Underwriters Laboratories Inc.

www.ul.com/emc www.ulk.co.kr

Project No.:	12CA41629
File No.:	MC17075
Report No.:	12CA41629-FCC-2
Date:	July 23, 2012
Model No.:	SWB-A52H
FCC ID.:	E2XSWB-A52H

FCC Test Report

in accordance with FCC Part 15 Subpart E §15.407

for

WiFi Module

Samsung Electro-Mechanics Co., Ltd.

150 Maeyoungro, Yeongtong-gu, Suwon, Gyeonggi-do, Korea

Copyright © 2005 Underwriters Laboratories Inc.

Underwriters Laboratories Inc. authorizes the above-named company to reproduce this Report provided it is reproduced in its entirety.

Only those products bearing the UL Mark should be considered as being covered by UL.

An organization dedicated to public safety and committed to quality service for over 100 years

Project Number:	12CA41629	File Number :	MC17075	Page :	2 of 115
Model Number:	SWB-A52H				

Summary of Test Results:

The following tests were performed on a sample submitted for evaluation of compliance with FCC Part 15 E Section 15.407

No	Reference Clause No.	FCC Part15 Subpart E Conformance Requirements	Result Verdict Remark
1	15.205(a) 15.209(a) 15.407(b)(1) 15.407(b)(2) 15.407(b)(3)	Transmitter radiated spurious emissions and Conducted spurious emission	Complied
2	15.407(a)(1) 15.407(a)(2)	Output power	Complied
3	15.407(a)(1) 15.407(a)(2)	Peak power spectral density	Complied
4	15.407(a)(6)	Peak excursion	Complied
5	15.207	Transmitter AC power line conducted emission	Complied
6	15.407(h)	DFS Channel closing transmission time Channel move time Non occupied period	Complied

Conclusion:

The tests listed in the Summary of Testing section of this report have been performed and the results recorded by UL Korea Ltd. in accordance with the procedures stated in each test requirement and specification. The test list was determined by the Applicant as being applicable to the Equipment Under Test. As a result, the subject product has been verified to comply or not comply as noted in the Summary of Testing with each test specification. The test results relate only to the items tested.

Tested by Kyung Duk Ko, WiSE Project Engineer UL Verification Services- 3014ASEO UL Korea Ltd. July 23, 2012

Un.

Tested by Jeawoon, Choi, WiSE Engineering Leader UL Verification Services- 3014ASEO UL Korea Ltd. July 23, 2012

Project Number:	12CA41629	File Number :	MC17075	Page : 3 of 115
Model Number:	SWB-A52H			

Test Report Details

Overall Results:	Pass
Testing Date:	2012-07-02 ~ 2012-07-20
Sample Receive Date:	2012-07-02
Sample Serial Number:	N / A
Test standards:	FCC Part 15 E Unlicensed National Information Infrastructure Devices Section 15.407 General technical requirements
Sample Serial Number:	N/A
Trademark	SEMCO
Model Number:	SWB-A52H
Product Type:	WiFi Module
E-mail:	seungpil.jung@samsung.com
Fax:	+82-31-210-6363
Phone:	+82-31-210-5748
Applicant Contact:	Seung Pil Jung
- FF	150 Maeyoungro, Yeongtong-gu, Suwon, Gyeonggi-do, Korea
Applicant [.]	Korea Samsung Electro-Mechanics Co. Ltd
Test Site:	ESTECH CO., LTD. 97-1, Hoeok-Ri, Majang-Myun, Icheon-City, Kyunggi-Do, 467-811,
Tests Performed By:	UL Korea Ltd. 33 rd FL. GFC Center, 737 Yeoksam-dong, Gangnam-gu, Seoul, 135-984, Korea

UL Korea Ltd. reports apply only to the specific test samples and test results submitted for UL's review. All samples tested were in good operating condition throughout the entire test program. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. UL Korea Ltd. shall have no liability for any deductions, inferences or generalizations drawn by the client or others from UL Korea Ltd. issued reports. This report shall not be used to claim, constitute or imply product certification, approval, or any agency of the National Authorities. This report may contain test results that are not covered by the NVLAP or KOLAS accreditation.

Project Number:	12CA41629	File Number :	MC17075	Page :	4 of 115
Model Number:	SWB-A52H				

Report Directory

1.	GENERAL PRODUCT INFORMATION	5
1.1	EQUIPMENT DESCRIPTION	5
1.2	DETAILS OF TEST EQUIPMENT (EUT)	5
1.3	EQUIPMENT CONFIGURATION	5
1.4	TECHNICAL DATA	6
1.5	ANTENNA INFORMATION	6
1.6	EQUIPMENT TYPE :	6
1./	I ECHNICAL DESCRIPTIONS AND DOCUMENTS	6
1.0	MAXIMUM OUTDUT POWER (BASELINE MEASUREMENT)	
?	TEST SPECIFICATION	, Q
2. 3.	TEST CONDITIONS	
31	Folupment Used During Test	10
3 2	INPUT/OUTPUT PORTS	10
3.3	POWER INTERFACE	
3.4	OPERATING FREQUENCIES	11
3.5	OPERATION MODES	11
3.6	Environment Conditions	11
3.7	Test Configurations	
3.8	LIST OF TEST EQUIPMENT	13
4.	OVERVIEW OF TECHNICAL REQUIREMENTS	13
5.	TEST RESULTS	14
5.1	26 dB Bandwidth	14
5.2	OUTPUT POWER	
5.3	PEAK POWER SPECTRAL DENSITY	48
5.4	PEAK EXCURSION	64
5.5	TRANSMITTER CONDUCTED SPURIOUS EMISSION MEASUREMENT	67
5.6	TRANSMITTER RADIATED SPURIOUS EMISSIONS MEASUREMENT	
5.7	I RANSMITTER AC POWER LINE CONDUCTED EMISSION	
5.8 5.0	$D\Gamma S (DYNAMIC FREQUENCY SELECTION)$	105
5.9		
APP	'ENDIX A. ACCREDITATIONS AND AUTHORIZATIONS	

Project Number:	12CA41629	File Number :	MC17075	Page :	5 of 115
Model Number:	SWB-A52H				

1. General Product Information

1.1 Equipment Description

SWB-A52H is the module that integrates Wireless LAN (WLAN). This embedded module is optimized for WLAN enabled handheld mobile device.

1.2 Details of Test Equipment (EUT)

- Equipment Type : WiFi Module
- Model No. : SWB-A52H
- Trade name : SEMCO
- Type of test Equipment : module type
- Operating characteristic : FCC Part 15 E Unlicensed National Information Infrastructure Devices Section 15.407 General technical requirements
- Manufacturer
 Samsung Electro-Mechanics Co., Ltd. Samsung Electro-Mechanics(Thailand), Ltd/93 Moo 5 T.Bangsmak, A.Bangpakong, Chachoengsao 24180, Thailand

1.3 Equipment Configuration

The EUT is consisted of the following component provided by the manufacturer.

Use*	Product Type	Manufacturer	Model	Comments
EUT	Module	Samsung Electrical- Mechanics	SWB-A52H	-
EUT	Antenna	SEMCO	MSA-4008-25GC1-A1- 500002	-
Note: Use = EUT - Equipment Under Test, AE - Auxiliary/Associated Equipment. SIM - Simulator (Not Subjected to Test)				

Project Number:	12CA41629	File Number :	MC17075	Page :	6 of 115
Model Number:	SWB-A52H				

1.4 Technical Data

Item	Type of WiFi module
Frequency Ranges	2400 – 2483.5 MHz 5150 – 5350 MHz, 5470 – 5725 MHz, 5725 – 5850 MHz,
Output power	2.4 G : Max. 22.11 dBm 5 G : Max. 15.58 dBm
Kind of modulation (s)	CCK, OFDM, BPSK, QPSK, 16QAM, 64QAM
Emission Designator	G1D, D2D
Channel	2.4 G : 13 channel(11b/g/n_HT20) 5 G : 5 channel (11a/n_HT20 – DTS), 2 channel (11n_HT40 – DTS) 4 channel(11a/n_HT20 – Non DFS), 2 channel(11a/n_HT40 – Non DFS) 15 channel (11a/n_HT20_DFS), 7 channel (11a/n_HT40_DFS)
Antenna Gain	2.4 G : Max. 3.51 dBi, 5 G : Max. 4.07 dBi
Antenna information	Integral antenna (Metal Stamping Antenna Assembly)
Working temperature	-20 ~ 70 °C
Supply Voltage	DC 3.3 V

Note;

1. All the technical data described above were provided by the manufacturer.

1.5 Antenna Information

Antenna Model Name: MSA-4008-25GC1-A1-500002Antenna Type: Metal Stamping Antenna AssemblyManufacturer: MAG. LAYERS SCUENTIFIC-TECHNICS CO., LTD.Transmit Gain dBi: 2.4 G : Max. 3.51 dBi, 5 G : Max. 4.07 dBiAzimuth Beam Pattern: Linear vertical

1.6 Equipment Type :

Radio and ancillary equipment for fixe Radio and ancillary equipment for vehi Radio and ancillary equipment for port	d or semi-fixed use cular mounted use able or handheld use
Stand alone Host connected	Host connected
Self contained single unit	Module with associated connection or interface

1.7 Technical descriptions and documents

The following documents was provided by the manufacturer.

No.	Document Title and Description
1	User Manual
2	MAG. LAYERS SCUENTIFIC-TECHNICS CO., LTD., APPROVAL SHEET (RoHS) / MSA-4008-25GC1-A1-500002

Project Number:	12CA41629	File Number :	MC17075	Page :	7 of 115
Model Number:	SWB-A52H				

1.8 Description of additional model name

Model name	Model name Designation	Description of design
SWB-A52H	Basic model	-

1.9 Maximum Output Power (Baseline Measurement)

5 15 5 25 CH-	Rate		Peak Power(dBm)				
5.15 ~ 5.25 GHZ			5.18 GHz	5.22 GHz	5.24 GHz		
	6	Mbps	13.77	13.14	13.24		
	9	Mbps	13.95	13.67	13.71		
	12	Mbps	14.12	13.74	13.77		
802 110	18	Mbps	1426	13.85	13.7		
802.11a	24	Mbps	14.18	13.71	13.82		
	36	Mbps	14.23	13.82	13.75		
	48	Mbps	14.31	13.88	13.77		
	54	Mbps	14.36	13.93	13.85		
	MCS	0	13.99	13.34	13.10		
	MCS	1	14.34	13.64	13.24		
	MCS	2	14.51	13.59	13.52		
802 11n UT20	MCS	3	14.68	13.72	13.66		
802.1111-11120	MCS	4	14.59	13.77	13.74		
	MCS	5	14.72	13.84	13.78		
	MCS	6	14.75	13.86	13.82		
	MCS	7	14.87	13.89	13.85		
]	Rate	5.19 GHz		5.23 GHz		
	MCS	0	14.43		14.58		
	MCS	1	14.77		14.85		
	MCS	2	14.89		14.91		
802.11n-HT40	MCS	3	14.92		14.96		
	MCS	4	14.88		14.99		
	MCS	5	14.90		14.90		
	MCS	6	14.93		15.05		
	MCS	7	15.02		15.11		

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	8 of 115
Model Number:	SWB-A52H				

5 25 5 25 CHz	Rate		Peak Power(dBm)				
5.25 ~ 5.35 GHZ			5260 MHz	5280	MHz	5320 MHz	
	6	Mbps	13.36	14	.56	14.30	
	9	Mbps	13.89	14	.62	14.65	
	12	Mbps	14.05	14	.69	14.78	
802 110	18	Mbps	14.16	14	.78	14.81	
002.11a	24	Mbps	14.22	14	.85	14.88	
	36	Mbps	14.31	14	.81	14.85	
	48	Mbps	14.25	14	.92	14.83	
	54	Mbps	14.44	14	.99	14.97	
	MCS	0	13.35	14	.12	13.93	
	MCS	1	13.84	14.36		14.62	
	MCS	2	13.95	14.59		14.66	
802 11n HT20	MCS	3	13.99	14.62		14.59	
002.11II-11120	MCS	4	13.92	14.60		14.71	
	MCS	5	14.05	14	.68	14.48	
	MCS	6	14.11	14.61		14.88	
	MCS	7	14.13	14	.72	14.90	
		Rate	5.27 GHz			5.31 GHz	
	MCS	0	14.24			14.97	
	MCS	1	14.78			15.26	
	MCS	2	14.85			15.34	
802.11n-HT40	MCS	3	14.93			15.41	
	MCS	4	14.99			15.39	
	MCS	5	15.02			15.44	
	MCS	6	14.91			15.51	
	MCS	7	15.05			15.58	

5 47 5 725 MHz	Data		Peak Power(dBm)					
5.47 - 5.725 MHZ		Kate	5.5 GHz	5.58 GHz	5.7 GHz			
	6	Mbps	13.87	14.02	14.07			
	9	Mbps	14.25	14.52	14.52			
	12	Mbps	14.36	14.69	14.67			
802 110	18	Mbps	14.48	14.77	14.69			
002.11a	24	Mbps	14.66	14.82	14.78			
	36	Mbps	14.62	14.88	14.88			
	48	Mbps	14.71	14.84	14.95			
	54	Mbps	14.78	14.93	15.02			
	MCS	0	13.67	14.33	14.27			
	MCS	1	14.51	14.74	14.85			
	MCS	2	14.59	14.79	14.92			
202 11m UT20	MCS	3	14.63	14.81	14.99			
802.1111-П120	MCS	4	14.68	14.88	14.88			
	MCS	5	14.54	14.92	15.02			
	MCS	6	14.71	14.94	15.07			
	MCS	7	14.74	14.98	15.11			
		Rate	5.51 GHz	5.55 GHz	5.67GHz			
	MCS	0	14.75	14.71	14.30			
	MCS	1	14.88	14.82	14.78			
	MCS	2	14.91	14.88	14.81			
802.11n-HT40	MCS	3	14.81	14.93	14.88			
	MCS	4	14.79	14.96	14.68			
	MCS	5	14.83	14.97	14.91			
	MCS	6	14.90	14.99	15.05			
	MCS	7	14.98	15.03	15.10			

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405

Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	9 of 115
Model Number:	SWB-A52H				

2. Test Specification

The following test specifications and standards have been applied and used for testing.

