

OPERATOR'S MANUAL

**LRP820-Series
Long-Range Passive
Reader/Writers**

Manual Revision 3, July, '00
Publication #17-1269

Escort Memory Systems Warranty

Escort Memory Systems warrants that all products of its own manufacture conform to Escort Memory Systems specifications and are free from defects in material and workmanship when used under normal operating conditions and within the service conditions for which they were furnished. The obligation of Escort Memory Systems hereunder shall expire one (1) year after delivery, unless otherwise specified, and is limited to repairing, or at its option, replacing without charge, any such product which in Escort Memory System's sole opinion proves to be defective within the scope of this Warranty. In the event Escort Memory Systems is not able to repair or replace defective products or components within a reasonable time after receipt thereof, Buyers shall be credited for their value at the original purchase price. Escort Memory Systems must be notified in writing of the defect or nonconformity within the warranty period and the affected product returned to Escort Memory Systems factory or to an authorized service center within thirty (30) days after discovery of such defect or nonconformity. Shipment shall not be made without prior authorization by Escort Memory Systems.

This is Escort Memory Systems' sole warranty with respect to the products delivered hereunder. No statement, representation, agreement or understanding oral or written, made by an agent, distributor, representative, or employee of Escort Memory Systems which is not contained in this warranty, will be binding upon Escort Memory Systems, unless made in writing and executed by an authorized Escort Memory Systems employee. Escort Memory Systems makes no other warranty of any kind whatsoever, expressed or implied, and all implied warranties of merchantability and fitness for a particular use which exceed the aforesated obligation are hereby disclaimed by Escort Memory Systems and excluded from this agreement. Under no circumstances shall Escort Memory Systems be liable to Buyer, in contract or in tort, for any special, indirect, incidental, or consequential damages, expenses, losses or delay however caused.

Equipment or parts which have been subject to abuse, misuse, accident, alteration, neglect, unauthorized repair or installation are not covered by warranty. Escort Memory Systems shall make the final determination as to the existence and cause of any alleged defect. No liability is assumed for expendable items such as lamps and fuses. No warranty is made with respect to custom equipment or products produced to Buyer's specifications except as specifically stated in writing by Escort Memory Systems in the contract for such custom equipment.

This warranty is the only warranty made by Escort Memory Systems with respect to the goods delivered hereunder, and may be modified or amended only by a written instrument signed by a duly authorized officer of Escort Memory Systems and accepted by the Buyer.

Extended warranties of up to four years are available for purchase for most EMS products. Contact EMS or your distributor for more information.

This document contains proprietary information which is protected by copyright. All rights are reserved. The information in this manual has been carefully checked and is believed to be accurate; however, no responsibility is assumed for possible inaccuracies or omissions. Specifications are subject to change without notice.

EMS®, Escort Memory Systems® and the EMS® logo are registered trademarks of Escort Memory Systems, a Datalogic Group Company. Other brand and product names mentioned are trademarks or registered trademarks of their respective holders.

Escort Memory Systems
A Datalogic Group Company
170 Technology Circle
Scotts Valley, CA 95066
Telephone (831) 438-7000
FAX (831) 438-5768
www.ems-rfid.com
email: info@ems-rfid.com

TABLE OF CONTENTS

1	GETTING STARTED	1
1.1	Introduction	1
1.2	Unpacking and Inspection	3
2	MECHANICAL SPECIFICATIONS	4
2.1	Dimensions	4
2.2	RF Range and Orientation	7
2.3	Mounting Guidelines.	12
	Guidelines	13
3	POWER AND ELECTRICAL INTERFACE	14
3.1	Connector Panel	14
3.2	Power Connector	15
3.3	COM1/COM2 Connector	15
3.4	MUX32 Connector	16
	Serial Communications Cabling	16
3.5	Input Connector.	17
3.6	Output Connector	17
3.7	Digital I/O Wiring.	18
3.8	Power Requirement	23
	Power Options	23
	Power from the MUX32 Bus	24
	Power via the external supply connector	24
	Power from the MUX32 bus and from an external power supply	26
3.9	LED Indicators	27
4	SERIAL AND BUS COMMUNICATIONS	29
4.1	Serial Interfaces	29
	Digital Board DIP Switch	30
4.2	Bus Interfaces.	32
	MUX32 Interface Board DIP Switch	33
5	MENU CONFIGURATION	34
5.1	How to Enter Menu Configuration	34
5.2	Set-up Operating Parameters	35
	Set COM1 Parameters	36

Set COM2 Parameters	36
Set Operating Mode	36
Set RF Communication	38
Restore Factory Defaults	38
Return to Main Menu	39
5.3 Download New Program	39
5.4 Downloading DSP Firmware	39
5.5 Exit to Operating Mode	40
6 RFID INTERFACE	41
6.1 Introduction	41
Command Timeout	41
MUX32 and Anticollision Limitations	43
6.2 ABx Error Codes	44
Non-Anticollision Error Codes	44
ABx Standard	44
ABx Fast	45
Anticollision Status Byte	46
6.3 Anticollision Commands	47
Family Interrogation	47
Family ID	47
Anticollision Index	48
6.4 ABx Standard Protocol	49
ABxS Command 4 (04H): Fill Tag	49
ABxS Command 5 (05H): Block Read	51
ABxS Command 6 (06H): Block Write	53
ABxS Command 7 (07H): Read Tag Serial Number . .	55
ABxS Command 8 (08H): Tag Search	56
ABxS Command D (0DH): Continuous Block Read . .	57
ABxS Command 10 (10H): Set Output	60
ABxS Command 11 (11H): Input Status	62
ABxS Command 84 (84H): Fill Tag All	64
ABxS Command 85 (85H): Block Read All	66
ABxS Command 86 (86H): Block Write All	68
ABxS Command 87 (87H): Read Tag SN All	70
ABxS Command 88 (88H): Tag Search All	72
ABxS Command 89 (89H): EAS Set/Reset All	73
ABxS Command 8A (8AH): EAS Start/Stop	75
ABxS Command 8D (8DH): Continuous Read All . . .	77
ABxS Command 8E (8EH): Memory Lock All	79

ABxS Command 94 (94H): SN Fill	81
ABxS Command 95 (95H): SN Block Read.	83
ABxS Command 96 (96H): SN Block Write	85
ABxS Command 97 (97H): SN Block Read All	87
6.5 ABx Fast Protocol.	89
ABx Command Packet Structure:	89
Command/Response Size.	90
Checksum	91
ABxF Command 4 (04H): Fill Tag	92
ABxF Command 5 (05H): Block Read	94
ABxF Command 6 (06H): Block Write	96
ABxF Command 7 (07H): Read Tag Serial Number . .	98
ABxF Command 8 (08H): Tag Search	100
ABxF Command D (0DH): Continuous Block Read .	101
ABxF Command 10 (10H): Set Output	104
ABxF Command 11 (11H): Input Status.	106
ABxF Command 84 (84H): Fill All.	108
ABxF Command 85 (85H): Block Read All	110
ABxF Command 86 (86H): Block Write All	112
ABxF Command 87 (87H): Read Tag SN All	114
ABxF Command 88 (88H): Tag Search All	116
ABxF Command 89 (89H): EAS Set/Reset All.	118
ABxF Command 8A (8AH): EAS Start/Stop.	120
ABxF Command 8D (8DH): Continuous Read All . .	123
ABxF Command 8E (8EH): Memory Lock All	126
ABxF Command 94 (94H): SN Fill.	128
ABxF Command 95 (95H): SN Block Read	130
ABxF Command 96 (96H): SN Block Write	132
ABxF Command 97 (97H): SN Block Read All	134
6.6 ABx ASCII Protocol	138
Command Packet Structure:	138
Command/Response Size	139
Checksum	140
Example ASCII Command	140

A APPENDIX: SPECIFICATIONS **142**

B APPENDIX: MODELS **143**

C APPENDIX: ASCII CHART **144**

NOTICE

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try and correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and the receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

CAUTION

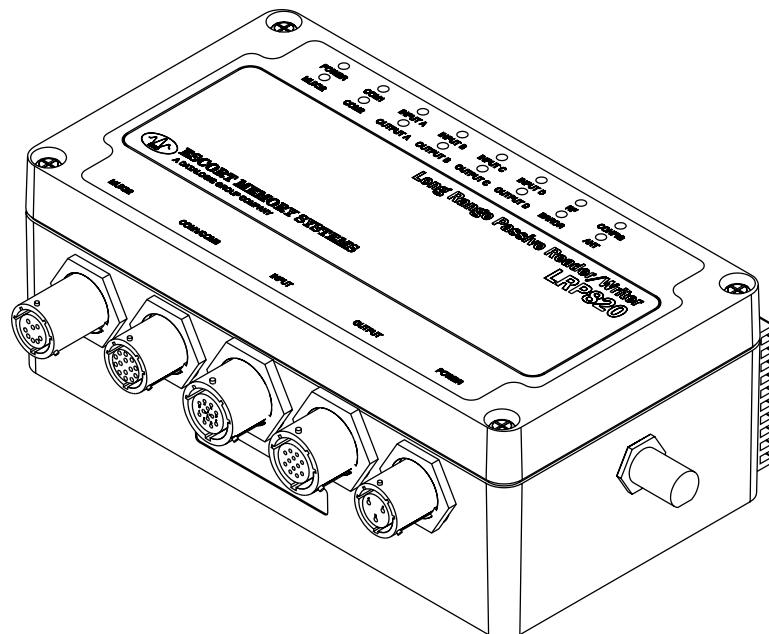
Changes or modifications not expressly approved by Escort Memory Systems could void the user's authority to operate the equipment.

1 GETTING STARTED

1.1 Introduction

Escort Memory Systems' passive read/write system is a complete family of field-proven read/write Radio-Frequency Identification products. The system consists of RFID tags, reader/writers, antennas, controllers, bus interfaces, and ancillary equipment. Tags can be attached to a product or its carrier and act as an electronic identifier, job sheet, portable database, or manifest. Tags are read and updated via an Escort Memory Systems Reader/Writer, through any nonconductive material, while moving or standing still.

Escort Memory Systems' LRP-Series long range passive RFID system is the latest in our line of high performance, industrial RFID equipment. The passive design of the LRP read/write system uses the RF field from the antenna to power the tag, eliminating the need for tag batteries. The LRP passive read/write system is designed to provide cost effective RFID data collection and control solutions to automation and material handling applications.


The LRP system uses the internationally recognized ISM frequency of 13.56 MHZ to both power the tag, and to establish a radio link to transfer the information.

The LRP820 is specifically designed to work with LRP-Series passive tags, which provide 48 bytes of reprogrammable memory.

The LRP820 supports the multidrop protocol MUX32. The LRP820 is encased in a NEMA4 enclosure and features two serial ports, 4 opto-isolated inputs, 4 opto-isolated outputs. The LRP820-04 is equipped with an antenna designed for conveyor mounting and the LRP820-08 features a rectangular plate antenna.

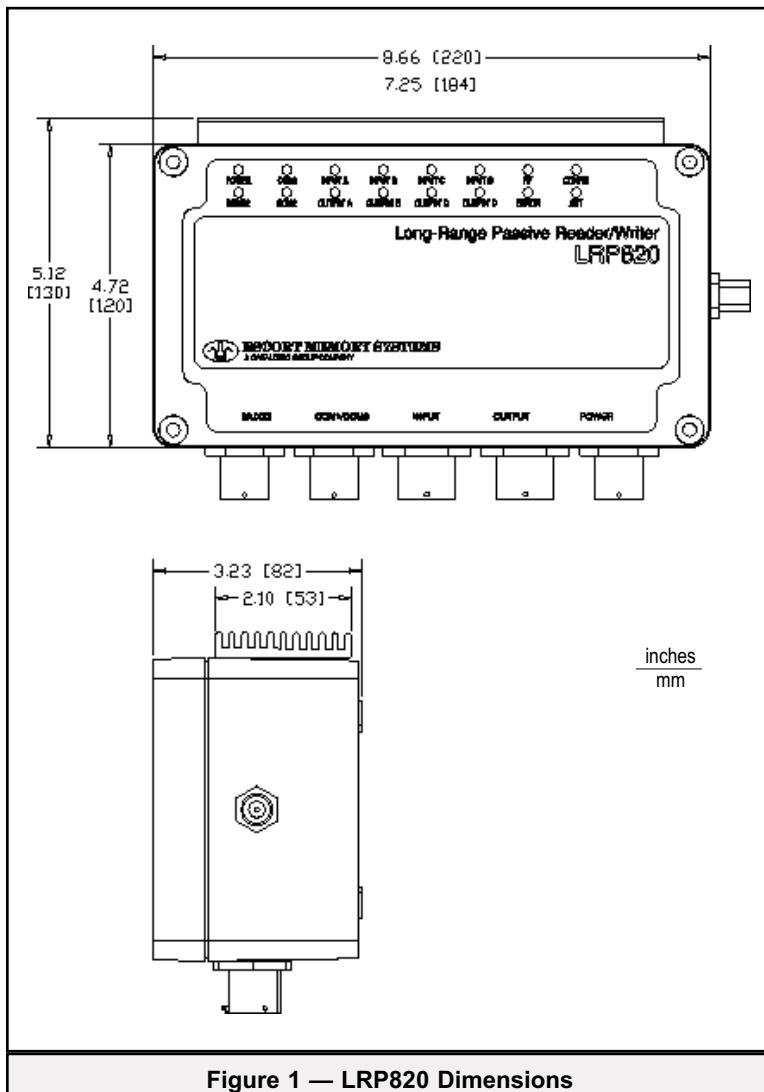
The COM1 serial port is used to receive commands from the host and to send the data back. The LRP820 COM1 can be configured either as MUX32, RS232, or RS422 interface.

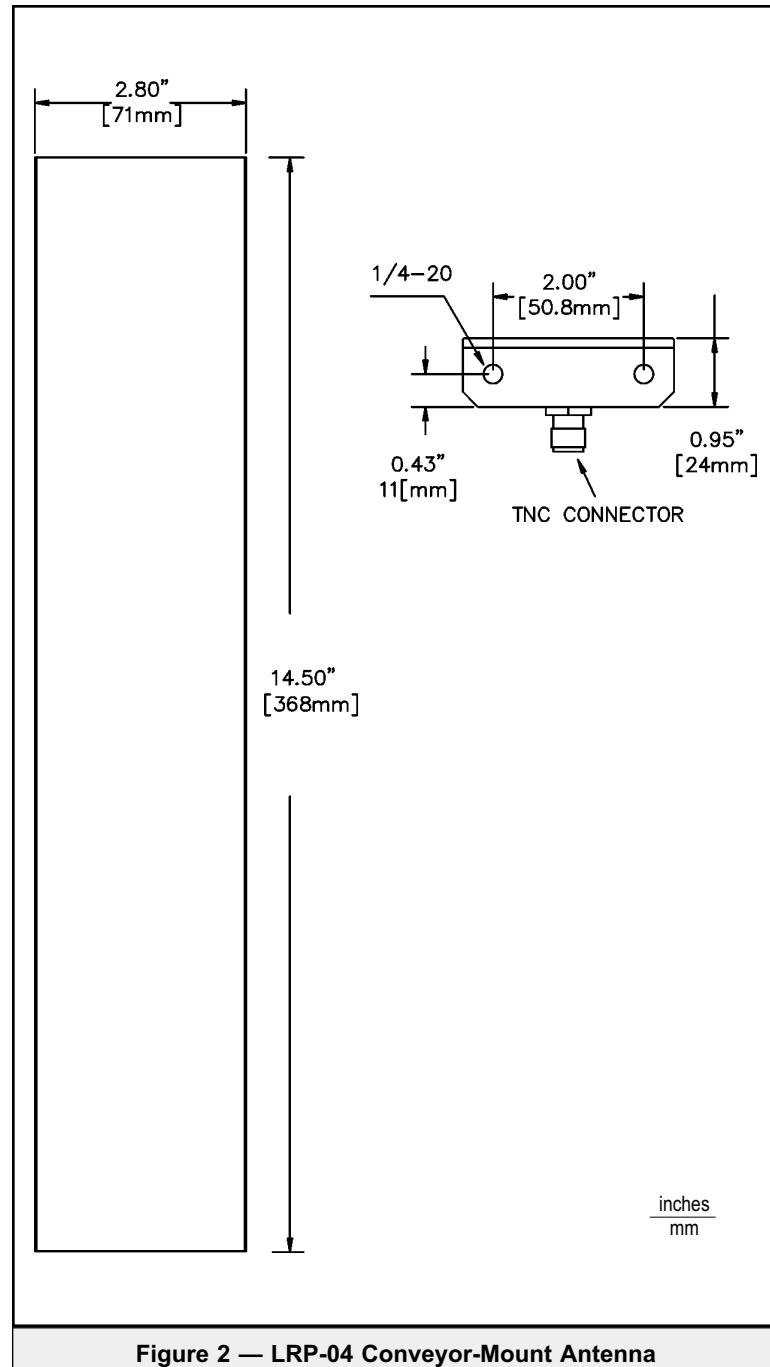
COM2 is an RS232 serial port used to download new software releases and to setup the configuration parameters.

1.2 Unpacking and Inspection

Unpack the LRP820 and documentation and retain the original shipping carton and packing material in case any items need to be returned. Inspect each item carefully for evidence of damage. If any item appears to be damaged, notify your distributor immediately. The LRP820 is delivered with the following components:

- LRP820 (-04, -08) Reader/Writer
- LRP820 to Antenna cable
- LRP820 Operator's Manual


The following components are required for configuring a complete system:


- LRP-Series Passive Read/Write Tags
- User supplied LRP820-to-host cable
- MUX32 host
- 18 - 30 Vdc, 36 W (1.5 A @ 24 Vdc) power supply
- Mating connectors. See Appendix B for more information

2 MECHANICAL SPECIFICATIONS

2.1 Dimensions

Figure 1 gives the dimensions for the LRP820. Figures 2-3 show the dimensions of the 04 and 08 remote antennas.

Figure 2 — LRP-04 Conveyor-Mount Antenna

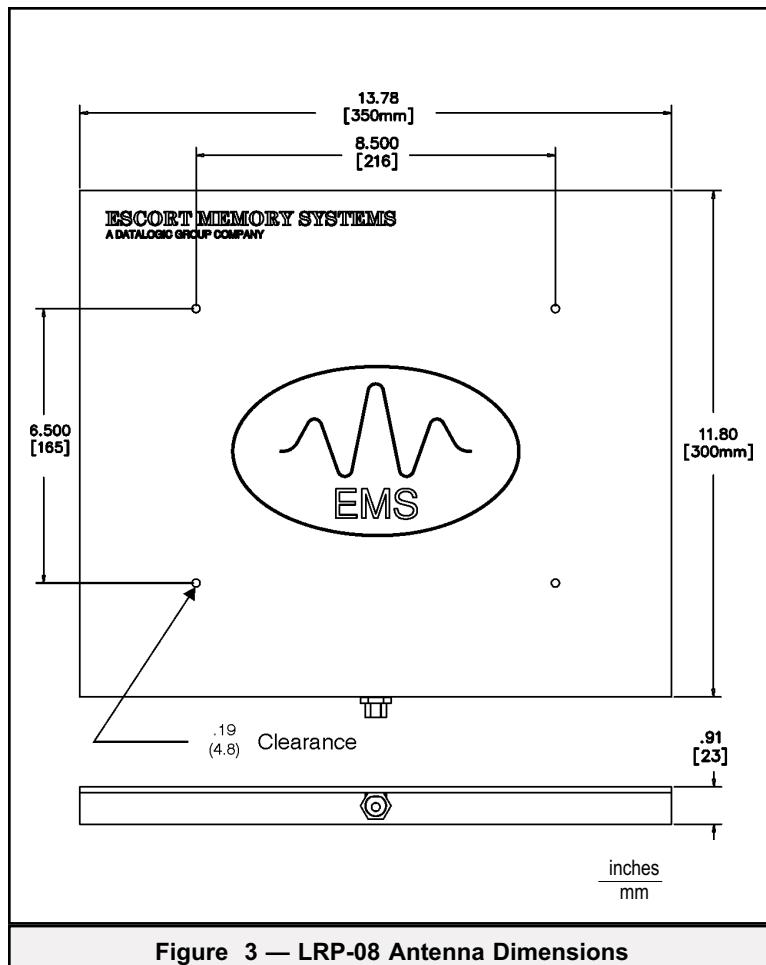
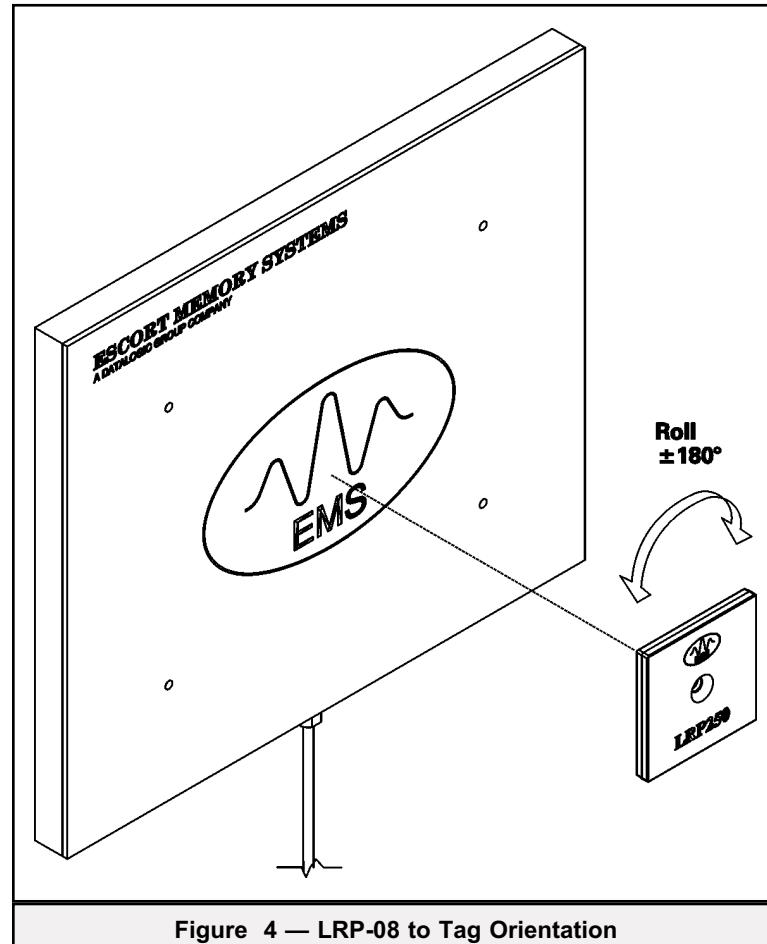



Figure 3 — LRP-08 Antenna Dimensions

2.2 RF Range and Orientation

Figure 4 shows the correct tag orientation as it passes the antenna. Tables 1 and 2 give the typical ranges of the LRP series tags. Tables 1- 3 give the typical and guaranteed ranges of the LRP series tags.

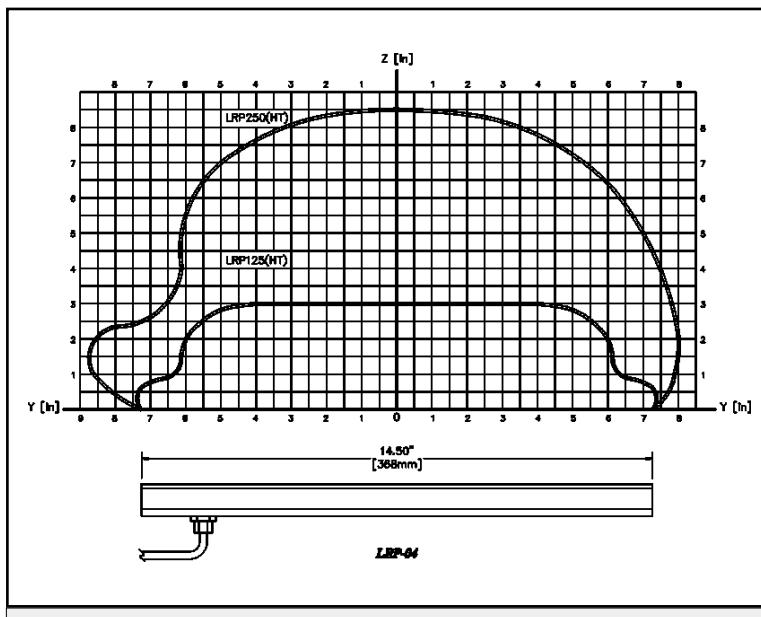


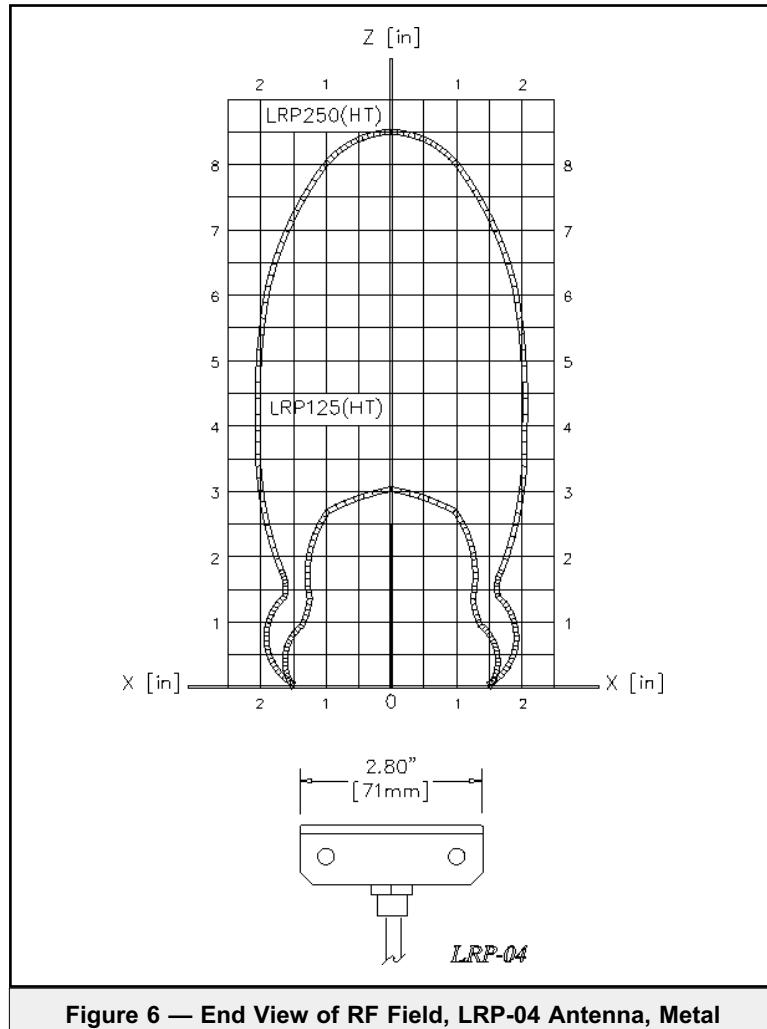
Table 1 — Antenna to Tag Ranges, LRP-04 Antenna with Metal*

Tag	Typical Range (Z) inches/mm	Guaranteed Range inches/mm
LRP125(HT)	2.50/64	2.00/51
LRP250(HT)	6.75/171	6.00/152
LRP250HT-FLX	6.75/171	6.00/152
LRP-L5555	6.75/171	6.00/152
LRP-L2666	5.75/146	5.00/127
LRP-L4982	8.00/203	7.00/178
LRP-L90140	9.00/229	8.00/203
LRP-P125	2.50/64	2.00/51
LRP-P3858	6.00/152	5.00/127
LRP-P5050	7.00/178	6.00/152

*These ranges are determined with metal near the -04 antenna as it would be in most conveyor mountings. The actual tuning and testing of the -04 antenna is done with the antenna mounted between two metal rollers on metal rails. The metal rollers are mounted 1/4" from the antenna.

