Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton

Certificate No: CLA13-1011_Jul20

CALIBRATION CERTIFICATE

Object

CLA13 - SN: 1011

Calibration procedure(s)

QA CAL-15.v9

Calibration Procedure for SAR Validation Sources below 700 MHz

Calibration date:

July 08, 2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: CC2552 (20x)	31-Mar-20 (No. 217-03106)	Apr-21
Type-N mismatch combination	SN: 310982 / 06327	31-Mar-20 (No. 217-03104)	Apr-21
Reference Probe EX3DV4	SN: 3877	31-Dec-19 (No. EX3-3877_Dec19)	Dec-20
DAE4	SN: 654	26-Jun-20 (No. DAE4-654_Jun20)	Jun-21
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	of le
Approved by:	Katja Pokovic	Technical Manager	alle

Issued: July 9, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Page 2 of 6

Certificate No: CLA13-1011_Jul20

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4	
Extrapolation	Advanced Extrapolation		
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm	
EUT Positioning	Touch Position		
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)	
Frequency	13 MHz ± 1 MHz		

Head TSL parametersThe following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	55.5	0.75 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	54.7 ± 6 %	0.72 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	1 W input power	0.539 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	0.555 W/kg ± 18.4 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	1 W input power	0.333 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	0.343 W/kg ± 18.0 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.5 Ω - 0.7 jΩ		
Return Loss	- 35.8 dB		

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 08.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: CLA13; Type: CLA13; Serial: CLA13 - SN: 1011

Communication System: UID 0 - CW; Frequency: 13 MHz

Medium parameters used: f = 13 MHz; $\sigma = 0.72$ S/m; $\varepsilon_r = 54.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: EX3DV4 - SN3877; ConvF(15.25, 15.25, 15.25) @ 13 MHz; Calibrated: 31.12.2019

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn654; Calibrated: 26.06.2020

• Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

CLA Calibration for HSL-LF Tissue/CLA-13, touch configuration, Pin=1W/Zoom Scan,

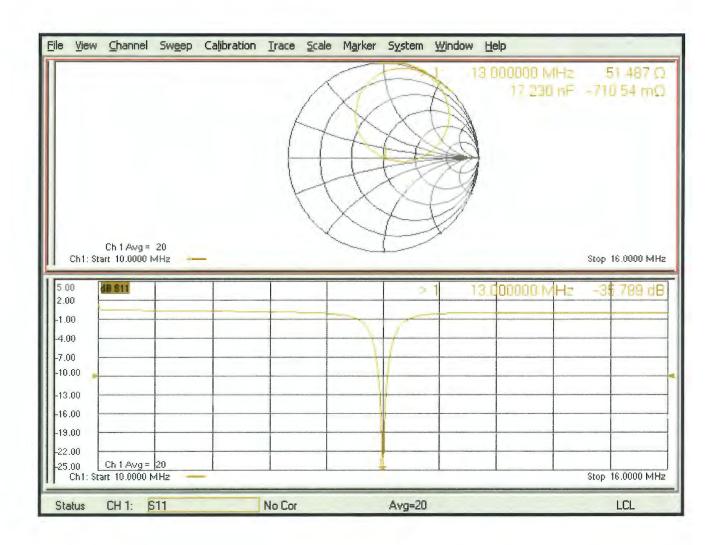
dist=1.4mm (8x10x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 28.94 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 1.14 W/kg

SAR(1 g) = 0.539 W/kg; SAR(10 g) = 0.333 W/kg

Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 30 mm)


Ratio of SAR at M2 to SAR at M1 = 77.1%

Maximum value of SAR (measured) = 0.807 W/kg

0 dB = 0.825 W/kg = -0.84 dBW/kg

Impedance Measurement Plot for Head TSL

CLA13, serial no. 1011 Extended Dipole Calibrations

Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

<Justification of the extended calibration>


			CLA13 – serial no. 10	11		
		13MHZ				
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
07.08.2020	-35.789		51.487		-0.71054	
(Cal. Report)	-33.703		31.407		-0.71004	
07.07.2021	-39.709	10.95	49.575	1.912	-0.94841	0.23787
(extended)	-39.709	10.95	49.575	1.912	-U.9404 I	0.23/6/

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

<Dipole Verification Data> - CLA13 , serial no. 1011 (Data of Measurement : 07.07.2021) 13 MHz - Head

IFBW 70 kHz

Stop 16 MHz Cor

1 Start 10 MHz

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton Certificate No: DAE4-1311_Aug21

Accreditation No.: SCS 0108

CALIBRATION CERTIFICATE

Object DAE4 - SD 000 D04 BM - SN: 1311

Calibration procedure(s) QA CAL-06.v30

Calibration procedure for the data acquisition electronics (DAE)