- 1) FCC Part 15 E Unlicensed National Information Infrastructure Devices, Section 15.407 General technical requirements
- 2) ANSI C63.4:2009 : American National Standard for Methods of Measurement of Radio- Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
- 3) ANSI C63.10:2009: American National Standard for Testing Unlicensed Wireless Devices
- 4) KDB 789033 : Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices

Project Number:	12CA41629	File Number :	MC17075	Page :	10 of 115
Model Number:	SWB-A52H				

3. Test Conditions

3.1 Equipment Used During Test

Use*	Product Type	Manufacturer	Model	Comments				
EUT	WiFi module	Samsung Electro- Mechanics	SWB-A52H	-				
AE	Note PC	Dell	X61	-				
Note: Use = EUT - Equipment Under Test, AE - Auxiliary/Associated Equipment. SIM - Simulator (Not Subjected to Test)								

3.2 Input/Output Ports

No	Port Name	Type*	Cable Max. >3m (Y/N)	Cable Shielded (Y/N)	Comments		
1	Power Input	DC	Ν	Ν	Connected to DC Power supply		
2	Radio Antenna	I/O	Ν	Y	-		
Note	:						
*AC	AC = AC Power Port $DC = DC Power Port$ $N/E = Non-Electrical$						
I/O	I/O = Signal Input or Output Port (Not Involved in Process Control)						
TP	TP = Telecommunication Ports						

3.3 Power Interface

Mode #	Voltage (V)	Current (A)	Power (W)	Frequency (DC/AC-Hz)	Phases (#)	Comments
Rated	3.3 V	-	-	DC	-	Normal operating voltage
1	2.97 V	-	-	DC	-	V _{MIN}
2	3.63 V	-	-	DC	-	V _{MAX}

Project Number:	12CA41629	File Number :	MC17075	Page :	11 of 115
Model Number:	SWB-A52H				

3.4 Operating Frequencies

Mode #	Frequency tested
1	5.15 ~ 5.25 GHz : 11a/n_HT20 - Low : 5 180 MHz / CH = 36
1	 Mid : 5 220 MHz / CH = 44 High : 5 240 MHz / CH= 48
2	5.25 ~ 5.35 GHz : 11n_HT40 - Low : 5 190 MHz / CH = 36 - High : 5 230 MHz / CH= 44
3	5.25 ~ 5.35 GHz : 11a/n_HT20 - Low : 5 260 MHz / CH = 52 - Mid : 5 300 MHz / CH = 60 - High : 5 320 MHz / CH= 64
4	5.25 ~ 5.35 GHz : 11n_HT40 - Low : 5 270 MHz / CH = 52 - High : 5 310 MHz / CH= 60
5	5.47 ~ 5.725 GHz : 11a/n_HT20 - Low : 5 500 MHz / CH = 100 - Mid : 5 580 MHz / CH = 116 - High : 5 700 MHz / CH= 140
6	5.47 GHz ~ 5.725 GHz : 11n_HT40 - Low : 5 510 MHz / CH = 100 - High : 5 670 MHz / CH= 132

3.5 Operation Modes

Mode #	Description
1	Carrier on mode: Signal from the RF module was generated continuously for the representative channels (Low, Mid, High) by the test program incorporated
2	Carrier off (Idle) mode: RF carrier was not activated by the RF module
Note : 1. The spur	measurements of the spurious emissions for transmitter on stand-by mode were performed as the receiver ious emissions.

2. The worst-case condition is determined by the baseline measurement of rf output power out of various modulations and data rates. The worst-case channel was determined as the channel with highest output power. The worst-case data rates in below were used for final measurement.

- 802.11a mode: 54Mbps
- 802.11n_HT20 mode: MCS7
- 802.11n_HT40 mode: MCS7

3.6 Environment Conditions

Parameters	Normal condition	Extreme condition
Temperature	$+ 15$ °C $\sim +35$ °C	-20 °C / +55 °C
Humidity	20%~75%	No excessive condensation occur
Supply voltage	3.3 Vdc (Rated nominal voltage)	2.97 Vdc / 3.63 Vdc
Nata .		

Note ;

- The extreme condition is applied to the boundary limits of the declared operational environmental condition by the manufacturer.

- The operating condition for humidity requirement has not been declared in the manufacturer's specification.

- Test has been carried out for three frequencies specified above under the normal condition and for the extreme condition, minimum and maximum frequencies has been tested.

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	12 of 115
Model Number:	SWB-A52H				

3.7 Test Configurations

Project Number:	12CA41629	File Number :	MC17075	Page :	13 of 115
Model Number:	SWB-A52H				

3.8 List of Test Equipment

No	Description	Manufacturer	Model	Identifier	Cal. Due
1	Spectrum Analyzer	Agilent	E4407B	US42041281	2012/9/8
2	Signal Analyzer	ROHDE&SCHWARZ	FSV	100939	2013/1/26
3	Vector Signal Generator	ROHDE&SCHWARZ	SMBV100A	256663	2013/1/27
4	Attenuator	HP	8491A	54297	2012/12/29
5	Attenuator	HP	8498A	1801A04999	2013/2/23
6	Attenuator	Bird Electronic Corp.	100-SA-MFN-30	0138	2013/6/5
7	Attenuator	SRT	F04-K1830-01	11060801	2013/6/5
8	Power divider	HP	11636B	10211	2012/7/21
9	Power divider	PULSAR	PS4-24-452/10S	0832	2012/7/21
10	LISN	Rohde & Schwarz	ESH3-Z5	836679/025	2012/09/27
11	TEST Receiver	Rohde & Schwarz	ESHS 30	828765/002	2012/12/16
12	Pulse Limiter	Rohde & Schwarz	ESH3Z2	NONE	2013/01/25
13	Logbicon Antenna	SCHWARZBECK	VULB 9168	237	2013/01/20
14	TEST Receiver	Rohde & Schwarz	ESCI7	1166.5950.07	2013/03/28
15	Horn Antenna	SCHWARZBECK	BBHA9120D	469	2012/09/06
16	SPECTRUM ANALYZER	ADVANTEST	R3273	110600592	2013/01/26
17	Amplifier	Agilent	8449B	3008A00581	2013/01/27
18	Pyramidal Horn Antenna	ETS-LINDGREN	3160-09	00102642	2012/09/07

4. Overview of Technical requirements

The following essential requirements and test specifications are relevant to the presumption of conformity FCC Part 15 E Section 15.407			
Reference Clause No.	Essential technical requirements	Test method	Reported
15.407(a)(1) 15.407(a)(2)	Output power	ANSI C63.10-2009 KDB 789033	[X]
15.407(a)(1) 15.407(a)(2)	Peak power spectral density	ANSI C63.10-2009 KDB 789033	[X]
15.407(a)(6)	Peak excursion	ANSI C63.10-2009 KDB 789033	[X]
15.205(a) 15.209(a) 15.407(b)(1) 15.407(b)(2) 15.407(b)(3)	Transmitter radiated spurious emissions and Conducted spurious emission	ANSI C63.4-2009 KDB 789033	[X]
15.207	Transmitter AC power line conducted emission	ANSI C63.4-2009	[X]
15.407(h)	DFS - Channel closing transmission time - Channel move time - Non occupied period	FCC 06-09	[X]

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	14 of 115
Model Number:	SWB-A52H				

5. Test Results

5.1 26 dB Bandwidth

		TEST: 26 dB Bandwidth		
Method	Transmitter rfoutput condition shown in be 789033.1. Set RBW: approxim 2. Set the VBW > RB 3. Detector = Peak 4. Trace mode = max 5. Measure the maxim Compare this with needed until the RFNote: The automatic b implements the	it is connected to the spectrum analyze elow, the 26 dB Bandwidth from the EU nately 1% of the emission bandwidth. W. hold. num width of the emission that is 26 dI the RBW setting of the analyzer. Read 3W/EBW ratio is approximately 1 % bandwidth measurement capability of a s functionality described above.	r. Under the spectrum analyzer setting T were measured according to the KDB B down from the peak of the emission. djust RBW and repeat measurement as pectrum analyzer may be employed if it	
Reference Cla	nuse	For reporting purpose only		
Parameters re	corded during the test	Laboratory Ambient Temperature	22 °C	
		Relative Humidity 36 %		
	Frequency range Measurement Point			
Fully configured sample scanned over the following frequency range		5180 MHz - 5240 MHz 5260 MHz - 5320 MHz 5500 MHz - 5700 MHz	Antenna port	

Configuration Settings

Power Interface Mode # (See Section 3.3)	EUT Operation Mode # (See Section 3.5)	Test Configurations Mode # (See Section 3.7)
Rated	1	2
Supplementary information: None		

<u>Limits</u>

None; for reporting purpose only

Project Number:	12CA41629	File Number :	MC17075	Page :	15 of 115
Model Number:	SWB-A52H				

Measurement Result

Table 1. Data Table of 26 dB Bandwidth

Operating Mode	Data Rate (Mbps)	Channel	Frequency (MHz)	Result (MHz)
5 0 CH 1 1	• • /	Low	5180	21.30
5.2 GHz band	54	Middle	5220	21.53
802.11a		High	5240	21.86
5.2 CII-hand		Low	5180	22.17
5.2 GHZ Dand	MCS7	Middle	5220	21.89
802.11II-П120		High	5240	21.88
5.2 GHz band	MCS7	Low	5190	42.57
802.11n-HT40	MCS/	High	5230	42.93
5.2 CHz hand		Low	5260	21.28
	54	Middle	5300	21.14
002.11a		High	5320	21.39
5.2 CHz hand		Low	5260	21.90
2.5 GHZ Dallu 202 11n UT20	MCS7	Middle	5300	22.07
802.11II-H120		High	5320	22.11
5.3 GHz band	MCS7	Low	5270	42.72
802.11n-HT40	MC5/	High	5310	42.88
5.6 CHz hand		Low	5500	21.09
	54	Middle	5580	21.46
002.11a		High	5700	21.59
5.6 CHz hand		Low	5500	21.86
3.0 OHZ Dallu 802 11n HT20	MCS7	Middle	5580	21.72
802.1111-11120		High	5700	21.83
5.6 GHz hand		Low	5510	42.77
802 11n-HT/0	MCS7	Middle	5550	42.88
002.1111-11140		High	5670	42.91

Project Number:	12CA41629	File Number :	MC17075	Page :	16 of 115
Model Number:	SWB-A52H				

Figure 1. Captured images of 26 dB Bandwidth

802.11a (Non-DFS)

Low Channel (5180 MHz)

Middle Channel (5220 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	17 of 115
Model Number:	SWB-A52H				

High Channel (5240 MHz)

i∰ Agilent		R T	Meas Setup
,– CH Freq 5.2 Occupied Bandwidth	24 GHz	Trig Free	Avg Number 10
VBW 1.0000000	00 MHz		Avg Mode Exp Repeat
Ref 15 dBm At Peak Log 10 dB/ Offst 22 dB	ten 5 dB		Max Hold On Off Occ BW % Pwr 99.00 %
Center 5.24 GHz #Res BW 300 kHz	#VBW 1 MHz	Span 50 MHz Sweep 4 ms (401 pts)	49.9999990 MHz
Occupied Bandw 16.6	vidth 6992 MHz	Occ BW % Pwr 99.00 %	x dB -26.00 dB
Transmit Freq Error x dB Bandwidth	87.987 kHz 21.859 MHz		Optimize Ref Level

802.11a (DFS)_Lower

Low Channel (5260 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	18 of 115
Model Number:	SWB-A52H				

Middle Channel (5300 MHz)

🔆 Agilent			RT	Meas Setup
CH Freq 5.3 Occupied Bandwidth	GHz		Trig Free	Avg Number 10 On Off
VBW 1.0000000	0 MHz			Avg Mode Exp Repeat
Peak Log 10 →				Max Hold On Off
dB/ Offst 22 dB			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Occ BW % Pwr 99.00 %
Center 5.3 GHz #Res BW 300 kHz	#VBW 1 MHz	Sweep 4 m	5pan 50 MHz s (401 pts)	OBW Spar 49.9999990 MHz
Occupied Bandw 16.6	idth 770 MHz	Occ BW % Pwr	99.00 %	× dB -26.00 dB
Transmit Freq Error x dB Bandwidth	32.468 kHz 21.135 MHz			Optimize Ref Level

High Channel (5320 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	19 of 115
Model Number:	SWB-A52H				

802.11a (DFS)_Upper

Low Channel (5500 MHz)

Middle Channel (5580 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	20 of 115
Model Number:	SWB-A52H				

High Channel (5700 MHz)

