCarthy		
Spec:	FCC 15B, FCC 90, RSS 119	Class:	N/A


Run #4c: Antenna Port Conducted Spurious Emissions, Transmit Mode, 30 - 2300 MHz. EUT on 220MHz

PWR = 33



PWR = 20

(12.5 kHz Channel) 3 - 30kHz response

CIT	111
	llıott
	шои

EMC Test Data

Client:	Microwave Data Systems	Job Number:	J56783
Model:	MDS2710A/C	T-Log Number:	T56950
	IVID327 TUA/C	Account Manager:	Juan Martinez
Contact:	Dennis McCarthy		
Spec:	FCC 15B, FCC 90, RSS 119	Class:	N/A

Radiated Spurious Emissions, Part 90 & RSS-119

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 8/28/2004 Config. Used: 1 Test Engineer: Juan Martinez Config Change: None Test Location: Fremont Chamber #4 EUT Voltage: 13.4Vdc

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

The measurement antenna was located 3 meters from the EUT.

Ambient Conditions: 17 °C Temperature:

> Rel. Humidity: 45 %

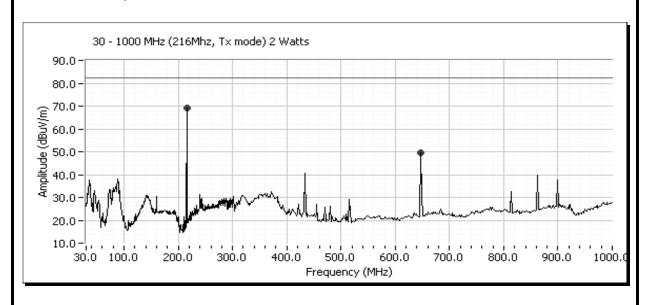
Summary of Results

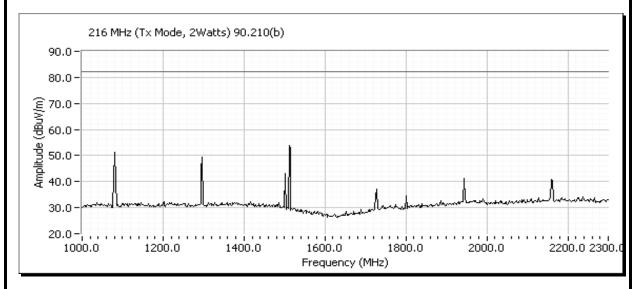
Run #	Test Performed	Limit	Result	Margin
1	RE, 30 - 3000 MHz - Spurious Emissions Transmit Mode (216 MHz)		Pass	-28.2dB @ 1511.3MHz
2	RE, 30 - 3000 MHz - Spurious Emissions Transmit Mode (217 MHz)		Pass	-25.3dB @ 1085.0MHz
3	RE, 30 - 3000 MHz - Spurious Emissions Transmit Mode (220 MHz)	Part un / Inin X, PCC.	Pass	-23.9dB @ 660.5 MHz

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard


No deviations were made from the requirements of the standard.


Elliott

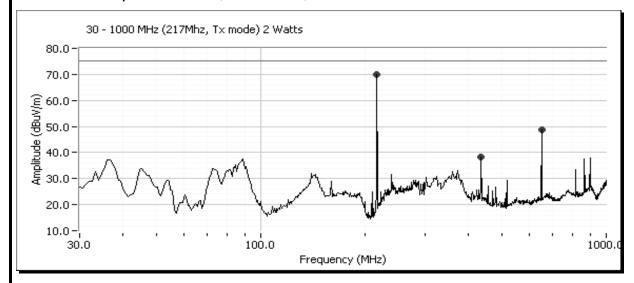
EMC Test Data

Client:	Microwave Data Systems	Job Number:	J56783
Model:	MDS2710A/C	T-Log Number:	T56950
	IVID527 TUA/C	Account Manager:	Juan Martinez
Contact:	Dennis McCarthy		
Spec:	FCC 15B, FCC 90, RSS 119	Class:	N/A

Run #1a: Radiated Spurious Emissions, Transmit Mode, 30 - 2300 MHz. EUT @ 216 MHz

