Logitech Inc.

F-0179A

July 20, 2003

Report No. LABT0059

Report Prepared By:

NORTHWEST

1-888-EMI-CERT

© 2003 Northwest EMC, Inc

Certificate of Test

Issue Date: July 20, 2003 Logitech Inc. Model : F-0179A

Emissions

Description	Pass	Fail
FCC 15.247, Spurious Radiated Emissions	\boxtimes	
FCC 15.247, Spurious Conducted Emissions	\boxtimes	
FCC 15.247, Band Edge Compliance	\boxtimes	
FCC 15.247, Power Spectral Density	\boxtimes	
FCC 15.247, Occupied Bandwidth	\boxtimes	
FCC 15.247, Output Power	\square	

The equipment was tested in the configuration and mode(s) of operation provided by the client. The specific tests and test levels were specified by the client. Any additional tests, or product configurations that should be tested are the responsibility of the client. Product compliance is the responsibility of the client.

Modifications made to the product

• See the modifications page of the report

Deviations to the test standard

• No deviations were made to the test standard

Test Facility

• The measurement facility used to collect the data is located at:

Northwest EMC, Inc.; 22975 NW Evergreen Parkway, Suite 400; Hillsboro, OR 97124 Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with the FCC (Federal Communications Commission), and accepted by the FCC in a letter maintained in our files.

Approved By:

Don Facteau, IS Manager

This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision Number	Description	Date	Page Number
00	None		

FCC: The Open Area Test Sites, and conducted measurement facilities, have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files.

TCB: Northwest EMC has been accredited by ANSI to ISO/IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

A2LA: Accreditation has been granted to Northwest EMC, Inc. to perform the Electromagnetic Compatibility (EMC) tests described in the Scope of Accreditation. Assessment performed to ISO/IEC 17025. Certificate Number: 1936-01, Certificate Number: 1936-02, Certificate Number 1936-03

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body. (A2LA)

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0302C

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).	(N) NEMKO
Technology International: Assessed in accordance with ISO Guide 25 defining the general international requirements for the competence of calibration and testing laboratories and with ITI assessment criteria LACO196. Based upon that assessment Interference Technology International, Ltd., has granted approval for specifications implementing the EU Directive on EMC (89/336/EEC and amendments). The scope of the approval was provided on a Schedule of Assessment supplied with the certificate and is available upon request.	2
Industry Canada: Accredited by Industry Canada for performance of radiated measurements. Our open area test sites comply with RSP 100, Issue 7, section 3.3.	*
VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. <i>(Registration Nos Evergreen: C-1071 and R-1025, Trails End: C-694 and R-677, Sultan: C-905, R-871 and R-1172, North Sioux City C-1246, R-1185 and R-1217)</i>	VCI
BSMI: Northwest EMC has been designated by NIST and validated by C- Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.	BSMI
CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S EU Mutual Recognition Agreement	CE
GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification	F

Northwest

Scope of Accreditations

Revision 06/24/03

	FCC	NIST	TUV PS	TUV Rheinland	Nemko	Technology International	Industry Canada	BSMI	vcci	GOST	NATA
IEC 1000-4-2			\checkmark	\checkmark	\checkmark	\checkmark					
IEC 1000-4-3			\checkmark	\checkmark	\checkmark	\checkmark					
IEC 1000-4-4			\checkmark	\checkmark	\checkmark	\checkmark					
IEC 1000-4-5			\checkmark	\checkmark	\checkmark	\checkmark					
IEC 1000-4-6			\checkmark	\checkmark	\checkmark	\checkmark					
IEC 1000-4-8			\checkmark	\checkmark	\checkmark	\checkmark					
IEC 1000-4-11			\checkmark	\checkmark	\checkmark	\checkmark					
IEC 1000-3-2			\checkmark	\checkmark	\checkmark	\checkmark					
IEC 1000-3-3			\checkmark	\checkmark	\checkmark	\checkmark					
AS/NZS 3548											\checkmark
CNS 13438								\checkmark			
ISO/IEC Guide 25			\checkmark	\checkmark	\checkmark	 		\checkmark			
ISO/IEC17025			\checkmark	\checkmark	\checkmark	\checkmark					
Radiated Emissions			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Conducted Emissions			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
OATS Sites	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Hillsboro 5-Meter Chamber (EV01)	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
TCB for Licensed Transmitters	\checkmark										
TCB for un-Licensed Transmitters	\checkmark										
Cab for R&TTE		\checkmark									
CAB for EMC		\checkmark									

Scope of Accreditations (A2LA)

Revision 06/24/03

SCOPE OF ACCREDITATION TO ISO/IEC 17025-1999

NORTHWEST EMC Evergreen Facility 22975 NW Evergreen Pkwy #400 Hillsboro, OR 97124 David Tolman Phone: 503 844 4066

ELECTRICAL (EMC)

Valid until: July 31, 2004

Certificate Number: 1936-01

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following <u>Electromagnetic Compatibility (EMC) tests</u>:

EMC Standards

Title

Radiated & Conducted Emissions

CFR 47, FCC Part 15 using ANSI C63.4	American National Standard for methods of measurement of radio-noise emissions for low-voltage electrical and electronic equipment in the range of 9 kHz to 40GHz.
CISPR 22	Limits and methods of measurement of radio disturbance characteristics of information technology equipment.
CNS 13438	Limits and methods of measurement of radio interference characteristics of information technology equipment.
EN 55022	Limits and methods of measurement of radio disturbance characteristics of information technology equipment.
Canada ICES-003	Digital apparatus
AS/NZS 3548	Australian/New Zealand Standard Limits and methods of measurement of radio disturbance characteristics of information technology equipment
Canada ICES-001	Industrial, scientific and medical radio frequency generators
CNS 13803	Industrial, Scientific and Medical Instrument