🔆 Agilent			RT	Mea	as Setup
CH Freq 5.7 Occupied Bandwidth	GHz	Ţri	g Free	A۱	/g Number 10 Off
VBW 1.00000000	0 MHz			Ехр	Avg Mode <u>Repeat</u>
Peak Log 10 dB/ Offst 22 dB		······································		<u>On</u> Occ	Max Hold <u>Off</u> BVV % Pwr 99.00 %
Center 5.7 GHz #Res BW 300 kHz	#VBW 1 MHz	Spa Sweep 4 ms (4	n 50 MHz 101 pts)	49.99	99990 MHz
Occupied Bandwi 16.6	dth 896 MHz	Occ BW % Pwr	99.00 %		X dB -26.00 dB
Transmit Freq Error x dB Bandwidth	-5.456 kHz 21.585 MHz				Ref Level

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	21 of 115
Model Number:	SWB-A52H				

802.11n-HT20 (Non-DFS)

Low Channel (5180 MHz)

Middle Channel (5220 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	22 of 115
Model Number:	SWB-A52H				

High Channel (5240 MHz)

🔆 Agilent			RΤ	Meas Setup
CH Freq 5. Occupied Bandwidth	24 GHz	Tri	g Free	Avg Number 10 On Off
VBW 1.0000000	00 MHz			Avg Mode Exp Repeat
Ref 15 dBm A Peak Log 10 dB/ Offst 22 20 20 20 20 20 20 20 20 20				Max Hold On Off Occ BW % Pwr 99.00 %
Center 5.24 GHz #Res BW 300 kHz	#VBW 1 MHz	Spa Sweep 4 ms (4	n 50 MHz 101 pts)	OBW Spar 49.9999990 MHz
Occupied Bandy 17.	width 8135 MHz	Occ BW % Pwr	99.00 %	x dB -26.00 dB
Transmit Freq Error x dB Bandwidth	75.820 kHz 21.876 MHz			Optimize Ref Level

802.11n-HT20 (DFS)_Lower

Low Channel (5260 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	23 of 115
Model Number:	SWB-A52H				

Middle Channel (5300 MHz)

🔆 🔆 Agilent			RT	Meas	Setup
CH Freq 5.3 Occupied Bandwidth	GHz		Trig Free	Avg On	Number 10 Off
VBW 1.00000000	0 MHz			A' <u>Exp</u>	vg Mode Repeat
Peak Log 10	\$	········		<u>On</u>	/lax Hold <u>Off</u>
dB/ Offst 22 dB			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Occ E	W % Pwi 99.00 %
Center 5.3 GHz #Res BW 300 kHz	#VBW 1 MHz	S Sweep 4 ms	pan 50 MHz s (401 pts)	0 49.9999	BW Spar 990 MHz
Occupied Bandwi 17.7	dth 602 MHz	Occ BW % Pwr	99.00 %		X dB 26.00 dB
Transmit Freq Error x dB Bandwidth	45.031 kHz 22.067 MHz			R	Optimize ef Level

High Channel (5320 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	24 of 115
Model Number:	SWB-A52H				

802.11n-HT20 (DFS)_Upper

Low Channel (5500 MHz)

Middle Channel (5580 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	25 of 115
Model Number:	SWB-A52H				

High Channel (5700 MHz)

CH Freq 5.7 GHz Trig Free Occupied Bandwidth VBW 1.000000000 MHz	Avg Number 10 On <u>Off</u> Avg Mode
VBW 1.000000000 MHz	Ava Mode
Ref 15 dBm Atten 5 dB	Exp Repeat
Peak Log 10	Max Hold <u>On Off</u>
dB/ Offst 22 dB	Occ BW % Pwr 99.00 %
Center 5.7 GHz Span 50 MHz #Res BW 300 kHz #VBW 1 MHz Sweep 4 ms (401 pts)	OBW Spar 49.9999990 MHz
Occupied Bandwidth Occ BW % Pwr 99.00 %	x dB -26.00 dB
17.7519 MHZ Transmit Freq Error 5.005 kHz x dB Bandwidth 21.828 MHz	Optimize Ref Level

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	26 of 115
Model Number:	SWB-A52H				

802.11n-HT40 (Non-DFS)

Low Channel (5190 MHz)

High Channel (5230 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	27 of 115
Model Number:	SWB-A52H				

802. 11n-HT40 (DFS)_Lower

Low Channel (5270 MHz)

High Channel (5310 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	28 of 115
Model Number:	SWB-A52H				

802. 11n-HT40 (DFS)_Upper

Low Channel (5510 MHz)

Middle Channel (5550 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	29 of 115
Model Number:	SWB-A52H				

High Channel (5670 MHz)

* Agilent R T	Meas Setup
CH Freq 5.67 GHz Trig Free Occupied Bandwidth	Avg Number 10 On Off
VBW 1.00000000 MHz	Avg Mode Exp Repeat
Peak Atten 5 db Peak Log 10	Max Hold <u>On Off</u>
dB/ Offst 22 dB	Occ BW % Pwr 99.00 %
Center 5.67 GHz Span 100 MHz #Res BW 300 kHz #VBW 1 MHz Sweep 4 ms (401 pts)	OBW Spar 99.9999980 MHz
Occupied Bandwidth Occ BW % Pwr 99.00 % 36.2292 MHz 36.2292 MHz <td< th=""><th>x dB -26.00 dB</th></td<>	x dB -26.00 dB
Transmit Freq Error 44.238 kHz x dB Bandwidth 42.913 MHz	Optimize Ref Level

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	30 of 115
Model Number:	SWB-A52H				

5.2 Output Power

TEST: Output Power					
Method	Output from the EUT	were measured according to the dictates	in section C 3) f) of KDB 789033		
	 Measure the duty Set span to encom Set RBW = 1 MH Set VBW ≥ 3 MH Number of point RBW/2, so that n Manually set sweetransmitted signa Set detector = RN Trace mode = ma Compute power H spectrum analyzed EBW band edges spectrum levels (the spectrum. 	cycle, x, of the transmitter output signpass the entire emission bandwidth (Iz. Iz. Iz. s in sweep ≥ 2 Span / RBW. (This arrowband signals are not lost betwee eep time $\geq 10 *$ (number of points in l). AS. Otherwise, use sample detector m x hold by integrating the spectrum across the er's band power measurement function a. If the spectrum analyzer does not h in power units) at 1 MHz intervals e	nal EBW) of the signal. ensures that bin-to-bin spacing is ≤ en frequency bins.) sweep) * (total on/off period of the ode. e 26 dB EBW of the signal using the on with band limits set equal to the ave a band power function, sum the extending across the 26 dB EBW of		
Reference Cl	lause	Part15 E Section 15.407 (a)			
Parameters re	ecorded during the test	Laboratory Ambient Temperature	22 °C		
		Relative Humidity	36 %		
		Frequency range	Measurement Point		
Fully configured sample scanned over the following frequency range		5180 MHz - 5240 MHz 5260 MHz - 5320 MHz 5500 MHz - 5700 MHz	Antenna port		

Configuration Settings

Power Interface Mode # (See Section 3.3)	EUT Operation Mode # (See Section 3.5)	Test Configurations Mode # (See Section 3.7)
Rated	1	2
Supplementary information: None		

Project Number:	12CA41629	File Number :	MC17075	Page :	31 of 115
Model Number:	SWB-A52H				

Limits

(a)(1)

For the 5.15~5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dB m + 10 log B, where B is the 26 dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(a)(2)

For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 MHz emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Project Number:	12CA41629	File Number :	MC17075	Page :	32 of 115
Model Number:	SWB-A52H				

Table 2. Limit for 5150 ~ 5250 MHz

Mode	Frequency (MHz)	Data Rate (Mbps)	Fixed Limit (dBm)	26 dB BW (MHz)	4+10LogB (dBm)	Limit (dBm)
	5180	54	17	21.30	17.28	17
11a	5220	54	17	21.53	17.33	17
	5240	54	17	21.86	17.40	17
	5180	MCS7	17	22.17	17.46	17
11n-HT20	5220	MCS7	17	21.89	17.40	17
	5240	MCS7	17	21.88	17.40	17
11n HT40	5190	MCS7	17	42.57	20.29	17
1111-11140	5230	MCS7	17	42.93	20.33	17
Table 3. Limit for	or 5250 ~ 5725 MH	Iz	•			•
Mode	Frequency	Data Rate	Fixed Limit	26 dB BW	11+10LogB	Limit
	(MHz)	(Mbps)	(dBm)	(MHz)	(dBm)	(dBm)
	5260	54	24	21.28	24.28	24
	5300	54	24	21.14	24.25	24
11a	5320	54	24	21.39	24.30	24
11a	5500	54	24	21.09	24.24	24
	5580	54	24	21.46	24.32	24
	5700	54	24	21.59	24.34	24
	5260	MCS7	24	21.90	24.40	24
	5300	MCS7	24	22.07	24.44	24
11n-HT20	5320	MCS7	24	22.11	24.45	24
111111120	5500	MCS7	24	21.86	24.40	24
	5580	MCS7	24	21.72	24.37	24
	5700	MCS7	24	21.83	24.39	24
	5270	MCS7	24	42.72	27.31	24
	5310	MCS7	24	42.88	27.32	24
11n-HT40	5510	MCS7	24	42.77	27.31	24
	5550	MCS7	24	42.88	27.32	24
	5670	MCS7	24	42.91	27.33	24

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	33 of 115
Model Number:	SWB-A52H				

Table 4.Output Power for 5150 ~ 5250 MHz

Mode	Frequency (MHz)	Data Rate (Mbps)	Result (dBm)	Limit (dBm)
	5180	54	14.36	17
11a	5220	54	13.93	17
	5240	54	13.85	17
	5180	MCS7	14.87	17
11n-HT20	5220	MCS7	13.89	17
	5240	MCS7	13.85	17
11n HT40	5190	MCS7	15.02	17
1111-11140	5230	MCS7	15.11	17

Table 5.Output Power for 5250 ~ 5725 MHz

Mada	Frequency	Data Rate	Result	Limit
Widde	(MHz)	(Mbps)	(dBm)	(dBm)
	5260	54	14.44	24
	5300	54	14.99	24
110	5320	54	14.97	24
11a	5500	54	14.78	24
	5580	54	14.93	24
	5700	54	15.02	24
11n-HT20	5260	MCS7	14.13	24
	5300	MCS7	14.72	24
	5320	MCS7	14.90	24
	5500	MCS7	14.74	24
	5580	MCS7	14.98	24
	5700	MCS7	15.11	24
	5270	MCS7	15.05	24
	5310	MCS7	15.58	24
11n-HT40	5510	MCS7	14.98	24
	5550	MCS7	15.03	24
	5670	MCS7	15.10	24

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	34 of 115
Model Number:	SWB-A52H				

Figure 2. Captured images of Output Power

802.11a (Non-DFS)

Low Channel (5180 MHz)

Middle Channel (5220 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	35 of
Model Number:	SWB-A52H				

115

High Channel (5240 MHz)

802.11a (DFS)_Lower

Low Channel (5260 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	36 of 115
Model Number:	SWB-A52H				

Middle Channel (5300 MHz)

High Channel (5320 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007
Project Number:	12CA41629	File Number :	MC17075	Page :	37 of 115
Model Number:	SWB-A52H				

802.11a (DFS)_Upper

Low Channel (5500 MHz)

Middle Channel (5580 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	38 of 115
Model Number:	SWB-A52H				

High Channel (5700 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	39 of 115
Model Number:	SWB-A52H				

802.11n-HT20 (Non-DFS)

Low Channel (5180 MHz)

Middle Channel (5220 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	40 of 115
Model Number:	SWB-A52H				

High Channel (5240 MHz)

802.11n-HT20 (DFS)_Lower

Low Channel (5260 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	41 of 115
Model Number:	SWB-A52H				

Middle Channel (5300 MHz)

High Channel (5320 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	42 of 11
Model Number:	SWB-A52H				

5

802.11n-HT20 (DFS)_Upper

Low Channel (5500 MHz)

Middle Channel (5580 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	43 of 115
Model Number:	SWB-A52H				

High Channel (5700 MHz)

Project Number:	12CA41629	File Number :	MC17075	Page :	44 of 115
Model Number:	SWB-A52H				

802.11n-HT40 (Non-DFS)

Low Channel (5190 MHz)

High Channel (5230 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	45 of 115
Model Number:	SWB-A52H				

802. 11n-HT40 (DFS)_Lower

Low Channel (5270 MHz)

High Channel (5310 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	46 of 115
Model Number:	SWB-A52H				

802. 11n-HT40 (DFS)_Upper

Low Channel (5510 MHz)

ir ∰ Agilent	RT	Trace
CH Freq 5.51 GHz Channel Power	Trig Free	Trace 1 2 3
		Clear Write
Samp Log 10		Max Hold
dB/ Offst 22		Min Hold
Center 5.51 GHz #Res BW 1 MHz #VBW 3 M	Span 64.16 MHz Hz Sweep 4 ms (401 pts)	View
Channel Power	Power Spectral Density	Blank
14.98 dBm / 42.7700 MHz	-61.33 dBm/Hz	More 1 of 2

Middle Channel (5550 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	47 of 115
Model Number:	SWB-A52H				

High Channel (5670 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	48 of 115
Model Number:	SWB-A52H				

