

FCC OET BULLETIN 65 SUPPLEMENT C 01-01 SAR EVALUATION REPORT (WIMAX PORTION)

FOR

Intel® Centrino® Advanced-N + WiMAX 6250 (Tested inside of Dell Tablet, model: K08T-K08T001)

MODEL: 622ANXHMW

FCC ID: E2K625ANXH

REPORT NUMBER: 10U13466-2A

ISSUE DATE: December 16, 2010

Prepared for

DELL INC. ONE DELL WAY ROUND ROCK, TX 78682

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

(R)

NVLAP LAB CODE 200065-0

Re۱	/ision	Histor	٧
		_	

Rev.	Issue Date	Revisions	Revised By
	11/23/2010	Initial Issue	
А	12/16/2010	Updated report, include the following:	Sunny Shih
		 Added KDB 447498 to sec. 1 Attestation test results and sec. 2 Test Methodology. 	
		 Updated scale factors of 64QAM in sec. 12.3 and sec. 16. 	
		Replace worst-case plots in sec. 17 with correct one.	
		 P54, updated Secondary Landscape setup photo description to include Linearity SAR tests. 	

Page 2 of 57

TABLE OF CONTENTS

1.	A	TTESTATION OF TEST RESULTS5
2.	TE	EST METHODOLOGY6
3.	FA	ACILITIES AND ACCREDITATION6
4.	C	ALIBRATION AND UNCERTAINTY7
4	4.1.	MEASURING INSTRUMENT CALIBRATION7
4	4.2.	MEASUREMENT UNCERTAINTY8
5.	EC	QUIPMENT UNDER TEST9
6.	S١	(STEM DESCRIPTION10
7.	С	OMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS
8.	TI	SSUE DIELECTRIC PARAMETERS CHECK12
8	3.1.	SIMULATING LIQUID CHECK RESULTS13
9.	S١	STEM VERIFICATION
ę	9.1.	SYSTEM PERFORMANCE CHECK RESULTS18
10		RF OUTPUT POWER VERIFICATION
11		PEAK TO AVERAGE RATIO
12		WIMAX / 802.16e DEVICE SPECIFICATION
	12.1	. WiMAX Zone Types
	2.2	DUTY FACTOR CONSIDERATIONS
	2.3	DUTY FACTOR SCALING TO DL:UL RATIO OF 29:18
	12.4	CONVERSION FACTOR & SAR SCALE FACTOR
13		TEST SOFTWARE
14		SIGNAL GENERATEOR DETAILS
15		VECTOR SIGNAL GENERATOR TEST SET DETAILS
16		SUMMARY OF SAR TEST RESULTS
	6.1	. Laptop - Lap-held w/ SA Antenna

Page 3 of 57

16.3	3. Edge - Primary Landscape (No SAR)	
16.4	4. Edge - Secondary Landscape w/ SA Antenna (Worst-case)	39
16.5	5. Edge - Primary Portrait w/ SA Antenna	41
16.6	6. Edge - Secondary Portrait (No SAR)	
17.	WORST-CASE SAR PLOTS	42
18.	PAR AND SAR ERROR CONSIDERATION	44
18. 19.	PAR AND SAR ERROR CONSIDERATION	44 50
18. 19. 20.	PAR AND SAR ERROR CONSIDERATION	44 50 51
18. 19. 20. 21.	PAR AND SAR ERROR CONSIDERATION	44 50 51 53

Page 4 of 57

Pass

1. ATTESTATION OF TEST RESULTS

Company name:	DELL INC.	DELL INC.				
	ONE DELL WAY	ONE DELL WAY				
	ROUND ROCK, TX 786	82				
EUT Description:	Intel® Centrino® Advan	ced-N + WiMAX 6250				
	(Tested inside of Dell Ta	ablet, model: K08T-K08T001)				
Model number:	622ANXHMW					
Device Category:	Portable					
Exposure category:	General Population/Unc	ontrolled Exposure				
Date of tested:	October 22 – November	3 & 20, 2010				
			•			
FCC rule part	Freq. range (MHz)	Highest 1-g SAR (W/kg)	Limit (W/kg)			
27	2498.5 – 2687.5	1.08 (5MHz_QPSK) Edge - Secondary Landscape	1.6			
	Test Results					
FCC OET Bulletin 65 Supplement C 01-01 and the following test procedures:						

- KDB 615223 802.16e WiMax SAR Guidance

- KDB 616217 Laptop with Screen Ant
- 447498 D01 Mobile Portable RF Exposure v04

Compliance Certification Services, Inc. (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For UL CCS By:

sh:h

Sunny Shih Engineering Team Leader Compliance Certification Services (UL CCS)

Tested By:

Chas

Devin Chang EMC Engineer Compliance Certification Services (UL CCS)

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C 01-01 and the following specific FCC test procedures:

- KDB 615223 D01 802.16e WiMax SAR Guidance v01
- KDB 616217 D01 Laptop with Screen Ant v01r01
- KDB 616217 D02 SAR Polcy with Screen Ant v01r01
- KDB 616217 D03 SAR Supp Note and Netbook Laptop v01
- 447498 D01 Mobile Portable RF Exposure v04

2a. Control Signal Description

During normal operation of the Intel 6250 as a mobile WiMAX system the control channels may occupy up to 5 slots. A slot is a sub-channel with the duration of 3 symbols A maximum of two simultaneous Fast Channel Feedback (CQICH) reports used to feedback channel state information are possible, which can occupy up to two slots. A maximum of three slots can be used for Hybrid Automatic Repeat Request (HARQ) ACK/NAK by the five possible DL HARQ bursts in the previous DL frame. The 5 ACK/NAK bits each occupy ¹/₂ slot.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com

Page 6 of 57

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

None of Equipment	Manufacturer Type/Model		Quinted Nice	Cal. Due date			
Name of Equipment			Serial No.	MM	DD	Year	
Robot - Six Axes	Stäubli	RX90BL	N/A			N/A	
Robot Remote Control	Stäubli	CS7MB	3403-91535			N/A	
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041			N/A	
Probe Alignment Unit	SPEAG	LB (V2)	261			N/A	
SAM Phantom (SAM1)	SPEAG	QD000P40CA	1185			N/A	
SAM Phantom (SAM2)	SPEAG	QD000P40CA	1050			N/A	
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 B	1003	N/A			
Dielectric Probe Kit	HP	85070C	N/A	N/A		N/A	
S-Parameter Network Analyzer	Agilent	8753ES-6	MY40001647	11	22	2010	
Signal Generator	Agilent	8753ES-6	MY40001647	11	22	2010	
ESG Vector Signal Generator	Agilent	E4438C	US44271971	9	28	2011	
E-Field Probe	SPEAG	EX3DV3	3531	2	23	2011	
Thermometer	ERTCO	639-1S	1718	7	19	2011	
Data Acquisition Electronics	SPEAG	DAE3 V1	427	7	21	2011	
System Validation Dipole	SPEAG	D2600V2*	1006	4 22 2012		2012	
Amplifier	Mini-Circuits	ZVE-8G	90606	N/A		N/A	
Amplifier	Mini-Circuits	ZHL-42W	D072701-5			N/A	
Simulating Liquid	CCS	M2600	N/A	Within	Within 24 hrs of first test		

* **Note:** Per KDB 450824 D02 requirements for dipole calibration, UL CCS has adopted three years calibration intervals. On annual basis, each measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole
- 2. System validation with specific dipole is within 10% of calibrated value.
- 3. Return-loss is within 20% of calibrated measurement (test data on file in UL CCS)
- 4. Impedance is within 5 Ω of calibrated measurement (test data on file in UL CCS)

Page 7 of 57

4.2. MEASUREMENT UNCERTAINTY

Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram

Component	error, %	Probe Distribution	Divisor	Sensitivity	U (Xi), %		
Measurement System							
Probe Calibration (k=1) @ Body 2600 MHz	5.50	Normal 1		1	5.50		
Axial Isotropy	1.15	Rectangular	1.732	0.7071	0.47		
Hemispherical Isotropy	2.30	Rectangular	1.732	0.7071	0.94		
Boundary Effect	0.90	Rectangular	1.732	1	0.52		
Probe Linearity	3.45	Rectangular	1.732	1	1.99		
System Detection Limits	1.00	Rectangular	1.732	1	0.58		
Readout Electronics	0.30	Normal	1	1	0.30		
Response Time	0.80	Rectangular	1.732	1	0.46		
Integration Time	2.60	Rectangular	1.732	1	1.50		
RF Ambient Conditions - Noise	3.00	Rectangular	1.732	1	1.73		
RF Ambient Conditions - Reflections	3.00	Rectangular	1.732	1	1.73		
Probe Positioner Mechanical Tolerance	0.40	Rectangular 1.732		1	0.23		
Probe Positioning with respect to Phantom	2.90	Rectangular 1.732		1	1.67		
Extrapolation, Interpolation and Integration	1.00	Rectangular	1.732	1	0.58		
Test Sample Related							
Test Sample Positioning	2.90	Normal	1	1	2.90		
Device Holder Uncertainty	3.60	Normal 1		1	3.60		
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89		
Phantom and Tissue Parameters							
Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31		
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.64	1.85		
Liquid Conductivity - measurement	3.36	Normal	1	0.64	2.15		
Liquid Permittivity - deviation from target	5.00	Rectangular	1.732	0.6	1.73		
Liquid Permittivity - measurement	2.63	Normal	1	0.6	1.58		
Combined Standard Uncertainty Uc(y) = 9							
Expanded Uncertainty U, Cover	age Facto	or = 2, > 95 % Confi	dence =	19.62	%		
Expanded Uncertainty U, Cover	age Facto	or = 2, > 95 % Confi	dence =	1.56	dB		