Calibration date: August 20, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards Keithley Multimeter Type 2001	ID # SN: 0810278	Cal Date (Certificate No.) 07-Sep-20 (No:28647)	Scheduled Calibration Sep-21
Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	Check Date (in house) 07-Jan-21 (in house check) 07-Jan-21 (in house check)	Scheduled Check In house check: Jan-22 In house check: Jan-22

Name Function Calibrated by: Dominique Steffen

Laboratory Technician

Approved by: Sven Kühn Deputy Manager

Issued: August 20, 2021

Signature

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-1311_Aug21

Page 1 of 5

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1311_Aug21 Page 2 of 5

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range:

1LSB =

 $6.1\mu V$,

full range = -100...+300 mV

Low Range:

1LSB =

61nV ,

full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Х	Υ	7
405.510 ± 0.02% (k=2)	405.047 ± 0.02% (k=2)	404.821 ± 0.02% (k=2)
0.00000	0.00100	1 = 0.0270 (K-Z)
	405.510 ± 0.02% (k=2)	405.510 ± 0.02% (k=2) 405.047 ± 0.02% (k=2)

Connector Angle

Connector Angle to be used in DASY system	
The state of the dised in DASY system	222.5 ° ± 1 °

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range		Reading (μV)	Difference (μV)	F (04)
Channel X	+ Input	200031.77		Error (%)
Channel X	+ Input	20006.58	-5.20	-0.00
Channel X	<u> </u>		0.39	0.00
	- Input	-20002.34	3.46	-0.02
Channel Y	+ Input	200032.86	-4.26	-0.00
Channel Y	+ Input	20001.39	-4.67	
Channel Y	- Input	-20005.28	0.77	-0.02
Channel Z	+ Input	200032.31		-0.00
Channel Z			-5.12	-0.00
	+ Input	20004.31	-1.66	-0.01
Channel Z	- Input	-20004.31	1.82	-0.01

Low Range	Reading	g (μV) Difference (μV)	Error (9/)
Channel X + Inj		(μ.)	Error (%)
Channel X + Inj		0.07	-0.02
01	201.7	0.40	0.20
01	107.	72 0.81	-0.41
Channel Y + Inp	ut 2001.	85 0.48	200 10 10
Channel Y + Inp	ut 200.7		0.02
Channel Y - Inp		-0.57	-0.28
01	. 200.2	1.50	0.79
	ut 2001.6	0.41	0.02
Channel Z + Inp	ut 201.0	3 -0.17	
Channel Z - Inpu	t 100.0		-0.09
	-199.0	-0.31	0.15

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	13.39	11.44
	- 200	-10.26	
Channel Y	200	-13.63	-12.53 -13.74
	- 200	12.59	12.05
Channel Z	200	-18.60	-18.48
	- 200	17.68	17.19

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)		Channel Z (μV)
Channel X	200	_		Onamiei Z (μν)
Channel Y	200	-	3.58	-2.54
Channel Z		8.76		5.69
Charmer Z	200	9.62	6.67	_

Certificate No: DAE4-1311_Aug21

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15446	16713
Channel Y	16320	15746
Channel Z	16580	17710

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

0.50			
0.50	-0.98	1.81	(μ V)
-0.01	-1.13	1.26	0.57
0.08	-1 25		0.57
	-0.01	-0.01 -1.13	-0.01 -1.13 1.26

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

0 1	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	
	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss

IMPORTANT NOTICE

USAGE OF THE DAE4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is fixed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the E-stop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton

Certificate No: EX3-3925_Apr21/2

CALIBRATION CERTIFICATE (Replacement of No: EX3-3925_Apr21)

Object

EX3DV4 - SN:3925

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5,

QA CAL-25.v7

Calibration procedure for dosimetric E-field probes

Calibration date:

April 23, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	
Power meter NRP	SN: 104778	,	Scheduled Calibration
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91		09-Apr-21 (No. 217-03291)	Apr-22
	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: CC2552 (20x)	09-Apr-21 (No. 217-03343)	Apr-22
DAE4	SN: 660	23-Dec-20 (No. DAE4-660_Dec20)	Dec-21
Reference Probe ES3DV2	SN: 3013	30-Dec-20 (No. ES3-3013_Dec20)	Dec-21
		(=====================================	Bec-21
Secondary Standards	ID	Check Date (in house)	Sobodulad Object
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	Scheduled Check
Power sensor E4412A	SN: MY41498087		In house check: Jun-22
Power sensor E4412A		06-Apr-16 (in house check Jun-20)	In house check: Jun-22
	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21

Calibrated by:

Name
Function
Signature

Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: May 24, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage

C Servizio svizzero di taratura S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z

tissue simulating liquid

ConvF

sensitivity in free space sensitivity in TSL / NORMx,y,z

DCP

diode compression point

CF

crest factor (1/duty_cycle) of the RF signal

A, B, C, D

modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f \leq 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from \pm 50 MHz to \pm 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

EX3DV4 - SN:3925

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3925

Basic Calibration Parameters

2.4	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.63	0.51	0.47	± 10.1 %
DCP (mV) ^B	107.3	106.2	100.2	± 10.1 /6

Calibration Results for Modulation Respon

UID	Communication System Name		A	В	С	D	MD		
			dB	dB√μV	"	77	VR	Max	Max
			u.D	αυνμν		dB	mV	dev.	UncE
0	CW	X	0.00	0.00	1.00	0.00	194.4	1220	(k=2)
		Y	0.00	0.00	1.00	0.00	194.4	± 3.3 %	± 4.7 %
		Z	0.00	0.00	1.00	1	180.1	-	
10352-	Pulse Waveform (200Hz, 10%)	X	1.58	60.83	6.59	10.00	60.0	± 3.4 %	± 9.6 %
AAA		Y	20.00	95.65	23.19	10.00	60.0	1 5.4 %	± 9.6 %
100=0		Z	20.00	94.27	23.08	1	60.0	†	
10353-	Pulse Waveform (200Hz, 20%)	X	0.78	60.00	4.98	6.99	80.0	± 1.9 %	± 9.6 %
AAA		Y	20.00	98.47	23.64	0.00	80.0	1 1.9 %	I 9.0 %
10051		Z	20.00	97.01	23.27	1	80.0	1	
10354-	Pulse Waveform (200Hz, 40%)	X	0.00	121.05	0.94	3.98	95.0	± 2.3 %	± 9.6 %
AAA	*	Υ	20.00	105.76	25.90	1	95.0	22.0 /0	1 9.0 /6
10055		Z	20.00	102.90	24.64		95.0		
10355- AAA	Pulse Waveform (200Hz, 60%)	X	0.49	60.00	2.35	2.22	120.0	± 1.2 %	± 9.6 %
AAA		Υ	20.00	115.38	29.07		120.0	_ 1.2 /0	2 0.0 70
10387-	ODOM M. C.	Z	20.00	111.37	27.18		120.0		
AAA	QPSK Waveform, 1 MHz	X	0.56	62.38	11.56	1.00	150.0	± 3.3 %	± 9.6 %
~~~		Υ	1.79	66.27	15.34		150.0		2 0.0 70
10388-	ODSK Wareful (O.M.)	Z	1.88	66.06	15.41		150.0		
AAA	QPSK Waveform, 10 MHz	X	1.30	64.59	13.29	0.00	150.0	± 1.1 %	± 9.6 %
/ V V \		Υ	2.37	68.47	16.02		150.0		- 0.0 70
10396-	64-QAM Waveform, 100 kHz	Z	2.48	68.84	16.09		150.0		
AAA	04-QAW Waveform, 100 KHz	X	1.49	62.43	14.84	3.01	150.0	± 1.2 %	± 9.6 %
, , , , ,		Y	2.90	70.23	18.73		150.0		
10399-	64-QAM Waveform, 40 MHz	Z	3.12	70.70	18.88		150.0		
AAA	04-QAW Wavelofffi, 40 MHz	X	2.80	65.69	14.74	0.00	150.0	± 1.3 %	± 9.6 %
8.8.5		Y	3.64	67.48	15.98		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	Z	3.57	66.99	15.72		150.0		
AAA	11 - 11 00D1 , 04-QAW, 40WINZ	X	3.81	65.47	14.99	0.00	150.0	± 2.5 %	± 9.6 %
		Z	4.83	65.26	15.34		150.0		
oto: For	details on LIID parameters ass Ass		4.99	65.48	15.43		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Numerical linearization parameter: uncertainty not required.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the

## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3925

### Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
X	10.6	76.94	33.33	1.20	0.00	4.90	0.00	0.00	1.00
Υ	50.8	375.25	34.90	15.61	0.00	5.10	1.09		1.00
Z	61.6	456.39	35.08	14.99	0.48	5.07	1.35	0.23 0.28	1.01

### **Other Probe Parameters**

Sensor Arrangement	
	Triangular
Connector Angle (°)	-53.1
Mechanical Surface Detection Mode	
	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	HART SCHOOLSEACH ONLY HART SON
	337 mm
Probe Body Diameter	10 mm
Tip Length	000730,75000000000
	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	
The second secon	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	
	1 mm
Recommended Measurement Distance from Surface	1.4 mm

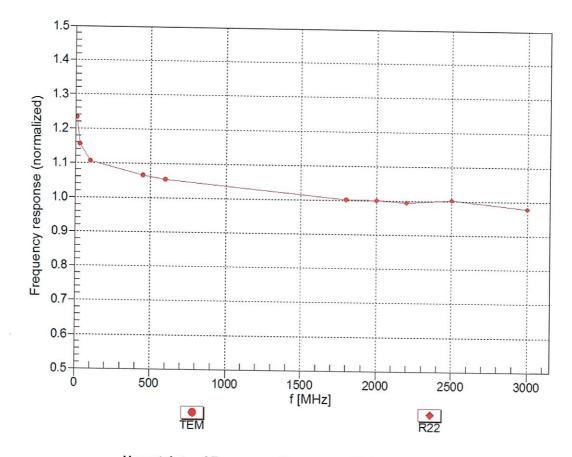
Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

EX3DV4-SN:3925

## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3925

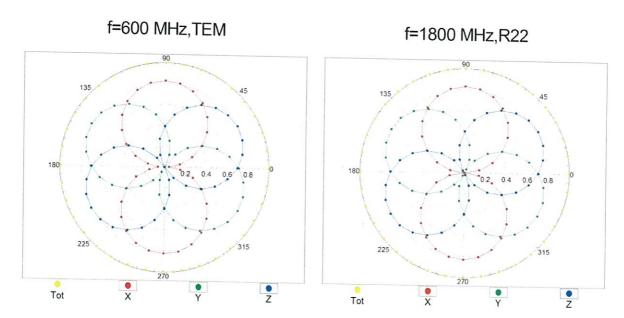
### Calibration Parameter Determined in Head Tissue Simulating Media

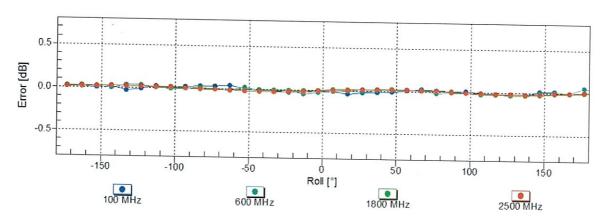
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha G	Depth G	Unc
6	55.0	0.75					(mm)	(k=2)
			19.94	19.94	19.94	0.00	1.00	± 13.3 %
13	55.0	0.75	17.85	17.85	17.85	0.00	1.00	± 13.3 %
750	41.9	0.89	10.35	10.35	10.35	0.55	0.80	± 12.0 %
835	41.5	0.90	10.04	10.04	10.04	0.47	0.80	± 12.0 %
900	41.5	0.97	9.83	9.83	9.83	0.45	0.80	± 12.0 %
1750	40.1	1.37	8.77	8.77	8.77	0.34	0.85	± 12.0 %
1900	40.0	1.40	8.45	8.45	8.45	0.32	0.85	± 12.0 %
2000	40.0	1.40	8.35	8.35	8.35	0.37	0.85	± 12.0 %
2300	39.5	1.67	8.24	8.24	8.24	0.34	0.90	± 12.0 %
2450	39.2	1.80	7.93	7.93	7.93	0.38	0.90	± 12.0 %
2600	39.0	1.96	7.73	7.73	7.73	0.41	0.90	± 12.0 %
3300	38.2	2.71	7.15	7.15	7.15	0.35	1.30	± 14.0 %
3500	37.9	2.91	7.19	7.19	7.19	0.35	1.30	± 14.0 %
3700	37.7	3.12	7.01	7.01	7.01	0.35	1.30	± 14.0 %
3900	37.5	3.32	6.90	6.90	6.90	0.40	1.60	± 14.0 %
4100	37.2	3.53	6.65	6.65	6.65	0.40	1.60	± 14.0 %
4400	36.9	3.84	6.45	6.45	6.45	0.40	1.70	± 14.0 %
4600	36.7	4.04	6.40	6.40	6.40	0.40	1.70	± 14.0 %
4800	36.4	4.25	6.34	6.34	6.34	0.40	1.70	± 14.0 %
4950	36.3	4.40	6.05	6.05	6.05	0.40	1.70	± 14.0 %
5250	35.9	4.71	5.70	5.70	5.70	0.40	1.80	± 14.0 %
5600	35.5	5.07	4.99	4.99	4.99	0.40	1.80	± 14.0 %
5750	35.4	5.22	5.16	5.16	5.16	0.40	1.80	± 14.0 %


^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

For the conversion was a Collection of the validity of validity of validity of the validity of val

F At frequencies up to 6 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


# Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field:  $\pm$  6.3% (k=2)

## Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$





Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)