NOTE: Proximity to metal, CRT devices and other sources of electromagnetic radiation may affect antenna range.

Figure 5 — Side View of RF Field, LRP-04 Antenna, Metal



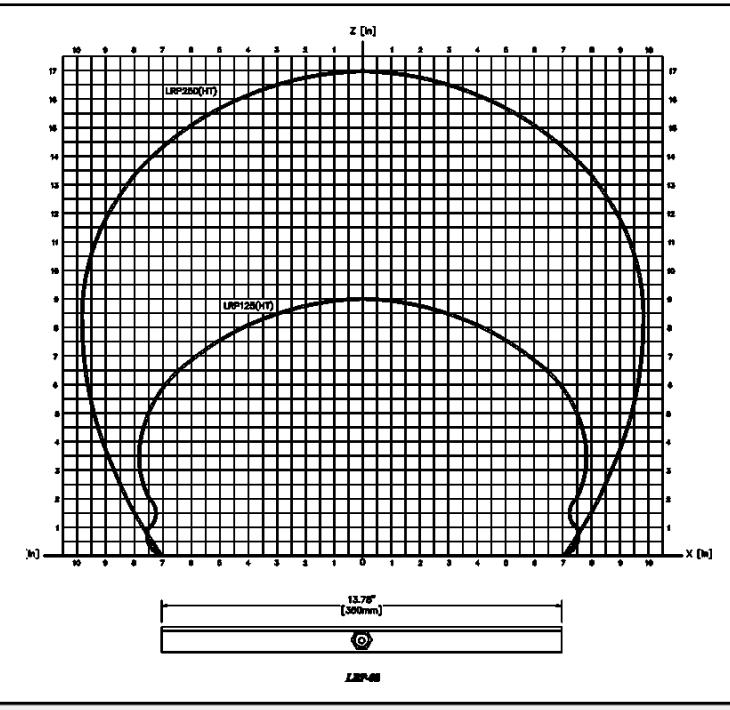

Figure 6 — End View of RF Field, LRP-04 Antenna, Metal

Table 2 — Antenna to Tag Ranges, LRP-04 Antenna, No Metal*

Tag	Typical Range (Z) inches/mm	Guaranteed Range inches/mm
LRP125(HT)	3.00/76	2.25/57
LRP250(HT)	8.50/216	7.50/191
LRP250HT-FLX	8.50/216	7.50/191
LRP-L5555	8.50/216	7.50/191
LRP-L2666	7.00/128	6.00/152
LRP-L4982	10.00/254	9.00/229
LRP-L90140	12.00/305	11.00/279
LRP-P125	3.00/76	2.25/57
LRP-P3858	7.50/190	6.50/165
LRP-P5050	8.50/216	7.50/191

*These ranges calculated with no metal near the antenna.

NOTE: Proximity to metal, CRT devices and other sources of electromagnetic radiation may affect antenna range.

Figure 7 — End View of RF Field, LRP-08 Antenna, No Metal

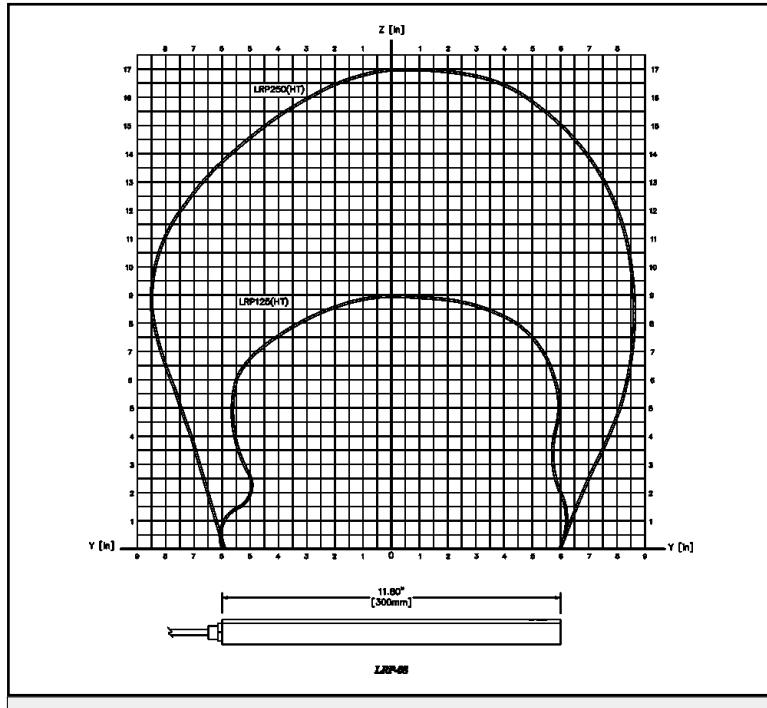
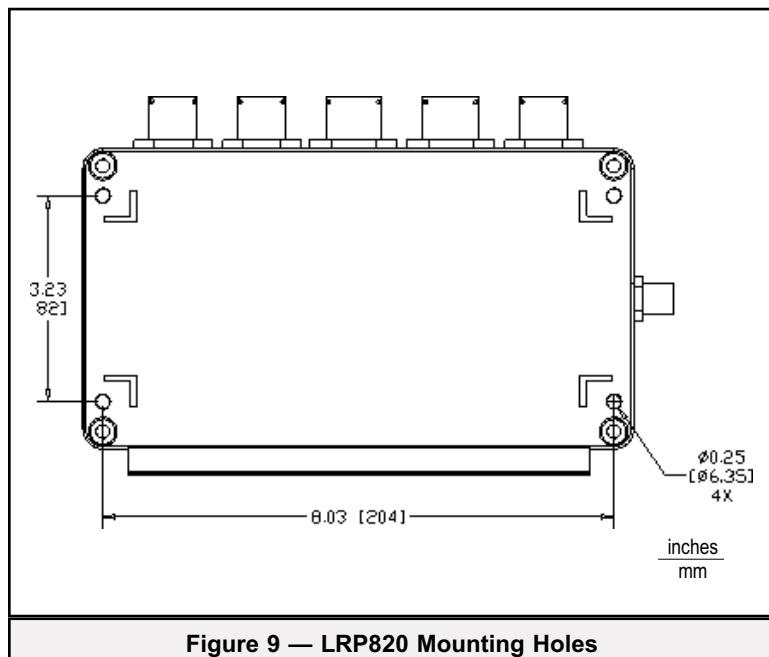


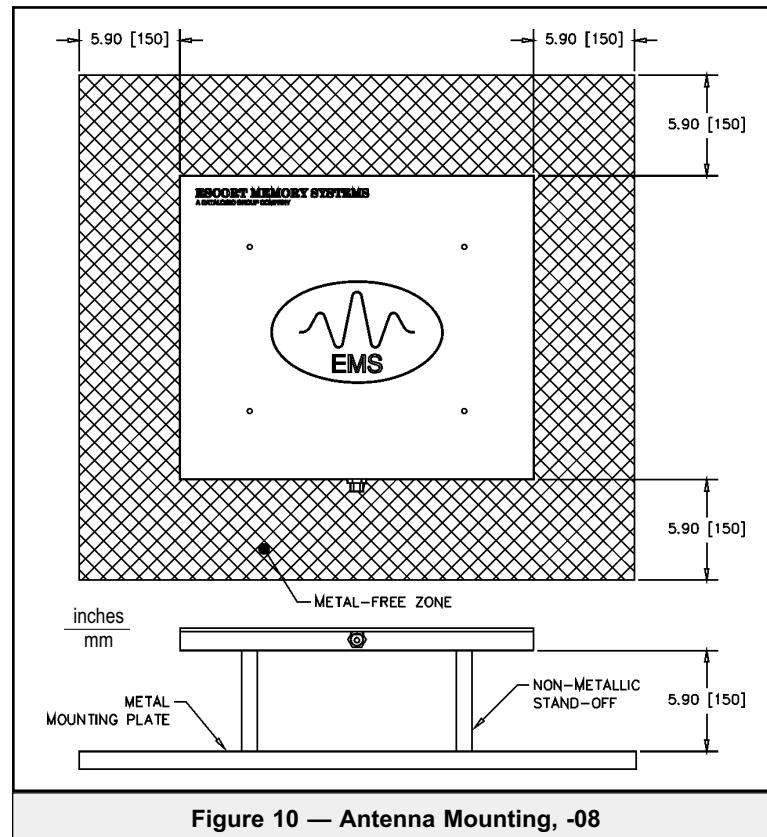
Figure 8 — Side View of RF Field, LRP-08 Antenna, No Metal

Table 3 — Antenna to Tag Ranges, LRP-08 Antenna, No Metal

Tag	Typical Range (Z) inches/mm	Guaranteed Range inches/mm
LRP125(HT)	8.00/203	7.00/178
LRP250(HT)	17.00/432	15.00/381
LRP250HT-FLX	17.00/432	15.00/381
LRP-L5555	17.00/432	15.00/381
LRP-L2666	16.00/406	13.00/330
LRP-L4982	20.00/508	18.00/457
LRP-L90140	25.00/635	22.00/559
LRP-P125	8.00/203	7.00/178
LRP-P3858	16.00/406	14.00/355
LRP-P5050	17.00/432	15.00/381


*These ranges calculated with no metal near the antenna.

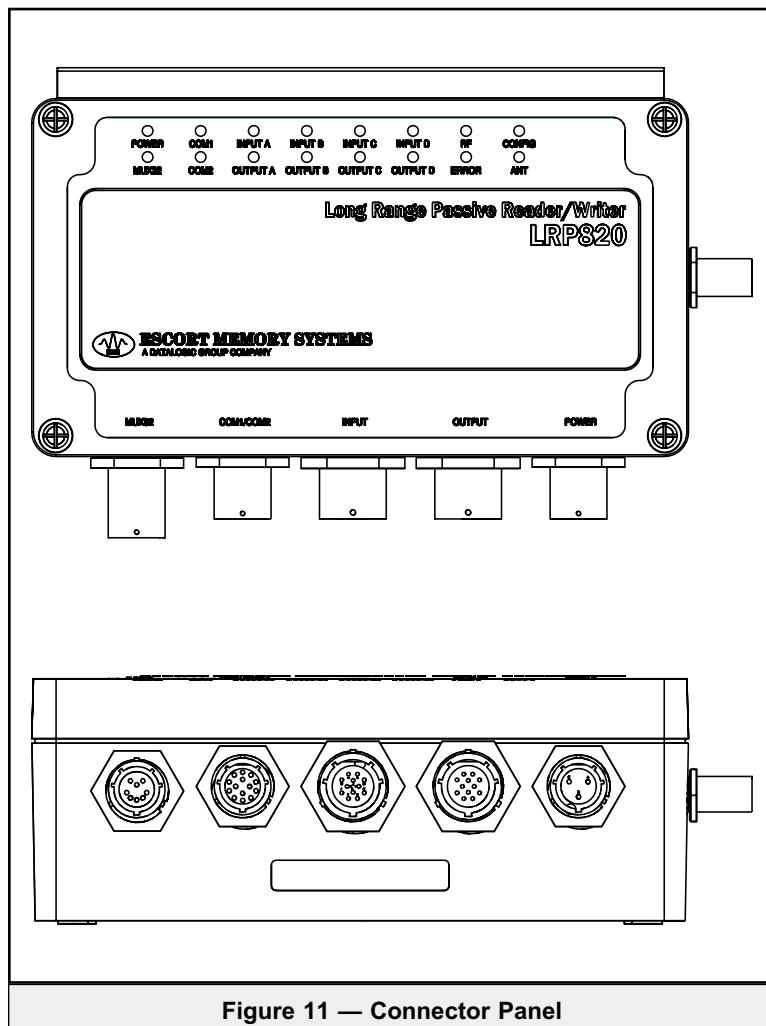
NOTE: Proximity to metal, CRT devices and other sources of electromagnetic radiation may affect antenna range.


2.3 Mounting Guidelines

Electromagnetic radiation and metal affect the range of the LRP820. Mount the LRP820 and antenna to minimize the impact of these factors. The RF field of the antenna can also cause errors when antennas are spaced too closely together. Do not position adjacent antennas closer than 2 meters from each other. The mounting holes are accessed through the inside of the LRP820 Reader/Writer. Refer to Figure 9 for locations and dimensions.

The remote antennas for the LRP820 have a cable length 2 meters. Surrounding the antenna with metal will greatly reduce the reading range of the antenna. As rule of thumb, keep any metal structure away from the antenna at least more than the reading range along the axis, and a third of such distance on the side.

Special mounting instructions must be followed to get optimal read/write performance from the LRP820-08 antenna. Mount the antenna with a minimum 5.90" (150mm) spacing from any metal to the back or sides of the antenna, as shown in Figure 10.


Guidelines

- Isolate the LRP820 and antenna from electromagnetic radiation.
- Avoid surrounding LRP820 and remote antenna with metal.
- Maintain at least 2 meters minimum spacing between adjacent LRP820s or antennas.
- Stay within the guaranteed range for the tag to be used.
- Conform with EIA RS232, RS422 and RS485 standards.

3 POWER AND ELECTRICAL INTERFACE

3.1 Connector Panel

Figure 11 shows the LRP connectors, LEDs and connector panel. Unused connectors can be sealed with optional connector caps. Please see Appendix B for ordering information.

Figure 11 — Connector Panel

3.2 Power Connector

Figure 12 shows the power connector pin designations.

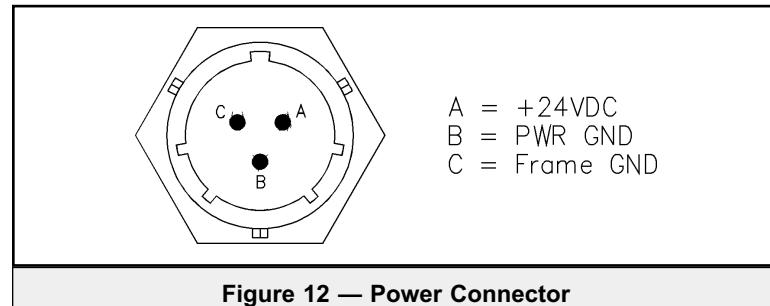


Figure 12 — Power Connector

3.3 COM1/COM2 Connector

Figure 13 shows the connector pin designations for the COM port connections.

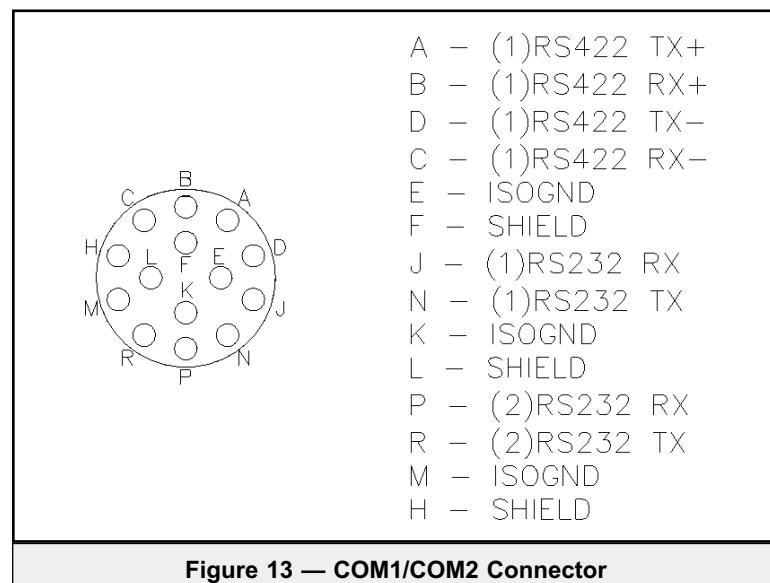


Figure 13 — COM1/COM2 Connector

3.4 MUX32 Connector

Figure 14 shows the connections for the MUX32/RS485 connector.

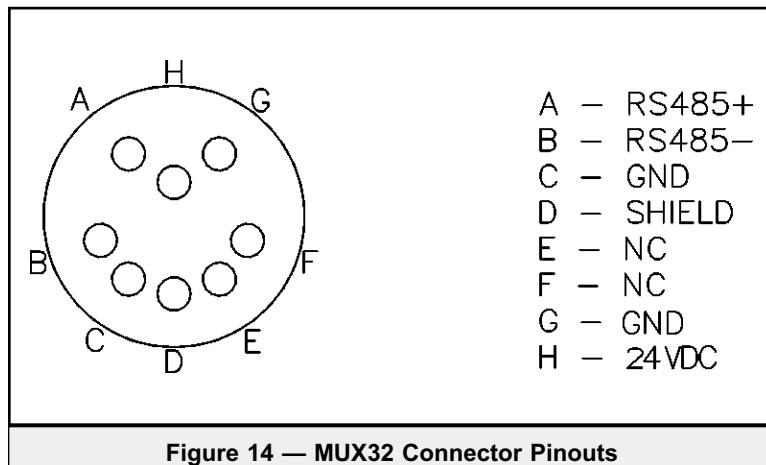


Figure 14 — MUX32 Connector Pinouts

Serial Communications Cabling

Escort Memory Systems recommends that you use Belden cables 3082A (trunkline) and 3084A (dropline) for RS485/RS422 communications. Use Belden cable 9941 for RS232 communications. More information on Belden cables can be found on their web site at www.belden.com.

3.5 Input Connector

Figure 15 shows the Input Connector pin designations.

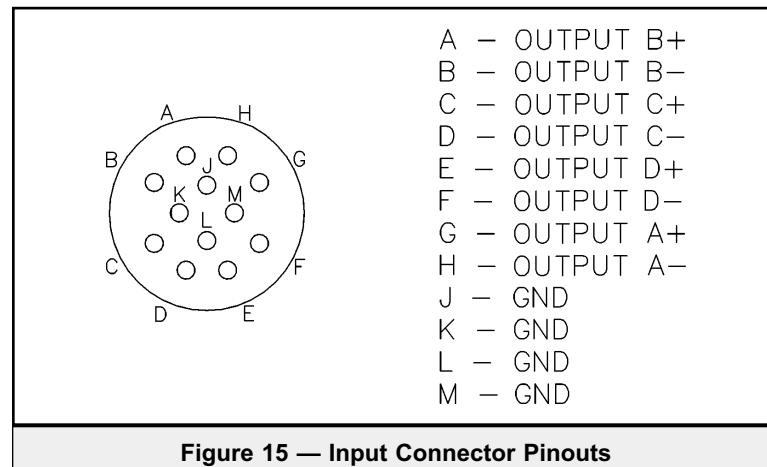


Figure 15 — Input Connector Pinouts

3.6 Output Connector

Figure 16 shows the Output Connector pin designations.

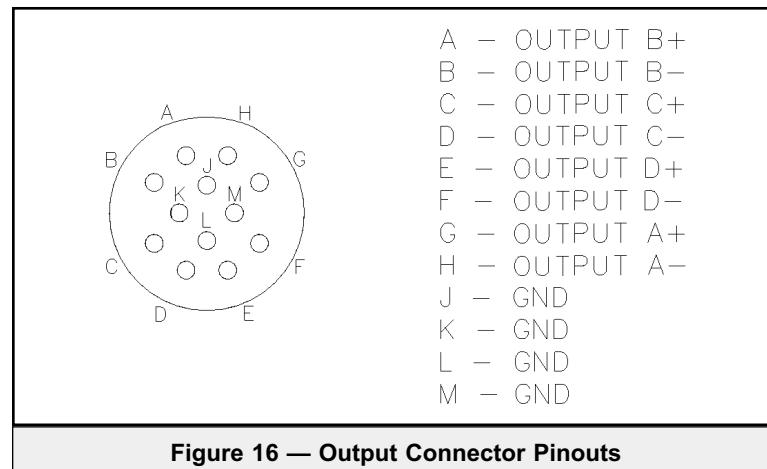
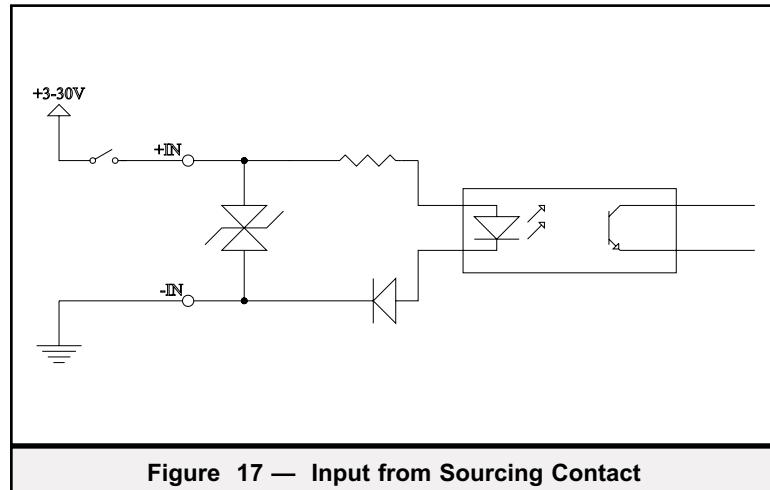


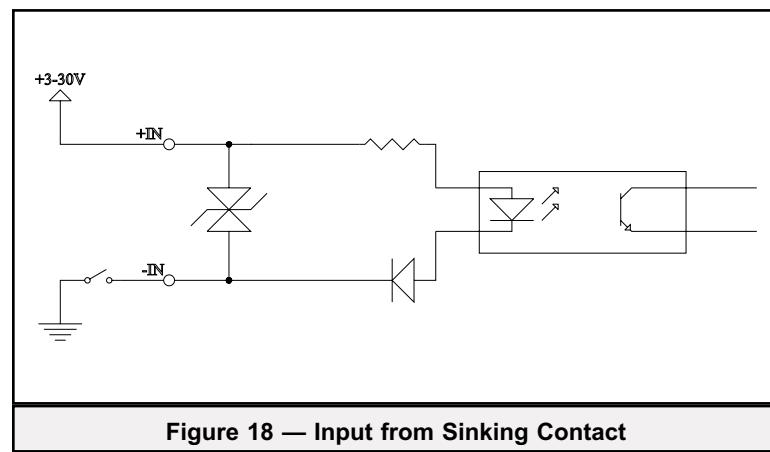
Figure 16 — Output Connector Pinouts

3.7 Digital I/O Wiring


Both the Digital Inputs and Digital Outputs are optically isolated circuits with no common path between any channel terminal and another channel, or between any channel and the LRP820 power. Because they are independent and floating, the external wiring controls their use. The inputs can be configured for sensors with a PNP or NPN output. The outputs can be configured in a Sourcing or Sinking configuration. The examples in Figures 17 through 24 show different connections for common input and output devices.

Inputs

The +IN terminal must be at a higher positive potential than the -IN terminal for current to be sensed correctly. The voltage range is 4.5 to 30V between the +IN and the -IN inputs and the maximum current is 25 mA.


Outputs

The output is limited to 30Vdc when off and 500 mA. These are maximum ratings. A device that operates at 200 mA may destroy the output due to in-rush current if that current exceeds 500 mA (e.g. an incandescent light). The inductive "kick" (back EMF from a collapsing magnetic field) when a relay is released can impose a voltage higher than 30V and destroy the output transistor (use a backwards diode to clamp the back EMF).