5.3 Peak Power Spectral Density

		TEST: Peak Power Spectral Density				
Method Output from the EUT were measured according to the dictates in section E) of KDB 789033						
	 Measure the duty Set span to encom Set RBW = 1 MH Set VBW ≥ 3 MH Number of point RBW/2, so that n Manually set swee transmitted signal Set detector = RM Trace mode = mat 	luty cycle, x, of the transmitter output signal icompass the entire emission bandwidth (EBW) of the signal. MHz. MHz. oints in sweep ≥ 2 Span / RBW. (This ensures that bin-to-bin spacing iat narrowband signals are not lost between frequency bins.) sweep time $\geq 10 *$ (number of points in sweep) * (total on/off period of gnal). = RMS.				
Reference Clar	use	Part15 E Section 15.407 (a)				
Parameters rec	corded during the test	Laboratory Ambient Temperature	22 °C			
		Relative Humidity	36 %			
		Frequency range	Measurement Point			
Fully configured sample scanned over the following frequency range		5180 MHz - 5240 MHz 5260 MHz - 5320 MHz 5500 MHz - 5700 MHz	Antenna port			

Configuration Settings

Power Interface Mode # (See Section 3.3)	EUT Operation Mode # (See Section 3.5)	Test Configurations Mode # (See Section 3.7)
Rated	1	2
Supplementary information: None		

<u>Limits</u>

(a)(1)

For the band 5.15-5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(a)(2)

For the band 5.25-5.35 GHz and 5.47-5.725 GHz bands, the peak power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Project Number:	12CA41629	File Number :	MC17075	Page :	49 of 115
Model Number:	SWB-A52H				

Table 6.Data Table for 5150 ~ 5250 MHz

Mode	Frequency	Data Rate	Result	Limit
	(MHz)	(Mbps)	(dBm)	(dBm)
	5180	54	3.30	
11a	5220	54	2.44	
	5240	54	3.54	
	5180	MCS7	2.79	Л
11n-HT20	5220	MCS7	2.42	4
	5240	MCS7	2.05	
11n-HT/0	5190	MCS7	-0.33	
1111-11140	5230	MCS7	0.26	

Table 7.Data Table for 5250 ~ 5725 MHz

Mada	Frequency	Data Rate	Result	Limit
Widde	(MHz)	(Mbps)	(dBm)	(dBm)
	5260	54	2.26	
	5300	54	3.22	
110	5320	54	3.19	
11a	5500	54	2.51	
	5580	54	2.73	
	5700	54	2.05	
	5260	MCS7	1.91	
	5300	MCS7	2.38	
11n UT20	5320	MCS7	1.97	11
1111-11120	5500	MCS7	2.08	
	5580	MCS7	2.32	
	5700	MCS7	2.01	
	5270	MCS7	-0.99	
	5310	MCS7	0.22	
11n-HT40	5510	MCS7	-1.51	
	5550	MCS7	-1.96	
	5670	MCS7	-1.87]

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	50 of 115
Model Number:	SWB-A52H				

Figure 3. Captured images of Peak Power Spectral Density

802.11a (Non-DFS)

Low Channel (5180 MHz)

Middle Channel (5220 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	51 of 115
Model Number:	SWB-A52H				

High Channel (5240 MHz)

802.11a (DFS)_Lower

Low Channel (5260 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	52 of 115
Model Number:	SWB-A52H				

Middle Channel (5300 MHz)

High Channel (5320 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	53 of 115
Model Number:	SWB-A52H				

802.11a (DFS)_Upper

Low Channel (5500 MHz)

Middle Channel (5580 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	54 of 115
Model Number:	SWB-A52H				

High Channel (5700 MHz)

1DL M		m May	• ONI 4 113	- TON STARL	Mode Auto Swe	eep	
TER MR	31021	un max			Interest		2.05 dBm
0 dBm-		-	al al and a second		MI MO[Z]		5.6947540 GHz
		/		There	M1[1]	and .	8.00 dBm
dBm-	-	11	annet all the second	- and - and - and - and -	and the second second	" mananante	.7010490 GHz
	100	11			E E		
10 dBm	1	1		_			
	-	/					4 mar
20 dBm	1			-			m
water and	×						man
30 dBm	-						
40 dBm	-						
50 dBm							
50 dB-							
ou abm			· · · · · · · · · · · · · · · · · · ·				
70 40							
/U dBm							
on dam							
ou ubii			S	- 1 - C	9		
CF 5.7	GHz			691 pt	s	S	pan 25.0 MHz
larker							
Type	Ref	Trc	Stimulus	Response	Function	Function Re	sult
N1		1	5.701049 GHz	8.00 dBm		2003/03/2020/2020	
D2	N1	2	-6.295 MHz	-5.95 dB			
N3		2	5.694754 GHz	2.05 dBm			

Project Number:	12CA41629	File Number :	MC17075	Page :	55 of 115
Model Number:	SWB-A52H				

802.11n-HT20 (Non-DFS)

Low Channel (5180 MHz)

Middle Channel (5220 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :
Model Number:	SWB-A52H			

High Channel (5240 MHz)

PIPk M	axe2F	m Max						
10 d0m				M1		M3[2]		2.05 dBm
TO OBIN			mennen	n		mun	EM	5.2448840 GHz
0 dBm-		5				Millin	- Manana	8.17 dBm
o ubili	1	1			T	1		5,2363460 GHz
-10 dBm		/						
-	V							V
-20 dBm	4				-			h
1					1 1			The way here
-30 dBm								~
			1 1		1 1			
-40 dBm	-							
					1 1			
-50 dBm	-				+ +		-	
			1 1		1 1			
-60 dBm			+		+ +			
			1 1		1 1			
-70 dBm			+		+ +			
			1 1		1 1			
-80 dBm	-				-		-	
CF 5.24	4 GHz				691 pts	5		Span 25.0 MHz
larker								
Type	Ref	Trc	Stimulus	1	Response	Function	Fu	nction Result
N1	11.00	1	5.236346 0	Hz	8.17 dBm			
D2	N1	2	8,538 N	IHz	-6.12 dB			
N3		2	5.244884 0	Hz	2.05 dBm			

56 of 115

802.11n-HT20 (DFS)_Lower

Low Channel (5260 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :
Model Number:	SWB-A52H			

Middle Channel (5300 MHz)

ALL	20020	ID UB	- 5WI	4 ms	VBW 3 MH2	Mode Auto SW	eep	
TLE IN	JA CA	an man		M1		M3[2]		2 38 dBm
10 dBm-	-		In farmer	mola	and and a second		- man	5.3040880 GHz
						M1[1]	7	8.44 dBm
0 dBm-		1000	- manan	-	and a state of the		a second descended	5.2962370 GHz
	1	1					1 1	X
-10 dBm	7	£	-	<u> </u>				
-	X							2 me
-20 dBr	-		0		-	2		~
and a start of the								mede
-30 dBm								
-40 dBm	-							
-50 dBm								
000000								
-60 dBm								
-								
-70 dBm								
-80 dBm								
CF 5.3	GHz				691 pt	s		Span 25.0 MHz
larker								
Type	Ref	Trc	Stimulu	IS	Response	Function	Functio	n Result
N1		1	5.2962	37 GHz	8.44 dBm			
D2	N1	2	7.8	51 MHz	-6.07 dB			
N3		2	5.3040	88 GHz	2.38 dBm			
						Manguning	Constant of the local division of the local	0

57 of 115

High Channel (5320 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	58 of 115
Model Number:	SWB-A52H				

802.11n-HT20 (DFS)_Upper

Low Channel (5500 MHz)

Middle Channel (5580 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	59 of 115
Model Number:	SWB-A52H				

High Channel (5700 MHz)

Att 1Pk Ma	axe2	10 dB	e SWT 4 ms	VBW 3 MHz	Mode Auto Swe	eep	_
O dBm		dif Man	M1		M3[2]	2.01	dBm
10 dem-		~	Wwwwwwwwww			5.6965990	GHz
) dBm—	-	1-		magnume	Millin	8.59	dBm
	1	1			- E	1 1 Sebaranan	GHZ
10 dBm	4		+				-
-	X						~
20 dBm	-		+				_
-						- 171	my
-30 dBm							
40 d0m							
40 060			2				
-50 dBm	-						
-60 dBm			+	++			
-70 dBm							\neg
-80 dBm			1				-
CF 5.7	GHz			691 pts	s	Span 25.0 M	1Hz
larker	(· · · · · · · · · · · · · · · · · · ·		
Type	Ref	Trc	Stimulus	Response	Function	Function Result	
N1		1	5.692909 GHz	8.59 dBm			
D2	N1	2	3.69 MHz	-6.59 dB			
N3		2	5.696599 GHz	2.01 dBm			

Project Number:	12CA41629	File Number :	MC17075	Page :	60 of 115
Model Number:	SWB-A52H				

802.11n-HT40 (Non-DFS)

Low Channel (5190 MHz)

High Channel (5230 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	61 of 115
Model Number:	SWB-A52H				

802. 11n-HT40 (DFS)_Lower

Low Channel (5270 MHz)

High Channel (5310 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	62 of 115
Model Number:	SWB-A52H				

802. 11n-HT40 (DFS)_Upper

Low Channel (5510 MHz)

Middle Channel (5550 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page
Model Number:	SWB-A52H			

Page : 63 of 115

High Channel (5670 MHz)

DIPK M	v a 20	m May		WDW 3 MINZ	HOUE AUTO SWE	eep
11 1. 111		un mun			M3[2]	-1.87 dBr
10 dBm-	-		1/11			5.6567580 GH
0.40			- mansarra	manana	-Trime-	5.11 dBr
U dBm-		1		- more p		5,6586400 GH
10 dBm	X	1		Ϋ́		
-10 060	ner .	ł				1 min
20 dBm	N					y was
	M					The second
NO dBm	_				-	- And a start of the start of t
-40 dBm						
-50 dBm	-			-		
-60 dBm	-			-		
-70 d8m	-					
-80 d8m	-			-		
CF 5.67	GHz			691 pts	d di	Span 50.0 MHz
larker	-					
Type	Ref	Trc	Stimulus	Response	Function	Function Result
N1		1	5.65864 GHz	5.11 dBm		
D2	N1	2	-1.881 MHz	-6.98 dB		
N3		2	5.656758 GHz	-1.87 dBm		
					Measuring	

Project Number:	12CA41629	File Number :	MC17075	Page :	64 of 115
Model Number:	SWB-A52H				

5.4 Peak Excursion

TEST: Peak Excursion					
Method	Output from the EUT were measured according to the dictates in section F) of KDB 789033				
 Set the spectrum analyzer span to view the entire emission bandwidth. Find the maximum of the peak-max-hold spectrum. Set RBW = 1 MHz. Set VBW ≥ 3 MHz. Detector = Peak. Trace mode = max-hold. Allow the sweeps to continue until the trace stabilizes. Use the peak search function to find the peak of the spectrum. Compute the ratio of the maximum of the peak-max-hold spectrum to the PPSD. 					
Reference Claus	se	Part15 E Section 15.407 (a)(6)			
Parameters reco	rded during the test	Laboratory Ambient Temperature	22 °C		
		Relative Humidity	36 %		
		Frequency range	Measurement Point		
Fully configured the following fro	d sample scanned over equency range	5180 MHz - 5240 MHz 5260 MHz - 5320 MHz 5500 MHz - 5700 MHz	Antenna port		

Configuration Settings

Power Interface Mode # (See Section 3.3)	EUT Operation Mode # (See Section 3.5)	Test Configurations Mode # (See Section 3.7)
Rated	1	2
Supplementary information: None		

Limits

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the maximum conducted output power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

Project Number:	12CA41629	File Number :	MC17075	Page :	65 of 115
Model Number:	SWB-A52H				

Table 8. Data Table for 5150 ~ 5250 MHz

Mode	Frequency (MHz)	Data Rate (Mbps)	Result (dB)	Limit (dB)
	5180	54	6.53	((a2))
11a	5220	54	6.71	-
	5240	54	5.90	
	5180	MCS7	5.76	12
11n-HT20	5220	MCS7	5.84	15
	5240	MCS7	6.12	-
11n HT40	5190	MCS7	6.83	
1111-111-40	5230	MCS7	7.08	
Fable 9. Data Table for	r 5250 ~ 5725 MHz			
Mode	Frequency	Data Rate	Result	Limit
	(MHz)	(Mbps)	(dB)	(dB)
	(MHz) 5260	(Mbps) 54	(dB) 5.86	(dB)
	(MHz) 5260 5300	(Mbps) 54 54	(dB) 5.86 5.87	(dB)
110	(MHz) 5260 5300 5320	(Mbps) 54 54 54 54	(dB) 5.86 5.87 5.87	(dB)
11a	(MHz) 5260 5300 5320 5500	(Mbps) 54 54 54 54 54 54	(dB) 5.86 5.87 5.87 5.91	(dB)
11a	(MHz) 5260 5300 5320 5500 5580	(Mbps) 54 54 54 54 54 54 54	(dB) 5.86 5.87 5.87 5.91 5.91 5.97	(dB)
11a	(MHz) 5260 5300 5320 5500 5580 5700	(Mbps) 54 54 54 54 54 54 54 54	(dB) 5.86 5.87 5.87 5.91 5.91 5.97 5.95	(dB)
11a	(MHz) 5260 5300 5320 5500 5580 5700 5260	(Mbps) 54 54 54 54 54 54 54 54 54 MCS7	(dB) 5.86 5.87 5.87 5.91 5.97 5.95 6.45	(dB)

MCS7

MCS7

MCS7

MCS7

MCS7

MCS7

MCS7

MCS7

MCS7

5320

5500

5580

5700 5270

5310

5510

5550

5670

11n-HT20

11n-HT40

6.43

6.22

6.33

6.59

7.10

7.14

6.86 7.20

6.98

13

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number: Model Number:

12CA41629 SWB-A52H

Figure 4. Captured images of Peak Excursion

Please refer to the Peak Power Spectral Density captured images as above

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	67 of 115
Model Number:	SWB-A52H				

5.5 Transmitter Conducted Spurious Emission Measurement

TEST: Transmitter Conducted spurious emission measurement				
Method	Radiated emissions from the EUT were measured according to the dictates in section G of KDB 789033			
	 Conducted spurious emissions 1. The transmitter output was connected to the spectrum analyzer through an attenuator. 2. Peak emission levels are measured by setting the analyzer as follows: RBW = 1 MHz, VBW ≥ 3 MHz, Detector = Peak, Sweep time = auto, Trace hold = max hold. 			
Reference Clause		Part15 C 15.205(a), 15.209(a), Part15 E Section 15.407 (b)		
Parameters reco	rded during the test	Laboratory Ambient Temperature	22 °C	
		Relative Humidity 36 %		
		Frequency range	Measurement Point	
Fully configured the following free	l sample scanned over equency range	5 180 MHz - 5 240 MHz 5 260 MHz - 5 320 MHz 5 500 MHz - 5 700 MHz	Antenna port	

Configuration Settings

Test Item	Power Interface Mode # (See Section 3.3)	EUT Operation Mode # (See Section 3.5)	Test Configurations Mode # (See Section 3.7)			
Conducted Spurious emission	Rated	1	2			
Supplementary information: None						

Limits

For transmitters operating in the 5.15 \sim 5.25 GHz band: all emissions outside of the 5.15 \sim 5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz.