Northwest EMC	Scope of Accreditations (A2LA)	Revision 06/24/03
AS/NZS 2064	Limits and methods of measurement of electromagnetic disturbance characteristics of industrial, scientific and medical (ISM) radio-frequency equipment.	
EN 61000-6-3	Electromagnetic capability – Generic emission standard. Part 1: Residential, commercial and light industry. (I.S.)	
EN 61000-6-4	Electromagnetic compatibility – Generic emission standard. Part 2: Industrial environment	
VCCI V-3/99.05	Technical Requirements	
VCCI V-4/99.05	Instruction for Test Conditions for Requirement under Test	
CISPR 11	Limits and methods of measurement of electromagnetic disturbance characteristics of industrial, scientific and medical (ISM) radio-frequency equipment.	
EN 55011	Limits and methods of measurement of radio disturbance characteristics of industrial, scientific and medical (ISM) radio-frequency equipment.	
EN 55103-1	Electromagnetic Compatibility – Product family standard for audio, video, audio-visual and entertainment lighting control apparatus for professional use. Part 1: Emission	
EN 61000-3-2	Electromagnetic compatibility (EMC). Part 3: Limits Section 2: Limits for harmonic current emissions	
EN 61000-3-3	Electromagnetic compatibility (EMC). Part 3: Limits Section 2: Limitation of voltage fluctuations and flicker in low-voltage supply systems.	
GR-1089 Section 3 (excluding analog voice band)	Bellcore electromagnetic compatibility and electrical safety – Generic criteria for network telecommunications equipment.	
Immunity		
EN 61000-4-2 AS/NZS 61000-4-2	Electromagnetic compatibility (EMC). Part 4: Testing and measurement techniques. Section 2: Electrostatic discharge immunity test – Basic EMC Publication	
EN 61000-4-3 AS/NZS 61000-4-3	Electromagnetic compatibility (EMC). Part 4: Testing and measurement techniques. Section 3: Radiated, radio-frequency, electromagnetic field immunity test	
EN 61000-4-4 AS/NZS 61000-4-4	Electromagnetic compatibility (EMC). Part 4: Testing and measurement techniques. Section 4: Electrical fast transient/burst immunity test – Basic EMC publication	

Scope of Accreditations (A2LA)

EN 61000-4-5 AS/NZS 61000-4-5	Electromagnetic compatibility (EMC) Part 4: Testing and measurement techniques. Section 5: Surge immunity test.
EN 61000-4-6 AS/NZS 61000-4-6	Electromagnetic compatibility (EMC). Part 4: Testing and measurement techniques. Section 6: Immunity to conducted disturbances, induce by radio-frequency fields.
EN 61000-4-8	Electromagnetic compatibility (EMC). Part 4: Testing and measurement techniques. Section 8: Power frequency magnetic field immunity test.
EN 61000-4-11	Electromagnetic Compatibility (EMC) Part 4: Testing and measurement techniques. Section 11: Voltage dips, short interruptions and voltage. Variations immunity tests.
EN 61000-6-1	Electromagnetic Compatibility (EMC)- Part 6: Generic standards- Section 1: Immunity for residential, commercial and light-industrial environments
EN 61000-6-2	Electromagnetic Compatibility (EMC)- Part 6: Generic standards- Section 2: Immunity for industrial environments
IEEE/ANSI C62.41	IEEE recommended practice on surge voltages in low- voltage AC power circuits
Product Standards	
GR-1089 Section 3 (excluding voice band)	Bellcore electromagnetic compatibility and electrical safety – Generic criteria for network telecommunications equipment.
EN 61326	Electrical equipment for measurement, control and laboratory use – EMC requirements
EN 60601-1-2	Medical electrical equipment Part 1: general requirements for safety Section 2: Collateral standard: Electromagnetic compatibility – requirements and tests
EN 50130-4	Alarm Systems. Part 4: Electromagnetic compatibility. Product family standard: Immunity requirements for components of fire, intruder and social alarm systems.
EN 55103-2	Electromagnetic Compatibility – Product family standard for audio, video, audio-visual and entertainment lighting control professional use. Part 2: Immunity
EN 55024	Immunity Requirements for Information Technology Equipment – ITE Immunity

Other Standards

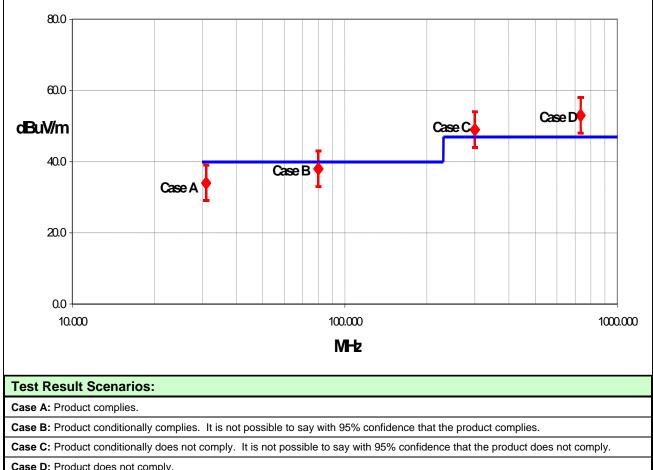
ETS 300 220	Electromagnetic compatibility and Radio spectrum matters (ERM); Short range devices; Technical characteristics and test methods for radio equipment to be used in the 25 MHZ to 1000 MHZ frequency range with power levels ranging up to 500 mW; Part 1: Parameters intended for regulatory purposes; Part 2: Supplementary parameters not intended for regulatory Purposes
ETS 300 224	Electro Magnetic Compatability and Radio Spectrum Matters; Paging Services; Technical characteristics and test methods for on site paging service devices.
ETS 300 328	Radio Equipment and Systems (RES); Wideband transmission systems; Technical characteristics and test conditions for data transmission equipment operating in the 2,4 GHz ISM band and using spread spectrum modulation techniques
ETS 300 489-1	Electro Magnetic Compatability and Radio Spectrum Matters; Common Technical Requirements
ETS 300 489-2	Specific conditions for radio paging equipment
ETS 300 489-3	Specific conditions for Short Range Devices (SRD) operating on frequencies between 9 kHz and 40 GHz
Canadian RSS-102	Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields
Canadian RSS-119	Land Mobile and Fixed Radio Transmitters and Receivers, 27.41 to 960 MHz
Canadian RSS-123	Low Power Licensed Radiocommunication Devices
Canadian RSS-139	Licensed Radiocommunications Devices in the Band 2400- 2483.5 MHz
Canadian RSS-210	Industry Canada – Low power license-exempt radio communication devices
SAE J1113-41	Radiated and conducted emissions.
SAE J1113-21	Radiated immunity absorber lined chamber (200 MHz – 1 GHz)
SAE J1113-23	Radiated immunity stripline method (only 10 kHz – 200 MHz @ 80 V/m)

Northwest **EMC**

Scope of Accreditations (A2LA)

SAE J1113-4 (only substitution method)	Conducted immunity Bulk Current Injection
SAE J1113-13	ESD
FCC 47 Parts 22 (Cellular), 24, 25, 26 & 27	TCB Scope B1 (Excluding SAR testing)
FCC 47 Parts 22 (Non-Cellular), 73,74,90,95 & 97	TCB Scope B2 (Excluding SAR testing)
FCC 47 Parts 80 & 87	TCB Scope B3 (Excluding SAR testing)
FCC 47 Parts 21, 74, 101	TCB Scope B4 (Excluding SAR testing)
Onsite Testing	
EN61000-6-2	Generic Immunity Standard for Industrial Applications
EN61000-6-4	Generic Emissions Standard for Industrial Applications

What is measurement uncertainty?