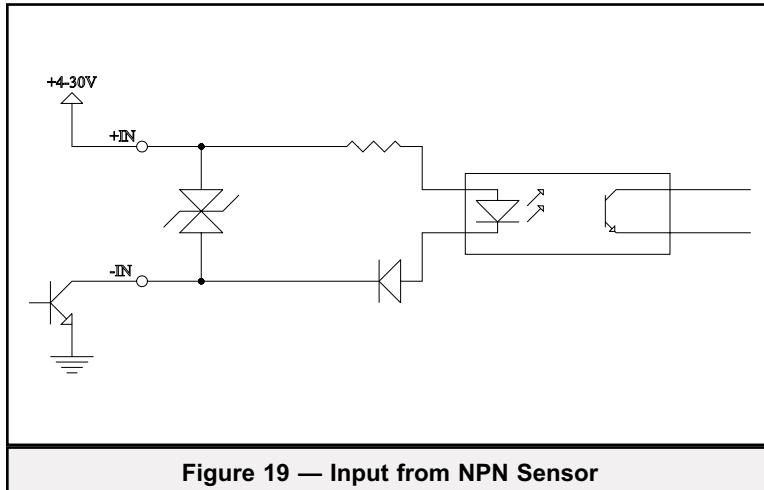

Figure 17 — Input from Sourcing Contact

Figure 17 shows the switch on the high side with the low side grounded. As this is a "Dry" contact (the current is limited to 15 mA) a high quality sealed switch should be used.

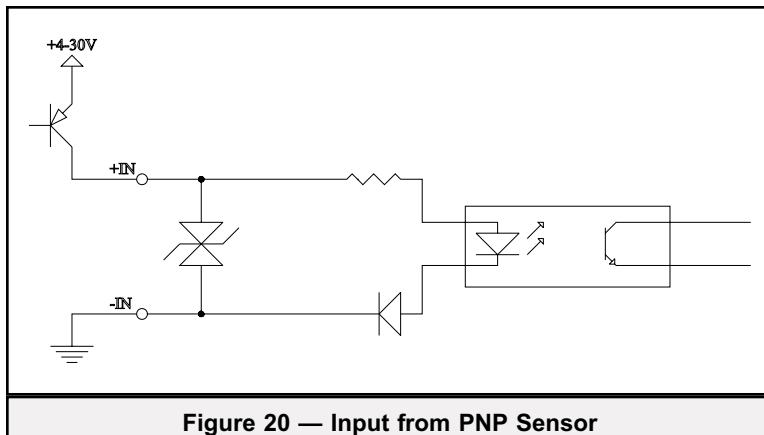

Figure 18 — Input from Sinking Contact

Figure 18 shows a switch connected on the low side with the high side connected to the positive supply. This also requires a high quality sealed contact.

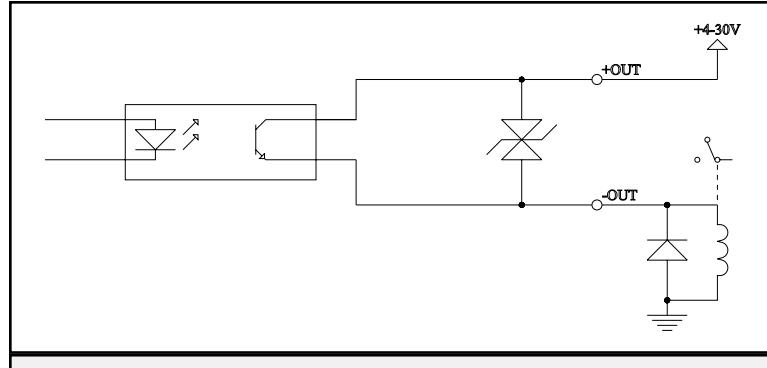

Figure 19 — Input from NPN Sensor

Figure 19 shows an Open Collector NPN output from a photosensor switching to ground. It can be wired as a sinking or low-side contact.

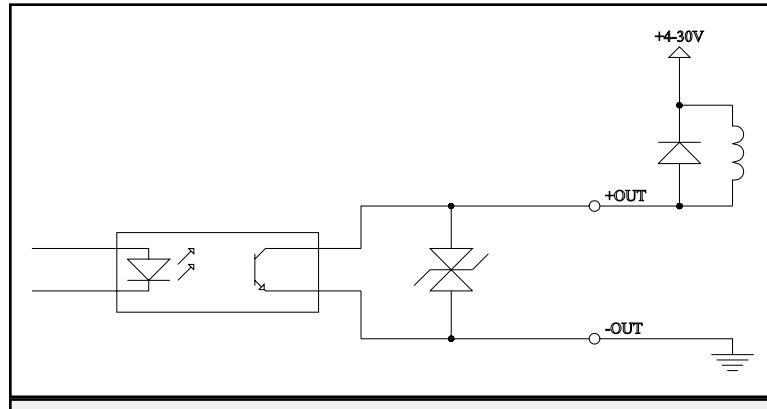

Figure 20 — Input from PNP Sensor

Figure 20 shows an Open Collector PNP output from a photosensor switches to the positive supply. It can be wired as a sourcing or high-side contact.

Figure 21 — Sourcing Output "Contact"

Figure 21 shows a relay connected as a current sourcing "Contact." The relay is grounded and the +OUT terminal goes to the positive supply. The diode across the relay coil is essential to protect the output circuit and reduce noise along the wiring. It should be connected at the relay to minimize the length of wiring that could radiate noise. A 1N4001 or similar diode may be used.

Figure 22 — Sinking Output "Contact"

Figure 22 shows a "Contact" sinking current from a relay, the -OUT terminal is grounded and the relay goes to the positive supply. This configuration must also have a diode across the relay coil to protect the circuit and reduce noise.

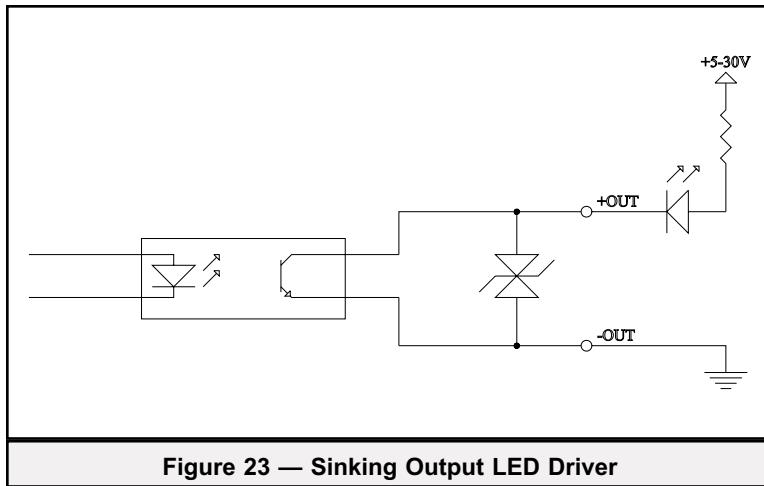


Figure 23 — Sinking Output LED Driver

In Figure 23, the LED and current limiting resistor are in series between the positive supply and the +OUT terminal. The -OUT terminal is grounded. The resistor in series with the LED sets the forward current. 1.2K will provide 20 mA LED current when run from 24 Vdc.

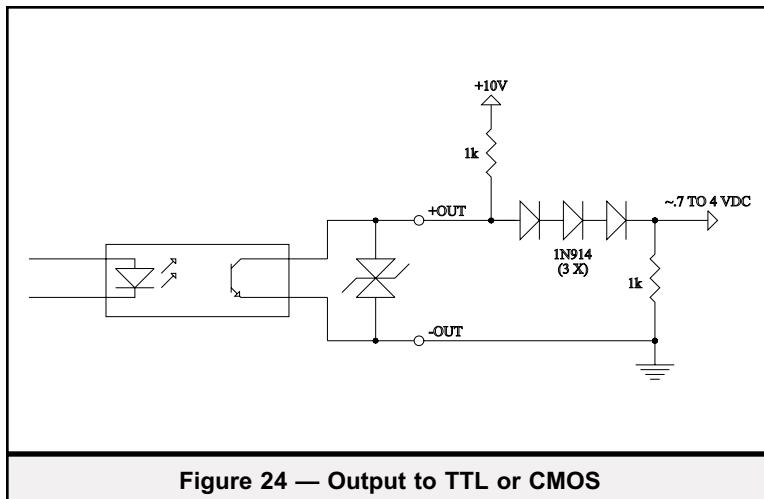


Figure 24 — Output to TTL or CMOS

In Figure 24 the output acts as an Open Collector. This will provide a TTL or CMOS compatible signal when a 1K to 10K pull-up to +5 Vdc (the logic supply) is used.

3.8 Power Requirement

The LRP820 power supply requirements are:

- 18 to 30Vdc
- 31Watts maximum consumption

The maximum current consumption at 24Vdc is 1.3 A.

Power Options

There are three options for powering the LRP820:

- Powered from the MUX32 bus (default)

This is the default configuration for powering the LRP820. If the power available over your MUX32 network is not sufficient to power the LRP820, use one of the following methods.

- Powered via the external power connector

This is how you must power the LRP820 if you are not connecting the LRP820 to a MUX32 network.

- Powered from an external power supply and isolated MUX32 bus power (isolated mode)

When the LRP is powered from both sources, the LRP820 will be opto-isolated from the MUX32 bus.

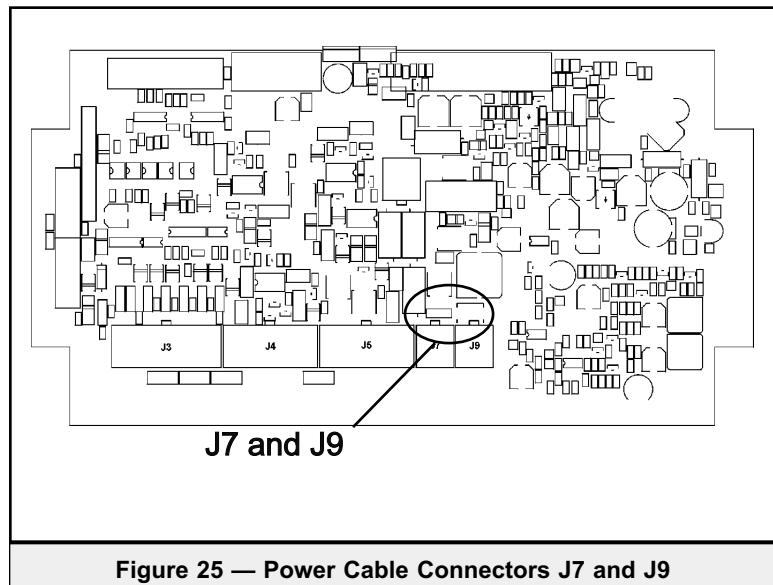
The MUX32 interface board will draw 2.5 mA at 24 Vdc from the MUX32 bus when the LRP820 is powered with this method.

Power to the external power connector should conform to the specifications given above.

If you choose to power the LRP820 with an external supply via the power connector, you must open the LRP820 and change jumper and cable locations. The following sections describe how to make these changes.

Power from the MUX32 Bus

By default, the LRP820 is configured to run with power supplied by the network. In this mode, there is no galvanic isolation between the MUX32 wires and the LRP820, and there is no need for a separate power supply.


If you choose to power the LRP820 from the MUX32 bus, you do not need to make any internal changes to cables and jumpers. Wire power according to the pinouts given for the MUX32 connector in Figure 14, page 16.

Power via the external supply connector

The LRP820 contains components sensitive to electro-static discharge. Take proper grounding precautions before opening the LRP820.

To change the LRP820 to run in isolated mode:

1. Open the LRP820 by loosening the four captive screws that secure the cover.
2. Refer to Figure 25 and then move the power cable, labeled assembly 10-3110, from connector J7 to J9.
3. The MUX32 cable, labeled assembly 10-3111, must then exchange places with the power cable, moving from J9 to J7.

Figure 25 — Power Cable Connectors J7 and J9

4. Referring to Figure 26, locate jumper J1 and move the shunt from pins 4 and 3 to pins 2 and 1.
5. Close the LRP820 and connect a separate +24V power supply to the external power connector shown in Figure 12, page 15.

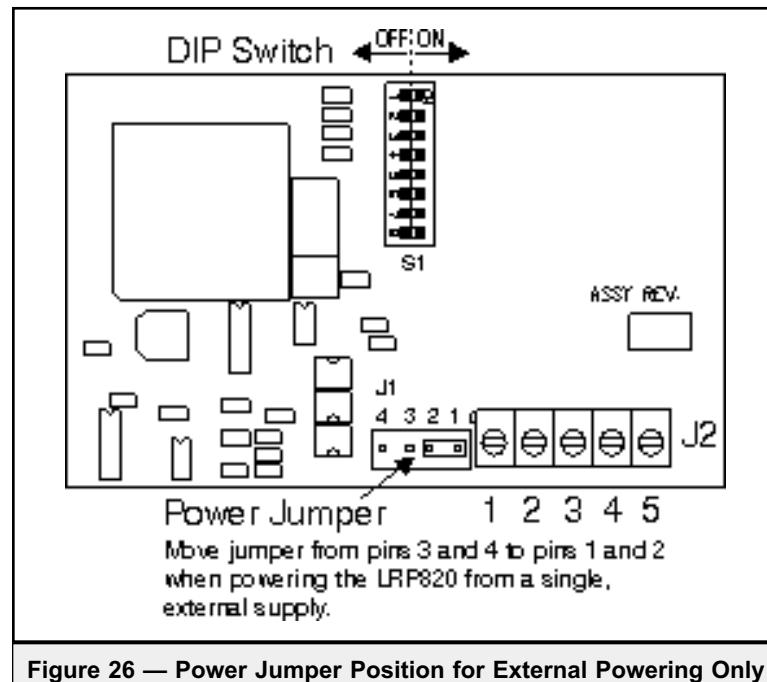


Figure 26 — Power Jumper Position for External Powering Only

Power from the MUX32 bus and from an external power supply

When the LRP is powered from both sources, the LRP820 will be opto-isolated from the MUX32 bus.

The LRP820 contains components sensitive to electro-static discharge. Take proper grounding precautions before opening the LRP820.

To power the LRP820 from an external supply and the MUX32 bus:

1. Open the LRP820 by loosening the four captive screws that secure the cover.
2. Refer to Figure 25 and then move the power cable, labeled assembly 10-3110, from connector J7 to J9.
3. The MUX32 cable, labeled assembly 10-3111, must then exchange places with the power cable, moving from J9 to J7.
4. Make sure that the jumper on J1 of the MUX32 Interface Board connects pins 3 and 4, and then close the LRP820.
5. Connect a separate +24V power supply to the external power connector shown in Figure 12, page 15.
6. Wire the MUX32 interface and power according to the pinouts given for the MUX32 connector in Figure 14, page 16.

3.9 LED Indicators

The LRP820 has 16 LEDs indicating status of the LRP820 Reader/Writer, interface communications, and I/O status.

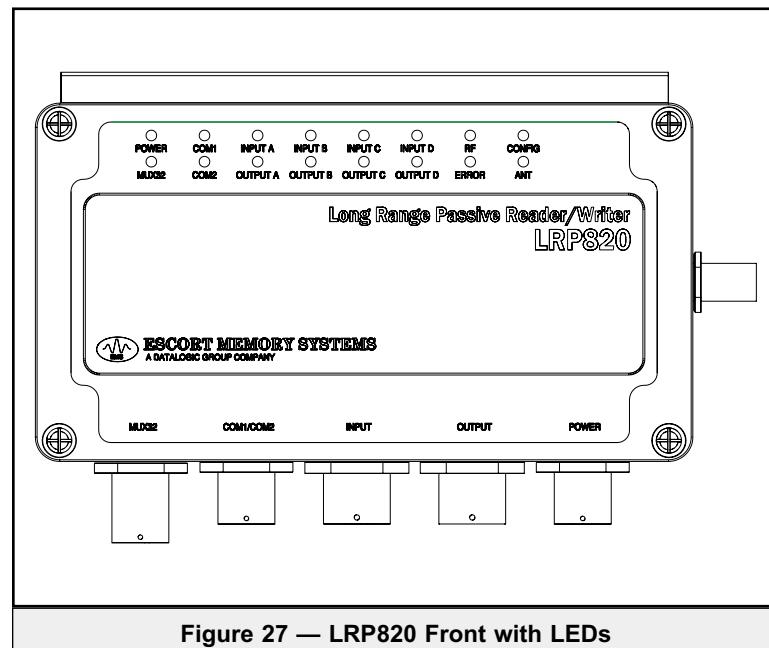


Table 4 shows these LEDs and their meaning.

Table 4 — LED Indicators		
LED	Color	Indicates
PWR	red	The LRP820 is receiving power
RF	green	RF Data Transfer
ANT	red	Antenna On and tag in field
ERROR	Red	Unsuccessful RF command (.5 sec. flash) Entering Download Mode via DIP switch 5 (4 flashes)
CONFIG	green	Successful RF command - 1.5 sec. flash
ERROR + CONFIG	green/red	Entering Operating Mode - 4 alternate flashes Configuration Mode initiated (CTRL-D) - Both LEDS flash 4 times Configuration Mode initiated (CTRL-E) - Both LEDS flash 2 times
IN-A	yellow	Input active
IN-B	yellow	Input active
IN-C	yellow	Input active
IN-D	yellow	Input active
COM1	green/red	Incoming data (RX): red Outgoing data (TX): green
COM2	green/red	Incoming data (RX): red Outgoing data (TX): green
MUX32	red	Data transfer (RX/TX): red
OUT-A	green	Output active
OUT-B	green	Output active
OUT-C	green	Output active
OUT-D	green	Output active

Additional LED behavior may be observed during certain commands and conditions. This behavior will be indicated as appropriate elsewhere in this manual.

4 SERIAL AND BUS COMMUNICATIONS

4.1 Serial Interfaces

The LRP820 has RS232 and RS422 available on the COM1 serial port. COM2 is configured for RS232 communications and is reserved for downloading programs to the LRP820 and for setting up the configuration parameters.

Both RS232 and RS422 interfaces are opto-isolated. The RS422 interface is specially suitable for long cable, noisy environment links.

The specification for the COM1 interface follows:

- Baud rate: 1200, 2400, 4800, 9600, 19200, 38400 bps
- Data: 7, 8
- Parity: Even, Odd, None
- Handshake: None, Xon/Xoff

The specification for the COM2 interface follows:

- Baud rate: 1200, 2400, 4800, 9600, 19200 bps
- Data: 7, 8
- Parity: Even, Odd, None
- Handshake: None, Xon/Xoff

Digital Board DIP Switch

The digital board is mounted inside the top of the LRP820 enclosure. The first 5 switches of the main board sets the COM1 baud rate, electrical interface, and the download options for COM2. Switches 6, 7 and 8 are not used and should remain OFF. When switch 1 and 2 are both set ON, the baud rate is set via the Configuration Menu.

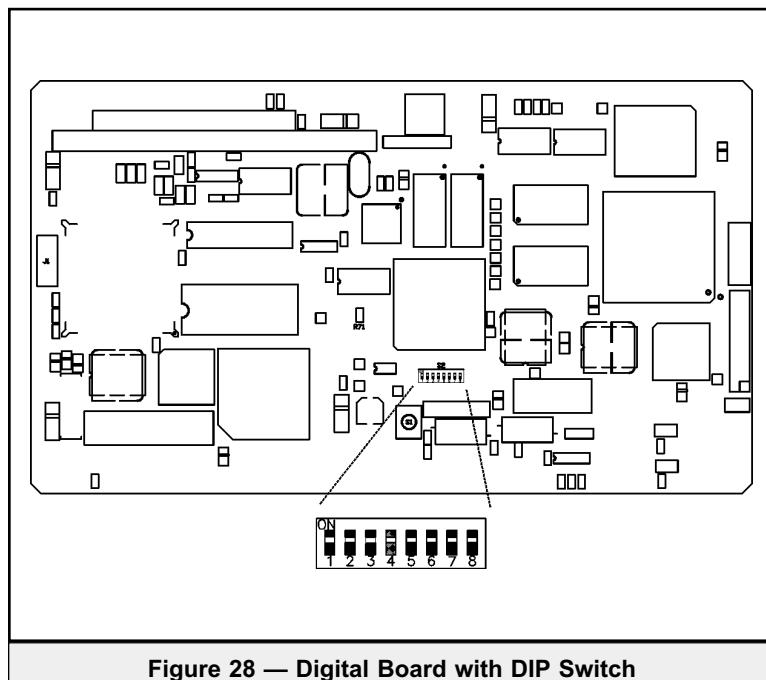


Figure 28 — Digital Board with DIP Switch

NOTE:

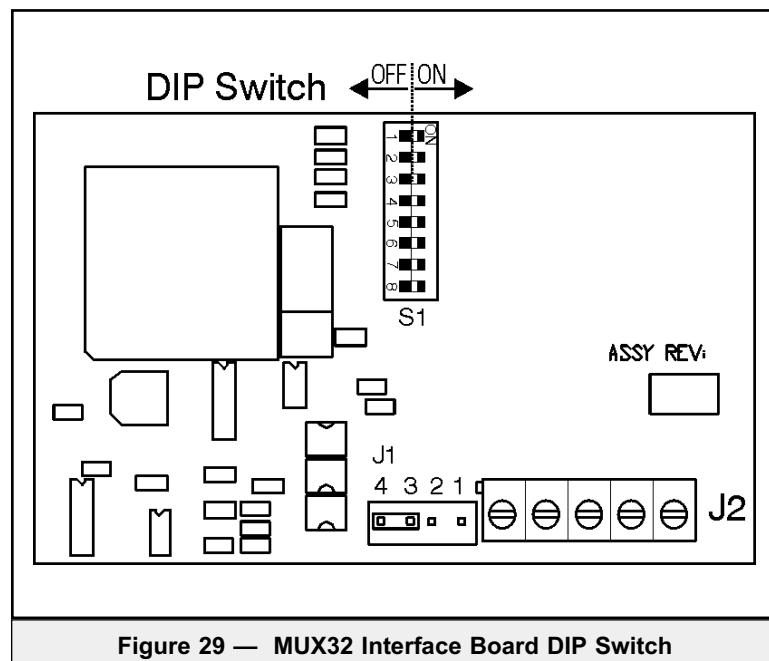
When you set switch 5 ON to enable download, the default parameters will first be restored and saved to the non-volatile memory.

The baud rate configuration on the main board only applies to the RS232 and RS422 serial interfaces. When a Bus Interface (MUX32) is selected, the baud rate is set by the Interface Board DIP switches.

NOTE:

DIP switch 4 must be in the default **ON** position for the MUX32 interface to function.

Table 5 Main Board DIP Switch Settings


Baud rate		Interface			Download/ Restore Defaults
	SW 2	SW 3	SW 4	SW 5	Settings
					9600
ON					19200
	ON				38400
ON	ON				Set from Configuration Menu
					RS232
	ON				RS422
		ON			MUX32
	ON	ON			Reserved
					Disabled
			ON		Enabled Download/ Restore defaults

4.2 Bus Interfaces

The COM1 serial port, beside the RS232 or RS422 options, can be configured as a MUX32 interface.

The following MUX32 bus parameters are set by the DIP switches found on the Interface Board.

- Bus Rate: 9600, 346Kbps
- MUX32 Slave Address

MUX32 Interface Board DIP Switch

S1 is an eight position DIP switch. Switches 1 to 6 set the MUX32 slave address, switches 6 and 7 are reserved and switch 8 sets the bus rate. Table 6 shows these settings.

MUX32 Address					Reserved		Bus Rate		
SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	SW 7	SW 8	Setting	
					Switches 6 and 7 are not used - leave in the OFF position			MUX Addr. 0	
ON								MUX Addr. 1	
	ON							MUX Addr. 2	
ON	ON							MUX Addr. 3	
		ON						MUX Addr. 4	
ON		ON						MUX Addr. 5	
	ON	ON						MUX Addr. 6	
ON	ON	ON						MUX Addr. 7	
			ON					MUX Addr. 8	
ON			ON					MUX Addr. 9	
	ON		ON					MUX Addr. 10	
ON	ON		ON					MUX Addr. 11	
		ON	ON					MUX Addr. 12	
ON		ON	ON					MUX Addr. 13	
	ON	ON	ON					MUX Addr. 14	
ON	ON	ON	ON					MUX Addr. 15	
				ON				MUX Addr. 16	
ON				ON				MUX Addr. 17	
	ON			ON				MUX Addr. 18	
ON	ON			ON				MUX Addr. 19	
		ON		ON				MUX Addr. 20	
ON		ON		ON				MUX Addr. 21	
	ON	ON		ON				MUX Addr. 22	
ON	ON	ON		ON				MUX Addr. 23	
			ON	ON				MUX Addr. 24	
ON			ON	ON				MUX Addr. 25	
	ON		ON	ON				MUX Addr. 26	
ON	ON		ON	ON				MUX Addr. 27	
		ON	ON	ON				MUX Addr. 28	
ON		ON	ON	ON				MUX Addr. 29	
	ON	ON	ON	ON				MUX Addr. 30	
ON	ON	ON	ON	ON				MUX Addr. 31	
					OFF	9600 bps			
					ON	346K bps			

5 MENU CONFIGURATION

The LRP820 feature a menu-driven program designed to give convenient access to the serial parameters, restore defaults or change operating modes.

5.1 How to Enter Menu Configuration

Begin by connecting the COM2 port to your PC host (see table below) and running EC that is available on the diskette or from Escort Memory Systems' Web site at www.ems-rfid.com.

LRP820		Standard PC Serial Port	
COM2 Pin Number	Signal Name	DB9 Pin Number	Signal Name
R	TX	2	RX
P	RX	3	TX
M	GND	5	GND

Set the serial parameters to the LRP820 default settings or the last known state of COM2.