For transmitters operating in the 5.25 \sim 5.35 GHz band: all emissions outside of the 5.15 \sim 5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz.

Devices operating in the 5.25 \sim 5.35 GHz band that generate emissions in the 5.15 \sim 5.25 GHz band must meet all applicable technical requirements for operation in the 5.15 \sim 5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5.15 \sim 5.25 GHz band.

For transmitters operating in the 5.47 \sim 5.725 GHz band: all emissions outside of the 5.47 \sim 5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz.

Project Number: 12CA41629 Model Number: SWB-A52H

For 5.15 – 5.25 MHz, the antenna gain is 4.07 dBi, So the EIRP limit is -31.07 dBm/MHz

Figure 5. Captured images for 802.11a _Non DFS (5150-5250 MHz)

Low Channel (5180 MHz)

Middle Channel (5 220 MHz)

Ē Spectrum 3 Ref Level 15.00 dBm Offset 21.90 dB ■ RBW 1 MHz SWT 160 ms ■ VBW 3 MHz Att 10 dB Mode Auto Swee 1Pk Max M1[1] 35.14 d 10 dBm 38.7560 GH 0 dBm 10 dB 20 di -30 d 81.0 .In Julle . mbaballip wither 60 0 70 d 80 d Start 20.0 MH 691 pts Stop 40.0 GHz Measuring... CONTRACTOR OF STREET, 15:40:53 Date: 11.JUL.2012 15:40:52

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	69 of 115
Model Number:	SWB-A52H				

High Channel (5 240 MHz)

Project Number:	12CA41629	File Number :	MC17075	Page :	70 of 115
Model Number:	SWB-A52H				

Low Channel (5180 MHz)

Middle Channel (5 220 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	71 of 115
Model Number:	SWB-A52H				

High Channel (5 240 MHz)

1Pk Max	10 00	3111	100 113	011 3 11112	MOUE AL	to Sweep			
10 dBm					M1[1]		-35.41 dBm 38.7560 GHz		
0 dBm									
-10 dBm			-						
-20 dBm			-						
-30 dBm	D1 -31.070	dBm							MI
-40 dBm-	uty	minum	monterel	nternal	Wenne	allowinger	shorthoothe	ruther	MANNA
-60 dBm						-			
-70 dBm			-						
-80 dBm									
Start 20.0	MHz	ð.	2.0	691	pts	90	5	Stop 4	0.0 GHz

Project Number:	12CA41629	File Number :	MC17075	Page :	72 of 115
Model Number:	SWB-A52H				

Low Channel (5190 MHz)

High Channel (5 230 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007
Project Number:	12CA41629	File Number :	MC17075	Page :	73 of 115
Model Number:	SWB-A52H				

The antenna gain is 4.07 $\mathrm{dBi},$ So the EIRP limit is –31.07 $\mathrm{dBm/MHz}$

Figure 8. 802.11a_DFS (5 260 - 5 320 MHz)

Low Channel (5 260 MHz)

Middle Channel (5 300 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	74 of 115
Model Number:	SWB-A52H				

High Channel (5 320 MHz)

Project Number:	12CA41629	File Number :	MC17075	Page :	75 of 115
Model Number:	SWB-A52H				

Figure 9. 802.11n-HT20_DFS (5 260 - 5 320 MHz)

Low Channel (5 260 MHz)

Middle Channel (5 300 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	76 of 115
Model Number:	SWB-A52H				

High Channel (5 320 MHz)

1Dk May	10	0 ab 3w1	160 ms 🖷	VDW 3 MITZ	MODE AL	uto Sweep		
10 dBm					M	1[1]	r.	-35.37 dBm 38.6980 GHz
0 dBm								
-10 dBm		-						
-20 dBm								
-30 dBm	D1 -31	.070 dBm						MI T.
-40 dBm	when	mourse	whenter	anawound	Unnam	utterman	monter	will will will and the
-60 dBm	-	-						
-70 dBm		_						
-80 dBm				0				
Start 20.0	MHz	- 10	2.5	691	pts	90	201	Stop 40.0 GHz

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	77 of 115
Model Number:	SWB-A52H				

Figure 10. 802.11n-HT40_DFS (5 260 – 5 320 MHz)

Low Channel (5 270 MHz)

High Channel (5 310 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Figure 11.802.11a_DFS (5 500 - 5 700 MHz)

Low Channel (5 500 MHz)

Middle Channel (5 580 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	79 of 115
Model Number:	SWB-A52H				

High Channel (5 700 MHz)

1Dk May	10 00	341	100 113	BW SHIIL	MOUE AU	to 2weeb			
10 dBm					M	1[1]		-34. 38.69	77 dBm 980 GHz
0 dBm									
-10 dBm	-		-						
-20 dBm									
-30 dBm	D1 -31.070	dBm							Mi
-40 dBm	whyn	manun	unover	warnin	Winner	multiment	minalitable	www.	M M
-60 dBm			-						
-70 dBm									
-80 dBm									
Start 20.0	MHz		- 36°	691	pts	90	2	Stop 40	.0 GHz

Project Number:	12CA41629	File Number :	MC17075	Page :	80 of 115
Model Number:	SWB-A52H				

Figure 12. 802.11n-HT20_ DFS (5 500 - 5 700 MHz)

Low Channel (5 500 MHz)

Middle Channel (5 580 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	81 of 115
Model Number:	SWB-A52H				

High Channel (5 700 MHz)

1Pk Max	10 00	UNI	100 113	TON STATE	MOUS AU	to oweep			
10 dBm					M	1[1]		-3 38.	4.73 dBm 7560 GHz
0 dBm									
-10 dBm	_		-						
-20 dBm									
-30 dBm-0	01 -31.070	dBm							MI
-40 dBm	Munn	hurren	behavior	monther	howered	hand	nerrouthles	walked	manny
-60 dBm								-	
-70 dBm									
-80 dBm									
Start 20.0 M	4Hz		- 255	691	pts	90	5	Stop	40.0 GHz

Project Number:	12CA41629	File Number :	MC17075	Page :	82 of 115
Model Number:	SWB-A52H				

Figure 13. 802.11n-HT40_ DFS (5 500 - 5 700 MHz)

Low Channel (5 510 MHz)

Low Channel (5 550 MHz)

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	83 of 115
Model Number:	SWB-A52H				

High Channel (5 670 MHz)

1			-						
10 dBm					M	1	1	30	34.82 dBm 3.6980 GHz
0 dBm									
-10 dBm						-			
-20 dBm									
-30 dBm	D1 -31.070	dBm							Mi
-40 dBm	Here				4	a Bable a se		the	mouthy
50 dBm	w w	unn	nonnorth		have	and a start of the	and marine	arthur and	
-60 dBm						-			-
-70 dBm									
-80 dBm			/						
	ALLA		-	601	nte	-	-	Ctor	10.0.011-

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	84 of 115
Model Number:	SWB-A52H				

	TEST: Transmitter radiated spurious emissions measurement							
Method	Radiated emissions fi 789033	rom the EUT were measured according	g to the dictates in section G of KDB					
 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3 meter away from the interference-receiving antenna. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna aroset to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to height from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 df margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 								
Note All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.								
	 configuration that produced the worst case emissions are reported in this section. 1. The measurements for below 1 GHz Compliance shall be demonstrated using CISPR quasi-peak detection; however, peak detection is permitted as an alternative to quasi-peak detection. 2. The measurements for above 1 GHz Peak emission levels are measured by setting the analyzer as follows: Set to RBW = 1 MHz, VBW ≥ 3 MHz, Detector = Peak, Sweep time = auto, Trace mode= Max hold. Average emission levels are measured by setting the analyzer as follows: Set to RBW = 1 MHz, Detector = Peak, Sweep time = auto, Trace mode= Max hold. Average emission levels are measured by setting the analyzer as follows: Set to RBW = 1 MHz, Detector = Peak, Sweep time = auto, Trace mode= Max hold. If duty cycle ≥ 98 percent: VBW < RBW/100 (i.e., 10 kHz) but not less than 10 Hz. If duty cycle < 98 percent: VBW ≥ 1/T. 							
Reference Claus	se	Part15 C 15.205(a), 15.209(a), Part15 E S	Section 15.407 (b)					
Parameters reco	orded during the test	Laboratory Ambient Temperature	22 °C					
		Relative Humidity	36 %					
		Frequency range	Measurement Point					
Fully configured the following fr	d sample scanned over equency range	5 180 MHz - 5 240 MHz 5 260 MHz - 5 320 MHz 5 500 MHz - 5 700 MHz	Antenna port					

5.6 Transmitter Radiated Spurious Emissions Measurement

Configuration Settings

Test Item	Power Interface Mode # (See Section 3.3)	EUT Operation Mode # (See Section 3.5)	Test Configurations Mode # (See Section 3.7)
Radiated Spurious emission	Rated	1	1
Supplementary information: Nor	ne		

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	85 of 115
Model Number:	SWB-A52H				

Limits

For transmitters operating in the 5.15 \sim 5.25 GHz band: all emissions outside of the 5.15 \sim 5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz.

For transmitters operating in the 5.25 \sim 5.35 GHz band: all emissions outside of the 5.15 \sim 5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz.

Devices operating in the 5.25 \sim 5.35 GHz band that generate emissions in the 5.15 \sim 5.25 GHz band must meet all applicable technical requirements for operation in the 5.15 \sim 5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5.15 \sim 5.25 GHz band.

For transmitters operating in the 5.47 \sim 5.725 GHz band: all emissions outside of the 5.47 \sim 5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz.

According to § 15.209(a), Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Distance (meters)	Field Strength (dBuV/m)	Field Strength (uV/m)
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

Project Number:	12CA41629	File Number :	MC17075	Page :	86 of 115
Model Number:	SWB-A52H				

5.6.1. Radiated Spurious Emissions for Below 1 GHz

Measurement method : 🖾 Radiated 🗌 Conducted Mode of operation : Continuous Wave Power setting : Max. Power condition declared by the manufacturer Worst case configuration : 11n-HT40 MCS7

Table 10. Test data for Radiated emission for Below 1 GHz

Radi	ated emissio	ns	Ant	Correction factors		Total	Total Limit		
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
48.00	3.24	Peak	V	N/A	12.65	1.06	16.95	40.00	23.05
72.00	9.04	Peak	V	N/A	10.67	1.24	20.95	40.00	19.05
74.10	10.27	Peak	V	N/A	10.28	1.28	21.84	40.00	18.16
101.90	9.77	Peak.	V	N/A	8.27	1.60	19.64	43.50	23.86
117.30	23.57	Peak	V	N/A	9.65	1.67	34.89	43.50	8.61
119.80	23.10	Peak	V	N/A	9.87	1.70	34.67	43.50	8.83
123.10	23.79	Peak	V	N/A	10.21	1.70	35.70	43.50	7.80
184.30	7.74	Peak	V	N/A	10.63	2.04	20.41	43.50	23.09
245.50	10.01	Peak	Н	N/A	11.00	2.36	23.37	46.00	22.63
282.90	7.48	Peak	Н	N/A	12.49	2.53	22.50	46.00	23.50
562.50	5.74	Peak	V	N/A	19.01	3.64	28.39	46.00	17.61
662.80	5.12	Peak	Н	N/A	20.31	4.00	29.43	46.00	16.57

Supplementary information:

-. The frequency spectrum from 30 MHz to 1 000 MHz was investigated. Emission levels are not reported much lower than the limits by over 30 dB. All reading values are peak values.