Measurement uncertainty for 300 MHz to 3 GHz averaged over 10 gram

Component	error, %	Probe Distribution	Divisor	Sensitivity	U (Xi), %			
Measurement System								
Probe Calibration (k=1) @ 2600 MHz	5.50	Normal	1	1	5.50			
Axial Isotropy	1.15	Rectangular	1.732	0.7071	0.47			
Hemispherical Isotropy	2.30	Rectangular	1.732	0.7071	0.94			
Boundary Effect	0.90	Rectangular	1.732	1	0.52			
Probe Linearity	3.45	Rectangular	1.732	1	1.99			
System Detection Limits	1.00	Rectangular	1.732	1	0.58			
Readout Electronics	0.30	Normal	1	1	0.30			
Response Time	0.80	Rectangular	1.732	1	0.46			
Integration Time	2.60	Rectangular	1.732	1	1.50			
RF Ambient Conditions - Noise	3.00	Rectangular	1.732	1	1.73			
RF Ambient Conditions - Reflections	3.00	Rectangular	1.732	1	1.73			
Probe Positioner Mechanical Tolerance	0.40	Rectangular	1.732	1	0.23			
Probe Positioning with respect to Phantom	2.90	Rectangular 1.732		1	1.67			
Extrapolation, Interpolation and Integration	1.00	Rectangular	1.732	1	0.58			
Test Sample Related								
Test Sample Positioning	2.90	Normal	1	1	2.90			
Device Holder Uncertainty	3.60	Normal	1	1	3.60			
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89			
Phantom and Tissue Parameters								
Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31			
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.43	1.24			
Liquid Conductivity - measurement	3.36	Normal	1	0.43	1.44			
Liquid Permittivity - deviation from target	5.00	Rectangular	1.732	0.49	1.41			
Liquid Permittivity - measurement uncertainty	2.63	Normal	1	0.49	1.29			
Combined Standard Uncertainty Uc(y), % = 9.4								
Expanded Uncertainty U, Covera	ige Factor	⁻ = 2, > 95 % Confi	dence =	18.97	%			
Expanded Uncertainty U, Covera	ige Factor	r = 2, > 95 % Confid	lence =	1.51	dB			

Page 8 of 57

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

5. EQUIPMENT UNDER TEST

Intel® Centrino® Advanced-N + WiMAX 6250.

Model number: 622ANXHMW (Tested inside of Dell Tablet, model: K08T-K08T001)

Intel® Centrino® Advanced-N + WiMAX 6250 is an embedded IEEE 802.16e and 802.11a/b/g/n wireless network adapter that operates in the 2.4 GHz and 5 GHz spectra for WiFi and 2.6 GHz for WiMAX. The adapter is installed inside the Dell tablet Sparta. This adapter is capable of delivering up to 300 Mbps Tx/Rx over WiFi and up to 4 Mbps UL/10 Mbps DL over WiMAX.

WiMAX and 802.11 a/b/g/n co-location conditions:

The 802.16e WiMAX and 802.11 a/b/g/n WiFi radio will not transmit simultaneously. When the 622ANXHMW is installed in the typical laptop computer, once the network is chosen by the end user during WiMAX/WiFi network, only the WiMAX radio or WiFi radio will transmit.

Normal operation:	 Laptop mode (with display open at 90° to the keyboard) Tablet bottom face, and Tablet edges: Multiple display orientations supporting both portrait and landscape configurations 				
Antenna tested:	<u>Manufactured</u> Smart Approach Co., Ltd Acon	Part number TX1 (A) Antenna: SE-ECIM0-003 TX2 (B) Antenna: SE-ECIM0-001 TX1 (A) Antenna: APP8P-700222 TX2 (B) Antenna: APP8P-700221			
Antenna-to-user separation distances:	Refer to Sec. 18 for details				
Antenna-to-antenna separation distances:	Refer to Sec. 18 for details				
Assessment for SAR evaluation for Simultaneous transmission:	WiMAX – WLAN: The 802.16e WiMAX and 802.11a/b/g/n WiFi radio will not transmit simultaneously.				

Page 9 of 57

6. SYSTEM DESCRIPTION

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

 Page 10 of 57

 COMPLIANCE CERTIFICATION SERVICES (UL CCS)
 FORM NO: CCSUP4031B

 47173 BENICIA STREET, FREMONT, CA 94538, USA
 TEL: (510) 771-1000
 FAX: (510) 661-0888

 This report shall not be reproduced except in full, without the written approval of UL CCS.

7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (MHz)										
(% by weight)	450		835		915		1900		2450		2600
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04	0.05
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	27.2
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78	2.16

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

8. TISSUE DIELECTRIC PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. For frequencies in 300 MHz to 2 GHz, the measured conductivity and relative permittivity should be within \pm 5% of the target values. For frequencies in the range of 2–3 GHz and above the measured conductivity should be within \pm 5% of the target values. The measured relative permittivity tolerance can be relaxed to no more than \pm 10%.

Reference Values of Tissue Dielectric Parameters for Body Phantom

The body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	Body			
raiget requeitcy (winz)	ε _r	σ (S/m)		
2450	52.7	1.95		
2500	52.6	2.02		
2600	52.5	2.16		
2690	52.4	2.29		

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

8.1. SIMULATING LIQUID CHECK RESULTS

Simulating Liquid Dielectric Parameter Check Result @ Body 2600 MHz

Measured by: Devin Chang

Simulating Liquid Baramete		Paramotoro	Moogurod	Target	Deviation	Limit							
f (MHz)	Depth (cm)		Г	ai ai nelei s	Measureu	Taryer	(%)	(%)					
2500	15	e'	53.9834	Relative Permittivity (c _r):	53.9834	52.6	2.63	±5					
2500	15	e"	15.0013	Conductivity (σ):	2.08635	2.02	3.28	± 5					
2500	15	e'	53.6467	Relative Permittivity (c _r):	53.6467	52.5	2.18	± 5					
2590	15	15	15	15	15	15	e"	15.4042	Conductivity (<i>o</i>):	2.21951	2.15	3.23	± 5
2600	15	e'	53.6104	Relative Permittivity (ε_r):	53.6104	52.5	2.09	± 5					
2000	15	e"	15.4404	Conductivity (<i>o</i>):	2.23332	2.16	3.36	± 5					
2600	15	e'	53.2738	Relative Permittivity (ε_r):	53.2738	52.4	1.67	± 5					
2090	15	e"	15.8023	Conductivity (σ):	2.36478	2.29	3.27	± 5					

Liquid Check

Ambient temperature: 24 deg. C; Liquid temperature: 24 deg. C; Relative humidity = 41% October 22, 2010 10:47 AM

Frequency	e'	e"
2480000000.	54.0588	14.9055
2490000000.	54.0218	14.9545
2500000000.	53.9834	15.0013
2510000000.	53.9488	15.0505
2520000000.	53.9144	15.0980
2530000000.	53.8818	15.1456
2540000000.	53.8458	15.1928
2550000000.	53.8059	15.2350
2560000000.	53.7687	15.2791
2570000000.	53.7262	15.3207
2580000000.	53.6848	15.3625
2590000000.	53.6467	15.4042
260000000.	53.6104	15.4404
2610000000.	53.5766	15.4820
2620000000.	53.5415	15.5232
2630000000.	53.5081	15.5623
2640000000.	53.4719	15.6018
2650000000.	53.4310	15.6388
2660000000.	53.3890	15.6808
2670000000.	53.3488	15.7211
2680000000.	53.3100	15.7601
269000000.	53.2738	15.8023
2700000000.	53.2436	15.8472
2710000000.	53.2122	15.8883
2720000000.	53.1824	15.9312

The conductivity (σ) can be given as:

$$\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$$

where $f = target f * 10^6$

 $\boldsymbol{\varepsilon}_0 = 8.854 * 10^{-12}$

Measured by: Devin Chang

Simulati	ng Liquid		Parameters		Maggurod	Target	Doviation (%)	$\lim_{n \to \infty} (0/n)$
f (MHz)	Depth (cm)			iviea sui eu	Target	Deviation (%)	LIIIII (70)	
2500	15	e'	53.1299	Relative Permittivity (ε_r):	53.1299	52.6	1.01	± 5
2300	15	e"	14.7666	Conductivity (o):	2.05371	2.02	1.67	± 5
2500	2500 15	e'	52.7941	Relative Permittivity (ε_r):	52.7941	52.5	0.56	± 5
2090	10	e"	15.1353	Conductivity (σ):	2.18077	2.15	1.43	± 5
2600	15	e'	52.7756	Relative Permittivity (ε_r):	52.7756	52.5	0.50	± 5
2600 15	10	e"	15.1815	Conductivity (σ):	2.19587	2.16	1.62	± 5
2690	15	e'	52.4361	Relative Permittivity (ε_r):	52.4361	52.4	0.07	± 5
	15	e"	15.5180	Conductivity (σ):	2.32224	2.29	1.41	± 5