Elliott

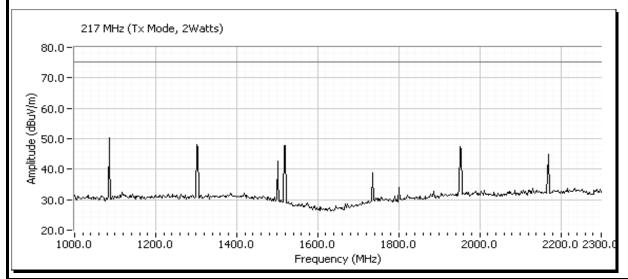
EMC Test Data


Client:	Microwave Data Systems	Job Number:	J56783
Model:	MDS2710A/C	T-Log Number:	T56950
	IVID327 TUA/C	Account Manager:	Juan Martinez
Contact:	Dennis McCarthy		
Spec:	FCC 15B, FCC 90, RSS 119	Class:	N/A

Frequency	Level	Pol	Part 90.	210 Note 1	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1511.333	54.0	V	82.2	-28.2	Peak	163	1.8	RBW=VBW=1MHz
1080.167	51.1	V	82.2	-31.1	Peak	196	1.2	RBW=VBW=1MHz
1296.833	49.6	Н	82.2	-32.6	Peak	110	1.4	RBW=VBW=1MHz
1944.667	41.4	Н	82.2	-40.8	Peak	206	1.2	RBW=VBW=1MHz
646.500	49.5	Н	82.2	-32.7	Peak	215	1.0	RBW=VBW=100kHz

Note 1:

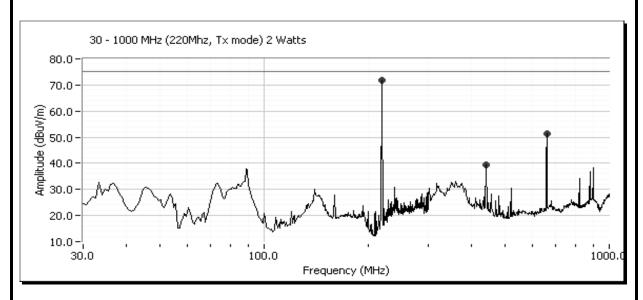
The limit in the table above is an approximate field strength limit. It has been calculated form the erp or eirp limit detailed in the EN standard using Friis' equation for free space propagation: E = 30PG/d. This limit is a conservative limit because it does not consider the presence of the ground plane. The actual signal level, in terms of erp or eirp, is determined from a substitution measurement for all signals with less than 20dB of margin relative to the calculated field strength limit.

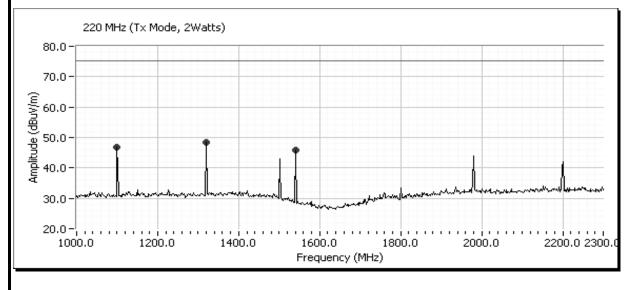

Run #1b: Radiated Spurious Emissions, Transmit Mode, 30 - 2300 MHz. EUT @ 217 MHz

Elliott

EMC Test Data

-			
Client:	Microwave Data Systems	Job Number:	J56783
Model:	MDS2710A/C	T-Log Number:	T56950
	IVID327 TOA/C	Account Manager:	Juan Martinez
Contact:	Dennis McCarthy		
Spec:	FCC 15B, FCC 90, RSS 119	Class:	N/A


Frequency	Level	Pol	RSS-1	19 ^{Note 1}	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1085.000	50.0	V	75.3	-25.3	Peak	110	1.7	RBW=VBW=1MHz
1080.167	48.3	V	75.3	-27.0	Peak	142	1.0	RBW=VBW=1MHz
1519.000	47.2	Н	75.3	-28.1	Peak	108	1.0	RBW=VBW=1MHz
1953.000	47.3	Н	75.3	-28.0	Peak	120	1.5	RBW=VBW=1MHz
434.750	38.2	Н	75.3	-37.1	Peak	86	1.0	RBW=VBW=100kHz
650.000	48.6	Н	75.3	-26.7	Peak	215	1.0	RBW=VBW=100kHz


Note 1:

The limit in the table above is an approximate field strength limit. It has been calculated form the erp or eirp limit detailed in the EN standard using Friis' equation for free space propagation: E = 30PG/d. This limit is a conservative limit because it does not consider the presence of the ground plane. The actual signal level, in terms of erp or eirp, is determined from a substitution measurement for all signals with less than 20dB of margin relative to the calculated field strength limit.