Remark

- a. To get a maximum emission level from the EUT, the EUT was moved throughout the x-axis, Y-axis and Z-axis. The worst case is x-axis.
- b. Actual = Reading + AF + CL (AF : Antenna factor, CL : Cable loss)
- c. Distance factor = 20log(Measurement distance / The measured distance)
- d. Margin = Limit (dBuV/m) Actual (dBuV/m)

Project Number:	12CA41629	File Number :	MC17075	Page :	87 of 115
Model Number:	SWB-A52H				

5.6.2. Radiated Spurious Emissions for Above 1 GHz

Measurement method : 🖾 Radiated 🗌 Conducted Mode of operation : Continuous Wave Power setting : Max. Power condition declared by the manufacturer Worst case configuration : 11a - 54 Mbps, 11n - MCS7

802.11a_Non DFS (5 180 – 5 240 MHz)

Table 11. Low Channel (5 180 MHz)

Radi	ated emissio	ns	Ant	Correction factors		Limit	Total		
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
5180.0	67.77	Peak	Н	N/A	32.00	8.57	-	108.34	OB
5180.0	58.63	Peak	V	N/A	32.00	8.57	-	99.20	OB
5180.0	54.28	Average	Н	N/A	32.00	8.57	-	94.85	OB
5180.0	44.96	Average	V	N/A	32.00	8.57	-	85.53	OB
*5150.0	48.69	Peak	Н	N/A	31.97	-21.87	74.00	58.79	15.21
*5150.0	46.70	Peak	V	N/A	31.97	-21.87	74.00	56.80	17.20
*5150.0	35.98	Average	Н	N/A	31.97	-21.87	54.00	46.08	7.92
*5150.0	34.16	Average	V	N/A	31.97	-21.87	54.00	44.26	9.74
10360.0	43.11	Peak	Н	N/A	39.48	-16.42	68.23	66.17	2.06
10360.0	42.20	Peak	V	N/A	39.48	-16.42	68.23	65.26	2.97
10360.0	26.12	Average	Н	N/A	39.48	-16.42	68.23	49.18	19.05
10360.0	25.71	Average	V	N/A	39.48	-16.42	68.23	48.77	19.46

Table 12. Middle Channel (5 220 MHz)

Radi	ated emissio	ns	Ant	Correction factors		Limit To		al	
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
5220.0	68.12	Peak	Н	N/A	32.04	8.62	-	108.77	OB
5220.0	58.79	Peak	V	N/A	32.04	8.62	-	99.44	OB
5220.0	53.61	Average	Н	N/A	32.04	8.62	-	94.26	OB
5220.0	44.38	Average	V	N/A	32.04	8.62	-	85.03	OB
10440.0	42.17	Peak	Н	N/A	39.64	-16.43	68.23	65.38	2.85
10440.0	42.14	Peak	V	N/A	39.64	-16.43	68.23	65.35	2.88
10440.0	26.14	Average	Н	N/A	39.64	-16.43	68.23	49.35	18.88
10440.0	26.01	Average	V	N/A	39.64	-16.43	68.23	49.22	19.01

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	88 of 115
Model Number:	SWB-A52H				

Radi	ated emissio	ons	Ant	Co	rrection fac	ctors	Limit	Tot	al
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
5240.0	66.97	Peak	Н	N/A	32.06	8.63	-	107.66	OB
5240.0	58.79	Peak	V	N/A	32.06	8.63	-	99.48	OB
5240.0	52.98	Average	Н	N/A	32.06	8.63	-	93.67	OB
5240.0	44.96	Average	V	N/A	32.06	8.63	-	85.65	OB
10480.0	41.41	Peak	Н	N/A	39.72	-16.43	68.23	64.70	3.53
10480.0	41.47	Peak	V	N/A	39.72	-16.43	68.23	64.76	3.47
10480.0	26.11	Average	Н	N/A	39.72	-16.43	68.23	49.40	18.83
10480.0	25.91	Average	V	N/A	39.72	-16.43	68.23	49.20	19.03

Table 13. High Channel (5 240 MHz)

802.11a_DFS (5 260 - 5 320 MHz)

Table 14. Low Channel (5 260 MHz)

Radi	ated emissio	ns	Ant	Co	Correction factors		Limit	Tot	al
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
5260.0	67.66	Peak	Н	N/A	32.08	8.65	-	108.38	OB
5260.0	58.43	Peak	V	N/A	32.08	8.65	-	99.15	OB
5260.0	53.07	Average	Н	N/A	32.08	8.65	-	93.79	OB
5260.0	44.61	Average	V	N/A	32.08	8.65	-	85.33	OB
10520.0	42.17	Peak	Н	N/A	39.80	-16.38	68.23	65.59	2.64
10520.0	42.10	Peak	V	N/A	39.80	-16.38	68.23	65.52	2.71
10520.0	26.01	Average	Н	N/A	39.80	-16.38	68.23	49.43	18.80
10520.0	25.71	Average	V	N/A	39.80	-16.38	68.23	49.13	19.10

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	89 of 115
Model Number:	SWB-A52H				

Radi	ated emissio	ns	Ant	Со	rrection fac	tors	Limit	Tot	al
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
5300.0	67.11	Peak	Н	N/A	32.12	8.68	-	107.90	OB
5300.0	57.96	Peak	V	N/A	32.12	8.68	-	98.75	OB
5300.0	53.00	Average	Н	N/A	32.12	8.68	-	93.79	OB
5300.0	43.71	Average	V	N/A	32.12	8.68	-	84.50	OB
*10600.0	41.17	Peak	Н	N/A	39.96	-16.17	74.00	64.96	9.04
*10600.0	42.20	Peak	V	N/A	39.96	-16.17	74.00	65.99	8.01
*10600.0	25.07	Average	Н	N/A	39.96	-16.17	54.00	48.86	5.14
*10600.0	25.61	Average	V	N/A	39.96	-16.17	54.00	49.40	4.60

Table 15. Middle Channel (5 300 MHz)

Table 16. High Channel (5 320 MHz)

Radi	ated emissio	ns	Ant	Co	rrection fac	tors	Limit	Tot	al
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
5320.0	66.89	Peak	Н	N/A	32.13	8.69	-	107.71	OB
5320.0	58.11	Peak	V	N/A	32.13	8.69	-	98.93	OB
5320.0	52.81	Average	Н	N/A	32.13	8.69	-	93.63	OB
5320.0	44.36	Average	V	N/A	32.13	8.69	-	85.18	OB
*5350.0	48.11	Peak	Н	N/A	32.16	-21.69	74.00	58.59	15.41
*5350.0	47.87	Peak	V	N/A	32.16	-21.69	74.00	58.35	15.65
*5350.0	34.76	Average	Н	N/A	32.16	-21.69	54.00	45.24	8.76
*5350.0	34.79	Average	V	N/A	32.16	-21.69	54.00	45.27	8.73
*10640.0	41.91	Peak	Н	N/A	40.04	-16.07	74.00	65.88	8.12
*10640.0	42.01	Peak	V	N/A	40.04	-16.07	74.00	65.98	8.02
*10640.0	25.81	Average	Н	N/A	40.04	-16.07	54.00	49.78	4.22
*10640.0	26.01	Average	V	N/A	40.04	-16.07	54.00	49.98	4.02

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	90 of 115
Model Number:	SWB-A52H				

802.11a_DFS (5 500 - 5 700 MHz)

Radi	ated emissio	ons	Ant	Co	rrection fac	tors	Limit	Tot	al
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
5500.0	66.72	Peak	Н	N/A	32.31	8.80	-	107.83	OB
5500.0	57.17	Peak	V	N/A	32.31	8.80	-	98.28	OB
5500.0	53.46	Average	Н	N/A	32.31	8.80	-	94.57	OB
5500.0	44.14	Average	V	N/A	32.31	8.80	-	85.25	OB
*5460.0	44.91	Peak	Н	N/A	32.27	-21.62	74.00	55.55	18.45
*5460.0	43.76	Peak	V	N/A	32.27	-21.62	74.00	54.40	19.60
*5460.0	32.90	Average	Н	N/A	32.27	-21.62	54.00	43.54	10.46
*5460.0	33.21	Average	V	N/A	32.27	-21.62	54.00	43.85	10.15
*11000.0	42.11	Peak	Н	N/A	40.76	-15.15	74.00	67.72	6.28
*11000.0	41.24	Peak	V	N/A	40.76	-15.15	74.00	66.85	7.15
*11000.0	24.11	Average	Н	N/A	40.76	-15.15	54.00	49.72	4.28
*11000.0	24.07	Average	V	N/A	40.76	-15.15	54.00	49.68	4.32

Table 17. Low Channel (5 500 MHz)

Table 18. Middle Channel (5 580 MHz)

Radi	ated emissio	ns	Ant	Co	Correction factors			Tot	al
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
5580.0	65.17	Peak	Н	N/A	32.38	8.84	-	106.39	OB
5580.0	56.14	Peak	V	N/A	32.38	8.84	-	97.36	OB
5580.0	54.11	Average	Н	N/A	32.38	8.84	-	95.33	OB
5580.0	43.03	Average	V	N/A	32.38	8.84	-	84.25	OB
*11160.0	42.13	Peak	Н	N/A	40.28	-15.03	74.00	67.38	6.62
*11160.0	42.11	Peak	V	N/A	40.28	-15.03	74.00	67.36	6.64
*11160.0	24.14	Average	Н	N/A	40.28	-15.03	54.00	49.39	4.61
*11160.0	24.14	Average	V	N/A	40.28	-15.03	54.00	49.39	4.61

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	91 of 115
Model Number:	SWB-A52H				

Table 19. High Channel (5 700 MHz)

Radi	ated emissio	ns	Ant	Co	rrection fac	tors	Limit	Tot	al
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
5700.0	66.21	Peak	Н	N/A	32.50	8.88	-	107.59	OB
5700.0	56.89	Peak	V	N/A	32.50	8.88	-	98.27	OB
5700.0	54.12	Average	Н	N/A	32.50	8.88	-	95.50	OB
5700.0	43.33	Average	V	N/A	32.50	8.88	-	84.71	OB
*11400.0	42.31	Peak	Н	N/A	39.57	-14.86	74.00	67.02	6.98
*11400.0	43.01	Peak	V	N/A	39.57	-14.86	74.00	67.72	6.28
*11400.0	24.42	Average	Н	N/A	39.57	-14.86	54.00	49.13	4.87
*11400.0	24.42	Average	V	N/A	39.57	-14.86	54.00	49.13	4.87

802.11n-HT20_Non DFS (5 180 - 5 240 MHz)

Radi	ated emissio	ns	Ant	Co	rrection fac	tors	Limit	Tot	al
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
5180.0	68.71	Peak	Н	N/A	32.00	8.57	-	109.28	OB
5180.0	58.63	Peak	V	N/A	32.00	8.57	-	99.20	OB
5180.0	54.71	Average	Н	N/A	32.00	8.57	-	95.28	OB
5180.0	44.91	Average	V	N/A	32.00	8.57	-	85.48	OB
*5150.0	47.11	Peak	Н	N/A	31.97	-21.87	74.00	57.21	16.79
*5150.0	48.71	Peak	V	N/A	31.97	-21.87	74.00	58.81	15.19
*5150.0	34.96	Average	Н	N/A	31.97	-21.87	54.00	45.06	8.94
*5150.0	35.01	Average	V	N/A	31.97	-21.87	54.00	45.11	8.89
10360.0	43.71	Peak	Н	N/A	39.48	-16.42	68.23	66.77	1.46
10360.0	42.36	Peak	V	N/A	39.48	-16.42	68.23	65.42	2.81
10360.0	25.72	Average	Н	N/A	39.48	-16.42	68.23	48.78	19.45
10360.0	25.66	Average	V	N/A	39.48	-16.42	68.23	48.72	19.51

Table 20. Low Channel (5 180 MHz)

Table 21. Middle Channel (5 220 MHz)

Radi	ated emissio	ns	Ant	Co	rrection fac	tors	Limit	Tot	al
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
5220.0	68.20	Peak	Н	N/A	32.04	8.62	-	108.85	OB
5220.0	58.17	Peak	V	N/A	32.04	8.62	-	98.82	OB
5220.0	53.91	Average	Н	N/A	32.04	8.62	-	94.56	OB
5220.0	44.87	Average	V	N/A	32.04	8.62	-	85.52	OB
10440.0	43.81	Peak	Н	N/A	39.64	-16.43	68.23	67.02	1.21
10440.0	43.72	Peak	V	N/A	39.64	-16.43	68.23	66.93	1.30
10440.0	25.81	Average	Н	N/A	39.64	-16.43	68.23	49.02	19.21
10440.0	25.91	Average	V	N/A	39.64	-16.43	68.23	49.12	19.11

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	93 of 115
Model Number:	SWB-A52H				

Radi	ated emissio	ns	Ant	Со	rrection fac	ctors	Limit	Tot	al
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
5240.0	67.71	Peak	Н	N/A	32.06	8.63	-	108.40	OB
5240.0	57.74	Peak	V	N/A	32.06	8.63	-	98.43	OB
5240.0	53.46	Average	Н	N/A	32.06	8.63	-	94.15	OB
5240.0	43.96	Average	V	N/A	32.06	8.63	-	84.65	OB
10480.0	43.84	Peak	Н	N/A	39.72	-16.43	68.23	67.13	1.10
10480.0	43.60	Peak	V	N/A	39.72	-16.43	68.23	66.89	1.34
10480.0	24.96	Average	Н	N/A	39.72	-16.43	68.23	48.25	19.98
10480.0	25.21	Average	V	N/A	39.72	-16.43	68.23	48.50	19.73

Table 22. High Channel (5 240 MHz)

802.11n-HT20_DFS (5 260 - 5 320 MHz)

Table 23. Low Channel (5 260 MHz)