When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. The following statement of measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" value. In the case of transient tests (ESD, EFT, Surge, Voltage Dips and Interruptions), the test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements.

The following documents were the basis for determining the uncertainty levels of our measurements:

- "ISO Guide to the Expression of Uncertainty in Measurements", October 1993
- "NIS81: The Treatment of Uncertainty in EMC Measurements", May 1994
- "IEC CISPR 16-3 A1 f1 Ed.1: Radio-interference measurements and statistical techniques", December 2000

How might measurement uncertainty be applied to test results?

If the diamond marks the measured value for the test and the vertical bars bracket the range of + and measurement uncertainty, then test results can be interpreted from the diagram below.

Case D: Product does not comply.

Radiated Emissions ≤ 1 GHz		Value (dB)				
	Probability Biconical		Log Pe	eriodic	D	ipole	
	Distribution	n Antenna		Antenna		Antenna	
Test Distance		3m	10m	3m	10m	3m	10m
Combined standard	normal	+ 1.86	+ 1.82	+ 2.23	+ 1.29	+ 1.31	+ 1.25
uncertainty <i>u_c(y)</i>		- 1.88	- 1.87	- 1.41	- 1.26	- 1.27	- 1.25
Expanded uncertainty U	normal (k=2)	+ 3.72	+ 3.64	+ 4.46	+ 2.59	+ 2.61	+ 2.49
(level of confidence \approx 95%)		- 3.77	- 3.73	-2.81	- 2.52	- 2.55	- 2.49

Radiated Emissions > 1 GHz	Value (dB)		
	Probability	Without High	With High
	Distribution	Pass Filter	Pass Filter
Combined standard uncertainty <i>u_c(y)</i>	normal	+ 1.29 - 1.25	+ 1.38 - 1.35
Expanded uncertainty U	normal (k=2)	+ 2.57	+ 2.76
(level of confidence $\approx 95\%$)		- 2.51	2.70

Conducted Emissions		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y)</i>	normal	1.48
Expanded uncertainty <i>U</i> (level of confidence ≈ 95 %)	normal (k = 2)	2.97

Radiated Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y)</i>	normal	1.05
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.11

Conducted Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y</i>)	normal	1.05
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.10

Legend

 $u_c(y)$ = square root of the sum of squares of the individual standard uncertainties

U = combined standard uncertainty multiplied by the coverage factor: **k**. This defines an interval about the measured result that will encompass the true value with a confidence level of approximately 95%. If a higher level of confidence is required, then k=3 (CL of 99.7%) can be used. Please note that with a coverage factor of one, uc(y) yields a confidence level of only 68%.

Facilities

California

Orange County Facility 41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 FAX (503) 844-3826

Oregon

Evergreen Facility 22975 NW Evergreen Pkwy., Suite 400 Hillsboro, OR 97124 (503) 844-4066 FAX (503) 844-3826

Oregon

Trails End Facility 30475 NE Trails End Lane Newberg, OR 97132 (503) 844-4066 FAX (503) 537-0735

South Dakota

North Sioux City Facility

745 N. Derby Lane P.O. Box 217 North Sioux City, SD 57049 (605) 232-5267 FAX (605) 232-3873

Washington

Sultan Facility

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378 FAX (360) 793-2536

Party Requesting the Test

Company Name:	Logitech Inc.	
Address:	1499 SE Tech Center Place Suite 350	
City, State, Zip:	Vancouver, WA 98683	
Test Requested By:	Mitchell Phillipi	
Model:	F-0179A	
First Date of Test:	06-23-2003	
Last Date of Test:	07-03-2003	
Receipt Date of Samples:	06-23-2003	
Equipment Design Stage:	Pre-production	
Equipment Condition:	Edge of headset was cut into, electrical tape holding unit together	

Information Provided by the Party Requesting the Test

Clocks/Oscillators:	2402MHz, 2441MHz, 2480MHz
I/O Ports:	No I/O Ports

Functional Description of the EUT (Equipment Under Test):

Bluetooth[™] enabled headset. Battery operated with no provision for transmitting while powered from the AC mains, or while recharging.

Client Justification for EUT Selection:

Not Provided

Client Justification for Test Selection

These tests satisfy the requirements for FCC 15.247 radios.

Modifications

Equipment modifications					
Item #	Test	Date	Modification	Note	
1	Spurious Radiated Emissions	06-23-2003, 06-26-2003	No EMI suppression devices were added or modified during this test.	Same configuration as delivered.	
2	Spurious Conducted Emissions	06-27-2003, 7-03-2003	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	
3	Band Edge Compliance	06-27-2003, 7-03-2003	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	
4	Output Power	06-27-2003, 7-03-2003	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	
5	Occupied Bandwidth	06-27-2003, 7-03-2003	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	
6	Power Spectral Density	06-27-2003, 7-03-2003	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
High
Mid
Low

Operating Modes Investigated: No Hop

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings	Investigated:
Battery	

Software\Firmware Applied During Test				
Exercise software	Special Test Software	Version	Unknown	
Description				
The system was tested	using special software deve	oped to test all functions	of the device during the test.	

EUT and Peripherals

Description	Manufacturer	Model/Part Number	Serial Number
Bluetooth Headset (low channel)	Logitech Inc.	F-0179A	N/A
Bluetooth Headset (mid channel)	Logitech Inc.	F-0179A	N/A
Bluetooth Headset (high channel)	Logitech Inc.	F-0179A	N/A

Cables

Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
N/A	N/A	N/A	N/A	N/A	N/A

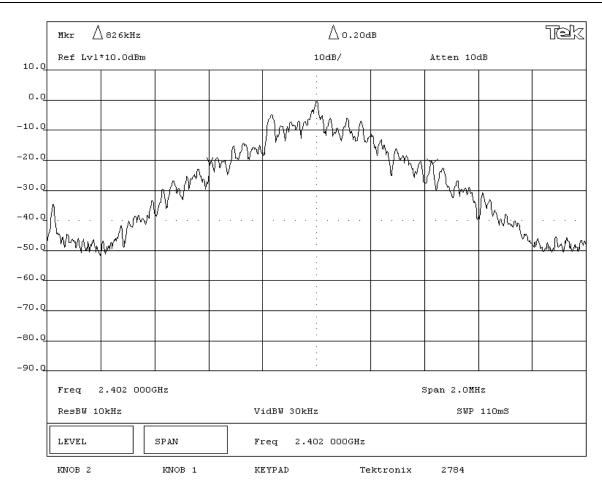
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.