The default settings for COM2 are as follows:

Baud	9600
Parity	None
Data bits	8
Stop bits	1
Flow control	None

If you can not establish communications with COM2, do the following to restore the default values.

1. Place DIP switch five in the ON position and cycle power to the LRP820 or press the reset switch. This will load the default values.
2. Place DIP switch 5 in the OFF position and cycle power once more.

Please refer to Chapter 4, **Serial and Bus Communications** for more information on the serial interface.

To enter the Main Board configuration menu, cycle power or press the reset switch, and then press CTRL-D within the first seven seconds of the initialization. The LRP820 will enter the Configuration Menu. As the LRP820 starts the Configuration program, both the RF and CONFIG LEDs will flash. The Main Board Configuration menu will display with the current main board software version number together with the DSP firmware version.

```
*****
LRP820 Standard Program
Software V1.7C, June 2000
DSP Firmware V1.7B, June 2000
*****
[1] Set-up Operating Parameters
[2] Download New Program
[3] Download DSP Firmware
[4] Exit to Operating Mode
Enter Selection:
```

5.2 Set-up Operating Parameters

To change the operating parameters of the LRP820, enter 1 at the initial menu. The following menu will be displayed, listing the current settings: The exact appearance of the menu display will depend on the settings you have made, and will be updated when you save your changes.

```
Serial Port COM1: RS232, 9600, N, 8, 1, No handshake (DIP switches)
Serial Port COM2: RS232, 9600, N, 8, 1, No handshake
Operating Mode: ABx Standard
RF Communication: Fast Mode
```

```
[1] Set COM1 Parameters
[2] Set COM2 Parameters
[3] Set Operating Mode
[4] Set RF Communications
[5] Restore Factory Defaults
[6] Return to Main Menu
Enter Selection:
```

Enter the number of the sub-menu you wish to enter. When you have made your selection you will be prompted to save your changes to the non-volatile EEPROM. For the new settings to take effect, you must save your changes to the EEPROM and reset the LRP820. If you do not save changes to the EEPROM, the new settings will be effective only until the LRP820 is reset.

The following sub-menus are presented here in their entirety. Actually the menus will presented one option at time, advancing as you enter selections. Some options shown are dependent on earlier selections.

Set COM1 Parameters

Selecting 1 from the above menu will present the following display for the COM1 parameters. These settings are valid only if you are not using the DeviceNet Interfaces (e.g. DIP switch 4 is in the OFF position). Enter the appropriate number at each prompt. The default values are indicated by an asterisk (*).

```
*** Set COM1 Parameters ***
Baud Rate? [0] 1200 [1] 2400 [2] 4800 [3] 9600* [4] 19200 [5] 38400
Data size? [0] 7 bit [1] 8 bit*
Parity? [0] None* [1] Even [2] Odd
Handshake? [0] None* [1] Xon/Xoff
Save Changes to EEPROM? [0] No [1] Yes
```

Set COM2 Parameters

Selecting 2 from the above menu will bring to the following display for the COM2 parameters. Enter the appropriate number at each prompt. The default values are indicated by an asterisk.

```
*** Set COM2 Parameters ***
Baud Rate? [0] 1200 [1] 2400 [2] 4800 [3] 9600* [4] 19200
Data size? [0] 7 bit [1] 8 bit*
Parity? [0] None* [1] Even [2] Odd
Handshake? [0] None* [1] Xon/Xoff
Save Changes to EEPROM? [0] No [1] Yes
```

Set Operating Mode

The Set Operating Mode menu allows you to choose the command protocol the LRP820 will use or configure it to automatically enter Continuous Read Mode upon start-up.

*** Set Operating Mode ***
Command Protocol? [0] ABx Standard* [1] ABx Fast [2] ABx ASCII
Checksum? [0] Disabled* [1] Enabled
Power up in Continuous Read Mode? [0] NO [1] Single Tag [2] Multiple Tag
Start Address (0 to 47)
Length (1 to 48)
Delay Between Duplicate Decodes (0 to 60)
Raw Read Response? [0] NO [1] CR terminate [2] CR/LF terminate
Save Changes to EEPROM? [0] No [1] Yes

Command Protocol?

The LRP820 offers three modes for the transfer of data and commands. ABx Standard (ABxS) uses only the LSB for tag data while ABx Fast (ABxF) will use both the MSB and the LSB for the passing of data. ABx ASCII (ABxA) mode permits RFID operations using seven bit data packets in the form of printable ASCII characters.

Checksum?

ABx Fast and ABx ASCII also permits you to include a checksum in the command. To use a checksum value with the ABx commands, you must enable the checksum option. It is recommended that you enable the checksum option.

Power up in Continuous Read Mode?

You also have the option of setting the LRP820 to start-up in Continuous Read Mode. When you have configured the LRP820 to function in this manner, you do not issue commands to the LRP820. It will, upon start-up, enter directly into a Continuous Read Mode. Since this bypasses the normal command parameters, you must specify the Continuous Read Mode parameters.

The LRP820 will respond to other commands and resume Continuous Read Mode when completed.

If you are using your LRP820 in this mode, you must choose if you want the LRP820 to read a single tag or read multiple tags within the field.

To exit Continuous Read Mode you must either re-enter the configuration menu and select NO from the Power up in Continuous Read Mode option, or issue a Continuous Read command from the host with a read length of 0 as described in Chapter 6, RFID Interface.

Start Address (0-47)

Enter the tag address where you want the read to begin.

Length (1-48)

Enter the length of the read you wish the LRP820 to perform. Make certain that the length value does not exceed the number of possible addresses following the starting tag address. Entering a read length of 0 will disable Continuous Read Mode.

Delay Between Identical Decodes (0-60)

The Delay Between Identical Decodes parameters can have a value of 0 to 60 seconds. When the Delay Between Identical Decodes is set to 0, the LRP820 will continuously read AND transmit tag data to the host. This can flood the buffers and cause communication errors and data loss.

Raw Read Response?

If you have selected ABx Fast or ABx ASCII, you have the option of stripping the command protocol from the data and adding a terminator to separate the data packets. You can choose a CR (0DH) or CR/LF (0DH, 0AH) to terminate the data.

Set RF Communication

The LRP820 should be configured with the default (0) Fast Mode.

```
*** Set RF Communication ***
RF Communication? [0] Fast Mode* [1] Standard Mode 0
Save Changes to EEPROM? [0] No [1] Yes
```

Restore Factory Defaults

It is often helpful during troubleshooting to restore the LRP820 to known default values. To do so, select 1 from this menu.

```
*** Restore Factory Defaults ***
Restore Factory Default? [0] No [1] Yes
```

The restored defaults will be saved to the EEPROM. The communication defaults can also be restored by placing the main board DIP switch number 5 in the ON position and then restarting the LRP820. After you have saved any changes, you must re-initialize the LRP820 with switch 5 in the OFF position.

Return to Main Menu

When you have completed your configuration, entering 5 will return you to the initial menu. Unsaved changes will be effective until the LRP820 is reset. Saved changes will be loaded automatically the next time the LRP820 is reset.

5.3 Download New Program

Before attempting to download new firmware to the LRP820 main board, read the instructions provided in a readme.txt file on the update diskette.

When you select 2 from the Main Menu, the LRP820 will display information on the current program and prompt you to begin the download.

*** Download New Program***

Program Size	:21824 Bytes
Program Checksum	:5AE0H (OK)
Free Program Memory	:39600 Bytes
Flash Write Counter	:2 times
Press a key to start Downloading	

After you have pressed a key, the LRP820 will display:

Send the Intel Hex file. Downloading now.

Send the new program file via your terminal emulation program in ASCII text or Hexadecimal format. Wait 10 seconds after the download is complete before resetting the LRP820.

IMPORTANT:

It is not necessary to download firmware into the unit unless instructed to do so by Escort Memory Systems technical support personnel.

5.4 Downloading DSP Firmware

Before attempting to download new firmware to the LRP820 main board, read the instructions provided in a readme.txt file on the update diskette.

When upgrading software in the controller the number and meaning of the configuration parameters may not match between the old and new software. The old settings may not be interpreted properly with the new software. Be-

fore downloading another version of software, display and record the current configuration settings. Then download the new software version. Set switch 5 (on the main board) on and apply power to initialize the configuration parameters to their default states. When the LEDs stop flashing, turn Switch 5 to Off and press the reset switch. Enter the Configuration Menu and re-enter any non-default configuration parameters.

When you select 3 from the Main Menu, the LRP820 will prompt you to begin the download.

*** Download DSP Firmware***

Press a key to start Downloading

After you have pressed a key, the LRP820 will display:

Send the Intel Hex file. Downloading now.

Send the new firmware via your terminal emulation program in ASCII text or Hexadecimal format. The firmware will be automatically transferred to the DSP Flash Memory. Wait 10 seconds after the download is complete before resetting the LRP820.

Record: 750
Download OK
File Transfer to DSP
Blocco 24/24
DSP Flash Programming...
New Firmware Transferred to DSP

WARNING:

Do not download **INTERFACE BOARD** firmware to the main board.

IMPORTANT:

It is not necessary to download firmware into the unit unless instructed to do so by Escort Memory Systems technical support personnel.

5.5 Exit to Operating Mode

This option is available if you wish to use temporary, unsaved, configuration parameters. The unsaved options you have selected will be used until the LRP820 is reset and the saved parameters are restored.

6 RFID INTERFACE

6.1 Introduction

The LRP820 offer three possible command protocols: ABx Standard, ABx Fast and ABx ASCII. The ABx Standard format is word-based and is compatible with most existing RFID systems by Escort Memory Systems. The ABx Fast protocol is a byte-based packet structure that permits command execution with fewer total bytes transferred. The ABx ASCII protocol is also a byte-based format that permits the execution of RFID commands using a seven-bit ASCII character set.

The ABx Fast protocol is the most efficient and therefore recommended by Escort Memory Systems. Table 7 on page 39 lists the ABx commands available for the LRP820.

The LRP820 command set is made of two subsets: the ‘Non-Anticollision’ commands and the ‘Anticollision’ commands. The Anticollision commands allow you to manage the multiple-tags-in-field capability of the LRP system.

Command Timeout

Most commands have a timeout value that is used to limit the time the LRP820 will attempt to complete the specified operation. This value is given in 1 ms increments with a maximum value of 65,534 ms (FFFEH). A timeout value of 0 will generate a syntax error.

Between 500ms and 1000ms is recommended for a timeout value for single tag commands. Shorter timeouts may result in diminished range. A 30ms timeout value is the shortest allowable timeout and should only be used for short range, single tag command applications. Multiple tag commands will require longer timeout values. For time critical applications the timeout value should be tested to obtain the maximum performance value. A longer timeout value does not mean that the command will take any longer to execute if the tag being addressed is in the field, it only represents the period of time (in milliseconds) the unit will attempt to execute the command. If the tag is present, the response time to execute the command will be the same whether the timeout is 100ms or 10,000ms.

Table 7 - ABx Command Set Listing

Non-Anticollision Commands

04 Hex	Fill Tag
05 Hex	Block Read
06 Hex	Block Write
07 Hex	Read Tag Serial Number
08 Hex	Tag Search
0D Hex	Continuous Block Read
10 Hex	Set Output
11 Hex	Input Status

Anticollision Commands

84 Hex	Fill Tag All*
85 Hex	Block Read All*
86 Hex	Block Write All*
87 Hex	Read Tag SN All*
88 Hex	Tag Search All*
89 Hex	EAS Set/Reset
8A Hex	EAS Start/Stop
8D Hex	Continuous Read All*
8E Hex	Memory Lock All*
94 Hex	SN Fill
95 Hex	SN Block Read
96 Hex	SN Block Write
97 Hex	SN Block Read All*

*These commands can not be used with a MUX32 interface.

NOTE:

The delay between the characters of the command packet the LRP820 cannot be longer than 200 ms.

MUX32 and Anticollision Limitations

MUX32 does not support the following “All” commands in multiple tag-in-field mode (i.e. Anticollision Index is not 0):

Command Number	Command
84H	Fill Tag All
85H	Block Read All
86H	Block Write All
87H	Read Tag SN All
88H	Tag Search All
8DH	Continuous Read All
97H	SN Block Read All

The entire command set is available for point-to-point serial communications.

6.2 ABx Error Codes

Non-Anticollision Error Codes

The LRP820 will return an error if it encounters a fault during operation. Table 8 lists the possible error codes in Hexadecimal format.

Table 8 — Non-Anticollision Error Codes

Error Code	Description
04H	Fill Operation has failed
05H	Block Read has failed
06H	Block Write has failed
08H	Search Tag Operation failed
21H	Input Command does not match pre-defined format (syntax error)

Additionally there are internal DSP errors, F1H through F5H, for use by Escort Memory Systems technical support.

ABx Standard

ABxS error codes are returned in the LSB of the second register passed to the PLC. The format of the error response is shown below.

MSB	LSB	Remarks
AAH	FFH	Command Error
00H	XXH	Error Code
FFH	FFH	Message Terminator

A Block Write fail error message would appear as: AAFF 0006 FFFFH.

ABx Fast

The format of the error response is shown below.

Field	Bytes Contents
Header <STX><STX>	02H 02H
Response Size	00H 02H
Error Flag	FFH
Error Code	XXH
Checksum	XXH
Terminators <ETX>	03H

A Block Write fail error message would appear as: 0202 0002 FF06 F803H.

ABx ASCII

The format of the error response is shown below.

Field	# of ASCII characters	Contents
Header <STX><STX>	2	<STX> 02H <STX> 02H
Response Size	4	Packet length in bytes excluding the header, response size, checksum and terminator bytes
Error Flag	2	FFH
Error Code	2	XXH - see Table 7 for details
Checksum	2	XXH - optional checksum
Terminators <ETX>	1	<ETX> 03H

In ABx ASCII format the response size is the number of hex values and not the number of ASCII characters used to represent the hex value.

A Block Write fail error message would appear as an ASCII character string: <STX><STX>0002FF06F8<ETX>.

In hexadecimal the command appears as:

02H 02H 30H 30H 30H 32H 46H 46H 30H 36H 46H 38H 03H

Anticollision Status Byte

When the anticollision commands encounter a fault condition they indicate the error in a STATUS byte returned in the response. If any of the flag bits of the Status byte are set, then an error has occurred during command execution. The format of the response is in all other ways, the same as a successful response.

The STATUS byte is defined as follows:

7	6	5	4	3	2	1	0
Antenna Failure	R/W Error	Collisions	Internal Error	Timeout	Verify Error	Reserved	Reserved

Some of the error conditions are the same as found in the non-anticollision commands, some are new and relate only to the anticollision.

If any of the flag bits of the returned Status are set, then that condition occurred during the command execution. Multiple conditions can occur in the same command.

Antenna Failure	There is an error at the antenna
R/W error	Error during the tag memory access
Collision	Collisions detected: more than one tag in the field answered to the LRP820 at the same time, meaning a higher Anticollision Index probably needs to be set
Internal Error	Internal error in low-level firmware (contact Escort Memory Systems technical assistance)
Timeout	Timeout expired
Verify Error	Set when re-read verification fails

Syntax Errors

Syntax errors (error code 21H) will be returned in the same format as described for the non-anticollision commands.

6.3 Anticollision Commands

Family Interrogation

The anticollision commands always have a Family ID and an Anticollision Index as parameters. These parameters manage the read/writes when multiple tags are in the same reading field. The Family ID and Anticollision Index can be used separately or together. If the Family ID is zero, that feature is disabled, if the Anticollision Index is zero, the multiple tag-in-field feature is disabled as well.

If both the features are disabled, the commands operate exactly the same as the Non-Anticollision commands.

Family ID

The Family ID is a 1 byte field in the LRP tag memory at address 0. When the Family ID parameter is set to 0, the command is broadcast to all the tags in the field. On the other hand, if it is not equal to 0, only the tags with the specified Family ID in byte 0 will respond to the LRP820.

This feature can help in implementing a multi-level organization of the tags, by permitting the selective reading of tags by Family ID. This gives faster access to the tags than by using Anticollision Index alone. As previously noted, Family ID and the Anticollision Index can be used together for increased efficiency.

When using the Family ID feature, the first byte of tag memory is reserved, and thus only 47 bytes are allowed to be used. When the feature is disabled, 48 bytes are available for user data.

For this reason, in the read and write commands, once the parameter Family ID is not equal to zero, the addresses can go from 1 to 47, and the size from 0 to 47. However, when the Family Code is zero, the addresses can start from 0, and the size can be up to 48.

In order to initialize a tag with a chosen Family ID, byte 0 in the tag must be set to that value by means of a Block Write or a Block Write All command.

Anticollision Index

The Anticollision Index controls the tag reading algorithm to achieve the fastest reading speed for the number of tags expected in the reading field at any given moment. It can also disable the multiple tag-in-field feature.

The Anticollision Index should be set in relation to the maximum number of tags possibly present in the reading field at one time. Setting the Anticollision Index higher increases the number of tags that will be expected to be read in the field. Lowering the Index speeds up the tag read operation. Selecting the Anticollision Index is therefore a tradeoff choice between the number of tags in the reading field, and the time required to read/write to them. Regardless of the index setting, ALL tags present will be read. The index simply makes the process more efficient.

None of the Anticollision Index values will absolutely limit the number of tags that can be read by the LRP820. The following table can assist you in setting the Index value, but tests should be done to find the best value. The allowed values are from 0 to 7.

Anticollision Index	Max number of tags
0	1 (*)
1	2-4
2	4-8
3	8-16
4	16-32
5	32-64
6	64-128
7	>128

(*) anticollision disabled

Some commands return or have as a parameter, the Serial Number (SN). The tag serial number is a unique read-only, 64 bit (8 bytes) code in the tag memory. SN commands can be used to selectively write to a specific tag, identified by the SN. Target tag can be identified with a previous SN read command.

Note that the anticollision commands, except SN Block Write, SN Fill and Tag Search All, will return a response packet only after the timeout is expired. If the command has the Anticollision Index set to 0, then a response will be returned after the first successful operation.

The Anticollision Commands return a successful response whenever the operation has been successfully completed on at least 1 tag. They will return an Error Response when no tag, as permitted by the Family ID and Anticollision Index, can be found in the antenna field.

Note also that all the start addresses, byte lengths and packet sizes are expressed in 2 byte words, in order to be compatible with the HMS commands and to allow future developments.

6.4 ABx Standard Protocol

The ABx standard is a binary protocol, word (2-byte) oriented, so the syntax table reports the Most Significant Byte (MSB) and the Least Significant Byte (LSB). In the serial transmission, the MSB is transmitted first.

ABxS Command 4 (04H): Fill Tag

DESCRIPTION

Fill an RFID tag with a one byte value over multiple contiguous addresses.

DISCUSSION

This command is commonly used to clear an RFID tag's memory. It writes a one byte value repetitively across a specified range of tag addresses.

The fill function requires one data value byte, a starting address, and a fill length. It will then proceed to fill the tag with the data value byte, starting at the specified start address for the specified number of consecutive bytes. When Fill Length is set to 0, the LRP820 will write fill data from the start address to the end of the tag's memory. The timeout value is given in 1 msec increments and can have a value of 1EH to FFFE (65,534 ms). When the timeout is set to 0, the LRP820 will return a syntax error.

Field	Remarks
Command	Command number in hex preceded by AAH
Start Address	The tag address where the fill will start
Fill Length	The number of tag addresses to be filled in bytes
Timeout	Timeout value given in 1 ms units (1EH - FFFE)
Data Value Byte	The byte to be used as fill
Message Terminator	FFFFH

EXAMPLE

Writes 'A' (41H) to the tag starting at address 0005H for the following next consecutive 10 bytes. A timeout of 2 seconds (07D0H = 2000 x 1 msec increments) is set for the completion of the configuration.

Command from Host

MSB	LSB	Remarks
AAH	04H	Perform Command 4
00H	05H	Start Address = 0005H
00H	0AH	Fill Length= 10 bytes (000AH)
07H	D0H	Timeout value
00H	41H	Data Value Byte = 41H
FFH	FFH	Message Terminator

Response from LRP820

MSB	LSB	Remarks
AAH	04H	Command echo
FFH	FFH	Message Terminator

ABxS Command 5 (05H): Block Read

DESCRIPTION

Read a block of data from an RFID tag.

DISCUSSION

This command is used to read segments of data from contiguous areas of tag memory. It is capable of handling up to 48 bytes of data transferred to the host with one command. The timeout value is given in 1 msec increments and can have a value of 1EH to FFFEH (65,534 ms). When the timeout is set to 0, the LRP820 will return a syntax error.

The Block Read command consists of a start address and length, followed by the message terminator, FFFFH, as shown below. If the read range exceeds the last tag address, the LRP820 will return error message 21H, invalid format.

The data read from the tag is returned in the LSB of the register, and the MSB is always 00H.

Field	Remarks
Command	Command number in hex preceded by AAH
Start Address	The tag address where the read will start
Read Length	The number of tag addresses to be read
Timeout	Timeout value given in 1 ms units (1EH - FFFEH)
Message Terminator	FFFFH

EXAMPLE:

Reads 8 bytes of data from the tag starting at address 0001H. A timeout of 2 seconds (07D0H = 2000 x 1 msec increments) is set for the completion of the Block Read.

Command from Host

MSB	LSB	Remarks
AAH	05H	Perform Command 5
00H	01H	Start Address = 0001H
00H	08H	Read Block Length = 8 bytes (0008H)
07H	D0H	Timeout Value
FFH	FFH	Message Terminator

Response from LRP820

MSB	LSB	Remarks
AAH	05H	Command echo
00H	52H	Read Data 1 = 52H
00H	46H	Read Data 2 = 46H
00H	49H	Read Data 3 = 49H
00H	44H	Read Data 4 = 44H
00H	20H	Read Data 5 = 20H
00H	54H	Read Data 6 = 54H
00H	61H	Read Data 7 = 61H
00H	67H	Read Data 8 = 67H
FFH	FFH	Message Terminator

ABxS Command 6 (06H): Block Write

DESCRIPTION

Write a block of data to an RFID tag.

DISCUSSION

This command is used to write segments of data to contiguous areas of tag memory. It is capable of transferring up to 48 bytes of data transferred from the Host with one command. The timeout value is given in 1 msec increments and can have a value of 1EH to FFFEH (65,534 ms). When the timeout is set to 0, the LRP820 will return a syntax error.

The Block Write command consists of a start address followed by the data stream to be written to the RFID tag. If the write range exceeds the last tag address, the LRP820 will return error message 21H, invalid format. The LRP820 will also return an error if the write length is 0.

The data to be written to the tag is contained in the LSB of the register, and the MSB is always 00H.

Field	Remarks
Command	Command number in hex preceded by AAH
Start Address	The tag address where the write will start
Write Length	The number of tag addresses to be written to in bytes
Timeout	Timeout value given in 1 ms units (1EH - FFFEH)
Write Data	The data to be written
Message Terminator	FFFFH

EXAMPLE:

Writes 4 bytes of data to the tag starting at address 0020H. A timeout of 2 seconds (07D0H = 2000 x 1 msec increments) is set for the completion of the Block Write.

Command from Host

MSB	LSB	Remarks
AAH	06H	Perform Command 6
00H	20H	Start Address = 0020H
00H	04H	Write Length = 4 bytes
07H	D0H	Timeout Value
00H	52H	Write Data 1 = 52H
00H	46H	Write Data 2 = 46H
00H	49H	Write Data 3 = 49H
00H	44H	Write Data 4 = 44H
FFH	FFH	Message Terminator

Response from LRP820

MSB	LSB	Remarks
AAH	06H	Command echo
FFH	FFH	Message Terminator

ABxS Command 7 (07H): Read Tag Serial Number

DESCRIPTION

This command retrieves the eight-byte tag serial number.

DISCUSSION

Each LRP tag has an unique (2^{64} possible numbers) serial number. This number cannot be changed and is not part of the 48 available data bytes. The tag serial number will be returned in the LSB only, with the MSB as 00H.

Field	Remarks
Command	Command number in hex preceded by AAH
Timeout	Timeout value given in 1 ms units (1EH - FFFEH)
Message Terminator	FFFFH

EXAMPLE:

This example will wait until a tag is in range and then reads the 8-byte serial number. In this example the ID is 1E6E3DC200000000H in hexadecimal.

Command from Host

MSB	LSB	Remarks
AAH	07H	Perform Command 7
07H	D0H	Timeout
FFH	FFH	Message Terminator

Response from LRP820

MSB	LSB	Remarks
AAH	07H	Command Echo
00H	1EH	First SN byte
00H	6EH	Second SN byte
00H	3DH	Third SN byte
00H	C2H	Fourth SN byte
00H	00H	Fifth SN byte
00H	00H	Sixth SN byte
00H	00H	Seventh SN byte
00H	00H	Eighth SN byte
FFH	FFH	Message Terminator

ABxS Command 8 (08H): Tag Search

DESCRIPTION

Check to see if there is an RFID tag in the LRP820 field.

DISCUSSION

This command will activate LRP820 to "look" for a tag in the RF field. If the LRP820 finds a tag it will return a command echo to the host. The timeout value is given in 1 msec increments and can have a value of 1EH to FFFEH (65,534 ms). When the timeout is set to 0, the LRP820 will return a syntax error. If no tag is present, it will return an error message. See Section 6.2 for more information on error codes.

Field	Remarks
Command	Command number in hex preceded by AAH
Timeout	Timeout value given in 1 ms units (1EH - FFFEH)
Message Terminator	FFFFH

EXAMPLE

Checks for an RFID tag in the RF field. A timeout of 2 seconds (07D0H = 2000 x 1 msec increments) is set for the completion of the Tag Search.