Liquid Check

Ambient temperature: 24 deg. C; Liquid temperature: 24 deg. C; Relative humidity = 41% October 24, 2010 1:47 PM

	1.47 1 101	
Frequency	e'	e''
2480000000.	53.2039	14.6703
2490000000.	53.1677	14.7329
2500000000.	53.1299	14.7666
2510000000.	53.0881	14.7957
2520000000.	53.0681	14.8481
2530000000.	53.0207	14.8917
2540000000.	52.9973	14.9343
2550000000.	52.9603	14.9801
2560000000.	52.9239	14.9959
2570000000.	52.8972	15.0438
2580000000.	52.8554	15.0923
2590000000.	52.7941	15.1353
260000000.	52.7756	15.1815
2610000000.	52.7441	15.2224
2620000000.	52.7165	15.2617
2630000000.	52.6726	15.2990
2640000000.	52.6459	15.3416
2650000000.	52.6055	15.3810
266000000.	52.5636	15.4080
2670000000.	52.5213	15.4588
268000000.	52.4795	15.4912
269000000.	52.4361	15.5180
2700000000.	52.4092	15.5519
2710000000.	52.3793	15.5976
2720000000.	52.3531	15.6350

The conductivity (σ) can be given as:

$\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$

where $f = target f * 10^6$

 $\epsilon_0 = 8.854 * 10^{-12}$

Page 14 of 57

Measured by: Devin Chang

Simulati	Simulating Liquid		Daramatara		Maggurod	Target	Doviation (%)	$\lim_{n \to \infty} (0/n)$
f (MHz)	Depth (cm)			Falameleis	iviea sui eu	Taiget	Deviation (%)	LIIIII (70)
2500	15	e'	52.0849	Relative Permittivity (c _r):	52.0849	52.6	-0.98	±5
2300	15	e"	14.8132	Conductivity (σ):	2.06019	2.02	1.99	± 5
2500	2500 15	e'	51.7795	Relative Permittivity (ε_r):	51.7795	52.5	-1.37	± 5
2090	10	15 e"	15.1828	Conductivity (σ):	2.18761	2.15	1.75	± 5
2600	15	e'	51.7454	Relative Permittivity (ε_r):	51.7454	52.5	-1.46	± 5
2000	15	e"	15.2241	Conductivity (σ):	2.20203	2.16	1.91	± 5
2690	15	e'	51.4012	Relative Permittivity (ε_r):	51.4012	52.4	-1.91	± 5
	15	e"	15.5838	Conductivity (σ):	2.33209	2.29	1.84	± 5

Liquid Check

Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C; Relative humidity = 38% October 25, 2010 02:12 PM

Frequency	e'	e"
2480000000.	52.1535	14.7343
2490000000.	52.1185	14.7726
2500000000.	52.0849	14.8132
2510000000.	52.0524	14.8554
2520000000.	52.0190	14.8955
2530000000.	51.9877	14.9347
2540000000.	51.9530	14.9725
2550000000.	51.9207	15.0122
2560000000.	51.8854	15.0518
2570000000.	51.8522	15.0948
2580000000.	51.8164	15.1381
2590000000.	51.7795	15.1828
260000000.	51.7454	15.2241
2610000000.	51.7136	15.2689
2620000000.	51.6752	15.3122
2630000000.	51.6407	15.3518
2640000000.	51.6056	15.3933
2650000000.	51.5667	15.4317
2660000000.	51.5276	15.4701
2670000000.	51.4861	15.5052
2680000000.	51.4384	15.5508
2690000000.	51.4012	15.5838
2700000000.	51.3624	15.6205
2710000000.	51.3226	15.6651
2720000000.	51.2861	15.7030

The conductivity (σ) can be given as:

$\sigma = \omega \varepsilon_0 \, \mathrm{e}'' = 2 \, \pi \, f \, \varepsilon_0 \, \mathrm{e}''$

where $f = target f * 10^6$

 $\epsilon_0 = 8.854 * 10^{-12}$

Page 15 of 57

Measured by: Devin Chang

Simulating Liquid				Daramotora	Moosurad	Target	Deviation (%)	$\lim_{n \to \infty} 1$
f (MHz)	Depth (cm)			r ai ai i i elei s	Measureu	Taiyei	Deviation (70)	LIIIII (70)
2500	15	e'	53.7938	Relative Permittivity (c _r):	53.7938	52.6	2.27	± 5
2300	15	e"	14.7819	Conductivity (o):	2.05584	2.02	1.77	± 5
2500	2500 15	e'	53.5022	Relative Permittivity (ε_r):	53.5022	52.5	1.91	± 5
2090	10	e"	15.1294	Conductivity (σ):	2.17992	2.15	1.39	± 5
2600	15	e'	53.4665	Relative Permittivity (ε_r):	53.4665	52.5	1.82	± 5
2600 15	15	e"	15.1714	Conductivity (σ):	2.19441	2.16	1.56	± 5
2690	15	e'	53.1819	Relative Permittivity (ε_r):	53.1819	52.4	1.49	± 5
	ID ID	e"	15.5237	Conductivity (o):	2.32309	2.29	1.45	± 5

Liquid Check

Ambient temperature: 24 deg. C; Liquid temperature: 25 deg. C; Relative humidity = 44% November 03, 2010 10:56 AM

	0 10.007.00	
Frequency	e'	e"
2480000000.	53.8622	14.6927
2490000000.	53.8265	14.7366
2500000000.	53.7938	14.7819
2510000000.	53.7615	14.8249
2520000000.	53.7368	14.8685
2530000000.	53.7091	14.9101
2540000000.	53.6800	14.9479
2550000000.	53.6480	14.9809
2560000000.	53.6167	15.0168
2570000000.	53.5767	15.0496
2580000000.	53.5416	15.0877
2590000000.	53.5022	15.1294
260000000.	53.4665	15.1714
2610000000.	53.4293	15.2146
2620000000.	53.3950	15.2554
2630000000.	53.3659	15.2990
2640000000.	53.3399	15.3367
2650000000.	53.3089	15.3788
2660000000.	53.2814	15.4120
2670000000.	53.2518	15.4492
2680000000.	53.2196	15.4859
269000000.	53.1819	15.5237
2700000000.	53.1444	15.5634
2710000000.	53.1052	15.6035
2720000000.	53.0685	15.6448

The conductivity (σ) can be given as:

$\sigma = \omega \varepsilon_0 \, \mathrm{e}'' = 2 \, \pi \, f \, \varepsilon_0 \, \mathrm{e}''$

where $f = target f * 10^6$

 $\varepsilon_0 = 8.854 * 10^{-12}$

Page 16 of 57

Measured by: Devin Chang

Simulating Liquid		Parameters		Measured	Tarret	Deviation (%)	Limit (%)	
f (MHz)	Depth (cm)			i arameters	Measureu	Taiget	Deviation (70)	
2500	15	e'	52.2683	Relative Permittivity (ε_r):	52.2683	52.6	-0.63	± 5
2000	10	e"	14.5071	Conductivity (o):	2.01762	2.02	-0.12	± 5
2500	2590 15	e'	51.9305	Relative Permittivity (ε_r):	51.9305	52.5	-1.08	± 5
2590		e"	14.9312	Conductivity (o):	2.15136	2.15	0.06	± 5
260.0	15	e'	51.9037	Relative Permittivity (ε_r):	51.9037	52.5	-1.16	± 5
2000	15	e"	14.9699	Conductivity (o):	2.16527	2.16	0.21	± 5
2690	45	e'	51.5538	Relative Permittivity (ε_r):	51.5538	52.4	-1.61	± 5
	10	e"	15.3264	Conductivity (o):	2.29357	2.29	0.16	± 5

Liquid Check

Ambient temperature: 24 deg. C; Liquid temperature: 25 deg. C; Relative humidity = 44% November 20, 2010 10:52 AM

Frequency	e'	e"
2470000000.	52.3654	14.4150
2480000000.	52.3422	14.4654
2490000000.	52.2985	14.5133
2500000000.	52.2683	14.5071
2510000000.	52.2445	14.5612
2520000000.	52.2154	14.5853
2530000000.	52.1654	14.6252
2540000000.	52.1265	14.6505
2550000000.	52.0860	14.7060
2560000000.	52.0540	14.7415
2570000000.	52.0239	14.8104
2580000000.	51.9794	14.8843
2590000000.	51.9305	14.9312
260000000.	51.9037	14.9699
261000000.	51.8696	15.0007
2620000000.	51.8434	15.0248
2630000000.	51.8265	15.0382
2640000000.	51.7760	15.0609
2650000000.	51.7511	15.1010
2660000000.	51.7041	15.1437
2670000000.	51.6479	15.2023
268000000.	51.6074	15.2569
269000000.	51.5538	15.3264
2700000000.	51.5185	15.3594
2710000000.	51.4975	15.3924
2720000000.	51.4789	15.4211

The conductivity (σ) can be given as:

$$\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e'$$

where $f = target f * 10^6$

 $\epsilon_0 = 8.854 * 10^{-12}$

9. SYSTEM VERIFICATION

The system performance check is performed prior to any usage of the system in order to verify SAR system measurement accuracy. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Head or Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3 SN3531 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
- For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW
- The results are normalized to 1 W input power.