Client: Microwave Data Systems Job Number: J56783 Model: MDS2710A/C T-Log Number: T56950 Contact: Dennis McCarthy Account Manager: Juan Martinez Spec: FCC 15B, FCC 90, RSS 119 Class: N/A

Run #1b: Radiated Spurious Emissions, Transmit Mode, 30 - 2300 MHz. EUT @ 220 MHz

	Ellott it: Microwave Data Systems				Job Number: J56783			
			,					og Number: T56950
Model:	MDS2710	A/C						nt Manager: Juan Martinez
Contact:	Dennis Mo	Carthy						
Spec:	FCC 15B,	FCC 90	RSS 119					Class: N/A
,	Ī	-			,		1	T
requency	Level	Pol	90 & RSS		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
099.667	46.9	V	75.3	-28.4	Peak	157	1.2	RBW=VBW=1MHz
320.667	48.3	Н	75.3	-27.0	Peak	150	1.0	RBW=VBW=1MHz
539.500	45.8	V	75.3 75.3	-29.5	Peak	175	1.6	RBW=VBW=1MHz RBW=VBW=100kHz
660.500 440.000	51.4 39.2	H	75.3 75.3	-23.9 -36.1	Peak Peak	213 115	1.0 2.0	RBW=VBW=100kHz
40.000	37.2	11	73.3	-30.1	i cak	113	2.0	NOW-VOW-TOOKITZ
ote 1:		ned from		•		• .		al signal level, in terms of erp or eir ldB of margin relative to the calcula
	is determi	ned from		•		• .		•
	is determi	ned from		•		• .		•
	is determi	ned from		•		• .		•
	is determi	ned from		•		• .		•

CI.	Elliott EMC Test D		
Client:	Microwave Data Systems	Job Number:	J56783
Model	MDS2710A/C	T-Log Number:	T56950
wouei.	WID32/TUA/C	Account Manager:	Juan Martinez
Contact:	Dennis McCarthy		

Radio Performance Test - Part 90 & RSS-119 **Frequency Stability**

Class: N/A

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 9/3/2004 Config. Used: 1 Test Engineer: Juan Martinez Config Change: None Test Location: Environmental Chamber EUT Voltage: 13Vdc

General Test Configuration

Spec: FCC 15B, FCC 90, RSS 119

The EUT's rf port was connected to the measurement instrument's rf port, via an attenuator or dc-block if necessary. EUT was place inside an environmental chamber.

Summary of Results

Run #	Test Performed	Limit	Result	Value / Margin
1-2	Frequency and Voltage Stability	Part 90 & RSS-119	Pass	Refer to individual runs

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

EMC Test Data

Client:	Microwave Data Systems	Job Number:	J56783
Model: MDS2710A/C	MDS2710A/C	T-Log Number:	T56950
	INID327 TOA/C	Account Manager:	Juan Martinez
Contact:	Dennis McCarthy		
Spec:	FCC 15B, FCC 90, RSS 119	Class:	N/A

Run #1: Temperature Vs. Frequency

Drift	Freq.	Limit
(ppm)	(MHz)	(Hz)
1	218.00	218.0

<u>Temperature</u>	Reference Frequency	Frequency Drift	<u>Drift</u>	<u>Limit</u>
(Celsius)	(MHz)	(MHz)	(Hz)	(Hz)
-30	218.000063	218.000100	37	218.0
-20	218.000063	218.000180	117	218.0
-10	218.000063	218.000038	-25	218.0
0	218.000063	218.000050	-13	218.0
10	218.000063	218.000050	-13	218.0
20	218.000063	218.000063	0	218.0
30	218.000063	218.000088	25	218.0
40	218.000063	218.000050	-13	218.0
50	218.000063	217.999975	-88	218.0

Run #2: Voltage Vs. Frequency

Nominal Voltage is 13Vdc.