Command from Host

MSB	LSB	Remarks
AAH	08H	Perform Command 8
07H	D0H	Timeout Value
FFH	FFH	Message Terminator

Response from LRP820

MSB	LSB	Remarks
AAH	08H	Command echo
FFH	FFH	Message Terminator

ABxS Command D (0DH): Continuous Block Read

DESCRIPTION

When in Continuous Block Read mode, the LRP820 sends block reads continuously to any tag in range of the antenna. When a tag enters the RF field, it is read and the data passed to the host computer. The LRP820 continues to read the tag but will not send the same data to the host until the tag has been outside the RF field for a specified time period. This Delay Between Identical Decodes parameter prevents redundant data transmissions when the LRP820 is in Continuous Block Read mode.

DISCUSSION

The initiate/cancel Continuous Block Read command contains three parameters: read length, start address, and delay between identical decodes. The read length parameter switches the mode. Any valid, non-zero length (1-48) will set the LRP820 into Continuous Block Read mode. A read length value of 00H will turn Continuous Block Mode off.

The Delay Between Identical Decodes parameters can have a value of 0 to 60 seconds. When the Delay Between Identical Decodes is set to 0, the LRP820 will continuously read AND transmit tag data to the host. This can flood the buffers and cause communication errors and data loss.

If the LRP820 receives other commands from the host, it will execute them and then resume Continuous Block Read mode. To exit Continuous Block Read mode, issue the command with a read length of 0.

In Continuous Block Read mode, the LEDs will display as follows:

LED	Behavior	Description
ANT LED	ON	Assumes the Antenna is powered and functioning
CONFIG LED	BLINK	Tag entered the RF field
RF LED	ON	A tag has been read and is still in the field
RF LED	OFF	A read tag has been out of range for the specified time

The command is formatted as follows.

Field	Remarks
Command	Command number in hex preceded by AAH
Start Address	2 byte value for the start address in the tag
Read Length	2 byte value for the block read length
Delay Between Identical Decodes	Time the tag must be out of the antenna range before the LRP820 will transmit data again from that tag. Value is expressed in 1 second units.
Message Terminator	FFFFH

EXAMPLE

This example places the LRP820 in Continuous Block Read mode and reads 8 bytes of data from the tag starting at address 0001H. A delay between identical reads of 2 seconds (0002H = 2 x 1 second increments) is set.

Command from Host

MSB	LSB	Remarks
AAH	0DH	Perform Command D
00H	01H	Start address
00H	08H	Read 8 bytes
00H	02H	2 second delay
FFH	FFH	Message Terminator

Response from LRP820

MSB	LSB	Remarks
AAH	0DH	Command echo
FFH	FFH	Message Terminator

The LRP820 will first return an acknowledgment of the command followed by a response containing read data when a tag enters the antenna field.

Response from LRP820

MSB	LSB	Remarks
AAH	0DH	Command echo
00H	52H	Read data byte 1
00H	46H	Read data byte 2
00H	49H	Read data byte 3
00H	44H	Read data byte 4
00H	41H	Read data byte 5
00H	20H	Read data byte 6
00H	54H	Read data byte 7
00H	61H	Read data byte 8
FFH	FFH	Message Terminator

To exit Continuous Block Read mode, Send the command with the read length variable set to 0 as shown below. The value of the other variables are not considered.

Command from Host

MSB	LSB	Remarks
AAH	0DH	Perform Command D
00H	01H	Start address
00H	00H	Read 0 bytes/end mode
00H	02H	2 second delay
FFH	FFH	Message Terminator

Response from LRP820

MSB	LSB	Remarks
AAH	0DH	Command echo
FFH	FFH	Message Terminator

ABxS Command 10 (10H): Set Output

DESCRIPTION

Set the levels of the output lines and output LEDs "A" through "D."

DISCUSSION

This command uses bit logic to set the levels of the digital output lines. The four least significant bit toggle the output levels; 1 = ON and 0 = OFF. The following chart shows the hex values for all output high combinations. To reset all output, issue the command with 00H in the second word.

MSB	LSB	Remarks	LSB Bit 3 Output D	LSB Bit 2 Output C	LSB Bit 1 Output B	LSB Bit 0 Output A
00H	00H	Reset A, B, C, D	0	0	0	0
00H	01H	Set Output A - Reset B, C, D	0	0	0	1
00H	02H	Set Output B - Reset A, C, D	0	0	1	0
00H	03H	Set Output A, B - Reset C, D	0	0	1	1
00H	04H	Set Output C - Reset A, B, D	0	1	0	0
00H	05H	Set Output A, C - Reset B, D	0	1	0	1
00H	06H	Set Output B, C - Reset A, D	0	1	1	0
00H	07H	Set Output A, B, C - Reset D	0	1	1	1
00H	08H	Set Output D - Reset A, B, C	1	0	0	0
00H	09H	Set Output A, D - Reset B, C	1	0	0	1
00H	0AH	Set Output B, D - Reset A, C	1	0	1	0
00H	0BH	Set Output A, B, D - Reset C	1	0	1	1
00H	0CH	Set Output C, D - Reset A, B	1	1	0	0
00H	0DH	Set Output A, C, D - Reset B	1	1	0	1
00H	0EH	Set Output B, C, D - Reset A	1	1	1	0
00H	0FH	Set Output A, B, C, D	1	1	1	1

Field	Remarks
Command	Command number in hex preceded by AAH
Output Pattern	Hex value for the bit output settings
Message Terminator	FFFFH

EXAMPLE

The following example sets Output B only and resets A, C, and D.

Command from Host

MSB	LSB	Remarks
AAH	10H	Perform Command 10
00H	02H	Set Output B
FFH	FFH	Message Terminator

Response from LRP820

MSB	LSB	Remarks
AAH	10H	Command echo
FFH	FFH	Message Terminator

ABxS Command 11 (11H): Input Status

DESCRIPTION

Retrieves the input line levels.

DISCUSSION

This command uses bit logic to monitor the levels of the digital input lines. The four least significant bits display the input levels; 1 = ON and 0 = OFF. The following chart shows the hex values for all input conditions that can be returned in the second word of the response.

MSB	LSB	Remarks	LSB Bit 3 Input D	LSB Bit 2 Input C	LSB Bit 1 Input B	LSB Bit 0 Input A
00H	00H	Inputs A, B, C, D, OFF	0	0	0	0
00H	01H	Input A, ON - B, C, D, OFF	0	0	0	1
00H	02H	Input B, ON - A, C, D, OFF	0	0	1	0
00H	03H	Input A, B, ON - C, D, OFF	0	0	1	1
00H	04H	Input C, ON - A, B, D, OFF	0	1	0	0
00H	05H	Input A, C, ON - B, D, OFF	0	1	0	1
00H	06H	Input B, C, ON - A, D, OFF	0	1	1	0
00H	07H	Input A, B, C, ON - D, OFF	0	1	1	1
00H	08H	Input D, ON - A, B, C, OFF	1	0	0	0
00H	09H	Input A, D, ON - B, C, OFF	1	0	0	1
00H	0AH	Input B, D, ON - A, C, OFF	1	0	1	0
00H	0BH	Input A, B, D, ON - C, OFF	1	0	1	1
00H	0CH	Input C, D, ON - A, B, OFF	1	1	0	0
00H	0DH	Input A, C, D, ON - B, OFF	1	1	0	1
00H	0EH	Input B, C, D, ON - A, OFF	1	1	1	0
00H	0FH	Input A, B, C, D, ON	1	1	1	1

Field	Remarks
Command	Command number in hex preceded by AAH
Message Terminator	FFFFH

EXAMPLE

The following example shows only Input B is ON.

Command from Host

MSB	LSB	Remarks
AAH	11H	Perform Command 11
FFH	FFH	Message Terminator

Response from LRP820

MSB	LSB	Remarks
AAH	11H	Command echo
00H	02H	Input B ON
FFH	FFH	Message Terminator

ABxS Command 84 (84H): Fill Tag All

DESCRIPTION

Fill all RFID tags-in-field or all tags in the same family with a one byte value over multiple contiguous addresses.

DISCUSSION

This command is commonly used to clear an RFID tag's memory. It writes a one byte value repetitively across a specified range of tag addresses. All tags present in the antenna field with the specified Family ID will be affected by this command.

The fill function requires one data value byte, a starting address, and a fill length. It will then proceed to fill the tag with the data value byte, starting at the specified start address for the specified number of consecutive bytes.

The Fill Length must be set to a non-zero value (1-48). The timeout value is given in 1 msec increments and can have a value of 1EH to FFFEH (65,534 ms). When the Anticollision Index is not zero (multiple tag-in-field enabled), the LRP820 will return a response after the timeout expires. If the Anticollision Index is 0, a response is returned when a successful operation is performed on 1 tag or when the timeout has expired. When the timeout is set to 0, the LRP820 will return a syntax error.

Field	Remarks
Command	Command number in hex preceded by AAH
Family Code	Tag Family ID - 00H = all tags
Anticollision index	Number of tags expected in field
Start Address	The tag address where the fill will start
Fill Length	The number of tag addresses to be filled (1-48)
Timeout	Timeout value given in 1 ms units (1EH - FFFEH)
Data Value Byte	The byte to be used as fill
Message Terminator	FFFFH

NOTE:

This command can not be used over a MUX32 interface.

A response to a successful command will follow this form.

Field	Remarks
Command Echo	Command number in hex preceded by AAH
Number of Tags filled	Number of tags found in the field and filled
Command Status	One byte Error status
Message Terminator	FFFFH

EXAMPLE

Writes 'A' (41H) to all tags of family 01H, starting at tag address 0005H for the following next consecutive 40 bytes with four to eight tags expected in the field.. A timeout of 2 seconds (07D0H = 2000 x 1 msec increments) is set for the completion of the Fill All Tag. The Anticollision Index is set to 2 so 4 to 8 tags will be expected. Four tags are successfully filled within the timeout.

Command from Host			Response from LRP820		
MSB	LSB	Remarks	MSB	LSB	Remarks
AAH	84H	Perform Command 84	AAH	84H	Command Echo
01H	02H	Tag Family 01/ Index 2	04H	08H	Ntag/Status
00H	05H	Start Address	FFH	FFH	Message Terminator
00H	28H	Fill Length			
07H	D0H	Timeout			
00H	41H	Fill byte			
FFH	FFH	Message Terminator			

ABxS Command 85 (85H): Block Read All

DESCRIPTION

Read a block of data from all RFID tags-in-field or those with the specified Family ID.

DISCUSSION

This command is used to read segments of data from contiguous areas of tag memory. It is capable of handling up to 48 bytes of data transferred to the host with one command. The timeout value is given in 1 msec increments and can have a value of 1EH to FFFEH (65,534 ms). When the timeout is set to 0, the LRP820 will return a syntax error message 21H.

The Block Read All consists of Tag Family ID and an Anticollision Index, a start address and length, followed by a timeout value and the message terminator, FFFFH. If the read length exceeds the last tag address, the LRP820 will return a syntax error message 21H.

The data read from the tag is returned in the LSB of the register, and the MSB is always 00H.

A special termination packet (AAH FFH) is sent after the timeout expires. When the Anticollision Index is not zero (multiple tag-in-field enabled), the LRP820 will return a response after the timeout expires. If the Anticollision Index is 0, the command returns a response after the successful operation on one tag or when the timeout expires. No termination packet is sent when the Anticollision Index is set to 0.

Field	Remarks
Command	Command number in hex preceded by AAH
Tag Family	Tag Family ID - 00H = all tags
Anticollision index	Number of tags expected in field
Start Address	The tag address where the read will start
Read Length	The number of tag addresses to be read
Timeout	Timeout value given in 1 ms units (1EH - FFFEH)
Message Terminator	FFFFH

NOTE:

This command can not be used over a MUX32 interface.

EXAMPLE:

Reads 4 bytes of data from the tag starting at address 0001H. A timeout of 2 seconds (07D0H = 2000 x 1 msec increments) is set for the completion of the Block Read All. The Family ID byte is set to zero so all tags will be read. The Anticollision Index is set to 2, so 4 to 8 tags will be expected. Three tags respond with read data.

Command from Host			Response from LRP820		
MSB	LSB	Remarks	MSB	LSB	Remarks
AAH	85H	Perform Command 85	AAH	85H	Command Echo/Tag 1
00H	02H	Tag Family 00/ Index 2	00H	30H	Data byte 1/Tag 1
00H	01H	Start Address	00H	31H	Data byte 2/Tag 1
00H	04H	Read Length	00H	32H	Data byte 3/Tag 1
07H	D0H	Timeout	00H	33H	Data byte 4/Tag 1
FFH	FFH	Message Terminator	FFH	FFH	Terminator/ Tag 1
			AAH	85H	Command Echo/Tag 2
			00H	40H	Data byte 1/Tag 2
			00H	41H	Data byte 2/Tag 2
			00H	42H	Data byte 3/Tag 2
			00H	43H	Data byte 4/Tag 2
			FFH	FFH	Terminator/ Tag 2
			AAH	85H	Command Echo/Tag 3
			00H	34H	Data byte 1/Tag 3
			00H	35H	Data byte 2/Tag 3
			00H	36H	Data byte 3/Tag 3
			00H	37H	Data byte 4/Tag 3
			FFH	FFH	Terminator/ Tag 3
			AAH	FFH	Termination Packet
			03H	08H	Ntag/Status
			FFH	FFH	Terminator Message

ABxS Command 86 (86H): Block Write All

DESCRIPTION

Write a block of data to all RFID tags or all tags with the same Family ID.

DISCUSSION

This command is used to write segments of data to contiguous areas of tag memory. It is capable of transferring up to 48 bytes of data transferred from the Host with one command. The timeout value is given in 1 msec increments and can have a value of 1EH to FFFEH (65,534 ms). When the timeout is set to 0, the LRP820 will return a syntax error.

The Block Write consists of a Tag Family ID and an Anticollision Index, start address followed by the data stream to be written to the RFID tag. If the write range exceeds the last tag address, the LRP820 will return error message 21H, invalid format.

The data to be written to the tag is contained in the LSB of the register, and the MSB is always 00H.

The LRP820 returns a response when the timeout expires. If the Anticollision Index is 0 the command returns a response after the successful operation on 1 tag, or when the timeout expires.

Field	Remarks
Command	Command number in hex preceded by AAH
Family ID	Tag Family ID - 00H = all tags
Anticollision Index	Number of tags expected
Start Address	The tag address where the write will start
Write Length	The number of tag addresses to be written to in bytes
Timeout	Timeout value given in 1 ms units (1EH - FFFEH)
Write Data	The data to be written (1-48 bytes)
Message Terminator	FFFFH

NOTE:

This command can not be used over a MUX32 interface.

EXAMPLE:

Writes 4 bytes of data, starting at address 0001H. A timeout of 2 seconds (07D0H = 2000 x 1 msec increments) is set for the completion of the Block Write. The Family ID byte is set to 2, so all tags with Family ID of 2 will be written to (four tags in this example). The Anticollision Index is set to 2, so 4 to 8 tags are expected in the field.

Command from Host

MSB	LSB	Remarks
AAH	86H	Perform Command 86
02H	02H	Tag Family/ Index 2
00H	01H	Start Address
00H	04H	Write Length
07H	D0H	Timeout
00H	40H	Data byte 1
00H	41H	Data byte 2
00H	42H	Data byte 3
00H	43H	Data byte 4
FFH	FFH	Message Terminator

Response from LRP820

MSB	LSB	Remarks
AAH	86H	Command Echo
04H	08H	Ntags/Status
FFH	FFH	Message Terminator

ABxS Command 87 (87H): Read Tag SN All

DESCRIPTION

This command retrieves the 8-byte tag serial number from all tags or those with the specified Family ID number.

DISCUSSION

Each LRP tag has an unique (2^{64} possible numbers) serial number. This number cannot be changed and is not part of the 48 available data bytes. The tag serial number is returned in the LSB only, with the MSB as 00H.

The timeout value is given in 1 msec increments and can have a value of 1EH to FFFEH (65,534 ms). When the timeout is set to 0, the LRP820 will return a syntax error. A special termination packet (starting with AAH FFH) is sent when the timeout expires. If the Anticollision Index is 0, a response is returned after successful operation to 1 tag or after the timeout has expired. No termination packet is sent after a successful operation when the Anticollision Index set to 0.

Field	Remarks
Command	Command number in hex preceded by AAH
Family ID	Tag Family ID - 00H = all tags
Anticollision Index	Number of tags-in-field expected
Timeout	Timeout value given in 1 ms units (1EH - FFFEH)
Message Terminator	FFFFH

NOTE:

This command can not be used over a MUX32 interface.

EXAMPLE:

This example will read the 8-byte serial number from Tag Family 2. The Anticollision Index of 1 sets the number of expected tags at 2-4. In this example the ID for the found tag is 1E6E3CD200000000H in hexadecimal. Multiple tags will return a complete response packet for each tag.

Command from Host

MSB	LSB	Remarks
AAH	87H	Perform Command 87
01H	01H	Family ID/ Index 1
07H	D0H	Timeout
FFH	FFH	Message Terminator

Response from LRP820

MSB	LSB	Remarks
AAH	87H	Command Echo
00H	1EH	First SN byte
00H	6EH	Second SN byte
00H	3CH	Third SN byte
00H	D2H	Fourth SN byte
00H	00H	Fifth SN byte
00H	00H	Sixth SN byte
00H	00H	Seventh SN byte
00H	00H	Eighth SN byte
FFH	FFH	Message Terminator
AAH	FFH	Termination packet
01H	08H	Ntags/Status
FFH	FFH	Message Terminator

ABxS Command 88 (88H): Tag Search All

DESCRIPTION

Check to see if there is an RFID tag in the LRP820 field.

DISCUSSION

This command will activate LRP820 to "look" for a tag in the RF field. As soon as the LRP820 finds a tag it will return a command echo to the host. The timeout value is given in 1 msec increments and can have a value of 1EH to FFFE (65,534 ms). When the timeout is set to 0, the LRP820 will return a syntax error. If no tag is present, it will return an error message. See Section 6.2 for more information on error codes.

The number of tags returned can be either 1 (tag found) or 0 (timeout expired without having found a tag).

Field	Remarks
Command	Command number in hex preceded by AAH
Family ID	Tag Family ID - 00H = all tags
Anticollision Index	Number of tags expected
Timeout	Timeout value given in 1 ms units (1EH - FFFE)
Message Terminator	FFFFH

NOTE:

This command can not be used over a MUX32 interface.

EXAMPLE

Checks for an RFID tag in the RF field. A timeout of 1 seconds (07D0H = 2000 x 1 msec increments) is set for the completion of the Tag Search. The Family ID is set for any tag, and the Anticollision Index is set to expect 2-4 tags. One tag is found and the command is successful.

Command from Host

MSB	LSB	Remarks
AAH	88H	Perform Command 88
00H	01H	Family ID/Anticollision Index 1
07H	D0H	2 second Timeout
FFH	FFH	Message Terminator

Response from LRP820

MSB	LSB	Remarks
AAH	88H	Command Echo
01H	00H	Ntags/Status
FFH	FFH	Message Terminator

ABxS Command 89 (89H): EAS Set/Reset All

DESCRIPTION

Sets or resets the EAS feature in tag memory for all tags in range, and of the specified Family, when the command is issued.

DESCRIPTION

The commands contains a 1 byte parameter that enables or Disables the EAS feature in tags that receive the command. When the EAS Set/Reset All command is issued, the LRP820 responds with the number of tags affected (Ntag). If the LRP820 returns a 0 for Ntag, no tags were set or reset by the command.

The timeout value is given in 1 msec increments and can have a value of 1EH to FFFEH (65,534 ms). When the timeout is set to 0, the LRP820 will return a syntax error.

When multiple tag-in-field is enabled (Anticollision Index is not 0), the LRP820 will return a response when the timeout period expires. When multiple tag-in-field is disabled, the LRP820 will return a response when it reads a tag or the timeout expires.

Field	Remarks
Command	Command number in hex preceded by AAH
Family ID	Tag Family ID - 00H = all tags
Anticollision Index	Number of tags expected
Timeout	Timeout value given in 1 ms units (1EH - FFFEH)
Set/Reset	1 = enable, 0 = disable
Message Terminator	FFFFH

EXAMPLE

This example assumes that the tags-in-field are not enabled for the EAS feature. It will enable the EAS feature for tags with Family ID 09H. The Anticollision Index is 2, so 4-8 tags are expected in the field. When the command is issued, 5 tags with Family ID 09H are found and enabled for EAS.

Command from Host

MSB	LSB	Remarks
AAH	89H	Perform Command 89
09H	02H	Family ID/Anticollision Index 2
07H	D0H	Timeout
00H	01H	Enable EAS
FFH	FFH	Message Terminator

Response from LRP820

MSB	LSB	Remarks
AAH	89H	Command Echo
05H	08H	Ntags/Status
FFH	FFH	Message Terminator

ABxS Command 8A (8AH): EAS Start/Stop

DESCRIPTION

If you are using the EAS feature in your application, the EAS Start/Stop command enters and exits the LRP820 from EAS mode.

DISCUSSION

When EAS mode has been started, the LRP820 will return a response when one or more EAS-enabled tags have entered the antenna field. It will send a second response when all EAS-enabled tags have exited the field. The command contains a control byte that toggles EAS: 1 = start, 0 = stop. A Family ID can be set so that only EAS-enabled tags from the specified Family trigger EAS responses. The Anticollision Index is ignored and should be set to 00H for this command.

The EAS mode also controls the CONFIG, ERROR and RF LEDs. The following table explains LED behavior.

LED(s)	Behavior	Description
CONFIG, ERROR, RF LED	OFF	No EAS-enabled tag in field
CONFIG LED	BLINK	EAS-enabled tag entered field.
RF LED	ON	EAS tag has been read. LED will remain ON until all EAS tags have left the field.
ERROR LED	BLINKS	Last EAS tag left the field.

IMPORTANT:

EAS mode prevents any other commands from being acknowledged or executed until EAS has been stopped.

Field	Remarks
Command	Command number in hex preceded by AAH
Family ID	Tag Family ID - 00H = all tags
Start/Stop	1 = start, 0 = stop
Message Terminator	FFFFH

EXAMPLE

This example starts EAS mode. Three responses follow. The first is a command acknowledgment. The LRP820 sends the second when the first EAS-enabled tag enters the field. A third response is sent when field is clear of EAS-enabled tags. Family ID is set to 0 so that any EAS-enabled tag will trigger responses.

Command from Host

MSB	LSB	Remarks
AAH	8AH	Perform Command 8A
00H	00H	Family ID/null byte
00H	01H	Start/Stop
FFH	FFH	Message Terminator

ACT Response from LRP820

MSB	LSB	Remarks
AAH	8AH	Command Echo
FFH	00H	Ntag/Status
FFH	FFH	Message Terminator

When an EAS-enabled tag enters the antennas' field, the LRP820 responds with an EAS tag-in-field response.

Tags-in-Field Response from LRP820

MSB	LSB	Remarks
AAH	8AH	Command Echo
01H	00H	Ntag/Status
FFH	FFH	Message Terminator

When all EAS-enabled tags have left the field, the LRP820 will send the following response.

**EAS Tags Left Field
Response from LRP820**

MSB	LSB	Remarks
AAH	8AH	Command Echo
00H	00H	Ntag/Status
FFH	FFH	Message Terminator

ABxS Command 8D (8DH): Continuous Read All

DESCRIPTION

Starts and stops Continuous Read All mode for multiple tags.

DISCUSSION

Continuous Read All mode is set by the length byte. To start Continuous Read All mode send the command with valid, non-zero value for the length of the read (1-48). Stop the mode by sending the command with a read length of 0.

While in this mode, any other command can be issued and it will be handled properly. After processing the new command, the LRP820 will resume the Continuous Read All mode.

The command has a parameter, tag delay, that can prevent multiple reads of the same tag. A tag is not read a second time until a specified number of tags have been read since it was last read. Allowed value are from 0 to 255 (FFH), where 0 means the tag can be re-read anytime. When Continuous Read All mode is interrupted with other commands, the tag delay count is stopped during execution of the other commands and then resumed.

The LRP820 will respond with an acknowledge packet followed by data packets for each tag read.

CONFIG LED blinks after each packet transmission.

Field	Remarks
Command	Command number in hex preceded by AAH
Family ID	Tag Family ID - 00H = all tags
Anticollision Index	Number of tags expected
Start Address	Tag address for the start of the read
Read Length	1-48 = start, 0 = stop
Tag Delay	Number of tag that must be read before the same tag will be read again (0-255)
Message Terminator	FFFFH

NOTE:

This command can not be used over a MUX32 interface.

EXAMPLE

Reads 4 bytes of data from the tag starting at address 0001H. The Family ID byte is set to zero so all tags will be read. The Anticollision Index is set to 2 so 4 to 8 tags will be expected. The Tag Delay is set to 20 (14H). Three tags respond with read data.

Command from Host

MSB	LSB	Remarks
AAH	8DH	Perform Command 8D
00H	02H	Tag Family 00/ Index 2
00H	01H	Start Address
00H	04H	Read Length
00H	14H	Tag Delay
FFH	FFH	Message Terminator

ACK Response from LRP820

MSB	LSB	Remarks
AAH	8DH	Command Echo
FFH	FFH	Message Terminator

After the LRP820 sends the acknowledgment, it will send the read data from the 3 tags.