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG.

System	Cal. certificate #	Cal date	SAR Avg (mW/g)			
validation dipole		Cal. uale	Tissue:	Head	Body	
D2600V2	$D_{2600}/2 1006 \text{ Apr}00$	4/22/00	SAR _{1g} :		57.6	
	D2000v2-1000_Apr09	4/22/09	SAR _{10g} :		25.8	

9.1. SYSTEM PERFORMANCE CHECK RESULTS

Ambient Temperat	ure = 24°C; R	Measure	ed by: Devin	Chang			
System	Data Taatad	Measured (Normalized to 1 W)		Target	Dolta (%)	Tolerance	
validation dipole	Date Testeu	Tissue:	Body	Taiyet		(%)	
	10/22/10	SAR _{1g} :	56.5	57.6	-1.91	+10	
D2000V2	10/22/10	SAR _{10g} :	25.3	25.8	-1.94	ΞĪŪ	
	10/24/10	SAR _{1g} :	55.5	57.6	-3.65	+10	
D2600V2		SAR _{10g} :	24.8	25.8	-3.88	ΞĪŪ	
	10/25/10	SAR _{1g} :	57.3	57.6	-0.52	+10	
D2000V2	10/25/10	SAR _{10g} :	25.7	25.8	-0.39	±ΙΟ	
	11/02/10	SAR _{1g} :	55.5	57.6	-3.65	+10	
D2000V2	11/03/10	SAR _{10g} :	24.9	25.8	-3.49	±10	
D26001/2	11/20/10	SAR _{1g} :	56.9	57.6	-1.22	±10	
D2600V2	11/20/10	SAR _{10g} :	25.3	25.8	-1.94		

Page 18 of 57

SYSTEM CHECK PLOT

Date/Time: 10/22/2010 11:05:12 AM

Test Laboratory: Compliance Certification Services

System Performance Check - D2600V2

DUT: D2600V2; Type: D2600V2; Serial: 1006

Communication System: CW 2600MHz; Frequency: 2600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; σ = 2.23 mho/m; ϵ_r = 53.6; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(7.4, 7.4, 7.4); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=100mW/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 7.28 mW/g

d=10mm, Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.7 V/m; Power Drift = 0.117 dB Peak SAR (extrapolated) = 11.8 W/kg SAR(1 g) = 5.65 mW/g; SAR(10 g) = 2.53 mW/g

Maximum value of SAR (measured) = 7.35 mW/g

Page 19 of 57

SYSTEM CHECK – Z Plot

Date/Time: 10/15/2010 9:46:29 AM

Test Laboratory: Compliance Certification Services

System Performance Check - D2450V2

DUT: D2450V2; Type: D2450V2; Serial: 706

Communication System: CW 2450MHz; Frequency: 2450 MHz; Duty Cycle: 1:1

d=10mm, Pin=100mW/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm, dz=3mm Maximum value of SAR (measured) = 6.89 mW/g

Page 20 of 57

SYSTEM CHECK PLOT

Date/Time: 10/24/2010 2:05:12 PM

Test Laboratory: Compliance Certification Services

System Performance Check - D2600V2

DUT: D2600V2; Type: D2600V2; Serial: 1006

Communication System: CW 2600MHz; Frequency: 2600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; σ = 2.2 mho/m; ε_{r} = 52.8; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(7.4, 7.4, 7.4); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010

Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX
 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=100mW/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 7.15 mW/g

d=10mm, Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.7 V/m; Power Drift = 0.117 dB Peak SAR (extrapolated) = 11.6 W/kg SAR(1 g) = 5.55 mW/g; SAR(10 g) = 2.48 mW/g Maximum value of SAR (measured) = 7.23 mW/g

Page 21 of 57

SYSTEM CHECK – Z Plot

Date/Time: 10/24/2010 2:22:45 PM

Test Laboratory: Compliance Certification Services

System Performance Check - D2600V2

DUT: D2600V2; Type: D2600V2; Serial: 1006

Communication System: CW 2600MHz; Frequency: 2600 MHz; Duty Cycle: 1:1

d=10mm, Pin=100mW/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm, dz=3mm Maximum value of SAR (measured) = 7.20 mW/g

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 22 of 57

SYSTEM CHECK PLOT

Date/Time: 10/25/2010 2:49:36 PM

Test Laboratory: Compliance Certification Services

System Performance Check - D2600V2

DUT: D2600V2; Type: D2600V2; Serial: 1006

Communication System: CW 2600MHz; Frequency: 2600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; σ = 2.2 mho/m; ϵ_r = 51.7; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(7.4, 7.4, 7.4); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=100mW/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 7.14 mW/g

d=10mm, Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.7 V/m; Power Drift = 0.217 dB Peak SAR (extrapolated) = 11.9 W/kg SAR(1 g) = 5.73 mW/g; SAR(10 g) = 2.57 mW/g Maximum value of SAR (measured) = 7.68 mW/g

Page 23 of 57

SYSTEM CHECK – Z Plot

Date/Time: 10/25/2010 3:06:32 PM

Test Laboratory: Compliance Certification Services

System Performance Check - D2600V2

DUT: D2600V2; Type: D2600V2; Serial: 1006

Communication System: CW 2600MHz; Frequency: 2600 MHz; Duty Cycle: 1:1

d=10mm, Pin=100mW/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm, dz=3mm Maximum value of SAR (measured) = 7.65 mW/g

Page 24 of 57

SYSTEM CHECK PLOT

Date/Time: 11/3/2010 1:51:41 PM

Test Laboratory: Compliance Certification Services

System Performance Check - D2600V2

DUT: D2600V2; Type: D2600V2; Serial: 1006

Communication System: CW 2600MHz; Frequency: 2600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; σ = 2.19 mho/m; ϵ_r = 53.5; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(7.4, 7.4, 7.4); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=100mW/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.90 mW/g

d=10mm, Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.4 V/m; Power Drift = 0.171 dB Peak SAR (extrapolated) = 11.7 W/kg SAR(1 g) = 5.55 mW/g; SAR(10 g) = 2.49 mW/g Maximum value of SAR (measured) = 7.24 mW/g

Page 25 of 57

SYSTEM CHECK – Z Plot

Date/Time: 11/3/2010 2:08:40 PM

Test Laboratory: Compliance Certification Services

System Performance Check - D2600V2

DUT: D2600V2; Type: D2600V2; Serial: 1006

Communication System: CW 2600MHz; Frequency: 2600 MHz; Duty Cycle: 1:1

d=10mm, Pin=100mW/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm, dz=3mm Maximum value of SAR (measured) = 7.26 mW/g

Page 26 of 57

SYSTEM CHECK PLOT

Date/Time: 11/20/2010 12:46:14 PM

Test Laboratory: Compliance Certification Services

System Performance Check - D2600V2

DUT: D2600V2; Type: D2600V2; Serial: 1006

Communication System: CW 2600MHz; Frequency: 2600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; σ = 2.17 mho/m; ϵ_r = 51.9; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Probe: EX3DV3 SN3531; ConvF(7.4, 7.4, 7.4); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=100mW/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 7.24 mW/g

d=10mm, Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.4 V/m; Power Drift = 0.193 dB Peak SAR (extrapolated) = 12.1 W/kg SAR(1 g) = 5.69 mW/g; SAR(10 g) = 2.53 mW/g Maximum value of SAR (measured) = 7.49 mW/g

Page 27 of 57

SYSTEM CHECK – Z Plot

Date/Time: 11/20/2010 1:03:10 PM

Test Laboratory: Compliance Certification Services

System Performance Check - D2600V2

DUT: D2600V2; Type: D2600V2; Serial: 1006

Communication System: CW 2600MHz; Frequency: 2600 MHz; Duty Cycle: 1:1

d=10mm, Pin=100mW/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm, dz=3mm Maximum value of SAR (measured) = 7.48 mW/g

Page 28 of 57

10. RF OUTPUT POWER VERIFICATION

The max. conducted output power is measured for the uplink burst in the difference modulation and channel bandwidth. The output power is measured for the uplink bursts through triggering and gating.