Measurement Equipment

Description	Manufacturer	Model	Identifier	Last Cal	Interval
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo

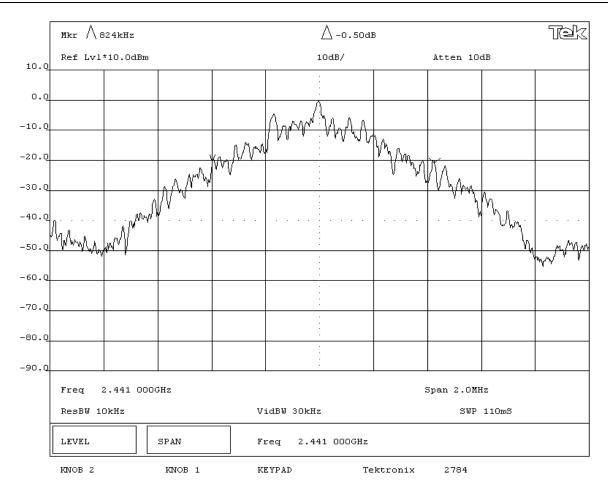
Test Description

Requirement: Per an FCC Interpretation sent to TCBs on October 8, 2002, frequency hoppers in the 2.4 GHz band operating under 15.247 are required to use a minimum of 15 non-overlapping channels. The hopping channel bandwidth can be wider than 1 MHz as long as the channels do not overlap and all emissions stay within the 2400-2483.5 MHz band. For example, a system that uses the minimum 15 channels can have hopping channel bandwidth that are up to 5 MHz wide. The measurement is made with the spectrum analyzer's resolution bandwidth set to $\geq 1\%$ of the 20dB bandwidth, and the video bandwidth set to greater than or equal to the resolution bandwidth.

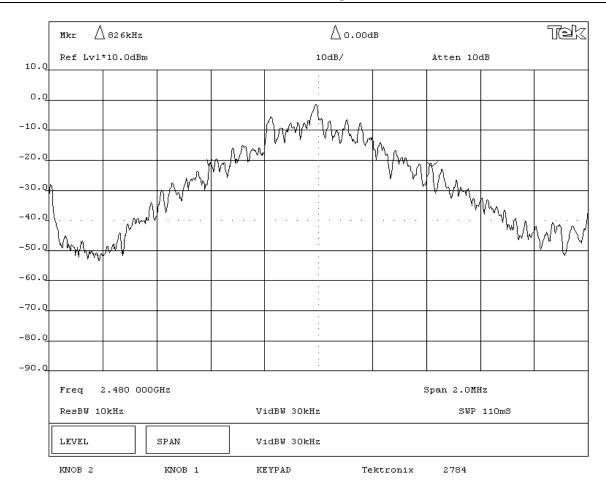

Configuration: The occupied bandwidth was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode.

Completed by:

Rocky Le Peleng


NORTHWEST							
EMC		EMISSIONS I	DATA SH	EET			Rev BETA 01/30/01
EUT:	F-0179A				Wor	rk Order:	LABT0059
Serial Number:							
Customer:	Logitech, Inc.				Temp	perature:	73 F
Attendees:	Mitch Phillipi		Tested by:	Greg Kiemel	н	lumidity:	35% RH
Customer Ref. No.:	N/A		Power:	Battery		Job Site:	EV06
TEST SPECIFICATION	IS						
Specification:	47 CFR 15.247(a)(1)	Year: 2003	Method:	DA 00-705, ANSI C63.4		Year:	1992
SAMPLE CALCULATI	ONS						
COMMENTS							
EUT OPERATING MOI							
Modulated by PRBS a	t maximum data rate						
DEVIATIONS FROM T	EST STANDARD						
None							
REQUIREMENTS							
The maximum 20dB b	andwidth of the hopping channel i	is 1 MHz					
RESULTS			BANDWIDTH				
Pass			826 kHz				
SIGNATURE							
Tested By:	ADU.K.P						
DESCRIPTION OF TES	ST						

20dB Bandwidth - Low Channel


NORTHWEST							
EMC		EMISSIONS	DATA SH	EET			Rev BETA 01/30/01
EUT:	F-0179A				Wo	ork Order:	LABT0059
Serial Number:	none					Date:	07/03/03
Customer:	Logitech, Inc.				Terr	nperature:	73 F
Attendees:	Mitch Phillipi		Tested by:	Greg Kiemel		Humidity:	35% RH
Customer Ref. No.:	N/A		Power:	Battery		Job Site:	EV06
TEST SPECIFICATION	IS						
Specification:	47 CFR 15.247(a)(1)	Year: 2003	Method:	DA 00-705, ANSI C63.4		Year:	1992
SAMPLE CALCULATI	ONS						
COMMENTS							
EUT OPERATING MOI							
Modulated by PRBS a							
DEVIATIONS FROM T	EST STANDARD						
None							
REQUIREMENTS							
The maximum 20dB b	andwidth of the hopping channe	l is 1 MHz					
RESULTS			BANDWIDTH				
Pass			824 kHz				
SIGNATURE							
Tested By:	A AU.K.P						
DESCRIPTION OF TES	ST						

20dB Bandwidth - Mid Channel

NORTHWEST							
EMC		EMISSIONS	DATA SH	EET			Rev BETA 01/30/01
EUT:	F-0179A				W	ork Order:	LABT0059
Serial Number:	none					Date:	07/03/03
Customer:	Logitech, Inc.				Ten	nperature:	73 F
Attendees:	Mitch Phillipi		Tested by:	Greg Kiemel		Humidity:	35% RH
Customer Ref. No.:	N/A		Power:	Battery		Job Site:	EV06
TEST SPECIFICATION	IS						
Specification:	47 CFR 15.247(a)(1)	Year: 2003	Method:	DA 00-705, ANSI C63.4		Year:	1992
SAMPLE CALCULATION	ONS						
COMMENTS							
EUT OPERATING MOI							
Modulated by PRBS a							
DEVIATIONS FROM T	EST STANDARD						
None							
REQUIREMENTS							
The maximum 20dB b	andwidth of the hopping channel	is 1 MHz					
RESULTS			BANDWIDTH				
Pass			826 kHz				
SIGNATURE							
Tested By:	ADU.K.P						
DESCRIPTION OF TES	ST .						

20dB Bandwidth - High Channel

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
High
Mid
Low

Operating Modes Investigated: No Hop

Data Rates Investigated:	
Maximum	

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated: Battery

Software\Firmware A	Applied During Test		
Exercise software	Special Test Software	Version	Unknown
Description			
The system was tested us	ing special software develo	pped to test all functions of t	he device during the test.