Data response from LRP820

MSB	LSB	Remarks
AAH	8DH	Command Echo/Tag 1
00H	30H	Data byte 1/Tag 1
00H	31H	Data byte 2/Tag 1
00H	32H	Data byte 3/Tag 1
00H	33H	Data byte 4/Tag 1
FFH	FFH	Terminator/ Tag 1
AAH	8DH	Command Echo/Tag 2
00H	40H	Data byte 1/Tag 2
00H	41H	Data byte 2/Tag 2
00H	42H	Data byte 3/Tag 2
00H	43H	Data byte 4/Tag 2
FFH	FFH	Terminator/ Tag 2
AAH	8DH	Command Echo/Tag 3
00H	34H	Data byte 1/Tag 3
00H	35H	Data byte 2/Tag 3
00H	36H	Data byte 3/Tag 3
00H	37H	Data byte 4/Tag 3
FFH	FFH	Terminator/ Tag 3

ABxS Command 8E (8EH): Memory Lock All

DESCRIPTION

This command “locks” tag addresses in four byte blocks. Once bytes are locked, they can not be unlocked.

DISCUSSION

The memory can be locked only in 4-byte blocks. The command passes a two byte word with bits assigned to 4-byte blocks that can be locked. Remaining bits can lock the EAS feature and the lock configuration itself.

When multiple tag-in-field is enabled (Anticollision Index is not 0), the LRP820 will return a response when the timeout period expires. When multiple tag-in-field is disabled, the LRP820 will return a response when it locks bytes or the timeout expires.

Attempting to write to locked bytes will return a write timeout error in the status byte. If you write to addresses that contain both locked and non-locked bytes, the LRP820 will return a write error in the status byte.

The configuration word formatted as shown below.

Byte	Bit	Description
LockLSB	0	Tag bytes 0-3
	1	Tag bytes 4-7
	2	Tag bytes 8-11
	3	Tag bytes 12-15
	4	Tag bytes 16-19
	5	Tag bytes 20-23
	6	Tag bytes 24-27
	7	Tag bytes 28-31
LockMSB	8	Tag bytes 32-35
	9	Tag bytes 36-39
	10	Tag bytes 40-43
	11	Tag bytes 44-47
	12	Lock Configuration
	13	Lock EAS feature
	14	Reserved
	15	Reserved

If a bit in the configuration word is set, then the corresponding block in the tag is locked when the command is issued. If a bit in the configuration word is cleared (0), then the corresponding block will not change. Once locked, a block can not be unlocked.

The timeout value is given in 1 msec increments and can have a value of 1EH to FFFE (65,534 ms). When the timeout is set to 0, the LRP820 will return a syntax error.

The command is formatted as shown below.

Field	Remarks
Command	Command number in hex preceded by AAH
Family Code	Tag Family ID - 00H = all tags
Anticollision index	Number of tags-in-field expected
Timeout	Timeout value given in 1 ms units (1EH - FFFE)
LockMSB	Bits 8-15 of the configuration word
LockLSB	Bits 0-7 of the configuration word
Message Terminator	FFFFH

EXAMPLE

This example will lock bytes 0-3 on all tags-in-field with the Family ID of 02H. Two tags are found and locked.

Command from Host

MSB	LSB	Remarks
AAH	8EH	Perform Command 8E
02H	01H	Family ID/anticollision Index
07H	D0H	2 second timeout
00H	01H	Lock Configuration
FFH	FFH	Message Terminator

Response from LRP820

MSB	LSB	Remarks
AAH	8EH	Command Echo
02H	08H	Ntag/Status
FFH	FFH	Message Terminator

ABxS Command 94 (94H): SN Fill

DESCRIPTION

Fills only the RFID tag specified by serial number with a one byte value over multiple contiguous addresses.

DISCUSSION

This command is commonly used to clear an RFID tag's memory. It writes a one byte value repetitively across a specified range of tag addresses. Only the tag with the specified serial number will be affected by this command. The LRP820 will return a response after the successful fill operation or when the timeout expires.

The fill function requires a Family ID and an Anticollision Index, one data value byte, a starting address, and a fill length. Then the command lists the serial numbers of the tag to be filled. It fills the specified tag with the data value byte, starting at the specified start address for the specified number of consecutive bytes. When Fill Length is set to 0, the LRP820 will write fill data from the start address to the end of the tags memory.

The timeout value is given in 1 msec increments and can have a value of 1EH to FFFEH (65,534 ms). When the timeout is set to 0, the LRP820 will return a syntax error. It returns a response when done or when the timeout expires.

Field	Remarks
Command	Command number in hex preceded by AAH
Family Code	Tag Family ID - 00H = all tags
Anticollision index	Number of tags-in-field expected
Start Address	The tag address where the fill will start
Fill Length	The number of tag addresses to be filled
Timeout	Timeout value given in 1 ms units (1EH - FFFEH)
Tag Serial Number	The 8-byte serial number
Data Value Byte	The byte used to fill
Message Terminator	FFFFH

A response to a successful command will follow this form.

Field	Remarks
Command Echo	Command number in hex preceded by AAH
Number of Tags filled	0 = tag not found, 1 = tag filled
Command Status	One byte Error status
Message Terminator	FFFFH

EXAMPLE

Writes 'A' (41H) to a single tag, starting at tag address 0005H for the following next consecutive 40 bytes. The Family ID is turned off and the Anticollision Index is set to expect 2-4 tags. A timeout of 2 seconds (07D0H = 2000 x 1 msec increments) is set for the completion of the configuration.

Command from Host

MSB	LSB	Remarks
AAH	94H	Perform Command 94
00H	01H	Family ID/ Index 1
00H	05H	Start Address
00H	28H	Fill Length
07H	D0H	Timeout
00H	01H	SN byte 1
00H	ACH	SN byte 2
00H	42H	SN byte 3
00H	D0H	SN byte 4
00H	27H	SN byte 5
00H	1CH	SN byte 6
00H	65H	SN byte 7
00H	33H	SN byte 8
00H	41H	Fill byte
FFH	FFH	Message Terminator

Response from Host

MSB	LSB	Remarks
AAH	94H	Command Echo
01H	00H	Ntag/Status
FFH	FFH	Message Terminator

ABxS Command 95 (95H): SN Block Read

DESCRIPTION

Read a block of data from a specified RFID tag.

DISCUSSION

This command is used to read segments of data from contiguous areas of tag memory. It is capable of handling up to 48 bytes of data transferred to the host with one command if there is no tag Family ID. The timeout value is given in 1 msec increments and can have a value of 1EH to FFFEH (65,534 ms). When the timeout is set to 0, the LRP820 will return a syntax error.

The SN Block Read consists of Family ID and an Anticollision Index, a start address and length, followed by a timeout value. The 8-byte serial number of the target tag is specified. If the read length exceeds the last tag address, the LRP820 will return error message in the status byte. It returns a response when done or when the timeout expires.

The data read from the tag is returned in the LSB of the register, and the MSB is always 00H. A special error packet (AAH FFH) is sent if the timeout expires.

Field	Remarks
Command	Command number in hex preceded by AAH
Tag Family	Tag Family ID - 00H = all tags
Anticollision index	Number of tags expected
Start Address	The tag address where the read will start
Read Length	The numbers of tag addresses to be read
Timeout	Timeout value given in 1 ms units (1EH - FFFEH)
Tag Serial Number	8-byte tag serial number
Message Terminator	FFFFH

EXAMPLE:

Reads 4 bytes of data from the tag specified by serial number starting at address 0001H. A timeout of 2 seconds (07D0H = 2000 x 1 msec increments) is set for the completion of the SN Block Read. The Family ID byte is set to zero. The Anticollision Index is set to 2, expecting 4-8 tags in the field.

Command from Host

MSB	LSB	Remarks
AAH	95H	Perform Command 95
00H	02H	Tag Family 00/ Index 2
00H	01H	Start Address
00H	04H	Read Length
07H	D0H	Timeout
00H	ABH	SN byte 1
00H	02H	SN byte 2
00H	F3H	SN byte 3
00H	55H	SN byte 4
00H	C5H	SN byte 5
00H	2DH	SN byte 6
00H	41H	SN byte 7
00H	A0H	SN byte 8
FFH	FFH	Message Terminator

Response from LRP820

MSB	LSB	Remarks
AAH	95H	Command Echo
00H	30H	Data byte 1
00H	31H	Data byte 2
00H	32H	Data byte 3
00H	33H	Data byte 4
01H	00H	Ntag/Status
FFH	FFH	Message Terminator

ABxS Command 96 (96H): SN Block Write

DESCRIPTION

Write a block of data to a single RFID tag specified by its serial number.

DISCUSSION

This command is used to write segments of data to contiguous areas of tag memory. It is capable of transferring up to 48 bytes of data transferred from the Host with one command. The timeout value is given in 1 msec increments and can have a value of 1EH to FFFEH (65,534 ms). When the timeout is set to 0, the LRP820 will return a syntax error.

The SN Block Write consists of a Family ID, Anticollision Index, and start address followed by the data stream to be written to the RFID tag. If the write range exceeds the last tag address, the LRP820 will return an error message 21H, invalid format. It returns a response when done or when the timeout expires.

The data to be written to the tag is contained in the LSB of the register, and the MSB is always 00H.

Field	Remarks
Command	Command number in hex preceded by AAH
Family ID	Tag Family ID - 00H = all tags
Anticollision Index	Number of tags expected
Start Address	The tag address where the write will start
Write Length	The number of tag addresses to be written to
Timeout	Timeout value given in 1 ms units (1EH - FFFEH)
Tag Serial Number	8-byte tag serial number
Write Data	The data to be written (1-48 bytes)
Message Terminator	FFFFH

EXAMPLE:

Writes 4 bytes of data, starting at address 0001H. A timeout of 2 seconds (07D0H = 2000 x 1 msec increments) is set for the completion of the Block Write. The Family ID byte is set to 0 and the Anticollision Index is set to 2 for this example, meaning the LRP820 will be expecting 4-8 tags in the field.

Command from Host

MSB	LSB	Remarks
AAH	96H	Perform Command 96
02H	02H	Tag Family 02/ Index 2
00H	01H	Start Address
00H	04H	Write Length
07H	D0H	Timeout
00H	A4H	SN byte 1
00H	6CH	SN byte 2
00H	18H	SN byte 3
00H	92H	SN byte 4
00H	2DH	SN byte 5
00H	34H	SN byte 6
00H	DEH	SN byte 7
00H	20H	SN byte 8
00H	40H	Data byte 1
00H	41H	Data byte 2
00H	42H	Data byte 3
00H	43H	Data byte 4
FFH	FFH	Message Terminator

Response from LRP820

MSB	LSB	Remarks
AAH	96H	Command Echo
01H	00H	Ntags/Status
FFH	FFH	Message Terminator

ABxS Command 97 (97H): SN Block Read All

DESCRIPTION

Read a block of data from all RFID tags-in-field or those with the specified Family ID. Returns the serial number of the tags read, along with tag data.

DISCUSSION

This command is used to read segments of data from contiguous areas of tag memory. It is capable of handling up to 48 bytes of data transferred to the host with one command if there is no tag family ID. The timeout value is given in 1 msec increments and can have a value of 1EH to FFFEH (65,534 ms). When the timeout is set to 0, the LRP820 will return a syntax error.

The response to this command will contain the serial number of the responding tags preceding the data from those tags. The termination packet is transmitted when the timeout expires. Each packet will be sent to the host as soon as it is available. The returned serial numbers can be used to read/write to tags-in-field via the SN Block Read/Write command.

The SN Block Read All consists of Family ID, Anticollision Index, a start address and length, followed by a timeout value and the message terminator, FFFFH. A special termination packet is sent when the timeout expires. If the Anticollision Index is 0, a response is returned when the operation is successfully completed on 1 tag, or when the timeout expires. A termination packet is not sent for successful completion if the Anticollision Index is 0.

If the read length exceeds the last tag address, the LRP820 will return an invalid format error message (error code 21H).

Field	Remarks
Command	Command number in hex preceded by AAH
Tag Family	Tag Family ID - 00H = all tags
Anticollision index	Number of tags expected
Start Address	The tag address where the read will start
Read Length	The numbers of tag addresses to be read
Timeout	Timeout value given in 1 ms units (1EH - FFFEH)
Message Terminator	FFFFH

NOTE:

This command can not be used with a MUX32 interface.

EXAMPLE:

Reads 2 bytes of data from the tag starting at address 0001H. A timeout of 2 seconds (07D0H = 2000 x 1 msec increments) is set for the completion of the SN Block Read All. The Family ID byte is set to zero so all tags will be read. The Anticollision Index is set to 2 so 4-8 tags are expected. Two tags respond with read data.

Command from Host

MSB	LSB	Remarks
AAH	97H	Perform Command 97
00H	02H	Tag Family 00/ Index 2
00H	01H	Start Address
00H	02H	Read Length
07H	D0H	Timeout
FFH	FFH	Message Terminator

Response from LRP820

MSB	LSB	Remarks
AAH	97H	Command Echo/Tag 1
00H	10H	SN byte 1/Tag 1
00H	43H	SN byte 2/Tag 1
00H	6CH	SN byte 3/Tag 1
00H	73H	SN byte 4/Tag 1
00H	92H	SN byte 5/Tag 1
00H	C0H	SN byte 6/Tag 1
00H	D6H	SN byte 7/Tag 1
00H	54H	SN byte 8/Tag 1
00H	30H	Data byte 1/Tag 1
00H	31H	Data byte 2/Tag 1
FFH	FFH	Terminator/ Tag 1
AAH	97H	Command Echo/Tag 2
00H	08H	SN byte 1/Tag 2
00H	0AH	SN byte 2/Tag 2
00H	81H	SN byte 3/Tag 2
00H	18H	SN byte 4/Tag 2
00H	23H	SN byte 5/Tag 2
00H	CCH	SN byte 6/Tag 2
00H	D0H	SN byte 7/Tag 2
00H	EFH	SN byte 8/Tag 2
00H	40H	Data byte 1/Tag 2
00H	41H	Data byte 2/Tag 2
FFH	FFH	Terminator/ Tag 2
AAH	FFH	Command end
02H	08H	Ntags/Status
FFH	FFH	Message Terminator

6.5 ABx Fast Protocol

The difference from the standard ABx are:

- The command/response packet contains the packet size
- You can include a checksum in the command
- The headers and terminator are ASCII characters
- Since ABx Fast is a binary protocol, the Xon/Xoff handshake cannot be used.

ABx Command Packet Structure:

The command protocol is based on the following minimal packet structure. The data field and the checksum may not be present depending on the command type and your checksum setting.

Field	Number of Bytes	Content
Header	2	<STX><STX> (02H, 02H)
Command Size	2	Packet length in bytes excluding the header, command size, checksum and terminator bytes.
Command	1	Command Code
(Data)	variable	command data/parameters
(Checksum)	1	Optional Checksum
Terminator	1	<ETX> (03H)

Following a successful operation, the LRP820 will respond with the following. The data field and the checksum may not be present depending on your checksum setting.

Field	Number of Bytes	Content
Header	2	<STX><STX> (02H, 02H)
Response Size	2	Packet length in bytes excluding the header, response size, checksum and terminator bytes.
Command	1	Command Echo
(Data)	variable	response data
(Checksum)	1	Optional Checksum
Terminator	1	<ETX> (03H)

If the LRP820 Reader/Writer encounters a fault it will respond with the following:

Field	Number of Bytes	Content
Header	2	<STX><STX> (02H, 02H)
Response Size	2	Packet length in bytes excluding the header, packet size, checksum and terminator bytes.
Error Flag	1	FFH
Error Code	1	Hex error code, see Table 7 for details
(Checksum)	1	Optional Checksum
Terminator	1	<ETX> (03H)

- The Header and Terminator are always STX-STX and ETX respectively.
- All other bytes are interpreted as binary data (0 - 255 dec).
- Fields with two bytes are sent most significant byte (MSB) first.

The sequence for each command is given with the response format in the following section.

Command/Response Size

The ABx Fast requires that the length of the packet be included in the command. All parameters and data between the Command/Response Size and the Checksum or Terminator bytes must be accounted for in the command/response size word. This includes all command codes and parameters such as field definitions for Block Read/Writes. The command/response size will be the same with, or without, a checksum.

Checksum

The optional checksum must be enabled from the operating mode menu to be available. The checksum is calculated by adding all the byte values in the packet (less the values in the header, checksum if present, and terminator), discarding byte overflow and subtracting the byte sum from FFH. Thus, when the packet length through the checksum are added as byte values, the sum will be FFH.

EXAMPLE

The following is a typical command using a checksum.

Command from Host

Field	Contents
Header <STX><STX>	02H 02H
Command Size	00H 03H
Command Code	01H
Timeout	07H D0H
Checksum	24H
Terminators <ETX>	03H

Sum these values to calculate the checksum

The summed values begin with the Command Size and end with the timeout value. That sum, less overflow, is subtracted from FFH for the checksum value.

Thus: $00 + 03 + 01 + 07 + D0 = DB$ $FF - DB = 24H$

The optional Checksum is included in the following command explanations.

ABxF Command 4 (04H): Fill Tag

DESCRIPTION

Fill an RFID tag with a one byte value over multiple contiguous addresses.

DISCUSSION

This command is commonly used to clear an RFID tag's memory. It writes a one byte value repetitively across a specified range of tag addresses.

The fill function requires one data value byte, a starting address, and a fill length. It will fill the tag with the data value byte, starting at the specified start address for the specified number of consecutive bytes. When Fill Length is set to 0, the LRP820 will write fill data from the start address to the end of the tag's memory. The timeout value is given in 1 msec increments and can have a value of 1EH to FFFE (65,534 ms). When the timeout is set to 0, the LRP820 will return a syntax error.

Field	Content
Header	<STX><STX>
Command Size	Packet length in bytes excluding the header, command size, checksum and terminator bytes. 0008H for this command
Command	04H
Start Address	2-byte value for the starting tag address
Fill Length	2-byte value for the length of the fill in number of bytes
Timeout	2-byte value for timeout in 1 ms units. (1EH - FFFE)
Data value byte	1 byte of fill
Checksum	Optional Checksum
Terminator	<ETX>

A response to a successful command will follow this form.

Field	Content
Header	<STX><STX>
Command Size	Packet length in bytes excluding the header, command size, checksum and terminator bytes.
Command	04H
Checksum	Optional Checksum
Terminator	<ETX>

EXAMPLE

Writes 'A' (41H) to the tag starting at address 0005H for the following next consecutive 40 bytes. A timeout of 2 seconds (07D0H = 2000 x 1 msec increments) is set for the completion of the configuration.

Field	Contents	Field	Contents
Header <STX><STX>	02H 02H	Header <STX><STX>	02H 02H
Command Size	00H 08H	Response Size	00H 01H
Command Code	04H	Command Echo	04H
Start address	00H 05H	Checksum	FAH
Block Size	00H 28H	Terminators <ETX>	03H
Timeout, 2 seconds	07H D0H		
Data Value Byte	41H		
Checksum	AEH		
Terminators <ETX>	03H		

ABxF Command 5 (05H): Block Read

DESCRIPTION

Reads a block of data from an RFID tag.

DISCUSSION

This command is used to read segments of data from contiguous areas of tag memory. It is capable of handling up to 48 bytes of data transferred to the host. The timeout value is given in 1 msec increments and can have a value of 1EH to FFFEH (65,534 ms). When the timeout is set to 0, the LRP820 will return a syntax error.

The Block Read consists of a start address and length, followed by a timeout value and a message terminator as shown below.

Field	Content
Header	<STX><STX>
Command Size	Packet length in bytes excluding the header, command size, checksum and terminator bytes. 0007H for this command
Command	05H
Start Address	2-byte value for the starting tag address
Block Size	2-byte value for the length of the read in number of bytes
Timeout	2-byte value for timeout in 1 ms units. (1EH - FFFEH)
Checksum	Optional Checksum
Terminator	<ETX>

EXAMPLE:

Reads 4 bytes of data from the tag starting at address 0001H. A timeout of 2 seconds (07D0H = 2000 x 1 msec increments) is set for the completion of the Block Read.

Command from Host

Field	Contents
Header <STX><STX>	02H
	02H
Command Size	00H
	07H
Command Code	05H
Start address	00H
	01H
Block size	00H
	04H
Timeout, 2 seconds	07H
	D0H
Checksum	17H
Terminator <ETX>	03H

Response from LRP820

Field	Contents
Header <STX><STX>	02H
	02H
Response Size	00H
	05H
Command Echo	05H
Data from address 0001H	05H
Data from address 0002H	AAH
Data from address 0003H	E7H
Data from address 0004H	0AH
Checksum	55H
Terminator <ETX>	03H

ABxF Command 6 (06H): Block Write

DESCRIPTION

Write a block of data to an RFID tag.

DISCUSSION

The Block Write command is used to write segments of data to contiguous areas of tag memory. It is capable of handling up to 48 bytes of data transferred to the host. The timeout value is given in 1 msec increments and can have a value of 1EH to FFFEH (65,534 ms). When the timeout is set to 0, the LRP820 will return a syntax error.

The Block Write command consists of a start address followed by the data to be written to the RFID tag. If the write range exceeds the last tag address, the LRP820 will return an invalid format error message (error code 21H).

Field	Content
Header	<STX><STX>
Packet Size	Packet length in bytes excluding the header, command size, checksum and terminator bytes. 0007H plus the number of data bytes
Command	06H
Start Address	2-byte value for the starting tag address
Block Size	2-byte value for the length of the write in number of bytes
Timeout	2-byte value for timeout in 1 ms units. (1EH - FFFEH)
Data	Data bytes to be written
Checksum	Optional Checksum
Terminator	<ETX>

EXAMPLE:

Writes 4 bytes of data to the tag starting at address 0000H. A timeout of 2 seconds (07D0H = 2000 x 1 msec increments) is set for the completion of the Block Write.

Command from Host

Field	Contents
Header <STX><STX>	02H
	02H
Command Size	00H
	0BH
Command Code	06H
Start address	00H
	00H
Block Size	00H
	04H
Timeout, 2 seconds	07H
	D0H
Data to write to address 0000H	52H
Data to write to address 0001H	46H
Data to write to address 0002H	49H
Data to write to address 0003H	44H
Checksum	EEH
Terminators <ETX>	03H

Response from LRP820

Field	Contents
Header <STX><STX>	02H
	02H
Response Size	00H
	01H
Command Echo	06H
Checksum	F8H
Terminators <ETX>	03H

ABxF Command 7 (07H): Read Tag Serial Number

DESCRIPTION

This command retrieves the 8-byte tag serial number.

DISCUSSION

Each LRP tag has an unique (2^{64} possible numbers) serial number. This number can not be changed and is not part of the 48 available data bytes.

Field	Content
Header	<STX><STX>
Command Size	Packet length in bytes excluding the header, command size, checksum and terminator bytes. 0003H for this command
Command	07H
Timeout	2-byte timeout value in 1 ms increments (1EH - FFFEh)
Checksum	Optional Checksum
Terminator	<ETX>

EXAMPLE:

This example will wait until a tag is in range and then reads the 8-byte serial number. In this example the ID is 1E6E3DC20000000 in hexadecimal.

Command from Host		Response from LRP820	
Field	Contents	Field	Contents
Header <STX><STX>	02H 02H	Header <STX><STX>	02H 02H
Command Size	00H 03H	Response Size	00H 09H
Command Code	07H	Command Echo	07H
Timeout	07H D0H	First ID byte	1EH
Checksum	1EH	Second ID byte	6EH
Terminators <ETX>	03H	Third ID byte	3DH
		Fourth ID byte	C2H
		Fifth ID byte	00H
		Sixth ID byte	00H
		Seventh ID byte	00H
		Eighth ID byte	00H
		Checksum	64H
		Terminators <ETX>	03H

ABxF Command 8 (08H): Tag Search

DESCRIPTION

Checks for an RFID tag in the LRP820 field.

DISCUSSION

This command will activate the reader/write to "look" for a tag in the RF field. If the LRP820 finds a tag it will return a command echo to the host. The timeout value is given in 1 msec increments and can have a value of 1EH to FFFE (65,534 ms). When the timeout is set to 0, the LRP820 will return a syntax error. If no tag is present it will return an error message. See Section 6.2 for information on the error messages.

Field	Content
Header	<STX><STX>
Command Size	Packet length in bytes excluding the header, command size, checksum and terminator bytes. 0003H for this command
Command	08H
Timeout	2-byte value for the time in 1 ms units (1EH - FFFE)
Checksum	Optional Checksum
Terminator	<ETX>

EXAMPLE

Checks for an RFID tag in the RF field. A timeout of 2 seconds (07D0H = 2000 x 1 msec increments) is set for the completion of the Tag Search.

Command from Host

Field	Contents
Header	02H
<STX><STX>	02H
Command Size	00H
	03H
Command Code	08H
Timeout	07H
	D0H
Checksum	1DH
Terminators <ETX>	03H

Response from LRP820

Field	Contents
Header	02H
<STX><STX>	02H
Response Size	00H
	01H
Command Echo	08H
Checksum	F6H
Terminators <ETX>	03H

ABxF Command D (0DH): Continuous Block Read

DESCRIPTION

Sends block reads continuously to any tag in range of the antenna. When a tag enters the RF field, it is read and the data passed to the host computer. The LRP820 continues to read the tag but will not send the same data to the host until the tag has been outside the RF field for a specified time period. This Delay Between Identical Decodes parameter prevents redundant data transmissions when the LRP820 is in Continuous Block Read mode.

DISCUSSION

The initiate/cancel Continuous Block Read command contains three parameters: read length, start address, and delay between identical decodes. The read length parameter switches the mode. Any valid, non-zero length will set the LRP820 into Continuous Block Read mode. A read length value of 00H will turn Continuous Block Mode off.

The Delay Between Identical Decodes parameter can have a value of 0 to 60 seconds. When the Delay Between Identical Decodes is set to 0, the LRP820 will continuously read AND transmit tag data to the host. This can flood the buffers and cause communication errors and data loss.

If the LRP820 receives other commands from the host, it will execute them and then resume Continuous Block Read mode. To exit Continuous Block Read mode, issue the command with a read length of 0.