Mode		Tost Vostor filo namo	Freq.	Conducted output power		
IVIC	Jue	rest vector me name	(MHz)	(dBm)	(mW)	
			2498.5	24.30	269.15	
5MHz	QPSK	DQ64_56_UQ4_12_5M	2593.0	24.30	269.15	
			2687.5	24.20	263.03	
			2498.5	24.40	275.42	
5MHz	5MHz 16QAM	DQ4_12_UQ16_34_5M	2593.0	24.50	281.84	
			2687.5	24.40	275.42	
	5MHz 64QAM	DQ4_12_UQ64_56_5M	2498.5	20.10	102.33	
5MHz			2593.0	20.10	102.33	
			2687.5	20.00	100.00	
		DQ64_UQ4_12_21S_10M	2501.0	23.60	229.09	
10MHz	QPSK		2593.0	23.70	234.42	
			2685.0	23.70	234.42	
			2501.0	23.60	229.09	
10MHz	16QAM	DQ4_12_UQ16_12_10M	2593.0	23.70	234.42	
			2685.0	23.70	234.42	
			2501.0	19.20	83.18	
10MHz	64QAM	DQ4_12_UQ64_56_10M	2593.0	19.30	85.11	
			2685.0	19.30	85.11	

11. PEAK TO AVERAGE RATIO

Peak and Average Output power measurements were made with Power Meter.

Mode	Test Vector file name	Ch No	f (MILI-)	Conducted F	Power (dBm)	Peak-to-average
woue	rest vector me name			Peak	Average	ratio (PAR)
QPSK	DQ64_56_UQ4_12_5M	378	2593	32.10	24.30	7.80
16QAM	DQ4_12_UQ16_34_5M	378	2593	33.09	24.40	8.69
64QAM	DQ4_12_UQ64_56_5M	378	2593	27.26	20.10	7.16
QPSK	DQ64_UQ4_12_21S_10M	368	2593	32.76	23.76	9.00
16QAM	DQ4_12_UQ16_12_10M	368	2593	32.48	23.60	8.88
64QAM	DQ4_12_UQ64_56_10M	368	2593	27.95	19.30	8.65

Page 29 of 57

12. WIMAX / 802.16e DEVICE SPECIFICATION

12.1. WiMAX Zone Types

The device and its system are both transmitting using only PUSC zone type. This enables multiple users to transmit simultaneously within the system. FUSC, AMC and other zone types are not used by WiMAX 6250 for uplink transmission. The maximum DL:UL symbol ratio can be determined according to the PUSC requirements. The system transmit an odd number of symbols using DL-PUSL consisting of even multiples of traffics and control symbols plus one symbol for the preamble. Multiples of three symbols are transmitted by the device using UL-PUSC. The OFDMA symbol time allows up to 48 downlink and uplink symbols in each 5 ms frame. TTG and RTG are also included in each frame as DL/UL transmission gaps; therefore, the system can only allow 47 or less symbols per frame. The maximum DL:UL symbol ratio is determined according to these PUSC parameters for evaluating SAR compliance.

WiMAX chipset is capable of supporting the following Downlink / Uplink based upon 802.16e.

Description	Down Link	Up Link
	35	12
	34	13
	32	15
	31	16
Number of OFDM Symbols in Down Link and	30	17
	29	18
	28	19
	27	20
	26	21

Page 30 of 57

12.2. DUTY FACTOR CONSIDERATIONS

- a. All Test Vector are performing with all UL symbols at maximum power.
- b. Although the chipset can supply higher downlink-to-uplink (DL/UL) symbol ratios, SAR values are scaled up or down based upon BRS/EBS WiMAX operators with agreements to transmit at a maximum DL/UL symbol ratio of 29:18 Vs actual UL traffic symbols were used during SAR measurement. Therefore, the maximum transmission duty factor supported by the chipset is not applicable for this device. The system can transmit up to 48 OFDMA symbols in each 5 ms frame, including 1.6 symbols for TTG and RTG.
- c. UL Burst Max. Average Power was measured using spectrum analyzer gated to measure the power only during Tx "On" stage.

Mode		Test Vector file name	Freq.	Freq. Conducted output pe	
			(MHz)	(dBm)	(mW)
	QPSK	DQ64_56_UQ4_12_5M	2593.0	24.30	269.15
5 MHz	16QAM	16QAM DQ4_12_UQ16_34_5M		24.50	281.84
	64QAM	DQ4_12_UQ64_56_5M	2593.0	20.10	102.33
10 MHz	QPSK	DQ64_UQ4_12_21S_10M	2593.0	23.70	234.42
	16QAM	DQ4_12_UQ16_12_10M	2593.0	23.70	234.42
	64QAM	DQ4_12_UQ64_56_10M	2593.0	19.30	85.11

- d. The control channels may occupy up to 5 slots during normal operation. A slot is a sub-channel with the duration of 3 symbols. There are a total of 35 slots in the 10 MHz channel configuration
- e. The control channels may occupy up to 5 slots during normal operation. A slot is a sub-channel with the duration of 3 symbols. There are a total of 17 slots in the 5 MHz channel configuration.
- f. When the device is transmitting at max rated power, the output power for the control symbol and the target output power for UL:DL ratio of 29:18 is calculated as the following:

Ch. BW	Mode	Max Rated Pwr	Max pwr control symbol	29:18 DL:UL ration Pwr (mW)	
		(mvv)	(max. rated pwr x 5 / 17)	((ctrl_symb_pwr x 3) + (max_rated pwr x 15))	
	QPSK	269.00	79.12	4272.35	
5 MHz	16QAM	269.00	79.12	4272.35	
	64QAM	107.15	31.51	1701.79	
Modulation	Ch. BW Max Rated F (mW)	Max Rated Pwr	Max pwr control symbol	29:18 DL:UL ration Pwr (mW)	
NOCULATION		(mW)	(max. rated pwr x 5 / 35)	((ctrl_symb_pwr x 3) + (max_rated pwr x 15))	
	QPSK	229.00	32.71	3533.14	
10 MHz	16QAM	229.00	32.71	3533.14	
	64QAM	91.20	13.03	1407.09	

Page 31 of 57

g. Test Vector waveform power

5 MHz BW / C	PSK:	DQ64_56_UQ4_12_5M	/I (26:21 DL:UL Ratio)		
Ch. #	Freq. (MHz)	Measured Pwr (dBm)	Measured Pwr (mW)	Number of Traffic Symbols	Traffic Symbols Pwr (mW)
0	2498.5	24.30	269.15	18	4844.76
378	2593	24.30	269.15	18	4844.76
756	2687.5	24.20	263.03	18	4734.48
5 MHz BW / 1	6QAM:	DQ4_12_UQ16_34_5	/I (26:21 DL:UL Ratio)		
Ch. #	Freq. (MHz)	Measured Pwr (dBm)	Measured Pwr (mW)	Number of Traffic Symbols	Traffic Symbols Pwr (mW)
0	2498.5	24.40	275.42	18	4957.61
378	2593	24.50	281.84	18	5073.09
756	2687.5	24.40	275.42	18	4957.61
5 MHz BW / 6	4QAM:	DQ4_12_UQ64_56_5	/I (23:24 DL:UL Ratio)		
Ch. #	Freq. (MHz)	Measured Pwr (dBm)	Measured Pwr (mW)	Number of Traffic Symbols	Traffic Symbols Pwr (mW)
0	2498.5	20.10	102.33	21	2148.92
378	2593	20.10	102.33	21	2148.92
756	2687.5	20.00	100.00	21	2100.00
10 MHz BW /	QPSK:	DQ64_UQ4_12_21S_	10M (23:24 DL:UL Rat	io)	
Ch. #	Freq. (MHz)	Measured Pwr (dBm)	Measured Pwr (mW)	Number of Traffic Symbols	Traffic Symbols Pwr (mW)
0	2501	23.60	229.09	21	4810.82
368	2593	23.70	234.42	21	4922.88
736	2685	23.70	234.42	21	4922.88
10 MHz BW /	16QAM:	DQ4_12_UQ16_12_10	M (32:15 DL:UL Ratio)	
Ch. #	Freq. (MHz)	Measured Pwr (dBm)	Measured Pwr (mW)	Number of Traffic Symbols	Traffic Symbols Pwr (mW)
0	2501	23.60	229.09	12	2749.04
368	2593	23.70	234.42	12	2813.07
736	2685	23.70	234.42	12	2813.07
10 MHz BW /	64QAM:	DQ4_12_UQ64_56_10	M (32:15 DL:UL Ratio)	
Ch.#	Freq. (MHz)	Measured Pwr (dBm)	Measured Pwr (mW)	Number of Traffic Symbols	Traffic Symbols Pwr (mW)
0	2501	19.20	83.18	12	998.12
368	2593	19.30	85.11	12	1021.37
736	2685	19.30	85.11	12	1021.37

Calculation example:

Traffic Symbols Pwr = Measured power * No. of Traffic Symbol

5M QPSK = 269.15 * 18 = 4844.76 10M QPSK = 234.42 * 21 = 4922.88

Page 32 of 57

12.3. DUTY FACTOR SCALING TO DL:UL RATIO OF 29:18

5 MHz BW / QP	SK:	DQ64_UQ4_12_5M (26:21	DL:UL Ratio)	
Ch. #	Freq. (MHz)	29:18 Rated Pwr	Traffic Symbol Pwr	Scaling Factor (Rated Pwr/Traffic Pwr)
0	2498.5	4272.35	4844.76	0.88
378	2593	4272.35	4844.76	0.88
756	2687.5	4272.35	4734.48	0.90
5 MHz BW / 160	QAM:	DQ4_12_UQ16_34_5M (26	:21 DL:UL Ratio)	
Ch. #	Freq. (MHz)	29:18 Rated Pwr	Traffic Symbol Pwr	Scaling Factor (Rated Pwr/Traffic Pwr)
0	2498.5	4272.35	4957.61	0.86
378	2593	4272.35	5073.09	0.84
756	2687.5	4272.35	4957.61	0.86
5 MHz BW / 640	QAM:	DQ4_12_UQ64_56_5M (23	:24 DL:UL Ratio)	
Ch. #	Freq. (MHz)	29:18 Rated Pwr	Traffic Symbol Pwr	Scaling Factor (Rated Pwr/Traffic Pwr)
0	2498.5	1701.79	2148.92	0.79
378	2593	1701.79	2148.92	0.79
756	2687.5	1701.79	2100.00	0.81
10 MHz BW / QPSK:		DQ64_UQ4_12_21S_10M	(23:24 DL:UL Ratio)	
Ch. #	Freq. (MHz)	29:18 Rated Pwr	Traffic Symbol Pwr	Scaling Factor (Rated Pwr/Traffic Pwr)
0	2501	3533.14	4810.82	0.73
368	2593	3533.14	4922.88	0.72
736	2685	3533.14	4922.88	0.72
10 MHz BW / 16	SQAM:	DQ4_12_UQ16_12_10M (3	2:15 DL:UL Ratio)	
Ch. #	Freq. (MHz)	29:18 Rated Pwr	Traffic Symbol Pwr	Scaling Factor (Rated Pwr/Traffic Pwr)
0	2501	3533.14	2749.04	1.29
368	2593	3533.14	2813.07	1.26
736	2685	3533.14	2813.07	1.26
10 MHz BW / 64	IQAM:	DQ4 12 UQ16 56 10M (3	2:15 DL:UL Ratio)	
Ch. #	Freq. (MHz)	29:18 Rated Pwr	Traffic Symbol Pwr	Scaling Factor (Rated Pwr/Traffic Pwr)
0	2501	1407.09	998.12	1.41
368	2593	1407.09	1021.37	1.38
736	2685	1407.09	1021.37	1.38

12.4. CONVERSION FACTOR & SAR SCALE FACTOR

Vector Waveform File		Modulation	DL:UL	Calculated	
		Modulation	Ratio	Duty Cycle	Crest Factor
DQ64_56_UQ4_12_5M	5 MHz	QPSK	26 : 21	37.0%	2.70
DQ4_12_UQ16_34_5M	5 MHz	16QAM	26 : 21	37.0%	2.70
DQ4_12_UQ64_56_5M	5 MHz	64QAM	23 : 24	43.2%	2.31
DQ64_UQ4_12_21S_10M	10 MHz	QPSK	23:24	43.2%	2.31
DQ4_12_UQ16_12_10M	10 MHz	16QAM	32 : 15	24.7%	4.05
DQ4 12 UQ64 56 10M	10 MHz	64QAM	32 : 15	24.7%	4.05

Note: The duty factor can be given as: (number of traffic symbols*102.857us)/5000us

Page 33 of 57

13. TEST SOFTWARE

The test software tool (WiMAX VaTU SW application) is installed on the host device, WiMAX, to transmit at max. output power. During normal operation, the output power of WiMAX client module is controlled by a WiMAX basestation, which also determines the characteristics of the transmission. For testing purposes, the device output power is kept at this max. using WiMAX VATU SW application loaded in the host device. The uplink transmission is maintained at a stable condition by the radio profile loaded in Vector signal generator. This enables the WiMAX module to transmit at max. power with a constant duty factor according to the specific radio profile. The test software serves only one purpose, to configure the WiMAX module to transmit at the max. power during SAR measurement.

The EUT driver software installed in the host support equipment during testing was WiMAX VaTU, version: 5.0.0.1

	WiMAX Va	TU		x		
Main Menu Setu	P					
Ti Configuration Reload Start Stop Save Snapshot Rx/Tx Test Mode Layout View						
Rx/Tx Test Mode Regulatory F	ower NVM Layout View F	ields View Prod	Lock Internal Calibrations Gpio Control			
Band Profile						
Radio Profile Prof3.A_2.495-10	Contro Environ Chu Durb	Test Vector File C:\/HvT\Test Vectors\10MHz\				
10 / 1024	250	2501				
All Channels Partial	Channel No. / Freq [MHz]	VCO Sub Band				
Rx			Тх			
Rx Chain 1 Ch Enabled	Rx Chain 2 Co I-Dac Q-Da 0 0	h Enabled	Power Out [dBm] 30 Tpc 20.00 0 Att			
Digital Att [dB] 0 IF Att [dB] 12 RF Att [dB] 0	Freq Offset [Hz] 18553					
	BER		Pout Digital [dBm] -10.25			
RSSI [d8m] CINR [d8] -75.625 11.875 SRC0 RSSI [d8m] CINR [d8] -76.625 11.625 [d8] [d8] [d8]	[Frames] [Frames] 100 100		RF Att [dB] 0 PA Gain [dB] 30 Pout Total [dBm] 20			

VaTU SW Application

Page 34 of 57

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

14. SIGNAL GENERATEOR DETAILS

Frame Profile loaded in Vector Signal Generator:

Test Vector File Name	BW	DL:UL Symbols	UL duty Cycle (%) (Calculated)	DL Modulation	UL Modulation
DQ4_12_UQ16_12_10M	10 MHz	32:15	24.7	QPSK R1/2	QAM16 R3/4
DQ64_UQ4_12_21S_10M	10 MHz	23:24	43.2	QAM64 R5/6	QPSK R1/2
DQ4_12_UQ16_34_5M	5 MHz	26:21	37.0	QPSK R1/2	QAM16 R3/4
DQ64_56_UQ4_12_5M	5 MHz	26:21	37.0	QAM64 R5/6	QPSK R1/2

Connection Diagram- RF conducted Power Measurement

Page 35 of 57

Agilent ESG Vector Signal Generator / Model:E4438C is used in conjunction with Intel supplied radio profile to configure the WiMAX module for the SAR evaluation. ESG Vector Signal Generator is loaded with the downlink signal, containing the respective FCH, DL-MAP and UL-MAP required by the test device to configure the uplink transmission. The waveform is configured for a DL:UL symbol ratio of 32:15 for 10 MHz/16WAM; 23:24 for 10MHz/QPSK and 26:21 for 5 MHz/16WAM/QPSK using Intel Signal Waveform Software for 802.16 WiMAX, on the PC and downloaded to the VSG. The test device can synchronize itself to the signal received from VSG, both in frequency and time. It then modulates the DL-MAP and UL-MAP transmitted in the downlink sub-frame and determine the DL:UL symbol ratio. The downlink burst is repeated in each frame, every 5 ms, to simulate the normal transmission from a WiMAX base station. The UL-MAP received by the device is used to configure the uplink burst with all data symbols and sub-channels active. Since this is a one-way communication configuration, control channel transmission is neither requested nor transmitted.

For TDD systems, both uplink and downlink transmissions are at the same frequency. The output power of the VSG is kept at least 80 dB lower than the test device to avoid interfering with the SAR measurements. In addition, a horn antenna is used for the VSG and it is kept more than 1 meter away from the test device to further minimize unnecessary pickup by the SAR probe.

Page 36 of 57

15. VECTOR SIGNAL GENERATOR TEST SET DETAILS

Modulation and channel bandwidth selection is loaded to Vector Signal Generator. For example, when evaluating 16QAM with 10 MHz channel Bandwidth, radio profile name "DQ4_12_UQ16_12_10M " is active on the Vector Signal Generator.