EUT and Peripherals

Description	Manufacturer	Model/Part Number	Serial Number
Bluetooth Headset (low channel)	Logitech Inc.	F-0179A	N/A
Bluetooth Headset (mid channel)	Logitech Inc.	F-0179A	N/A
Bluetooth Headset (high channel)	Logitech Inc.	F-0179A	N/A

Cables

Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
N/A	N/A	N/A	N/A	N/A	N/A

PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.

Measurement Equipment

Description	Manufacturer	Model	Identifier	Last Cal	Interval
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo

Test Description

Requirement: Per 47 CFR 15.247(b)(1), the maximum peak output power must not exceed 1 Watt. The measurement is made using a spectrum analyzer using the following settings:

- Resolution bandwidth set to greater than the 6 dB bandwidth of the modulated carrier, and
- The video bandwidth set to greater than or equal to the resolution bandwidth.

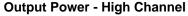
Configuration: The peak output power was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode.

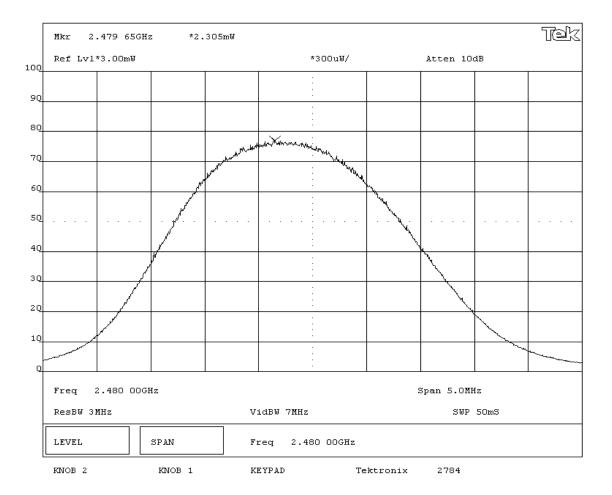
De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36dBm.

Completed by:

Porty to Releng

NORTHWEST						
EMC		EMISSIONS	DATA SH	EET		Rev BETA 01/30/01
EUT:	F-0179A				Work Order	: LABT0059
Serial Number:	none				Date	: 07/03/03
Customer:	Logitech, Inc.				Temperature	: 73 F
Attendees:	Mitch Phillipi		Tested by:	Greg Kiemel	Humidity	: 35% RH
Customer Ref. No.:	N/A		Power:	Battery	Job Site	: EV06
TEST SPECIFICATIONS	S			· · · · · · · · · · · · · · · · · · ·		
Specification:	47 CFR 15.247(b)(1)	Year: 2003	Method:	DA 00-705, ANSI C63.4	Year	r: 1992
SAMPLE CALCULATIO	DNS					
COMMENTS						
COMMENTO						
EUT OPERATING MOD	FS					
Modulated by PRBS at						
DEVIATIONS FROM TE						
None	OT OTANDARD					
REQUIREMENTS						
	cted output power does not exceed	d 1 Watt				
RESULTS			AMPLITUDE			
Pass			2.67 mW			
SIGNATURE						
	An U.K.P					
Tested By:	×07					
DESCRIPTION OF TES	T					
		Output Power	- Low Channe	el		


	Mkr 2	.401 763	Hz *2.	671mW							Tek
100	Ref Lvl	*3.00mW				*300ι	1W/		Atten 10	dB	
90						:					
80				Mathean	y	hellow may how way	L .				
70				and the second sec			ANT STATES				
60						: : :		No. Y. Y.			
50			1								
40			1º						N.		
30						-			h.		
20						:			\		
10										And a second	
0											/
-	Freq	2.402 OO	GHz		•			:	Span 5.0MH	Iz	
	ResBW 3	MHz		v	idBW '	7MHz			SWP	50mS	
	LEVEL		SPAN	F	req	2.402 00)GHz				
	KNOB 2		KNOB 1	ĸ	EYPAD		Те	ktronix	2784		


NORTHWEST		
EMC EMISSIONS	DATA SHEET	Rev BETA
EUT: F-0179A		01/30/01 Work Order: LABT0059
Serial Number: none		Date: 07/03/03
Customer: Logitech, Inc.		Temperature: 73 F
Attendees: Mitch Phillipi	Tested by: Greg Kiemel	Humidity: 35% RH
Customer Ref. No.: N/A	Power: Battery	Job Site: EV06
TEST SPECIFICATIONS		
Specification: 47 CFR 15.247(b)(1) Year: 2003	Method: DA 00-705, ANSI C63.4	Year: 1992
SAMPLE CALCULATIONS		
COMMENTS		
EUT OPERATING MODES		
Modulated by PRBS at maximum data rate		
DEVIATIONS FROM TEST STANDARD		
None		
REQUIREMENTS		
Maximum peak conducted output power does not exceed 1 Watt		
RESULTS	AMPLITUDE	
Pass	2.81 mW	
SIGNATURE		
An U.K.		
Tested By:		
DESCRIPTION OF TEST		
	Mid Channal	
Output Power	r - Mid Channel	

Output Power - Mid Channel

Ref L	v1*3.00mW				*300u₩/		Atten 100	1B	
90			alater	almburry mul	Monthly Ward and and and and and and and and and an				
80			and the second second		. When the second second				
70		/	<i>r</i>		۱ N	h.			
60						Non Ne			
50		1							
40		/					N L		
30		/					- V		
20							<u> </u>	N NA	
10								And and	
0	·								
	2.441 000	Hz				2	Span 5.0MH	z	
ResBW	3 MHz		v	idBW 7MHz			SWP	50mS	
LEVEL		SPAN	F	req 2.4	41 OOGHz				

NORTHWEST						
EMC		EMISSIONS	DATA SH	EET		Rev BETA 01/30/01
	F-0179A				Work Order:	
Serial Number:						07/03/03
	Logitech, Inc.				Temperature:	
	Mitch Phillipi		Tested by:	Greg Kiemel	Humidity:	
Customer Ref. No.:				Battery	Job Site:	
TEST SPECIFICATION						
	47 CFR 15.247(b)(1)	Year: 2003	Method:	DA 00-705, ANSI C63.4	Year:	1992
SAMPLE CALCULATI						
COMMENTS						
EUT OPERATING MOI	DES					
Modulated by PRBS a	t maximum data rate					
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
Maximum peak condu	cted output power does not excee	d 1 Watt				
RESULTS			AMPLITUDE			
Pass						
SIGNATURE						
Tested By:	A JU.K.P					
DESCRIPTION OF TES	ST					
		Output Bower	High Chopp			
		Output Power ·	- riign Chann			

Band Edge Compliance of RF Conducted Emissions

Revision 3/12/03

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
High
Mid
Low

Operating Modes Investigated: No Hop

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated:	
Battery	

Software\Firmware	Applied During Test		
Exercise software	Special Test Software	Version	Unknown
Description			
The system was tested	using special software devel	oped to test all functions	s of the device during the test.