In Continuous Block Read mode, the LEDs will display as follows:

LED	Behavior	Description
ANT LED	ON	Assumes the Antenna is powered and functioning
CONFIG LED	BLINK	Tag entered the RF field
RF LED	ON	A tag has been read and is still in the field
RF LED	OFF	A read tag has been out of range for the specified time

The command is formatted as follows.

Field	Content
Header	<STX><STX>
Command Size	Command length in bytes excluding the header, command size, checksum and terminator bytes.
Command	0DH
Start Address	2 byte value for the start address in the tag
Read Length	2 byte value for the block read length
Delay Between Identical Reads	Delay value given in 1 second units
Checksum	Optional Checksum
Terminator	<ETX>

EXAMPLE

This example places the LRP820 in Continuous Block Read mode and reads 8 bytes of data from the tag starting at address 0001H. A delay between identical reads of 2 seconds (0002H = 2 x 1 second increments) is set.

Command from Host

Field	Contents
Header	02H
<STX><STX>	02H
Command Size	00H
	06H
Command Code	0DH
Start Address	00H
	01H
Read Length	00H
	08H
Delay Between Identical Decodes	02H
Checksum	E1H
Terminator <ETX>	03H

Response from LRP820

Field	Contents
Header	02H
<STX><STX>	02H
Response Size	00H
	01H
Command Echo	0DH
Checksum	F1H
Terminator <ETX>	03H

The LRP820 will first return an acknowledgment of the command followed by a response containing read data when a tag enters the antenna field.

Response from LRP820

Field	Contents
Header <STX><STX>	02H 02H
Command Size	00H 09H
Command Echo	0DH
Data Byte 1	05H
Data Byte 2	AAH
Data Byte 3	E7H
Data Byte 4	0AH
Data Byte 5	05H
Data Byte 6	AAH
Data Byte 7	E7H
Data byte 8	0AH
Checksum	A9H
Terminator <ETX>	03H

ABxF Command 10 (10H): Set Output

DESCRIPTION

Set the levels of the output lines and output LEDs "A" through "D."

DISCUSSION

This command is used to set the levels of the digital output lines using bit logic. The four least significant bit toggle the output levels; 1 = ON and 0 = OFF. The following chart shows the hex values for all output high combinations. To reset all output, issue the command with 0000H for the Output Pattern byte.

MSB	LSB	Remarks	LSB Bit 3 Output D	LSB Bit 2 Output C	LSB Bit 1 Output B	LSB Bit 0 Output A
00H	00H	Reset A, B, C, D	0	0	0	0
00H	01H	Set Output A - Reset B, C, D	0	0	0	1
00H	02H	Set Output B - Reset A, C, D	0	0	1	0
00H	03H	Set Output A, B - Reset C, D	0	0	1	1
00H	04H	Set Output C - Reset A, B, D	0	1	0	0
00H	05H	Set Output A, C - Reset B, D	0	1	0	1
00H	06H	Set Output B, C - Reset A, D	0	1	1	0
00H	07H	Set Output A, B, C - Reset D	0	1	1	1
00H	08H	Set Output D - Reset A, B, C	1	0	0	0
00H	09H	Set Output A, D - Reset B, C	1	0	0	1
00H	0AH	Set Output B, D - Reset A, C	1	0	1	0
00H	0BH	Set Output A, B, D - Reset C	1	0	1	1
00H	0CH	Set Output C, D - Reset A, B	1	1	0	0
00H	0DH	Set Output A, C, D - Reset B	1	1	0	1
00H	0EH	Set Output B, C, D - Reset A	1	1	1	0
00H	0FH	Set Output A, B, C, D	1	1	1	1

Field	Content
Header	<STX><STX>
Command Size	Packet length in bytes excluding the header, command size, checksum and terminator bytes.
Command	10H
Output Pattern	1 byte representing the desired output settings in bits 0-3
Checksum	Optional Checksum
Terminator	<ETX>

EXAMPLE

The following example sets Output B only and resets A, C, and D.

Command from Host

Field	Contents
Header <STX><STX>	02H
	02H
Command Size	00H
	02H
Command Code	10H
Output Value Byte	02H
Checksum	EBH
Terminator <ETX>	03H

Response from LRP820

Field	Contents
Header <STX><STX>	02H
	02H
Response Size	00H
	01H
Command Echo	10H
Checksum	EEH
Terminator <ETX>	03H

ABxF Command 11 (11H): Input Status

DESCRIPTION

Retrieves the input line levels.

DISCUSSION

This command is used to monitor the levels of the digital input lines using bit logic. The four least significant bit toggle the input levels; 1 = ON and 0 = OFF. The following chart shows all possible conditions that can be returned in the response.

MSB	LSB	Remarks	LSB Bit 3 Input D	LSB Bit 2 Input C	LSB Bit 1 Input B	LSB Bit 0 Input A
00H	00H	Inputs A, B, C, D, OFF	0	0	0	0
00H	01H	Input A, ON - B, C, D, OFF	0	0	0	1
00H	02H	Input B, ON - A, C, D, OFF	0	0	1	0
00H	03H	Input A, B, ON - C, D, OFF	0	0	1	1
00H	04H	Input C, ON - A, B, D, OFF	0	1	0	0
00H	05H	Input A, C, ON - B, D, OFF	0	1	0	1
00H	06H	Input B, C, ON - A, D, OFF	0	1	1	0
00H	07H	Input A, B, C, ON - D, OFF	0	1	1	1
00H	08H	Input D, ON - A, B, C, OFF	1	0	0	0
00H	09H	Input A, D, ON - B, C, OFF	1	0	0	1
00H	0AH	Input B, D, ON - A, C, OFF	1	0	1	0
00H	0BH	Input A, B, D, ON - C, OFF	1	0	1	1
00H	0CH	Input C, D, ON - A, B, OFF	1	1	0	0
00H	0DH	Input A, C, D, ON - B, OFF	1	1	0	1
00H	0EH	Input B, C, D, ON - A, OFF	1	1	1	0
00H	0FH	Input A, B, C, D, ON	1	1	1	1

Field	Content
Header	<STX><STX>
Command Size	Packet length in bytes excluding the header, command size, checksum and terminator bytes.
Command	11H
Checksum	Optional Checksum
Terminator	<ETX>

EXAMPLE

The following example shows only Input B is ON and A, C, and D are OFF.

Command from Host

Field	Contents
Header <STX><STX>	02H
	02H
Command Size	00H
	01H
Command Code	11H
Checksum	EDH
Terminator <ETX>	03H

Response from LRP820

Field	Contents
Header <STX><STX>	02H
	02H
Response Size	00H
	02H
Command Echo	11H
Input Value Byte	02H
Checksum	EAH
Terminator <ETX>	03H

ABxF Command 84 (84H): Fill All

DESCRIPTION

Fill all RFID tags-in-field or all tags in the same family, with a one byte value over multiple contiguous addresses.

DISCUSSION

This command is commonly used to clear an RFID tag's memory. It writes a one byte value repetitively across a specified range of tag addresses. All tags present in the antenna field with the specified Family ID will be affected by this command.

The Fill All function requires one data value byte, a starting address, and a fill length. It will fill the tag with the data value byte, starting at the specified start address for the specified number of consecutive bytes. The Fill Length must be set to a non-zero value (1-48).

The timeout value is given in 1 msec increments and can have a value of 1EH to FFFE (65,534 ms). When the Anticollision Index is not zero (multiple tag-in-field enabled), the LRP820 returns a response after the timeout expires. If the Anticollision Index is 0, a response is returned when a successful operation is performed on 1 tag or when the timeout has expired. When the timeout is set to 0, the LRP820 will return a syntax error.

Field	Content
Header	<STX><STX>
Packet Size	Packet length in bytes excluding the header, packet size, checksum and terminator bytes. 0008H for this command
Command	84H
Family ID	Tag Family ID - 00H = all tags
Anticollision Index	Number of tags expected
Start Address	2-byte value for the starting tag address
Fill Length	2-byte value for the length of the fill in number of bytes (1-48)
Timeout	2-byte value for timeout in 1 ms units. (1EH - FFFE)
Data value byte	1 byte of fill
Checksum	Optional Checksum
Terminator	<ETX>

NOTE:

This command can not be used over a MUX32 interface.

EXAMPLE

Writes 'A' (41H) to all tags with Family ID 03H, starting at address 0005H for the following next consecutive 40 bytes. A timeout of 2 seconds (07D0H = 2000 x 1 msec increments) is set for the completion of the configuration. Four tags are found and filled successfully.

Field	Bytes Contents	Field	Bytes Contents
Header <STX><STX>	02H 02H	Header <STX><STX>	02H 02H
Command Size	00H 0AH	Response Size	00H 03H
Command Code	84H	Command Echo	84H
Family ID	03H	Numbers of tags	04H
Anticollision Index	02H	Status byte	08H
Start address	00H 05H	Checksum	6CH
Fill Length	00H 28H	Terminator <ETX>	03H
Timeout, 2 seconds	07H D0H		
Data Value Byte	41H		
Checksum	27H		
Terminator <ETX>	03H		

ABxF Command 85 (85H): Block Read All

DESCRIPTION

Read a block of data from all RFID tags-in-field or all those with the specified Family ID.

DISCUSSION

This command is used to read segments of data from contiguous areas of tag memory. The timeout value is given in 1 msec increments and can have a value of 1EH to FFFE (65,534 ms). When the timeout is set to 0, the LRP820 will return a syntax error.

The Block Read All consists of a Family ID, an Anticollision Index, a start address and length, followed by a timeout value and a message terminator as shown below.

If the read length exceeds the last tag address, the LRP820 will return an invalid format error message (error code 21H). A special termination packet is sent when the timeout expires. If the Anticollision Index is set to 0, a response is returned after successful completion of the operation to 1 tag, or when the timeout expires. When the Anticollision Index is 0, no special termination packet is sent after timeout.

Field	Content
Header	<STX><STX>
Command Size	Packet length in bytes excluding the header, command size, checksum and terminator bytes.
Command	85H
Family ID	Tag Family ID - 00H = all tags
Anticollision Index	Number of tags expected
Start Address	2-byte value for the starting tag address
Block Size	2-byte value for the length of the read in number of bytes
Timeout	2-byte value for timeout in 1 ms units. (1EH - FFFE)
Checksum	Optional Checksum
Terminator	<ETX>

NOTE:

This command can not be used with a MUX32 interface.

EXAMPLE:

Reads 4 bytes of data from tags with Family ID AAH, starting at address 0001H. A timeout of 2 seconds (07D0H = 2000 x 1 msec increments) is set for the completion of the Block Read All. The Tag Family byte is set to zero so all tags will be read. The Anticollision Index is set to 2, expecting 4-8 tags. Two tags respond with data.

Command from Host		Response from LRP820	
Field	Contents	Field	Contents
Header <STX><STX>	02H 02H	Header <STX><STX>	02H 02H
Command Size	00H 09H	Response Size	00H 03H
Command Code	85H	Command Echo/Tag 1	85H
Family ID	AAH	Data from address 0001H	05H
Anticollision Index	02H	Data from address 0002H	AAH
Start address	00H 01H	Checksum	C8H
Block size	00H 02H	Terminator <ETX>	03H
Timeout, 2 seconds	07H D0H	Header <STX><STX>	02H 02H
Checksum	EBH	Response Size	00H 03H
Terminator <ETX>	03H	Command Echo/Tag 2	85H
		Data from address 0001H	05H
		Data from address 0002H	AAH
		Checksum	C8H
		Terminator <ETX>	03H
		Header <STX><STX>	02H 02H
		Response Size	00H 03H
		Command Status	FFH
		Number of tags	02H
		Status Byte	08H
		Checksum	F3H
		Terminator <ETX>	03H

ABxF Command 86 (86H): Block Write All

DESCRIPTION

Write a block of data to an RFID tag.

DISCUSSION

The Block Write All command is used to write segments of data to contiguous areas of tag memory. The timeout value is given in 1 msec increments and can have a value of 1EH to FFFEH (65,534 ms). When the timeout is set to 0, the LRP820 will return a syntax error.

The Block Write All consists of a Family ID, Anticollision Index, a start address followed by the data stream to be written to the RFID tag. If the write range exceeds the last tag address, the LRP820 will return an invalid format error message (error code 21H).

The LRP820 will return a response when the timeout expires. If the Anticollision Index is 0, a response is returned when the operation is successfully completed on 1 tag, or when the timeout expires.

Field	Content
Header	<STX><STX>
Command Size	Packet length in bytes excluding the header, command size, checksum and terminator bytes. 0009H plus the number of data bytes
Command	86H
Family ID	Tag Family ID - 00H = all tags
Anticollision Index	Number of tags expected
Start Address	2-byte value for the starting tag address
Block Size	2-byte value for the length of the write in number of bytes
Timeout	2-byte value for timeout in 1 ms units. (1EH - FFFEH)
Data	Data bytes to be written
Checksum	Optional Checksum
Terminator	<ETX>

NOTE:

This command can not be used over a MUX32 interface.

EXAMPLE:

Writes 4 bytes of data to the tag starting at address 0000H. A timeout of 2 seconds (07D0H = 2000 x 1 msec increments) is set for the completion of the Block Write All. Family ID is set to 00H so all tags-in-field will be written to. The Anticollision Index is 4, expecting 32-64 tags. Five tags are written to.

Command from Host

Field	Contents
Header <STX><STX>	02H 02H
Command Size	00H 0DH
Command Code	86H
Family ID	00H
Anticollision Index	04H
Start address	00H 00H
Block Size	00H 04H
Timeout, 2 seconds	07H D0H
Data to write to address 0000H	52H
Data to write to address 0001H	46H
Data to write to address 0002H	49H
Data to write to address 0003H	44H
Checksum	68H
Terminator <ETX>	03H

Response from LRP820

Field	Contents
Header <STX><STX>	02H 02H
Response Size	00H 03H
Command Echo	86H
Number of Tags	05H
Status Byte	08H
Checksum	69H
Terminator <ETX>	03H

ABxF Command 87 (87H): Read Tag SN All

DESCRIPTION

This command retrieves the 8-byte tag serial number from all tags-in-field or those with the specified Family ID.

DISCUSSION

Each LRP tag has an unique (2^{64} possible numbers) serial number. This number can not be changed and is not part of the 48 available data bytes. A special termination packet is sent when the timeout expires.

If the Anticollision Index is set to 0, a response is returned when the operation is successfully completed to 1 tag, or when the timeout expires. No special termination packet is sent upon successful completion if Anticollision Index is set to 0.

Field	Content
Header	<STX><STX>
Command Size	Packet length in bytes excluding the header, command size, checksum and terminator bytes. 0005H for this command
Command	87H
Family ID	Tag Family ID - 00H = all tags
Anticollision Index	Number of tags expected
Timeout	2-byte timeout value in 1 ms increments (1EH - FFFEH)
Checksum	Optional Checksum
Terminator	<ETX>

NOTE:

This command can not be used with a MUX32 interface.

EXAMPLE:

This example will read the 8-byte serial number from all tags permitted by the Family ID and Anticollision Index. In this example, one tag responds and the serial number is 1E6E3DC200000000 in hexadecimal.

Field	Contents	Field	Contents
Header <STX><STX>	02H	Header <STX><STX>	02H
	02H		02H
Command Size	00H	Response Size	00H
	05H		09H
Command Code	87H	Command Echo	87H
Family ID	00H	SN byte 1	1EH
Anticollision Index	01H	SN byte 2	6EH
Timeout	07H	SN byte 3	3DH
	D0H	SN byte 4	C2H
Checksum	9BH	SN byte 5	00H
Terminator <ETX>	03H	SN byte 6	00H
		SN byte 7	00H
		SN byte 8	00H
		Checksum	E4H
		Terminator <ETX>	03H
		Header <STX><STX>	02H
			02H
		Response Size	00H
			03H
		Command Status	FFH
		Number of Tags	01H
		Status Byte	08H
		Checksum	F4H
		Terminator <ETX>	03H

ABxF Command 88 (88H): Tag Search All

DESCRIPTION

Check to see if there is any RFID tags in the LRP820 antenna field.

DISCUSSION

This command will activate the LRP820 to "look" for a tag in the RF field. As soon as the LRP820 finds a tag it will return a command echo to the host. The timeout value is given in 1 msec increments and can have a value of 1EH to FFFEH (65,534 ms).

When the timeout is set to 0, the LRP820 will return a syntax error. If no tag is present it will return an error message. See Section 6.2 for information on the error messages.

Field	Content
Header	<STX><STX>
Command Size	Packet length in bytes excluding the header, command size, checksum and terminator bytes. 0005H for this command
Command	88H
Family ID	Tag Family ID - 00H = all tags
Anticollision Index	Number of tags expected
Timeout	2-byte value for the time in 1 ms units (1EH - FFFEH)
Checksum	Optional Checksum
Terminator	<ETX>

NOTE:

This command can not be used over a MUX32 interface.

EXAMPLE

Checks for an RFID tag in the RF field. A timeout of 2 seconds (07D0H = 2000 x 1 msec increments) is set for the completion of the Tag Search All. A tag is found.

Command from Host

Field	Contents
Header <STX><STX>	02H
	02H
Command Size	00H
	05H
Command Code	88H
Family ID	00H
Anticollision Index	02H
Timeout	07H
	D0H
Checksum	99H
Terminators <ETX>	03H

Response from LRP820

Field	Contents
Header <STX><STX>	02H
	02H
Response Size	00H
	03H
Command Echo	88H
Number of Tags	01H
Status byte	00H
Checksum	73H
Terminators <ETX>	03H

ABxF Command 89 (89H): EAS Set/Reset All

DESCRIPTION

Sets or resets the EAS feature in tag memory for all tags in range when the command is issued.

DESCRIPTION

When the EAS Set/Reset All command is issued, the LRP820 will respond with the number of tags affected. If the LRP820 return a 0 for Ntag it means that no tags were set or reset by the command.

When multiple tag-in-field is enabled (Anticollision index is not 0), the LRP820 will return a response when the timeout period expires. When multiple tag-in-field is disabled, the LRP820 will return a response when it reads a tag or the timeout expires.

Field	Content
Header	<STX><STX>
Command Size	Command length in bytes excluding the header, command size, checksum and terminator bytes.
Command	89H
Family ID	Tag Family ID - 00H = all tags
Anticollision Index	Number of tags expected
Timeout	Timeout value given in 1 ms units (1EH - FFFEH)
Checksum	Optional Checksum
Message Terminator	<ETX>

EXAMPLE

This example assumes that the tags-in-field are not enabled for the EAS feature. It will enable the EAS feature for tags with Family ID 09H. The Anticollision Index is 2, so 4-8 tags are expected in the field. When the command is issued, 5 tags with Family ID 09H are found and enabled for EAS.

Field	Contents	Field	Contents
Header <STX><STX>	02H 02H	Header <STX><STX>	02H 02H
Command Size	00H 05H	Response Size	00H 03H
Command Code	89H	Command Echo	89H
Family ID	09H	Number of Tags	05H
Anticollision Index	02H	Status byte	08H
Timeout	07H D0H	Checksum	66H
Checksum	8FH	Terminator <ETX>	03H
Terminator <ETX>	03H		

ABxF Command 8A (8AH): EAS Start/Stop

DESCRIPTION

If you are using the EAS feature in your application, the EAS Start/Stop command enters and exits the LRP820 from EAS mode.

DISCUSSION

When EAS mode has been started, the LRP820 will return a response when one or more EAS-enabled tags have entered the antenna field. It will send a second response when all EAS-enabled tags have exited the field. The command contains a control byte that toggles EAS: 1 = start, 0 = stop. A Family ID can be set so that only EAS-enabled tags from the specified Family trigger EAS responses. The Anticollision Index is ignored and should be set to 00H for this command.

The EAS mode also controls the CONFIG, ERROR and RF LEDs. The following table explains LED behavior.

LED(s)	Behavior	Description
CONFIG, ERROR, RF LED	OFF	No EAS-enabled tag in field
CONFIG LED	BLINK	EAS-enabled tag entered field.
RF LED	ON	EAS tag has been read. LED will remain ON until all EAS tags have left the field.
ERROR LED	BLINKS	Last EAS tag left the field.

IMPORTANT:

EAS mode prevents any other commands from being acknowledged or executed until EAS has been stopped.

Field	Content
Header	<STX><STX>
Command Size	Command length in bytes excluding the header, command size, checksum and terminator bytes.
Command	8AH
Family ID	Tag Family ID - 00H = all tags
Anticollision Index	Anticollision not considered for this command, 00H
Checksum	Optional Checksum
Message Terminator	<ETX>

EXAMPLE

This example starts EAS mode. Three responses follow. The first is a command acknowledgment. The LRP820 sends the second when the first EAS-enabled tag enters the field. A third response is sent when field is clear of EAS-enabled tags. Family ID is set to 0 so that any EAS-enabled tag will trigger responses.

Command from Host

Field	Contents
Header <STX><STX>	02H 02H
Command Size	00H 03H
Command Code	8AH
Family ID	00H
Anticollision Index	00H
Checksum	72H
Terminator <ETX>	03H

Response from LRP820

Field	Contents
Header <STX><STX>	02H 02H
Response Size	00H 03H
Command Echo	8AH
Number of Tags	FFH
Status byte	00H
Checksum	73H
Terminator <ETX>	03H

When an EAS-enabled tag enters the antennas' field, the LRP820 responds with an EAS tag-in-field response.

Response from LRP820

Field	Contents
Header <STX><STX>	02H 02H
Response Size	00H 03H
Command Echo	8AH
Number of Tags	01H
Status byte	00H
Checksum	71H
Terminator <ETX>	03H

When all EAS-enabled tags have left the field, the LRP820 will send the following response.

Response from LRP820

Field	Contents
Header <STX><STX>	02H 02H
Response Size	00H 03H
Command Echo	8AH
Number of Tags	00H
Status byte	00H
Checksum	72H
Terminator <ETX>	03H

ABxF Command 8D (8DH): Continuous Read All

DESCRIPTION

Starts and stops Continuous Read All mode for multiple tags.

DISCUSSION

Continuous Read All mode is set by the length byte. To start Continuous Read All mode send the command with valid, non-zero value for the length of the read (1-48). Stop the mode by sending the command with a read length of 0. While in this mode, any other command can be issued and it will be handled properly. After processing the new command, the LRP will resume the Continuous Read All mode.

The command has a parameter, tag delay, that can prevent multiple reads of the same tag. A tag is not read a second time until a specified number of tags have been read since it was last read. Allowed value are from 0 up to 255 (FFH), where 0 means the tag can be re-read anytime. When Continuous Read All mode is interrupted with other commands, the tag delay count is stopped during execution of the other commands and then resumed.

The LRP820 will respond with an acknowledge packet followed by data packets for each tag read.

CONFIG LED blinks after each packet transmission.

Field	Content
Header	<STX><STX>
Command Size	Command length in bytes excluding the header, command size, checksum and terminator bytes.
Command	8DH
Family ID	Tag Family ID - 00H = all tags
Anticollision Index	Anticollision not considered for this command, 00H
Start Address	Tag address for the start of the read
Read Length	1-48 = start, 0 = stop
Tag Delay	Number of tags that must be read before the same tag will be read again (0-225)
Checksum	Optional Checksum
Message Terminator	<ETX>

NOTE:

This command can not be used with a MUX32 interface>

EXAMPLE

Reads 4 bytes of data from the tag starting at address 0001H. The Family ID byte is set to zero so all tags will be read. The Anticollision Index is set to 1 so 2 to 4 tags will be expected. The Tag Delay is set to 20 (14H). Two tags respond with read data.

Command from Host

Field	Contents
Header <STX><STX>	02H 02H
Command Size	00H 08H
Command Code	8DH
Family ID	00H
Anticollision Index	01H
Start Address	00H 01H
Read Length	00H 04H
Tag Delay	14H
Checksum	50H
Terminator <ETX>	03H

Response from LRP820

Field	Contents
Header <STX><STX>	02H 02H
Response Size	00H 01H
Command Echo	8DH
Checksum	71H
Terminator <ETX>	03H

After the LRP820 sends the acknowledgment, it will send the read data from the 2 tags.

Response from LRP820

Field	Contents
Header <STX><STX>	02H 02H
Response Size	00H 05H
Command Echo/Tag 1	8DH
Data from address 0001H	05H
Data from address 0002H	AAH
Data from address 0003H	21H
Data from address 0004H	44H
Checksum	59H
Terminator <ETX>	03H
Header <STX><STX>	02H 02H
Response Size	00H 03H
Command Echo/Tag 2	85H
Data from address 0001H	05H
Data from address 0002H	AAH
Data from address 0003H	21H
Data from address 0004H	44H
Checksum	59H
Terminator <ETX>	03H

ABxF Command 8E (8EH): Memory Lock All

DESCRIPTION

This command “locks” tag addresses in four byte blocks. Once bytes are locked, they can not be unlocked.

DISCUSSION

The memory can be locked only in 4-byte blocks. The command passes a two byte word with bits assigned to 4-byte blocks that can be locked.

Remaining bits can lock the EAS feature and the lock configuration itself.

When multiple tag-in-field is enabled (Anticollision Index is not 0), the LRP820 will return a response when the timeout period expires. When multiple tag-in-field is disabled, the LRP820 will return a response when it locks bytes or the timeout expires.

Attempting to write to locked bytes will return a write timeout error in the status byte. If you write to addresses that contain both locked and non-locked bytes, the LRP820 will return a write error in the status byte.

The configuration word formatted as shown below.