	Frame definition for 10 MHz RCT					
Parameter /Value	Test ve					
	DQ4_12_UQ16_12_10M DQ64_UQ4_12_21S_10M		Remark			
Band Width	10MHz	10MHz				
FFT size	1024	1024				
UL Traffic Symbols	12	21				
Down link						
Zone profiles	Zone 1 – PUSC	Zone 1 – PUSC	single zone			
Burst profile / MCS MCS : QPSK R1/2		MCS : QAM64 R5/6	Single DIUC			
Up link						
Zone profiles	Zone 1 – PUSC	Zone 1 – PUSC	single zone			
Burst profile / MCS	MCS : QAM16 R3/4	MCS : QPSK R1/2	Single DIUC			

	Frame definition for 5MHz RCT					
Parameter /Value	Test ve					
	DQ4_12_UQ16_34_5M	DQ64_56_UQ4_12_5M	Remarks			
Band Width	5MHz	5MHz				
FFT size	512	512				
UL traffic symbols	18	18				
Down link						
Zone profiles	Zone 1 – PUSC	Zone 1 – PUSC	single zone			
Burst profile / MCS	MCS: QPSK R1/2	MCS : QAM64 R5/6	Single DIUC			
Up link						
Zone profiles	Zone 1 – PUSC	Zone 1 – PUSC	single zone			
Burst profile / MCS	MCS: QAM16 R3/4	MCS : QPSK R1/2	Single DIUC			

Page 37 of 57

16. SUMMARY OF SAR TEST RESULTS

16.1. Laptop - Lap-held w/ SA Antenna

Separation distance: <u>18.4 cm</u> from Main antenna-to-phantom

Bandwidth	Mode	Test vector file name	f (MHz)	1g_SAR (mW/g)	Scale Up Factor to DL:UL Symbol ratio of 29:18	Corrected 1g_SAR (mW/g)
5MHz	QPSK	DQ64_56_UQ4_12_5M	2593.0	0.00613	0.88	0.0054
	16QAM	DQ4_12_UQ16_34_5M	2593.0	0.00701	0.84	0.0059
	64QAM	DQ4_12_UQ64_56_5M	2593.0	0.00721	0.79	0.0057
10MHz	QPSK	DQ64_UQ4_12_21S_10M	2593.0	0.00620	0.72	0.0045
	16QAM	DQ4_12_UQ16_12_10M	2593.0	0.00407	1.26	0.0051
	64QAM	DQ4_12_UQ64_56_10M	2593.0	0.00573	1.38	0.0079

16.2. Tablet – Bottom face w/ SA Antenna

Separation distance: <u>1.935 cm</u> from Main antenna-to-phantom **SKU Antenna**

Bandwidth	Mode	Test vector file name	f (MHz)	1g_SAR (mW/g)	Scale Up Factor to DL:UL Symbol ratio of 29:18	Corrected 1g_SAR (mW/g)
	QPSK	DQ64_56_UQ4_12_5M	2593.0	0.171	0.88	0.1505
5MHz	16QAM	DQ4_12_UQ16_34_5M	2593.0	0.199	0.84	0.1672
	64QAM	DQ4_12_UQ64_56_5M	2593.0	0.192	0.79	0.1517
	QPSK	DQ64_UQ4_12_21S_10M	2593.0	0.153	0.72	0.1102
10MHz	16QAM	DQ4_12_UQ16_12_10M	2593.0	0.0953	1.26	0.1201
	64QAM	DQ4_12_UQ64_56_10M	2593.0	0.154	1.28	0.1971

Additional Test w/ Acon Antenna

Bandwidth	Mode	Test vector file name	f (MHz)	1g_SAR (mW/g)	Scale Up Factor to DL:UL Symbol ratio of 29:18	Corrected 1g_SAR (mW/g)
5MHz	16QAM	DQ4_12_UQ16_34_5M	2593.0	0.080	0.84	0.0672
10MHz	64QAM	DQ4_12_UQ64_56_10M	2593.0	0.085	1.20	0.1020

16.3. Edge - Primary Landscape (No SAR)

Separation distance: 18.4 cm from Main antenna-to-phantom

This is not the most conservative antenna-to-user distance at edge mode. According to KDB 447498 4) b) ii) (2), SAR is required only for the edge with the most conservative exposure conditions.

16.4. Edge - Secondary Landscape w/ SA Antenna (Worst-case)

Separation distance: 7 mm from Main antenna-to-phantom

Bandwidth	Mode	Test vector file name	f (MHz)	1g_SAR (mW/g)	Scale Up Factor to DL:UL Symbol ratio of 29:18	Corrected 1g_SAR (mW/g)
			2498.5	0.737	0.88	0.6486
	QPSK	DQ64_56_UQ4_12_5M	2593.0	0.910	0.88	0.8008
			2687.5	0.956	0.90	0.8604
			2498.5	0.752	0.86	0.6467
5MHz	16QAM	DQ4_12_UQ16_34_5M	2593.0	0.933	0.84	0.7837
			2687.5	0.945	0.86	0.8127
	64QAM	DQ4_12_UQ64_56_5M	2498.5			
			2593.0	0.239	0.79	0.1888
			2687.5			
		PSK DQ64_UQ4_12_21S_10M	2501.0	0.749	0.73	0.5468
	QPSK		2593.0	0.834	0.72	0.6005
			2685.0	0.983	0.72	0.7078
			2501.0			
10MHz	16QAM	DQ4_12_UQ16_12_10M	2593.0	0.522	1.26	0.6577
			2685.0			
			2501.0			
	64QAM	DQ4_12_UQ64_56_10M	2593.0	0.247	1.38	0.3409
			2685.0			

Page 39 of 57

REPORT NO: 10U13466-2A FCC ID: E2K625ANXH

Additional	Additional Test w/ Acon Antenna									
Bandwidth	Mode	Test vector file name	f (MHz)	1g_SAR (mW/g)	Scale Up Factor to DL:UL Symbol ratio of 29:18	Corrected 1g_SAR (mW/g)				
			2498.5	1.190	0.88	1.0472				
	QPSK	DQ64_56_UQ4_12_5M	2593.0	1.140	0.88	1.0032				
			2687.5	1.200	0.90	1.0800				
			2498.5	1.240	0.86	1.0664				
5MHz	16QAM	DQ4_12_UQ16_34_5M	2593.0	1.200	0.84	1.0080				
			2687.5	1.170	0.86	1.0062				
	64QAM	M DQ4_12_UQ64_56_5M	2498.5							
			2593.0	0.356	0.79	0.2812				
			2687.5							
			2501.0	1.150	0.73	0.8395				
	QPSK	DQ64_UQ4_12_21S_10M	2593.0	1.130	0.72	0.8136				
			2685.0	1.270	0.72	0.9144				
			2501.0							
10MHz	16QAM	DQ4_12_UQ16_12_10M	2593.0	0.707	1.26	0.8908				
			2685.0							
			2501.0							
	64QAM	DQ4_12_UQ64_56_10M	2593.0	0.377	1.38	0.5203				
			2685.0							

Page 40 of 57

16.5. Edge - Primary Portrait w/ SA Antenna

Separation distance: 2.75 cm from Main antenna-to-phantom

Bandwidth	Mode	Test vector file name	f (MHz)	1g_SAR (mW/g)	Scale Up Factor to DL:UL Symbol ratio of 29:18	Corrected 1g_SAR (mW/g)
	QPSK	DQ64_56_UQ4_12_5M	2593.0	0.713	0.88	0.6274
5MHz	16QAM	DQ4_12_UQ16_34_5M	2593.0	0.734	0.84	0.6166
	64QAM	DQ4_12_UQ64_56_5M	2593.0	0.711	0.59	0.4195
	QPSK	DQ64_UQ4_12_21S_10M	2593.0	0.650	0.72	0.4680
10MHz	16QAM	DQ4_12_UQ16_12_10M	2593.0	0.407	1.26	0.5128
	64QAM	DQ4_12_UQ64_56_10M	2593.0	0.664	1.38	0.9163

16.6. Edge - Secondary Portrait (No SAR)

Separation distance: 17.25 cm from Main antenna-to-phantom

This is not the most conservative antenna-to-user distance at edge mode. According to KDB 447498 4) b) ii) (2), SAR is required only for the edge with the most conservative exposure conditions.

Page 41 of 57

17. WORST-CASE SAR PLOTS

SAR Test Plot for 5 M QPSK w/ Acon Antenna (Secondary landscape)

Date/Time: 10/25/2010 5:38:17 PM

Test Laboratory: Compliance Certification Services

Secondary Landscape_5MHz

DUT: Intel; Type: E2K625ANXH; Serial: NA

Communication System: WiMAX 2.6GHz; Frequency: 2687.5 MHz;Duty Cycle: 1:2.7 Medium parameters used (interpolated): f = 2687.5 MHz; σ = 2.33 mho/m; ϵ_r = 51.4; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Probe: EX3DV3 - SN3531; ConvF(7.4, 7.4, 7.4); Calibrated: 2/23/2010

- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

DQ64_56_UQ4_12_5M_H-ch/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.47 mW/g

DQ64_56_UQ4_12_5M_H-ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 5.17 V/m; Power Drift = 0.151 dB Peak SAR (extrapolated) = 3.02 W/kg SAR(1 g) = 1.2 mW/g; SAR(10 g) = 0.452 mW/g Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.71 mW/g

Page 42 of 57 COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Z-axis Plot

Date/Time: 10/25/2010 5:58:21 PM

Test Laboratory: Compliance Certification Services

Secondary Landscape_5MHz

DUT: Intel; Type: E2K625ANXH; Serial: NA

Communication System: WiMAX 2.6GHz; Frequency: 2687.5 MHz; Duty Cycle: 1:2.7

DQ64_56_UQ4_12_5M_H-ch/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.72 mW/g

Page 43 of 57

18. PAR AND SAR ERROR CONSIDERATION

In order to estimate the measurement error due to PAR issues, the configuration with the highest SAR in each channel bandwidth and frequency band is measured at various power levels, from approximately 12.5 mW at approx. 3 dB steps, until the maximum power is reached.