<u>Voltage</u>	Reference Frequency	Frequency Drift	<u>Drift</u>	<u>Limit</u>	Comment
(Dc)	(MHz)	(MHz)	(Hz)	(Hz)	
85%	218.000063	218.000038	-25	218.0	11.1
115%	218.000063	218.000050	-13	218.0	15.0

Battery endpoint is 8.92 Vdc

	Elliott	EMC Test Data		
Client:	Microwave Data Systems	Job Number:	J56783	
Model	MDS2710A/C	T-Log Number:	T56950	
iviouei.		Account Manager:	Juan Martinez	
Contact:	Dennis McCarthy			
Spec:	FCC 15B, FCC 90, RSS 119	Class:	В	

Radiated Emissions

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 8/30/2004 Config. Used: 1
Test Engineer: Vishal Narayan Config Change: None
Test Location: SVOATS #1 EUT Voltage: 13V DC

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated emissions testing.

Unless otherwise specified, the measurement antenna was located 10 meters from the EUT for the measurement range 30 - 1000 MHz and 3m from the EUT for the frequency range 1 - 2.3 GHz.

Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, <u>and</u> manipulation of the EUT's interface cables.

Ambient Conditions: Temperature: 18 °C

Rel. Humidity: 84 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	RE, 30 -1000 MHz, Preliminary Scan	FCC B	Pass	-11.5dB @ 33.175MHz
2	RE, 30 - 1000MHz, Maximized Emissions	FCC B	Pass	-8.8dB @ 33.175MHz
3	RE, 1000 - 2300 MHz, Maximized Emissions	FCC B	Pass	-10.7dB @ 1510.0MHz
4	RE, 30 -1000 MHz, Preliminary Scan	FCC B	Pass	-9.0dB @ 33.175MHz
5	RE, 30 - 1000MHz, Maximized Emissions	FCC B	Pass	-7.7dB @ 33.175MHz
6	RE, 1000 - 2300 MHz, Maximized Emissions	FCC B	Pass	-4.0dB @ 1510.0MHz

	Elliott	EMC Test Data		
Client:	Microwave Data Systems	Job Number:	J56783	
Modol:	MDS2710A/C	T-Log Number:	T56950	
wodei:		Account Manager:	Juan Martinez	
Contact:	Dennis McCarthy			
Spec:	FCC 15B, FCC 90, RSS 119	Class:	В	

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Run #1: Preliminary Radiated Emissions, 30-1000 MHz Digital/Receive Mode (Receive mode at 216 MHz)

Frequency	Level	Pol	FC	СВ	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
33.175	28.5	V	40.0	-11.5	QP	340	1.0	
88.260	30.0	V	43.5	-13.5	QP	0	1.0	
82.943	26.5	V	40.0	-13.5	QP	270	1.0	
33.175	25.0	Н	40.0	-15.0	QP	360	1.2	
82.943	20.0	Н	40.0	-20.0	QP	280	1.2	
155.008	22.9	Н	43.5	-20.6	QP	100	1.4	
216.000	22.3	Н	43.5	-21.2	QP	150	1.6	
900.560	23.2	V	46.0	-22.8	QP	0	1.0	
88.260	19.5	Н	43.5	-24.0	QP	250	1.6	
155.008	17.5	V	43.5	-26.0	QP	0	1.0	
432.000	20.0	V	46.0	-26.0	QP	300	1.0	
216.000	16.0	V	43.5	-27.5	QP	310	1.6	

Run #2: Maximized Readings From Run #1 Digital/Receive Mode (Receive mode at 216 MHz)

Frequency	Level	Pol	FCC B		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
33.175	31.2	V	40.0	-8.8	QP	360	1.0	
88.260	30.0	V	43.5	-13.5	QP	0	1.0	
82.943	26.5	V	40.0	-13.5	QP	270	1.0	
33.175	25.0	Н	40.0	-15.0	QP	360	1.2	
82.943	20.0	Н	40.0	-20.0	QP	280	1.2	
155.008	22.9	Н	43.5	-20.6	QP	100	1.4	

Client: Microwave Data Systems Model: MDS2710A/C Contact: Dennis McCarthy Spec: FCC 15B, FCC 90, RSS 119 LMC Test Data Spec EMC Test Data Job Number: J56783 T-Log Number: T56950 Account Manager: Juan Martinez Class: B

Run #3: Maximized readings, 1000 - 2300 MHz Measurements made at 3m per FCC requirements.