Byte	Bit	Description
LockLSB	0	Tag bytes 0-3
	1	Tag bytes 4-7
	2	Tag bytes 8-11
	3	Tag bytes 12-15
	4	Tag bytes 16-19
	5	Tag bytes 20-23
	6	Tag bytes 24-27
	7	Tag bytes 28-31
LockMSB	8	Tag bytes 32-35
	9	Tag bytes 36-39
	10	Tag bytes 40-43
	11	Tag bytes 44-47
	12	Lock Configuration
	13	Lock EAS feature
	14	Reserved
	15	Reserved

The command is formatted as shown below.

Field	Remarks
Header	<STX><STX>
Command Size	Command length in bytes excluding the header, command size, checksum and terminator bytes.
Command	8EH
Family Code	Tag Family ID - 00H = all tags
Anticollision index	Number of tags-in-field expected
Timeout	Timeout value given in 1 ms units
LockMSB	Bits 8-15 of the configuration word
LockLSB	Bits 0-7 of the configuration word
Checksum	Optional Checksum
Message Terminator	<ETX>

EXAMPLE

This example will lock bytes 0-3 on all tags-in-field with the Family ID of 02H. Two tags are found and locked.

Command from Host	Response from LRP820																																																
<table border="1"> <thead> <tr> <th>Field</th><th>Contents</th></tr> </thead> <tbody> <tr> <td>Header</td><td>02H</td></tr> <tr> <td><STX><STX></td><td>02H</td></tr> <tr> <td>Command Size</td><td>00H</td></tr> <tr> <td></td><td>07H</td></tr> <tr> <td>Command Code</td><td>8EH</td></tr> <tr> <td>Family ID</td><td>02H</td></tr> <tr> <td>Anticollision Index</td><td>01H</td></tr> <tr> <td>Timeout</td><td>07H</td></tr> <tr> <td></td><td>D0H</td></tr> <tr> <td>LockMSB</td><td>00H</td></tr> <tr> <td>LockLSB</td><td>01H</td></tr> <tr> <td>Checksum</td><td>8FH</td></tr> <tr> <td>Terminator <ETX></td><td>03H</td></tr> </tbody> </table>	Field	Contents	Header	02H	<STX><STX>	02H	Command Size	00H		07H	Command Code	8EH	Family ID	02H	Anticollision Index	01H	Timeout	07H		D0H	LockMSB	00H	LockLSB	01H	Checksum	8FH	Terminator <ETX>	03H	<table border="1"> <thead> <tr> <th>Field</th><th>Contents</th></tr> </thead> <tbody> <tr> <td>Header</td><td>02H</td></tr> <tr> <td><STX><STX></td><td>02H</td></tr> <tr> <td>Response Size</td><td>00H</td></tr> <tr> <td></td><td>03H</td></tr> <tr> <td>Command Echo</td><td>8EH</td></tr> <tr> <td>Number of Tags</td><td>02H</td></tr> <tr> <td>Status byte</td><td>08H</td></tr> <tr> <td>Checksum</td><td>64H</td></tr> <tr> <td>Terminator <ETX></td><td>03H</td></tr> </tbody> </table>	Field	Contents	Header	02H	<STX><STX>	02H	Response Size	00H		03H	Command Echo	8EH	Number of Tags	02H	Status byte	08H	Checksum	64H	Terminator <ETX>	03H
Field	Contents																																																
Header	02H																																																
<STX><STX>	02H																																																
Command Size	00H																																																
	07H																																																
Command Code	8EH																																																
Family ID	02H																																																
Anticollision Index	01H																																																
Timeout	07H																																																
	D0H																																																
LockMSB	00H																																																
LockLSB	01H																																																
Checksum	8FH																																																
Terminator <ETX>	03H																																																
Field	Contents																																																
Header	02H																																																
<STX><STX>	02H																																																
Response Size	00H																																																
	03H																																																
Command Echo	8EH																																																
Number of Tags	02H																																																
Status byte	08H																																																
Checksum	64H																																																
Terminator <ETX>	03H																																																

ABxF Command 94 (94H): SN Fill

DESCRIPTION

Fill an RFID tag, identified by serial number, with a one byte value over multiple contiguous addresses.

DISCUSSION

This command is commonly used to clear an RFID tag's memory. It writes a one byte value repetitively across a specified range of tag addresses.

The SN Fill command requires a specific serial number of the tag to be filled. It will fill the tag with the data value byte, starting at the specified start address for the specified number of consecutive bytes. When Fill Length is set to 0, the LRP820 will write fill data from the start address to the end of the tags memory. The timeout value is given in 1 msec increments and can have a value of 1EH to FFFEH (65,534 ms). When the timeout is set to 0, the LRP820 will return a syntax error.

Field	Content
Header	<STX><STX>
Command Size	Packet length in bytes excluding the header, command size, checksum and terminator bytes.
Command	94H
Family ID	Tag Family ID - 00H = all tags
Anticollision Index	Number of tags expected
Start Address	2-byte value for the starting tag address
Fill Length	2-byte value for the length of the fill in number of bytes
Timeout	2-byte value for timeout in 1 ms units. (1EH - FFFEH)
Tag Serial Number	8-byte tag serial number
Data value byte	1 byte of fill
Checksum	Optional Checksum
Terminator	<ETX>

EXAMPLE

Writes 'A' (41H) to the tag specified by serial number starting at address 0005H for the following next consecutive 4 bytes. A timeout of 2 seconds (07D0H = 2000 x 1 msec increments) is set for the completion of the configuration.

Field	Contents	Field	Contents
Header <STX><STX>	02H	Header <STX><STX>	02H
Command Size	00H	Response Size	00H
	0EH		03H
Command Code	94H	Command Echo	94H
Family ID	00H	Number of Tags	01H
Anticollision Index	02H	Status byte	00H
Timeout	07H	Checksum	67H
	D0H	Terminators <ETX>	03H
SN byte 1	ADH		
SN byte 2	23H		
SN byte 3	81H		
SN byte 4	1DH		
SN byte 5	C3H		
SN byte 6	66H		
SN byte 7	78H		
SN byte 8	21H		
Fill byte	41H		
Checksum	13H		
Terminators <ETX>	03H		

ABxF Command 95 (95H): SN Block Read

DESCRIPTION

Read a block of data from an RFID tag.

DISCUSSION

This command is used to read segments of data from contiguous areas of tag memory. The timeout value is given in 1 msec increments and can have a value of 1EH to FFFEH (65,534 ms). When the timeout is set to 0, the LRP820 will return a syntax error. A special error packet is sent if the timeout expires.

If the read range exceeds the last tag address, the LRP820 will return an invalid format error message (error code 21H).

Field	Content
Header	<STX><STX>
Command Size	Packet length in bytes excluding the header, command size, checksum and terminator bytes.
Command	95H
Family ID	Tag Family ID - 00H = all tags
Anticollision Index	Number of tags expected
Start Address	2-byte value for the starting tag address
Block Size	2-byte value for the length of the read in number of bytes
Timeout	2-byte value for timeout in 1 ms units. (1EH - FFFEH)
Tag Serial Number	8-byte tag serial number
Checksum	Optional Checksum
Terminator	<ETX>

EXAMPLE:

Reads 2 bytes of data from the tag starting at address 0001H. A timeout of 2 seconds (07D0H = 2000 x 1 msec increments) is set for the completion of the SN Block Read. If the timeout expires before reading a tag the response packet is: 02H 02H 00 03 FF 00 Status Chk 03H.

Command from Host

Field	Contents
Header <STX><STX>	02H 02H
Command Size	00H 11H
Command Code	95H
Family ID	AAH
Anticollision Index	02H
Start address	00H 01H
Block size	00H 02H
Timeout, 2 seconds	07H D0H
SN byte 1	ADH
SN byte 2	23H
SN byte 3	81H
SN byte 4	1DH
SN byte 5	C3H
SN byte 6	66H
SN byte 7	78H
SN byte 8	21H
Checksum	A3H
Terminator <ETX>	03H

Response from LRP820, tag found

Field	Contents
Header <STX><STX>	02H 02H
Response Size	00H 03H
Command Echo	95H
Data from address 0001H	05H
Data from address 0002H	AAH
Checksum	B8H
Terminator <ETX>	03H

Response from LRP820, tag not found

Field	Contents
Header <STX><STX>	02H 02H
Response Size	00H 03H
Command Fail	FFH
Ntag	00H
Status byte	08H
Checksum	B8H
Terminator <ETX>	03H

ABxF Command 96 (96H): SN Block Write

DESCRIPTION

Write a block of data to an RFID tag identified by its serial number.

DISCUSSION

The SN Block Write command is used to write segments of data to contiguous areas of tag memory. The timeout value is given in 1 msec increments and can have a value of 1EH to FFFEH (65,534 ms). When the timeout is set to 0, the LRP820 will return a syntax error.

The SN Block Write consists of a start address followed by the data stream to be written to the RFID tag specified by the serial number given in the command. If the block size exceeds the last tag address, the LRP820 will return an invalid format error message (error code 21H).

Field	Content
Header	<STX><STX>
Packet Size	Packet length in bytes excluding the header, packet size, checksum and terminator bytes. 0007H plus the number of data bytes
Command	96H
Family ID	Tag Family ID - 00H = all tags
Anticollision Index	Number of tags expected
Start Address	2-byte value for the starting tag address
Block Size	2-byte value for the length of the write in number of bytes
Timeout	2-byte value for timeout in 1 ms units (1EH - FFFEH)
Tag Serial Number	8-byte tag serial number
Data	Data bytes to be written
Checksum	Optional Checksum
Terminator	<ETX>

EXAMPLE:

Writes 4 bytes of data to the tag starting at address 0000H. A timeout of 2 seconds (07D0H = 2000 x 1 msec increments) is set for the completion of the SN Block Write.

Field	Contents	Field	Contents
Header <STX><STX>	02H	Header <STX><STX>	02H
	02H		02H
Command Size	00H	Response Size	00H
	15H		03H
Command Code	96H	Command Echo	96H
Family ID	03H	Number of tags	01H
Anticollision Index	03H	Status byte	00H
Start address	00H	Checksum	65H
	00H	Terminators <ETX>	03H
Block Size	00H		
	04H		
Timeout, 2 seconds	07H		
	D0H		
SN byte 1	ADH		
SN byte 2	23H		
SN byte 3	81H		
SN byte 4	1DH		
SN byte 5	C3H		
SN byte 6	66H		
SN byte 7	78H		
SN byte 8	21H		
Data to write to address 0000H	52H		
Data to write to address 0001H	46H		
Data to write to address 0002H	49H		
Data to write to address 0003H	44H		
Checksum	1EH		
Terminators <ETX>	03H		

ABxF Command 97 (97H): SN Block Read All

DESCRIPTION

Read a block of data from all RFID tags-in-field or all those with the specified Family ID. Data will be returned with the serial number of the corresponding tag.

DISCUSSION

This command is used to read segments of data from contiguous areas of tag memory. It is capable of handling up to 48 bytes of data transferred to the host with one command if there is no tag family ID. The timeout value is given in 1 msec increments and can have a value of 1EH to FFEH (65,534 ms). When the timeout is set to 0, the LRP820 will return a syntax error.

The response to this command will contain the serial number of the responding tags preceding the data from those tags. The termination packet is transmitted when the timeout expires. Each packet will be sent to the host as soon as it is available. The returned serial numbers can be used to read/write to tags-in-field via the SN Block Read/Write command.

The SN Block Read All consists of Family ID and an Anticollision Index, a start address and length, followed by a timeout value and the message terminator, <ETX>, as shown below.

A special termination packet is sent when the timeout expires. If the Anticollision Index is 0, a response is returned when the operation is successfully completed on 1 tag, or when the timeout expires. A termination packet is not sent for successful completion if the Anticollision Index is 0.

If the read range exceeds the last tag address, the LRP820 will return an error message in the status byte.

The command is formatted as follows.

Field	Content
Header	<STX><STX>
Command Size	Packet length in bytes excluding the header, command size, checksum and terminator bytes.
Command	97H
Family ID	Tag Family ID - 00H = all tags
Anticollision Index	Number of tags expected
Start Address	2-byte value for the starting tag address
Block Size	2-byte value for the length of the read in number of bytes
Timeout	2-byte value for timeout in 1 ms units. (1EH - FFFEh)
Checksum	Optional Checksum
Terminator	<ETX>

NOTE:

This command can not be used with a MUX32 interface.

EXAMPLE:

Reads 4 bytes of data from the tag starting at address 0001H. A timeout of 2 seconds (07D0H = 2000 x 1 msec increments) is set for the completion of the SN Block Read All. The Tag Family byte is set to zero so all tags will be read. Three tags respond with data.

Command from Host

Field	Contents
Header <STX><STX>	02H
	02H
Command Size	00H
	09H
Command Echo	97H
Family ID	03H
Anticollision Index	00H
Start address	00H
	00H
Block Size	00H
	04H
Timeout, 2 seconds	07H
	D0H
Checksum	81H
Terminators <ETX>	03H

Response from LRP820

Field	Contents
Header/tag 1 <STX><STX>	02H
	02H
Response Size	00H
	0DH
Command Code	97H
SN byte 1/tag 1	ADH
SN byte 2/tag 1	23H
SN byte 3/tag 1	81H
SN byte 4/tag 1	1DH
SN byte 5/tag 1	C3H
SN byte 6/tag 1	66H
SN byte 7/tag 1	78H
SN byte 8/tag 1	21H
Data byte 1/tag 1	52H
Data byte 2/tag 1	46H
Data byte 3/tag 1	49H
Data byte 4/tag 1	44H
Checksum	06H
Terminators <ETX>	03H

Continued on next page

Header/tag 2 <STX><STX>	02H 02H	Header <STX><STX>	02H 02H
Response Size	00H 0DH	Response Size	00H 03H
Command Code	97H	Command Echo	FFH
SN byte 1/tag 2	ADH	Number of tags	03H
SN byte 2/ tag 2	23H	Status byte	08H
SN byte 3/tag 2	81H	Checksum	F2H
SN byte 4/tag 2	1DH	Terminators <ETX>	03H
SN byte 5/tag 2	C3H		
SN byte 6/tag 2	66H		
SN byte 7/tag 2	78H		
SN byte 8/tag 2	21H		
Data byte 1/ tag 2	52H		
Data byte 2/tag 2	46H		
Data byte 3/tag 2	49H		
Data byte 4/tag 2	44H		
Checksum	06H		
Terminators <ETX>	03H		
Header/tag 3 <STX><STX>	02H 02H		
Response Size	00H 0BH		
Command Echo	97H		
SN byte 1/tag 3	ADH		
SN byte 2/ tag 3	23H		
SN byte 3/tag 3	81H		
SN byte 4/tag 3	1DH		
SN byte 5/tag 3	C3H		
SN byte 6/tag 3	66H		
SN byte 7/tag 3	78H		
SN byte 8/tag 3	21H		
Data byte 1/ tag 3	52H		
Data byte 2/tag 3	46H		
Data byte 3/tag 3	49H		
Data byte 4/tag 3	44H		
Checksum	08H		
Terminators <ETX>	03H		

6.6 ABx ASCII Protocol

The ABx ASCII Protocol is based on the ABx Fast protocol. It uses the same headers and terminator (already ASCII characters) and converts the hex value of command and data bytes to printable ASCII (2 digit Hexadecimal notation). In other words, the hex values given in an ABx Fast command are transmitted as separate ASCII characters.

Since it is an ASCII protocol, the Xon/Xoff handshake can be used.

Command Packet Structure:

The command protocol is based on the following minimal packet structure. The data field and the checksum may not be present depending on the command type and your checksum setting.

Field	Number of ASCII Characters	Content
Header	2	<STX><STX> (02H, 02H)
Command Size	4	Packet length in bytes excluding the header, Command size, checksum and terminator bytes.
Command	2	Command Code
(Data)	variable	command data/parameters
Checksum	2	Optional Checksum
Terminator	1	<ETX> (03H)

Following a successful operation, the LRP820 will respond with the following. The data field and the checksum may not be present depending on the command and your checksum setting. If a checksum is enabled in the Configuration Menu, then it is always present for every command.

Field	Number of ASCII Characters	Content
Header	2	<STX><STX> (02H, 02H)
Response Size	4	Packet length in bytes excluding the header, response size, checksum and terminator bytes.
Command	2	Command Echo
(Data)	variable	response data
Checksum	2	Optional Checksum
Terminator	1	<ETX> (03H)

If the LRP820 encounters a fault it will respond with the following:

Field	Number of ASCII Characters	Content
Header	2	<STX><STX> (02H, 02H)
Response Size	4	Packet length in bytes excluding the header, response size, checksum and terminator bytes.
Error Flag	2	FFH
Error Code	2	Hex error code, see Table 11 for details
Checksum	2	Optional checksum
Terminator	1	<ETX> (03H)

Most RF operations will also require additional parameters and data that will be included in the command stream between the command code or echo and the terminator.

The Header and Terminator are always STX and ETX respectively. Any other field value is in ASCII hex notation. Allowed values: '0'-'9', 'A'-'F'. Example: the value ABH (decimal 171) in ASCII protocol is transmitted as a 2-character string «AB», i.e. the 2 bytes: 41H 42H (ASCII values for 'A' and 'B'). The hex value of the hex digits given in ASCII are: '0'-'9' = 30H - 39H, 'A'-'F' = 41H-46H.

The sequence for each command is given with the response format in the preceding section. Referring to the ABx Fast command you can structure the ABx ASCII commands by using ASCII values for each digit of the hex values, excluding the header and terminator that are already ASCII characters.

Command/Response Size

The ABx ASCII requires the length of the packet be included in the command. All parameters and data between the Command Size and the terminator or checksum byte must be accounted for in the packet size word. This includes all command codes and parameters such as field definition for Block Read/Writes. The packet size remains the same with, or without the checksum.

Checksum

The optional checksum must be enabled from the operating mode menu to be available. The checksum is calculated by adding all the byte values (not the ASCII translation values) in the packet (less the values in the header, checksum if present, and terminator), discarding byte overflow and subtracting the byte sum from FFH.

Example ASCII Command

Fill Tag

This command fills the specified number of cells from the specified start address with the specified value. Block size = 0 means filling to the end of the memory. The command will take the same form as the ABx Fast command.

Field	Content
Header	<STX><STX>
Command Size	Packet length in bytes excluding the header, command size, checksum and terminator bytes. Given as four ASCII character value. 0008H for this command
Command	<30H><34H> (04)
Start Address	4 ASCII character value for the starting tag address
Fill Length	4 ASCII character value for the length of the fill in number of bytes
Timeout	4 ASCII character value for timeout in 1 ms units. (1EH - FFFEH)
Data value byte	2 ASCII character value for 1 byte of fill
Checksum	2 ASCII character value for Optional Checksum
Terminator	<ETX>

The ASCII character string for a fill of 32 bytes, from address 0 with 55H value, timeout 5 sec., follows.

Command from Host **Response from LRP820**

Field	ASCII Hex Value	ASCII String	Field	ASCII Hex Value	ASCII String
Header <STX><STX>	02H	STX	Header <STX><STX>	02H	STX
	02H	STX		02H	STX
Command Size	30H	0	Response Size	30H	0
	30H	0		30H	0
	30H	0		31H	1
	38H	8		30H	0
Command	30H	0	Command Echo	30H	0
	34H	4		34H	4
Start Address	30H	0	Checksum	46H	F
	30H	0		41H	A
	30H	0	Terminators <ETX>	03H	ETX
	30H	0			
Fill Length	30H	0			
	30H	0			
	32H	2			
	30H	0			
Timeout Value	31H	1			
	33H	3			
	38H	8			
	38H	8			
Data Byte Value	35H	5			
	35H	5			
Checksum	45H	E			
	33H	3			
Terminators <ETX>	03H	ETX			

A APPENDIX: SPECIFICATIONS

Table 10 LRP820 Specifications

Electrical	
Supply Voltage	18-30 Vdc
Power Consumption	31W (1.3 A @ 24Vdc)
Communication	
RFID Interface	LRP-Series Passive RFID System
Bus Interface	MUX32
COM1	RS232/RS422/MUX32
COM2	RS232
Inputs	Four industrial-level inputs, 4.5-30 Vdc (25mA max)
Output	Four industrial-level outputs, 30 Vdc (500 mA max)
Mechanical Specifications	
Dimensions (L x W x H)	8.66 x 4.72 x 3.83 inches (220 x 120 x 97 cm)
Weight	3.5 lb. (1.59 kg)
Enclosure	Cast Aluminum Alloy
Environmental	
Operating Temperature	-4 to 120 degrees F (-40 to 49 degrees C)
Storage Temperature	-40 to 185 degrees F (-40 to 85 degrees C)
Humidity	95% non-condensing
Shock Resistance	IEC 68-2-27 test EA 30g; 11 msec; 3 shocks each axis
Vibration Resistance	IEC 68-2-6 test FC 1.5 mm; 10 to 55 Hz; 2 hours each axis
Protection Class	NEMA 4 (IP66)
NOTE: Specifications are subject to change without notice.	

B APPENDIX: MODELS

Table 12 — Models and Accessories

Available Models	
Part Number	Description
LRP820-10	Long range, passive controller, RS232, RS422 and MUX32/RS485 communications, 4 digital inputs and 4 digital outputs, tunnel antenna
LRP820-04	Long range, passive controller, RS232, RS422 and MUX32/RS485 communications, 4 digital inputs and 4 digital outputs, conveyor-mount antenna
LRP820-08	Long range, passive controller, RS232, RS422 and MUX32/RS485 communications, 4 digital inputs and 4 digital outputs, plate antenna, 12 x 14"
Accessories	
Part Number	Description
00-1122	Connector Kit, all five mating connectors for wiring the LRP820
46-1268	Mating Connector, MUX32 connector, 8 pin metal circular
46-1270	Mating Connector, Power connector, 3 socket metal circular
46-1456	Mating Connector, COM1/COM2 connector, 14 pin metal circular
46-1458	Mating Connector, Input connector, 12 socket metal circular
46-1460	Mating Connector, Output connector, 12 pin metal circular
46-5119	Connector covers, shell size 12, fits MUX32 and COM1/COM2 connectors
46-5120	Connector covers, shell size 14, fits Input and Output connectors
LRP125	Passive read/write tag, 25 mm round, 48 bytes memory
LRP125HT	Passive read/write tag, 25 mm round, survives 200° temperatures, 48 bytes memory
LRP250	Passive read/write tag, 50 mm square, 48 bytes memory
LRP250HT	Passive read/write tag, 50 mm square, survives 200° temperatures, 48 bytes memory
LRP250HT-FLX	Passive read/write tag, 50 mm square, survives 200° temperatures, flexible with high temperature adhesive backing, 48 bytes memory
LRP-L5555	Passive read/write tag, 55 mm square, thermal transfer with adhesive backing, 48 bytes memory
LRP-L2666	Passive read/write tag, 26 x 66 mm, thermal transfer with adhesive backing, 48 bytes memory
LRP-L4982	Passive read/write tag, 49 x 82 mm, thermal transfer with adhesive backing, 48 bytes memory
LRP-L90140	Passive read/write tag, 90 x 140 mm, thermal transfer with adhesive backing, 48 bytes memory

Table 12 — Models and Accessories (cont)

Accessories	
Part Number	Description
LRP-P125	Passive read/write tag, 25 mm, PCB, 48 bytes memory
LRP-P3858	Passive read/write tag, 38 x 38 mm, PCB, 48 bytes memory
LRP-P5050	Passive read/write tag, 50 x 50 mm, PCB, 48 bytes memory

C APPENDIX: ASCII CHART

Decimal	Hex	Character	Decimal	Hex	Character
000	00	NUL	032	20	(space)
001	01	SOH	033	21	!
002	02	STX	034	22	"
003	03	ETX	035	23	#
004	04	EOT	036	24	\$
005	05	ENQ	037	25	%
006	06	ACT	038	26	&
007	07	BEL	039	27	'
008	08	BS	040	28	(
009	09	HT	041	29)
010	0A	LF	042	2A	*
011	0B	VT	043	2B	++
012	0C	FF	044	2C	'
013	0D	CR	045	2D	-
014	0E	SO	046	2E	.
015	0F	SI	047	2F	/
016	10	DLE	048	30	0
017	11	DC1	049	31	1
018	12	DC2	050	32	2
019	13	DC3	051	33	3
020	14	DC4	052	34	4
021	15	NAK	053	35	5
022	16	SYN	054	36	6
023	17	ETB	055	37	7
024	18	CAN	056	38	8
025	19	EM	057	39	9
026	1A	SUB	058	3A	:
027	1B	ESC	059	3B	;
028	1C	FS	060	3C	<
029	1D	GS	061	3D	=
030	1E	RS	062	3E	>
031	1F	US	063	3F	?

Decimal	Hex	Character	Decimal	Hex	Character
064	40	@	096	60	'
065	41	A	097	61	a
066	42	B	098	62	b
067	43	C	099	63	c
068	44	D	100	64	d
069	45	E	101	65	e
070	46	F	102	66	f
071	47	G	103	67	g
072	48	H	104	68	h
073	49	I	105	69	i
074	4A	J	106	6A	j
075	4B	K	107	6B	k
076	4C	L	108	6C	l
077	4D	M	109	6D	m
078	4E	N	110	6E	n
079	4F	O	111	6F	o
080	50	P	112	70	p
081	51	Q	113	71	q
082	52	R	114	72	r
083	53	S	115	73	s
084	54	T	116	74	t
085	55	U	117	75	u
086	56	V	118	76	v
087	57	W	119	77	w
088	58	X	120	78	x
089	59	Y	121	79	y
090	5A	Z	122	7A	z
091	5B	[123	7B	{
092	5C	\	124	7C	
093	5D]	125	7D	}
094	5E	^	126	7E	~
095	5F	—	127	7F	DEL