<u>Result</u>

5M_QPSK

Average Power (mW):	12.5	25.0	50.0	100.0	200.0
Single Point SAR (W/kg):	0.104	0.212	0.453	0.898	1.810
Linear line (SAR):	0.104	0.208	0.416	0.832	1.664
Estimation (%):	0.000	1.923	8.894	7.933	8.774

Procedure:

- 1. Position the EUT at flat phantom with 0 cm separation distance
- 2. Perform single point SAR evaluation with EUT power to be tuned at 12.5 mW
- 3. Record the highest single point SAR value 0.104 W/kg @ 12.5 mW.
- 4. Without changing probe position but tune the EUT power to 25 mW (3dB step).
- 5. Record the highest single point SAR value 0.212 W/kg @ 25 mW second single peak SAR
- 6. Repeat the step 4 and 5 to measure single peak SAR for third, fourth and fifth single peak SAR

Procedure in establishing linear line (SAR):

- 1. First reference Point = $\underline{0}$ when power = 0
- 2. Second reference Point: 0.104 W/kg @ 12.5 mW
- 3. Third reference point: $(0.104/12.5) \times 25 = 0.208$ W/kg
- 4. Fourth reference point: (0.104/12.5) * 50 = 0.416 W/kg
- 5. Fifth h reference point: (0.104/12.5) * 100 = 0.832 W/kg
- 6. Sixth reference point: (0.104/12.5) * 200 = 1.664 W/kg

Draw a reference line from first reference point to sixth reference point.

Page 44 of 57

5M_16QAM

Average Power (mW):	12.5	25.0	50.0	100.0	200.0
Single Point SAR (W/kg):	0.108	0.214	0.459	0.911	1.840
Linear line (SAR):	0.108	0.216	0.432	0.864	1.728
Estimation (%):	0.000	-0.926	6.250	5.440	6.481

Procedure:

- 1. Position the EUT at flat phantom with 0 cm separation distance
- 2. Perform single point SAR evaluation with EUT power to be tuned at 12.5 mW
- 3. Record the highest single point SAR value 0.108 W/kg @ 12.5 mW.
- 4. Without changing probe position but tune the EUT power to 25 mW (3dB step).
- 5. Record the highest single point SAR value 0.214 W/kg @ 25 mW second single peak SAR
- 6. Repeat the step 4 and 5 to measure single peak SAR for third, fourth and fifth single peak SAR

Procedure in establishing linear line (SAR):

- 1. First reference point = $\underline{0}$ when power = 0
- 2. Second reference point 0.108 W/kg @ 12.5 mW
- 3. Third reference point (0.108/12.5) * 25 = <u>0.216</u> W/kg
- 4. Fourth reference point: (0.108/12.5) * 50 = 0.432 W/kg
- 5. Fifth reference point (0.108/12.5) * 100 = <u>0.864</u> W/kg
- 6. Sixth reference point (0.108/12.5) * 200 = <u>1.728</u> W/kg

Draw a reference line from first reference point to sixth reference point.

Page 45 of 57

5M_64QAM

Average Power (mW):	12.5	25.0	50.0	100.0	200.0
Single Point SAR (W/kg):	0.105	0.222	0.450	0.883	1.810
Linear line (SAR):	0.105	0.210	0.420	0.840	1.680
Estimation (%):	0.000	5.714	7.143	5.119	7.738

Procedure:

- 1. Position the EUT at flat phantom with 0 cm separation distance
- 2. Perform single point SAR evaluation with EUT power to be tuned at 12.5 mW
- 3. Record the highest single point SAR value 0.105 W/kg @ 12.5 mW.
- 4. Without changing probe position but tune the EUT power to 25 mW (3dB step).
- 5. Record the highest single point SAR value 0.222 W/kg @ 25 mW second single peak SAR
- 6. Repeat the step 4 and 5 to measure single peak SAR for third, fourth and fifth single peak SAR

Procedure in establishing linear line (SAR):

- 1. First reference point = $\underline{0}$ when power = 0
- 2. Second reference point 0.105 W/kg @ 12.5 mW
- 3. Third reference point (0.105/12.5) * 25 = 0.21 W/kg
- 4. Fourth reference point: (0.105/12.5) * 50 = <u>0.42</u> W/kg
- 5. Fifth reference point (0.105/12.5) * 100 = <u>0.84</u> W/kg
- 6. Six reference point (0.105/12.5) * 200 = <u>1.68</u> W/kg

Draw a reference line from first reference point to sixth reference point.

Page 46 of 57

10M_QPSK

Average Power (mW):	12.5	25.0	50.0	100.0	200.0
Single Point SAR (W/kg):	0.136	0.273	0.550	1.090	2.270
Linear line (SAR):	0.136	0.272	0.544	1.088	2.176
Estimation (%):	0.000	0.368	1.103	0.184	4.320

Procedure:

- 1. Position the EUT at flat phantom with 0 cm separation distance
- 2. Perform single point SAR evaluation with EUT power to be tuned at 12.5 mW
- 3. Record the highest single point SAR value 0.136 W/kg @ 12.5 mW.
- 4. Without changing probe position but tune the EUT power to 25 mW (3dB step).
- 5. Record the highest single point SAR value 0.273 W/kg @ 25 mW second single peak SAR
- 6. Repeat the step 4 and 5 to measure single peak SAR for third, fourth and fifth single peak SAR

Procedure in establishing linear line (SAR):

- 1. First reference point = $\underline{0}$ when power = 0
- 2. Second reference point 0.136 W/kg @ 12.5 mW
- 3. Third reference point (0.136/12.5) * 25 = 0.272 W/kg
- 4. Fourth reference point: (0.136/12.5) * 50 = 0.544 W/kg
- 5. Fifth reference point (0.136/12.5) * 100 = <u>1.088</u> W/kg
- 6. Six reference point (0.136/12.5) * 200 = <u>2.176</u> W/kg

Draw a reference line from first reference point to sixth reference point.

Page 47 of 57

10M_16QAM

Average Power (mW):	12.5	25.0	50.0	100.0	200.0
Single Point SAR (W/kg):	0.077	0.163	0.327	0.665	1.320
Linear line (SAR):	0.077	0.154	0.308	0.616	1.232
Estimation (%):	0.000	5.844	6.169	7.955	7.143

Procedure:

- 1. Position the EUT at flat phantom with 0 cm separation distance
- 2. Perform single point SAR evaluation with EUT power to be tuned at 12.5 mW
- 3. Record the highest single point SAR value 0.077 W/kg @ 12.5 mW.
- 4. Without changing probe position but tune the EUT power to 25 mW (3dB step).
- 5. Record the highest single point SAR value 0.163 W/kg @ 25 mW second single peak SAR
- 6. Repeat the step 4 and 5 to measure single peak SAR for third, fourth and fifth single peak SAR

Procedure in establishing linear line (SAR):

- 7. First reference point = $\underline{0}$ when power = 0
- 8. Second reference point 0.077 W/kg @ 12.5 mW
- 9. Third reference point (0.077/12.5) * 25 = 0.154 W/kg
- 10. Fourth reference point: (0.077/12.5) * 50 = 0.308 W/kg
- 11. Fifth reference point (0.077/12.5) * 100 = <u>0.616</u> W/kg
- 12. Six reference point (0.077/12.5) * 200 = <u>1.232</u> W/kg

Draw a reference line from first reference point to sixth reference point.

Page 48 of 57

10M_64QAM

Average Power (mW):	12.5	25.0	50.0	100.0	200.0
Single Point SAR (W/kg):	0.134	0.271	0.580	1.150	2.330
Linear line (SAR):	0.134	0.268	0.536	1.072	2.144
Estimation (%):	0.000	1.119	8.209	7.276	8.675

Procedure:

- 1. Position the EUT at flat phantom with 0 cm separation distance
- 2. Perform single point SAR evaluation with EUT power to be tuned at 12.5 mW
- 3. Record the highest single point SAR value 0.134 W/kg @ 12.5 mW.
- 4. Without changing probe position but tune the EUT power to 25 mW (3dB step).
- 5. Record the highest single point SAR value 0.271 W/kg @ 25 mW second single peak SAR
- 6. Repeat the step 4 and 5 to measure single peak SAR for third, fourth and fifth single peak SAR

Procedure in establishing linear line (SAR):

- 1. First reference point = $\underline{0}$ when power = 0
- 2. Second reference point 0.134 W/kg @ 12.5 mW
- 3. Third reference point (0.134/12.5) * 25 = 0.268 W/kg
- 4. Fourth reference point: (0.134/12.5) * 50 = 0.536 W/kg
- 5. Fifth reference point (0.134/12.5) * 100 = <u>1.072</u> W/kg
- 6. Six reference point (0.134/12.5) * 200 = <u>2.144</u> W/kg

Draw a reference line from first reference point to sixth reference point.

Page 49 of 57

19. ATTACHMENTS

<u>No.</u>	Contents	<u>No. of page (s)</u>
1	SAR Test Plots	46
2	Certificate of E-Field Probe - EX3DV3 SN3531	11
3	Certificate of System Validation Dipole - D2600V2 - SN:1006	6

Page 50 of 57

20. ANTENNA LOCATIONS AND SEPARATION DISTANCES

Tablet – Bottom Face

Tablet – Edges (Landscape & Portrait)

Page 52 of 57