Radi	ated emissio	ns	Ant	Co	rrection fac	tors	Limit	Total	
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
5260.0	67.52	Peak	Н	N/A	32.08	8.65	-	108.24	OB
5260.0	57.72	Peak	V	N/A	32.08	8.65	-	98.44	OB
5260.0	53.46	Average	Н	N/A	32.08	8.65	-	94.18	OB
5260.0	44.01	Average	V	N/A	32.08	8.65	-	84.73	OB
10520.0	43.72	Peak	Н	N/A	39.80	-16.38	68.23	67.14	1.09
10520.0	43.72	Peak	V	N/A	39.80	-16.38	68.23	67.14	1.09
10520.0	25.61	Average	Н	N/A	39.80	-16.38	68.23	49.03	19.20
10520.0	25.22	Average	V	N/A	39.80	-16.38	68.23	48.64	19.59

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	94 of 115
Model Number:	SWB-A52H				

Table 24. Middle Channel (5 300 MHz)

Radi	ated emissio	ns	Ant	Co	rrection fac	tors	Limit	Tot	al
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
5300.0	67.24	Peak	Н	N/A	32.12	8.68	-	108.03	OB
5300.0	57.82	Peak	V	N/A	32.12	8.68	-	98.61	OB
5300.0	53.46	Average	Н	N/A	32.12	8.68	-	94.25	OB
5300.0	44.21	Average	V	N/A	32.12	8.68	-	85.00	OB
*10600.0	44.81	Peak	Н	N/A	39.96	-16.17	74.00	68.60	5.40
*10600.0	43.23	Peak	V	N/A	39.96	-16.17	74.00	67.02	6.98
*10600.0	25.72	Average	Н	N/A	39.96	-16.17	54.00	49.51	4.49
*10600.0	25.62	Average	V	N/A	39.96	-16.17	54.00	49.41	4.59

Table 25. High Channel (5 320 MHz)

Radi	ated emissio	ns	Ant	Co	rrection fac	tors	Limit	Tot	al
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
5320.0	67.24	Peak	Н	N/A	32.13	8.69	-	108.06	OB
5320.0	57.84	Peak	V	N/A	32.13	8.69	-	98.66	OB
5320.0	54.11	Average	Н	N/A	32.13	8.69	-	94.93	OB
5320.0	44.22	Average	V	N/A	32.13	8.69	-	85.04	OB
*5350.0	48.12	Peak	Н	N/A	32.16	-21.69	74.00	58.60	15.40
*5350.0	47.87	Peak	V	N/A	32.16	-21.69	74.00	58.35	15.65
*5350.0	34.04	Average	Н	N/A	32.16	-21.69	54.00	44.52	9.48
*5350.0	35.01	Average	V	N/A	32.16	-21.69	54.00	45.49	8.51
*10640.0	43.21	Peak	Н	N/A	40.04	-16.07	74.00	67.18	6.82
*10640.0	44.57	Peak	V	N/A	40.04	-16.07	74.00	68.54	5.46
*10640.0	25.21	Average	Н	N/A	40.04	-16.07	54.00	49.18	4.82
*10640.0	25.46	Average	V	N/A	40.04	-16.07	54.00	49.43	4.57

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	95 of 115
Model Number:	SWB-A52H				

802.11n-HT20_DFS (5 500 - 5 700 MHz)

Radi	ated emissio	ns	Ant	Co	rrection fac	tors	Limit	Tot	al
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
5500.0	67.21	Peak	Н	N/A	32.31	8.80	-	108.32	OB
5500.0	58.11	Peak	V	N/A	32.31	8.80	-	99.22	OB
5500.0	54.61	Average	Н	N/A	32.31	8.80	-	95.72	OB
5500.0	44.21	Average	V	N/A	32.31	8.80	-	85.32	OB
*5460.0	44.87	Peak	Н	N/A	32.27	-21.62	74.00	55.51	18.49
*5460.0	44.37	Peak	V	N/A	32.27	-21.62	74.00	55.01	18.99
*5460.0	32.80	Average	Н	N/A	32.27	-21.62	54.00	43.44	10.56
*5460.0	33.01	Average	V	N/A	32.27	-21.62	54.00	43.65	10.35
*11000.0	43.44	Peak	Н	N/A	40.76	-15.15	74.00	69.05	4.95
*11000.0	43.51	Peak	V	N/A	40.76	-15.15	74.00	69.12	4.88
*11000.0	25.01	Average	Н	N/A	40.76	-15.15	54.00	50.62	3.38
*11000.0	24.21	Average	V	N/A	40.76	-15.15	54.00	49.82	4.18

Table 26. Low Channel (5 500 MHz)

Table 27. Middle Channel (5 580 MHz)

Radiated emis	ssions		Ant	Correction	factors		Limit	Total	
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
5580.0	67.28	Peak	Н	N/A	32.38	8.84	-	108.50	OB
5580.0	57.87	Peak	V	N/A	32.38	8.84	-	99.09	OB
5580.0	53.89	Average	Н	N/A	32.38	8.84	-	95.11	OB
5580.0	43.61	Average	V	N/A	32.38	8.84	-	84.83	OB
*11160.0	44.21	Peak	Н	N/A	40.28	-15.03	74.00	69.46	4.54
*11160.0	43.82	Peak	V	N/A	40.28	-15.03	74.00	69.07	4.93
*11160.0	24.46	Average	Н	N/A	40.28	-15.03	54.00	49.71	4.29
*11160.0	24.28	Average	V	N/A	40.28	-15.03	54.00	49.53	4.47

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	96 of 115
Model Number:	SWB-A52H				

Table 28. High Channel (5 700 MHz)

Radi	ated emissio	ns	Ant	Co	rrection fac	tors	Limit	Tot	al
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
5700.0	67.29	Peak	Н	N/A	32.50	8.88	-	108.67	OB
5700.0	57.54	Peak	V	N/A	32.50	8.88	-	98.92	OB
5700.0	54.04	Average	Н	N/A	32.50	8.88	-	95.42	OB
5700.0	43.81	Average	V	N/A	32.50	8.88	-	85.19	OB
*11400.0	43.96	Peak	Н	N/A	39.57	-14.86	74.00	68.67	5.33
*11400.0	43.17	Peak	V	N/A	39.57	-14.86	74.00	67.88	6.12
*11400.0	24.40	Average	Н	N/A	39.57	-14.86	54.00	49.11	4.89
*11400.0	24.17	Average	V	N/A	39.57	-14.86	54.00	48.88	5.12

802.11n-HT40_Non DFS (5 190 – 5 230 MHz)

Radi	ated emissio	ns	Ant	Co	rrection fac	etors	Limit	Total	
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
5190.0	60.43	Peak	Н	N/A	32.01	8.58	-	101.02	OB
5190.0	54.77	Peak	V	N/A	32.01	8.58	-	95.36	OB
5190.0	43.64	Average	Н	N/A	32.01	8.58	-	84.23	OB
5190.0	37.96	Average	V	N/A	32.01	8.58	-	78.55	OB
*5150.0	48.11	Peak	Н	N/A	31.97	-21.87	74.00	58.21	15.79
*5150.0	48.76	Peak	V	N/A	31.97	-21.87	74.00	58.86	15.14
*5150.0	35.11	Average	Н	N/A	31.97	-21.87	54.00	45.21	8.79
*5150.0	34.90	Average	V	N/A	31.97	-21.87	54.00	45.00	9.00
10380.0	43.11	Peak	Н	N/A	39.52	-16.43	68.23	66.20	2.03
10380.0	43.21	Peak	V	N/A	39.52	-16.43	68.23	66.30	1.93
10380.0	25.11	Average	Н	N/A	39.52	-16.43	68.23	48.20	20.03
10380.0	24.96	Average	V	N/A	39.52	-16.43	68.23	48.05	20.18

Table 29. Low Channel (5 190 MHz)

Table 30. High Channel (5 230 MHz)

Radiated emissions			Ant	Correction factors			Limit	Total	
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
5230.0	60.21	Peak	Н	N/A	32.05	8.62	-	100.88	OB
5230.0	54.36	Peak	V	N/A	32.05	8.62	-	95.03	OB
5230.0	43.24	Average	Н	N/A	32.05	8.62	-	83.91	OB
5230.0	36.81	Average	V	N/A	32.05	8.62	-	77.48	OB
10460.0	43.21	Peak	Н	N/A	39.68	-16.43	68.23	66.46	1.77
10460.0	44.20	Peak	V	N/A	39.68	-16.43	68.23	67.45	0.78
10460.0	25.01	Average	Н	N/A	39.68	-16.43	68.23	48.26	19.97
10460.0	24.11	Average	V	N/A	39.68	-16.43	68.23	47.36	20.87

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	98 of 115
Model Number:	SWB-A52H				

802.11a_DFS (5 270 - 5 310 MHz)

Table 31. Low Channel (5 270 MHz)

Radiated emissions		ns	Ant	Correction factors			Limit	Total	
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
5270.0	60.22	Peak	Н	N/A	32.09	8.65	-	100.96	OB
5270.0	54.21	Peak	V	N/A	32.09	8.65	-	94.95	OB
5270.0	43.21	Average	Н	N/A	32.09	8.65	-	83.95	OB
5270.0	37.36	Average	V	N/A	32.09	8.65	-	78.10	OB
10540.0	43.49	Peak	Н	N/A	39.84	-16.33	68.23	67.00	1.23
10540.0	44.01	Peak	V	N/A	39.84	-16.33	68.23	67.52	0.71
10540.0	25.01	Average	Н	N/A	39.84	-16.33	68.23	48.52	19.71
10540.0	25.00	Average	V	N/A	39.84	-16.33	68.23	48.51	19.72

Table 32. High Channel (5 310 MHz)

Radiated emissions		ns	Ant	Correction factors		Limit	Total		
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
5310.0	60.21	Peak	Н	N/A	32.12	8.68	-	101.02	OB
5310.0	54.11	Peak	V	N/A	32.12	8.68	-	94.92	OB
5310.0	43.62	Average	Н	N/A	32.12	8.68	-	84.43	OB
5310.0	36.84	Average	V	N/A	32.12	8.68	-	77.65	OB
*5350.0	48.14	Peak	Н	N/A	32.16	-21.69	74.00	58.62	15.38
*5350.0	47.96	Peak	V	N/A	32.16	-21.69	74.00	58.44	15.56
*5350.0	34.01	Average	Н	N/A	32.16	-21.69	54.00	44.49	9.51
*5350.0	35.11	Average	V	N/A	32.16	-21.69	54.00	45.59	8.41
*10620.0	43.41	Peak	Н	N/A	40.00	-16.12	74.00	67.29	6.71
*10620.0	44.17	Peak	V	N/A	40.00	-16.12	74.00	68.05	5.95
*10620.0	25.11	Average	Н	N/A	40.00	-16.12	54.00	48.99	5.01
*10620.0	25.01	Average	V	N/A	40.00	-16.12	54.00	48.89	5.11

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	99 of 115
Model Number:	SWB-A52H				

802.11a_DFS (5 510 - 5 670 MHz)

Radiated emissions		ns	Ant	Correction factors		Limit	Total		
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
5510.0	59.41	Peak	Н	N/A	32.31	8.81	-	100.53	OB
5510.0	54.01	Peak	V	N/A	32.31	8.81	-	95.13	OB
5510.0	43.52	Average	Н	N/A	32.31	8.81	-	84.64	OB
5510.0	36.91	Average	V	N/A	32.31	8.81	-	78.03	OB
*5460.0	43.81	Peak	Н	N/A	32.27	-21.62	74.00	54.45	19.55
*5460.0	43.40	Peak	V	N/A	32.27	-21.62	74.00	54.04	19.96
*5460.0	33.10	Average	Н	N/A	32.27	-21.62	54.00	43.74	10.26
*5460.0	33.40	Average	V	N/A	32.27	-21.62	54.00	44.04	9.96
*11020.0	43.21	Peak	Н	N/A	40.70	-15.14	74.00	68.77	5.23
*11020.0	43.70	Peak	V	N/A	40.70	-15.14	74.00	69.26	4.74
*11020.0	24.10	Average	Н	N/A	40.70	-15.14	54.00	49.66	4.34
*11020.0	24.41	Average	V	N/A	40.70	-15.14	54.00	49.97	4.03

Table 33. Low Channel (5 510 MHz)

Table 34. Middle Channel (5 550 MHz)

Radiated emissions		Ant	Correction factors			Limit	Total		
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
5550.0	59.81	Peak	Н	N/A	32.35	8.83	-	100.99	OB
5550.0	53.87	Peak	V	N/A	32.35	8.83	-	95.05	OB
5550.0	43.17	Average	Н	N/A	32.35	8.83	-	84.35	OB
5550.0	37.01	Average	V	N/A	32.35	8.83	-	78.19	OB
*11100.0	43.14	Peak	Н	N/A	40.46	-15.08	74.00	68.52	5.48
*11100.0	43.69	Peak	V	N/A	40.46	-15.08	74.00	69.07	4.93
*11100.0	24.01	Average	Н	N/A	40.46	-15.08	54.00	49.39	4.61
*11100.0	23.94	Average	V	N/A	40.46	-15.08	54.00	49.32	4.68

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	100 of 115
Model Number:	SWB-A52H				

Radi	ated emissio	ns	Ant	Ant Correction factors		Limit	Total		
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	Distance (dB)	AF (dB/m)	Amp gain+CL (dB)	Limit (dBuV/m)	Actual (dBuV/m)	Margin (dB)
5670.0	60.18	Peak	Н	N/A	32.47	8.87	-	101.52	OB
5670.0	54.61	Peak	V	N/A	32.47	8.87	-	95.95	OB
5670.0	42.52	Average	Н	N/A	32.47	8.87	-	83.86	OB
5670.0	37.88	Average	V	N/A	32.47	8.87	-	79.22	OB
*11340.0	43.11	Peak	Н	N/A	39.75	-14.91	74.00	67.95	6.05
*11340.0	43.22	Peak	V	N/A	39.75	-14.91	74.00	68.06	5.94
*11340.0	24.60	Average	Н	N/A	39.75	-14.91	54.00	49.44	4.56
*11340.0	24.91	Average	V	N/A	39.75	-14.91	54.00	49.75	4.25

Table 35. High Channel (5 670 MHz)

Supplementary information:

-. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental Frequency. Radiated emissions measured in frequency above 1 000 MHz were made with an instrument using peak/average detector mode.