EUT and Peripherals

Description	Manufacturer	Model/Part Number	Serial Number
Bluetooth Headset (low channel)	Logitech Inc.	F-0179A	N/A
Bluetooth Headset (mid channel)	Logitech Inc.	F-0179A	N/A
Bluetooth Headset (high channel)	Logitech Inc.	F-0179A	N/A

Cables

Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
N/A	N/A	N/A	N/A	N/A	N/A

PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.

Measurement Equipment

Description	Manufacturer	Model	Identifier	Last Cal	Interval
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo

Test Description

Requirement: Per 47 CFR 15.247(c), in any 100 kHz bandwidth outside the authorized band, the maximum level of radio frequency power must be at least 20dB down from the highest emission level within the authorized band. The measurement is made with the spectrum analyzer's resolution bandwidth set to 100 kHz, and the video bandwidth set to greater than or equal to the resolution bandwidth.

Configuration: The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to low and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode. The channels closest to the band edges were selected. The spectrum was scanned across each band edge from 5 MHz below the band edge to 5 MHz above the band edge.

Completed by: Completed by: Rochy te Relenge

	EMISSION	S DATA SHEET		Rev BETA
EMC				01/30/01
EUT: F-0179A			Work Order: LAB	0059
Serial Number: none			Date: 07/03	/03
Customer: Logitech, Inc.			Temperature: 73 F	
Attendees: Mitch Phillipi		Tested by: Greg Kiemel	Humidity: 35%	
Customer Ref. No.: N/A		Power: Battery	Job Site: EV06	
TEST SPECIFICATIONS				
Specification: 47 CFR 15.247(c)	Year: 2003	Method: DA 00-705, ANSI C63.4	Year: 1992	
SAMPLE CALCULATIONS				
COMMENTS				
EUT OPERATING MODES				
Modulated by PRBS at maximum data rate				
DEVIATIONS FROM TEST STANDARD				
None				
REQUIREMENTS				
Maximum level of any spurious emission at the edge	e of the authorized band is 20 dB	down from the fundamental		
RESULTS		AMPLITUDE		
Pass		-39.6 dBc		
SIGNATURE				
ATT.K.F	2			
Tested By:				
DESCRIPTION OF TEST				
	Band Edge Com	pliance - Low Channel		

	Mkr 🛆	-2.15MH	Iz			∆ -39.6	OdB			Tek
10.0	Ref Lvl*	10.0dBm			100	1B/		Atten 100	1B	
0.0							ſ	×,		
-10.0										
-20.0										
-30.0										
-40.Q			· · ·	۱ ۱		} /	V			
-50.0			(Lind	har have	Humber	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Minit	hrw has
-60.Q	non-valuation-Au	n-tankaryarth	water	141						W
-70.0										
-80.0										
-90.0										
	Freq 2	.400 OOGH	Iz				:	Span 10MHz		
	ResBW 10	OkHz		v	idBW 300kHz			SWP	50mS	
	LEVEL		SPAN	F	req 2.400	OOGHz				
	KINOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST EMC		EMISSIONS	DATA SHEET		Rev BETA 01/30/01
	F-0179A			Work Order:	
Serial Number:					07/03/03
	Logitech, Inc.			Temperature:	
	Mitch Phillipi		Tested by: Greg Kiemel	Humidity:	
Customer Ref. No.:	N/A		Power: Battery	Job Site:	EV06
TEST SPECIFICATION	15				
Specification:	47 CFR 15.247(c)	Year: 2003	Method: DA 00-705, ANSI C63.4	Year:	1992
SAMPLE CALCULATIO	ONS				
COMMENTS					
EUT OPERATING MOI					
Modulated by PRBS a					
DEVIATIONS FROM T					
None	EST STANDARD				
REQUIREMENTS					
	spurious emission at the edge of	the authorized band is 20 dB dow	n from the fundamental		
RESULTS			AMPLITUDE		
Pass			-55.5 dBc		
SIGNATURE					
Tested By:	ABU.K.P				
DESCRIPTION OF TES	ST				
		Band Edge Complia	ance - High Channel		

Band Edge Compliance - High Channel

	Мкг 🛆 з	50MHz	∆-55.5	50dB	Tek
10.0	Ref Lv1*10.00	lBm	10dB/	Atten 10	dB
0.0	نم	κ			
-10.0					
-20.0	/	X			
-30.0	n				
-40.Q	. (.V	· · · · · · h. · n			
-50.0	W	<u>ک</u> اسر ک	$\sim \sqrt{2}$		
-60.Q			Www. Window when the work on the work of the second	and purposed and approximate all adoption the approximations	alleseression and a consideration of the second
-70.0					
-80.0					
-90.0					
50.0	Freq 2.483	50GHz		Span 10MH:	z
	ResBW 100kHz		VidBW 300kHz	SWP	50mS
	LEVEL	SPAN	Freq 2.483 50GHz		
-	KNOB 2	KNOB 1	KEYPAD Te	ektronix 2784	

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
High
Mid
Low

Operating Modes Investigated: No Hop

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated:	
Battery	

Frequency Range Investigated					
Start Frequency	0 MHz	Stop Frequency	25 GHz		

Software\Firmware Applied During Test							
Exercise software	Special Test Software	Version	Unknown				
Description							
The system was tested us	ing special software develo	oped to test all functions of t	he device during the test.				

EUT and Peripherals

Description	Manufacturer	Model/Part Number	Serial Number
Bluetooth Headset (low channel)	Logitech Inc.	F-0179A	N/A
Bluetooth Headset (mid channel)	Logitech Inc.	F-0179A	N/A
Bluetooth Headset (high channel)	Logitech Inc.	F-0179A	N/A

Cables

Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
N/A	N/A	N/A	N/A	N/A	N/A

PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.

Measurement Equipment

Description	Manufacturer	Model	Identifier	Last Cal	Interval
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo

Test Description

Requirement: Per 47 CFR 15.247(c), in any 100 kHz bandwidth outside the authorized band, the maximum level of radio frequency power must be at least 20dB down from the highest emission level within the authorized band. The measurement is made with the spectrum analyzer's resolution bandwidth set to 100 kHz, and the video bandwidth set to greater than or equal to the resolution bandwidth.

Configuration: The spurious RF conducted emissions were measured with the EUT set to low, medium, and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode. For each transmit frequency, the spectrum was scanned throughout the specified frequency.