Receive Mode (Receive mode at 216 MHz)

Frequency	Level	Pol	FCC C	lass B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1510.000	43.3	Н	54.0	-10.7	Avg	360	1.2	
1510.000	43.2	V	54.0	-10.8	Avg	80	1.0	
1510.000	30.5	Н	74.0	-43.5	Pk	360	1.2	
1510.000	30.4	V	74.0	-43.6	Pk	80	1.0	

Run #4: Preliminary Radiated Emissions, 30-1000 MHz Receive Mode (Receive mode at 220 MHz)

Frequency	Level	Pol	FC	C B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
33.175	31.0	V	40.0	-9.0	QP	180	1.0	
88.260	27.0	V	43.5	-16.5	QP	0	11.0	
82.943	21.0	V	40.0	-19.0	QP	180	1.0	
88.260	22.0	Н	43.5	-21.5	QP	300	1.4	
155.008	21.5	V	43.5	-22.0	QP	334	1.0	
33.175	18.0	Н	40.0	-22.0	QP	60	1.6	
82.943	18.0	Н	40.0	-22.0	QP	0	1.4	
900.560	23.2	V	46.0	-22.8	QP	0	1.0	
220.000	21.7	Н	46.0	-24.3	QP	140	1.6	
155.008	18.0	Н	43.5	-25.5	QP	360	1.0	
220.000	17.0	V	46.0	-29.0	QP	80	1.0	
440.000	15.3	V	46.0	-30.7	QP	0	1.0	

Run #5: Maximized Readings From Run #1

C	Ellic	ott			EM	C Test Data					
Client:	Microwave	e Data S	ystems	J	ob Number:	J56783					
M. J.I. MDC0710A/O								T-Log Number: T56950			
wodei:	Model: MDS2710A/C							Account Manager: Juan Martinez			
Contact:	Contact: Dennis McCarthy										
Spec:	Spec: FCC 15B, FCC 90, RSS 119								Class: B		
Receive Mode (Receive mode at 220 MHz)											
Frequency	Level	Pol	FC	СВ	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
33.175	32.3	V	40.0	-7.7	QP	180	1.0				
88.260	27.0	V	43.5	-16.5	QP	0	11.0				
82.943	21.0	V	40.0	-19.0	QP	180	1.0				
88.260	22.0	Н	43.5	-21.5	QP	300	1.4				
155.008	21.5	V	43.5	-22.0	QP	334	1.0				
33.175	18.0	Н	40.0	-22.0	QP	60	1.6				

Run #6: Maximized readings, 1000 - 2300 MHz Measurements made at 3m per FCC requirements. Receive Mode (Receive mode at 220 MHz)

Frequency	Level	Pol	FCC C	Class B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1510.000	50.0	V	54.0	-4.0	Avg	250	1.0	
1510.000	48.1	Н	54.0	-5.9	Avg	170	1.0	
1510.000	45.4	V	74.0	-28.6	Pk	250	1.0	
1510.000	42.2	Н	74.0	-31.8	Pk	170	1.0	

EXHIBIT 3: Test Configuration Photographs

Uploaded as A Separate Attachment

File: R57075 Exhibit Page 3 of 10

EXHIBIT 4: Theory of Operation Microwave Data Systems Model MDS2710A/C

Uploaded as A Separate Attachment

File: R57075 Exhibit Page 4 of 10

EXHIBIT 5: Proposed FCC ID Label & Label Location

Uploaded as A Separate Attachment

File: R57075 Exhibit Page 5 of 10

EXHIBIT 6: Detailed Photographs Microwave Data Systems Model MDS2710A/C

Uploaded as A Separate Attachment

File: R57075 Exhibit Page 6 of 10

EXHIBIT 7: Installation Guide Microwave Data Systems Model MDS2710A/C

Uploaded as A Separate Attachment

File: R57075 Exhibit Page 7 of 10

EXHIBIT 8: Block Diagram Microwave Data Systems Model MDS2710A/C

Uploaded as A Separate Attachment

File: R57075 Exhibit Page 8 of 10

EXHIBIT 9: Schematic Diagrams Microwave Data Systems Model MDS2710A/C

Uploaded as A Separate Attachment

File: R57075 Exhibit Page 9 of 10

EXHIBIT 10: Advertising Literature

Uploaded as A Separate Attachment

File: R57075 Exhibit Page 10 of 10