Remark

- a. "OB" means Operating band.
- b. "*" means the restricted band.
- c. Radiated emissions measured in frequency above 1 000 MHz were made with an instrument using Peak/average detector mode if frequency was in restricted band. Otherwise the frequency was in outside of restricted band, only peak detector should be used.
- d. Average test would be performed if the peak result were greater than the average limit and frequency was in the restricted band.
- e. To get a maximum emission level from the EUT, the EUT was moved throughout the x-axis, Y-axis and Z-axis. The worst case is x-axis.
- f. For Fundamental : Actual = Reading + AF + CL (AF : Antenna factor, CL : Cable loss)
- g. For Spurious : Actual = Reading + AF + AMP + CL (AF : Antenna factor, AMP : Amp gain, CL : Cable loss)
- h. Distance factor = 20log(Measurement distance / The measured distance)
- i. Margin = Limit (dBuV/m) Actual (dBuV/m)
- j. If frequency was outside of restricted band, the calculation method for peak limit is same as below: 68.23 dBuV/m = EIRP 20 log(d) + 104.77 = -27 20 log (3) + 104.77
 *distance: 3 m, *EIRP: -27 dBm/MHz

5.7 Transmitter AC Power Line Conducted Emission

TEST: Tran	smitter AC Power Line Conducted Emis	ssion				
Method	All data rates and modes were investigate the worst case data rate are reported in th AC line conducted emissions from the EU the dictates of ANSI C63.4-2003	ed for this test. The full data for is section. JT were measured according to				
	$5m \times 3.6m \times 3.6m (L \times W \times H)$ s peripherals were placed on a 1.0 vooden table and the EUT was from a vertical reference plane. ns through a line impedance ovides 50 ohm coupling nd the chassis ground was e of shielded room. EUT and the LISN was bundled. e moved to find the maximum					
Basic Standard	FCC Part 15.207(a)					
Parameters recorded during the test	Laboratory Ambient Temperature	25°C				
	Relative Humidity 39%					
-	Frequency range on each side of line	Measurement Point				
Fully configured sample scanned over the following frequency range	150 kHz to 30 MHz	A.C. Input port of A.C. to D.C. adapter.				

Configuration Settings

EUT Configuration Settings:									
Power Interface Mode # (See Section 3.3)	Test Configurations Mode # (See Section 3.7)	EUT Operation Mode # (See 3.5)							
Rated	1	1							

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	102 of 115
Model Number:	SWB-A52H				

Limits

According to \$15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Fraguency of Emission (MII-	Conducted limit (dBµV)			
Frequency of Emission (MHZ)	Quasi-peak	Average		
0.15 - 0.5	66 - 56*	56 - 46*		
0.5 - 5	56	46		
5 - 30	60	50		

* Decreases with the logarithm of the frequency.

Project Number:	12CA41629	File Number :	MC17075	Page :	103 of 115
Model Number:	SWB-A52H				

Transmitter AC Power Line Conducted Emission

Measurement method : Radiated Conducted Mode of operation : Continuous Wave Power setting : Max. Power condition declared by the manufacturer Worst case configuration :

Table 36. Test data for conducted emission

Frequency Correction Factor (dB)		Line Quasi-peak Value (H/N (dBuV)		Average Value (dBuV)					
(MHz)	LISN	Cable etc.)	Limit	Reading	Result	Limit	Reading	Result
0.17	0.13	0.35	Ν	65.0	52.07	52.55	54.96	45.00	45.48
0.35	0.15	0.36	Η	59.0	40.44	40.96	49.0		
0.53	0.16	0.37	Н	56.0	37.17	37.70	46.0		
0.88	0.16	0.41	Н	56.0	36.45	37.02	46.0		
1.06	0.18	0.47	Ν	56.0	39.47	40.12	46.0		
1.23	0.18	0.46	Ν	56.0	38.99	39.64	46.0		
Remark	Remark H : Hot Line, N : Neutral Line Correction factor=LISN factor + Cable loss								

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:12CA41629Model Number:SWB-A52H

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:12CA41629File Number :Model Number:SWB-A52H

5.8 DFS (Dynamic Frequency Selection)

5.7.1. System overview

5.7.2. Set up of EUT

The radar signal generation equipment consists of a vector signal generator

The signal monitoring equipment consists of a spectrum analyzer set to display 8001 bins on the horizontal axis. The time domain resolution is 2 msec/bin with a 16 second sweep time, meeting the 10 second short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

The Slave is tested separately for compliance with the Channel Shutdown requirements, for the situation when the Slave device vacates the channel in response to detection of a radar by the Master.

All tests were performed at a channel center frequency of 5 310 MHz and 5 510 MHz. Measurements were performed using conducted test methods.

Project Number:	12CA41629	File Number :	MC17075	Page :	106 of 115
Model Number:	SWB-A52H				

5.7.3. Limit

§15.407 (h) and FCC 06-96 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVCIES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION

Applicability of DFS requirements prior to use of a channel

Dequinquest	Operational Mode				
Requirement	Master	Client (without DFS)	Client (with DFS)		
Non-Occupancy Period	Yes	Yes (according to KDB 848637)	Yes		
DFS Detection Threshold	Yes	Yes (according to KDB 848637)	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
Uniform Spreading	Yes	Not required	Not required		

Applicability of DFS requirements during normal operation

	Operational Mode				
Requirement	Master	Client (without DFS)	Client (with DFS)		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Closing Transmission Time	Yes	Yes	Yes		
Channel Move Time	Yes	Yes	Yes		

Interference Threshold values, Master or Client incorporating In-Service Monitoring

Maximum Transmit Power	Value (see note)
\geq 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

KDB 848637 : Non-Occupancy Period for Client Device without radar detection

• Test results demonstrating an associated client link is established with the master on a test frequency;

· The client and DFS-certified master device are associated, and a movie can be streamed as specified in the DFS Order for a non-occupancy period test;

 \cdot The test frequency has been monitored to ensure no transmission of any type has occurred for 30 minutes. Note: If the client moves with the master, the device is considered compliant if nothing appears in the client non-occupancy period test. For devices that shut down (rather than moving channels), no beacons should appear;

• An analyzer plot that contains a single 30-minute sweep on the original channel.

Project Number:	12CA41629	File Number :	MC17075	Page :	107 of 115
Model Number:	SWB-A52H				

DFS Response requirement values

Parameter	Value					
Non-occupancy period	30 minutes					
Channel Availability Check Time	60 seconds					
Channel Move Time	10 seconds					
Channel Closing Transmission Time	200 milliseconds + approx. 60 milliseconds over					
Channel Closing Transmission Time	remaining 10 second period					
The instant that the Channel Move Time and the Channel Clo	sing Transmission Time begins is as follows: For the					
Short pulse radar Test Signals this instant is the end of the Bu	st. For the Frequency Hopping radar Test Signal, this					
instant is the end of the last radar burst generated. For the Long	Pulse radar Test Signal this instant is the end of the 12					
second period defining the radar transmission. The Channe	el Closing Transmission Time is comprised of 200					
milliseconds starting at the beginning of the Channel Move	Fime plus any additional intermittent control signals					
required to facilitate channel changes (an aggregate of approximately 60 milliseconds) during the remainder of the 10						
second period. The aggregate duration of control signals will not count quiet periods in between transmissions.						

Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (Microseconds)	PRI (Microseconds)	Pulses	Minimum Percentage of Successful Detection	Minimum Trials
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate	(Radar Types 1-4)	80%	120		

Long Pulse Radar Test Signal

Radar Waveform	Bursts	Pulses per Burst	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Minimum Percentage of Successful Detection	Minimum Trials
5	8-20	1-3	50-100	5-20	10002000	80%	30

Frequency Hopping Radar Test Signal

Radar Waveform	Pulse Width (µsec)	PRI (µsec)	Burst Length (ms)	Pulses per Hop	Hopping Rate (kHz)	Minimum Percentage of Successful Detection	Minimum Trials
6	1	333	300	9	0.333	70%	30

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:12CA41629Model Number:SWB-A52H

5.7.4. Description of EUT

The EUT operates over the 5 260 MHz ~ 5 320 MHz (11a/n-HT20-DFS), 5 270 MHz ~ 5 310 MHz (11n-HT40-DFS), 5 500 MHz ~ 5700 MHz (11a/n-HT20-DFS), and 5 510 MHz ~ 5670 MHz (11n-HT40-DFS) range.

The gain antenna assembly utilized with the master has a gain of 0 dBi.

The rated output power of the master unit is <200 milliwatt. Therefore the required interference threshold level is -62 dBm. After correction for antenna gain and procedure adjustments the required conducted threshold at the antenna port is -62 (dBm) + (0 dBi) = -62 (dBm)

The calibrated conducted DFS Detection Threshold level is is -64 dBm
Project Number:	12CA41629	File Number :	MC17075	Page :	109 of 115
Model Number:	SWB-A52H				

Figure 15. Plots of radar waveforms and wlan traffic

Plot of radar waveform type 1

5 310 MHz

5 510 MHz

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	110 of 115
Model Number:	SWB-A52H				

Plot of LAN traffic

5 310 MHz

5 510 MHz

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	111 of 115
Model Number:	SWB-A52H				

The reference maker is set at the end of Last radar pulse.

The delta maker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time= (Number of analyzer bins showing transmission)*(dwell time per bin)

The observation period over which the aggregated time is calculated begins at (Reference Maker) and ends no earlier than (Reference Maker +10 sec)

Table	37.	Test	result

Frequency (MHz)	Channel Move Time (sec)	Limit
5 310	0.67	Not exceed 10 sec
5 510	0.80	Not exceed 10 sec
Frequency (MHz)	Aggregate channel closing transmission time (msec)	Limit
5 310	16	Not exceed 1 000 msec
5 510	24	Not exceed 1 000 liisee

5 310 MHz : 2 * 8 = 16 msec 5 510 MHz : 2 * 12 = 24 msec

Frequency (MHz)	Non-occupancy period (min)	Limit
5 310	30	Not be less than 30 minute
5 510	30	Not be less than 50 minute

Project Number:	12CA41629	File Number :	MC17075
Model Number:	SWB-A52H		

Figure 16. Captured images for DFS Test

Plot of channel move time & aggregate channel closing transmission time

5 310 MHz

5 510 MHz

Att 20	dB 🖷 SWT 16 s	VBW 1 M	IHz				
1Pk Clrw							
400-400-5				D	2[1]		-39.72 dB 528.00 ms
-10 dBm M1				M	1[1]		18.34 dBm 853.33 ms
-20 dBm	-						
-30 d8m				-			
40 bsm							
	and the second adverter	with an use of	NiAnusia		والمراجع والمراجع والمراجع	 and before when the	المعالم ماليه
-60 dBm				-			
-70 dBm						 	
-80 dBm							
-90 dBm							
CF 5.52 GHz			3001 p	ots		 	1.6 s/

Project Number:	12CA41629
Model Number:	SWB-A52H

Plot of Non-occupancy period

5 310 MHz

5 510 MHz

Att 20 c	B 🖷 SWT 1860	s VBW 1 MHz			
1Pk Clrw					
10 dBm-			D2[1]		-41.24 dB 1800.000 s -13.74 dBm
20 dBm				+ +	24.899 s
30 dBm					
40 dBm					_
50 dBm		جسمعهميدنيهمصبادشة		الفية سوسة مند أسل في الم الم الم الم الم	D2
-60 dBm					
-70 dBm	_				
80 dBm					
90 dBm					
CF 5.52 GHz		2	2765 pts		186.0 s/
I II			Ready	CHARLES AND AND	06.07.2012

UL Korea, Ltd. 33rd FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007

Project Number:	12CA41629	File Number :	MC17075	Page :	114 of 115
Model Number:	SWB-A52H				

5.9 Antenna Requirement

5.8.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section § 15.247 (b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the gain of the antenna exceeds 6 dBi.

5.8.2. Antenna Connected Construction

The antenna used of this product is Metal Stamping Antenna Assembly and peak max gain of each antennas as below . :

Band	2412 – 2462 MHz	5745 – 5825 MHz 5180 – 5320 MHz 5500 – 5700 MHz
Antenna Gain (dBi)	3.51	4.07

Project Number:	12CA41629	File Number :	MC17075	Page :	115 of 115
Model Number:	SWB-A52H				

APPENDIX A. Accreditations and Authorizations

ESTECH CO., LTD. has been accredited / filed / authorized by the agencies listed in the following table;

Certificate	Nation	Agency	Code	Mark
Accreditation	Korea	KOLAS	KT141	ISO/IEC 17025
Site Filing	USA	FCC	659627	Test Facility list & NSA Data
Certification	Korea	КС	KR0019	Test Facility list & NSA Data

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competent of calibration and testing

UL Korea, Ltd. 3^{3rd} FL, Gangnam Finance Center, 737 Yeoksam-dong, Gangnam-gu, Seoul 135-984 Korea Tel: +82.2.2009.9000, Fax:+82.2.2009.9405 Report Version 1.2 June-06,2007