Completed by:

Porty te Reling

EMISSIONS DATA SHEET								
EMC EMISSIONS	DATA SHEET		Rev BETA 01/30/01					
EUT: F-0179A		Work Order:	LABT0059					
Serial Number: none		Date:	07/03/03					
Customer: Logitech, Inc.		Temperature:	73 F					
Attendees: Mitch Phillipi	Tested by: Greg Kiemel	Humidity:	35% RH					
Customer Ref. No.: N/A	Power: Battery	Job Site:	EV06					
TEST SPECIFICATIONS								
Specification: 47 CFR 15.247(c) Year: 2003	Method: DA 00-705, ANSI C63.4	Year:	1992					
SAMPLE CALCULATIONS								
COMMENTS								
EUT OPERATING MODES								
Modulated by PRBS at maximum data rate								
DEVIATIONS FROM TEST STANDARD								
None								
REQUIREMENTS								
Maximum level of any spurious emission outside of the authorized band is 20 dB down fro	m the fundamental							
RESULTS								
Pass								
SIGNATURE								
An U.K.P								
Tested By:								
DESCRIPTION OF TEST								
Antenna Conducted Spurious En	nissions - Low Channel 0MH	z-3GHz						

Antenna Conducted Spurious Emissions - Low Channel 0MHz-3GHz

							Tek
10.0	Ref Lvl*10.00	1Bm	10dB/		Atten 10d	в	
0.0							
-10.0			· · ·				
-20.0			· · ·				
-30.Q							
-40.0							
-50.0							
-60.Q	www.a.Mayman.	mountainternation	runnulur producer pro	anti-	the manual and and	planning	when the work of
-70.0							
-80.0			· · ·				
-90.0							
	OMHz	to	3.000GHz				
	ResBW 100kHz		VidBW 100kHz		SWP :	1.75	
	LEVEL	SPAN	Ref Lv1*10.0dBm				
	KNOB 2	KNOB 1	KEYPAD	Tektronix	2784		

NORTHWEST						
EMC		EMISSIONS	DATA SHE	:E1		Rev BETA 01/30/01
	F-0179A				Work Order:	LABT0059
Serial Number:	none				Date:	07/03/03
Customer:	Logitech, Inc.				Temperature:	73 F
Attendees:	Mitch Phillipi		Tested by: G	Greg Kiemel	Humidity:	35% RH
Customer Ref. No.:	N/A		Power: B	Battery	Job Site:	EV06
TEST SPECIFICATION	15					
Specification:	47 CFR 15.247(c)	Year: 2003	Method: D	A 00-705, ANSI C63.4	Year:	1992
SAMPLE CALCULATI	ONS					
COMMENTS						
EUT OPERATING MO	DES					
Modulated by PRBS a	t maximum data rate					
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental			
RESULTS						
Pass						
SIGNATURE						
	11/2					
	An U.K.P					
Tested By:	NJ.					
Tested By:						
DESCRIPTION OF TES	ST					
		cted Spurious Emis	seione - Low (bannol 3GL	17-6 5CH7	
	Antenna Conuu	cieu Spurious Ellis	SSICIIS - LOW C		12-0.3002	

Antenna Conducted Spurious Emissions - Low Channel 3GHz-6.5GHz

											Tek
10.0	Ref Lvl ³	*10.OdBm				100	ав/		Atten 10	цВ	
0.0						-					
0.0											
-10.0						•					
-20.0											
-30.0											
-40.0						• • • • • •					
-50.0											
-60.0	an the stand of the second	nuture	van hugen an gevorger v	where the start when the start where the start whe	.NJ.~***	where	Maryan Mahala	yapildinghi nalada ^{hin} karda	www.walante	nffessiological and	Munuthan
-70.0											
-80.0											
-90.0											
	2.990	OGHz	to	6.5	OOGHz	:					
	ResBW 10	OckHz		V:	idBW	100kHz			SWP	2.05	
	LEVEL		SPAN	St	top	6.5000	Hz				
	KNOB 2		KNOB 1	к	EYPAD		Te	ktronix	2784		

NORTHWEST							
EMC		EMISSIONS [DATA SHEET				Rev BETA 01/30/01
EUT: F-	-0179A				Work Order:	LABT0059	
Serial Number: no	one				Date:	07/03/03	
Customer: Lo	ogitech, Inc.				Temperature:	73 F	
Attendees: M	litch Phillipi		Tested by: Greg Kiemel		Humidity:	35% RH	
Customer Ref. No.: N	/A		Power: Battery		Job Site:	EV06	
TEST SPECIFICATIONS							
Specification: 47	7 CFR 15.247(c)	Year: 2003	Method: DA 00-705, A	NSI C63.4	Year:	1992	
SAMPLE CALCULATION	IS						
COMMENTS							
EUT OPERATING MODE							
Modulated by PRBS at n	naximum data rate						
DEVIATIONS FROM TES	ST STANDARD						
None							
REQUIREMENTS							
Maximum level of any sp	purious emission outside of the a	authorized band is 20 dB down fro	om the fundamental				
RESULTS							
Pass							
SIGNATURE							
	11100						
	An U.K.P						
Tested By:	J J						
DESCRIPTION OF TEST							
	Antenna Conduc	ted Spurious Emis	sions - Low Channe	l 6.5GHz-1	5GHz		

Antenna Conducted Spurious Emissions - Low Channel 6.5GHz-15GHz

										Tek
10.0	Ref Lvl ³	*10.OdBm				10dB/		Atten 10	dB	
						•				
0.0						:				
-10.0										
-20.Q										
-30.0										
-40.0						•				
						· · · · · ·				
-50. <u>0</u>	1 -					بالكنيد و		lika . I		Village
-60.Q	anter-hand transferra	ha ^{n va} aybeensynafistivyse	\$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ludgh der verster der stander v	"Wydyffedynynydd"fedd	ndren	www.www.h.h.w.w.m.w.w.w.	Landrader of a state of the sta	with a station of the state of	otive also
-70.0										
-80.0						-				
						:				
-90.0										
	6.499		to		OOGHz					
	ResBW 10	JORHZ		V:	idBW 10	OkHz		SWP	4.85	
	LEVEL		SPAN	St	cop 15	.000GHz				
	KINOB 2		KNOB 1	KI	EYPAD		Tektronix	2784		

NORTHWEST										
EMC		EMISSIONS [DATA SH	EET		Rev BETA 01/30/01				
EUT:	F-0179A				Work Order:	LABT0059				
Serial Number:	none				Date:	07/03/03				
Customer:	Logitech, Inc.				Temperature:	73 F				
Attendees:	Mitch Phillipi		Tested by:	Greg Kiemel	Humidity:	35% RH				
Customer Ref. No.:	N/A		Power:	Battery	Job Site:	EV06				
TEST SPECIFICATION	IS									
Specification:	47 CFR 15.247(c)	Year: 2003	Method:	DA 00-705, ANSI C63.4	Year:	1992				
SAMPLE CALCULATION	ONS									
COMMENTS										
EUT OPERATING MOI										
Modulated by PRBS a										
DEVIATIONS FROM T	EST STANDARD									
None										
REQUIREMENTS										
	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental							
RESULTS										
Pass										
SIGNATURE										
Tested By:										
Testou by.	·									
DESCRIPTION OF TES	ST									
Antenna Conducted Spurious Emissions - Low Channel 15GHz - 25GHz										

Antenna Conducted Spurious Emissions - Low Channel 15GHz - 25GHz

										Tek
10.0	Ref Lvl*10.0dBm			1	DdB/		Atten 10dB			
0.0										
					:					
-10.Q					:					
-20.Q					:					
-30.Q										
-40.Q					· · · · · ·					
-50.Q							protection of the second	www.	when when the	and the second
-60.Q	wanter the many	Ale and the group	terren allower and	whyperson proved for the state	And the second and the second and the second	MALINA MANYA	(Profile			
-00.0					:					
-70.0										
-80.Q										
-90.0										
	14.99G	Hz	to	25.	OOGHz					
	ResBW 100kHz		V:	VidBW 100kHz		SWP	5.78			
	LEVEL		SPAN	Re	≘f Lvl*10.0	DdBm				
	KNOB 2		KNOB 1	KI	EYPAD	Τe	ektronix	2784		

NORTHWEST						
EMC		EMISSIONS	DATA SH	EET		Rev BETA 01/30/01
EUT:	F-0179A				Work Order:	LABT0059
Serial Number:	none				Date:	07/03/03
Customer:	Logitech, Inc.				Temperature:	73 F
Attendees:	Mitch Phillipi		Tested by:	Greg Kiemel	Humidity:	35% RH
Customer Ref. No.:	N/A		Power:	Battery	Job Site:	EV06
TEST SPECIFICATION	IS					
Specification:	47 CFR 15.247(c)	Year: 2003	Method:	DA 00-705, ANSI C63.4	Year:	1992
SAMPLE CALCULATI	ONS					
COMMENTS						
EUT OPERATING MOI	DES					
Modulated by PRBS a	t maximum data rate					
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down	from the fundamental			
RESULTS						
Pass						
SIGNATURE						
Tested By:	ADU.K.P					
DESCRIPTION OF TES	ST					

Antenna Conducted Spurious Emissions - Mid Channel 0MHz-3GHz

_

										Tek
10.0	Ref Lvl*:	10.0dBm				10dB/		Atten 10	dB	
0.0						•				
-10.0						•				
-20.0						•				
-30.0						· ·				
-40.Q										
-50.0						•				
-60.Q	yumuntun an	witheretergenter	mutathe	Ala was a la man and a good	Nummer	menneliter	+ alty, yaare hours of high	www.adula.tot.ediverses	fle hilggeripersigner	municipalities
-70.0						•				
-80.0										
-90.0										
	OMHz		to	3.0	OOGHz					
	ResBW 100	OkHz		V:	idBW 100k	Hz		SWP	1.75	
	LEVEL		SPAN	Re	≘f Lvl*10	.OdBm				
	KNOB 2		KNOB 1	KI	EYPAD	Τe	ektronix	2784		

EMC EMISSIC	ONS DATA SHEET	Rev BETA 01/30/01					
EUT: F-0179A		Work Order: LABT0059					
Serial Number: none		Date: 07/03/03					
Customer: Logitech, Inc.		Temperature: 73 F					
Attendees: Mitch Phillipi	Tested by: Greg Kiemel	Humidity: 35% RH					
Customer Ref. No.: N/A	Customer Ref. No.: N/A Power: Battery Job Site: EV						
TEST SPECIFICATIONS							
Specification: 47 CFR 15.247(c) Year: 2003	Method: DA 00-705, ANSI C63.4	Year: 1992					
SAMPLE CALCULATIONS							
COMMENTS							
EUT OPERATING MODES							
Modulated by PRBS at maximum data rate							
DEVIATIONS FROM TEST STANDARD None							
REQUIREMENTS							
Maximum level of any spurious emission outside of the authorized band is 20 of	dP down from the fundamental						
RESULTS							
Pass							
SIGNATURE							
SIGNATORE							
1 U.K.							
$\sim 0^{-1}$							
Tested By:							
DESCRIPTION OF TEST							
	- Emissions Mid Channel 2011						
Antenna Conducted Spuriou	is Emissions - Mid Channel 3GH	Z-0.3GHZ					

Antenna Conducted Spurious Emissions - Mid Channel 3GHz-6.5GHz

								Tek
10.0	Ref Lvl*10.0dB	3m		10dB/		Atten 100	iB	
0.0								
0.0								
-10.0				•				
-20.0				•				
-30.0								
-40.0								
-50.0	Anna and the second second	ومعالمه والمرد المسرول المحالية المغر	willinger the state with the state	where the war where we wanted	allow mather and	malmanna	un un han han han han han han han han han ha	wyantanthan anatan
-60.0	Alend Andreade an Modelle Analysis and	and a second						
-70.0								
-80.0								
-90.0								
	2.990GHz	to	6.500GH	Iz				
	ResBW 100kHz		VidBW	100kHz		SWP	2.05	
	LEVEL	SPAN	Stop	6.500GHz				
	KNOB 2	KNOB 1	KEYPA	D Te	ektronix	2784		

EMISSIONS DATA SHEET EMISSIONS DATA SHEET Uri F-0179A Vork Order: LABTO Serial Number: none Customer: Logitech, Inc. Temperature: 73 F	5									
Serial Number: none Date: 07/03/03	5									
Customer: Logitech, Inc. Temperature: 73 F										
Attendees: Mitch Phillipi Tested by: Greg Kiemel Humidity: 35% RH										
Customer Ref. No.: N/A Job Site: EV06										
TEST SPECIFICATIONS										
Specification: 47 CFR 15.247(c) Year: 2003 Method: DA 00-705, ANSI C63.4 Year: 1992										
SAMPLE CALCULATIONS										
COMMENTS										
EUT OPERATING MODES										
Modulated by PRBS at maximum data rate										
DEVIATIONS FROM TEST STANDARD										
None										
REQUIREMENTS										
Maximum level of any spurious emission outside of the authorized band is 20 dB down from the fundamental										
RESULTS										
Pass										
SIGNATURE										
An U.K.P										
Tested By:										
DESCRIPTION OF TEST										
Antenna Conducted Spurious Emissions - Mid Channel 6.5GHz-15GHz										

Antenna Conducted Spurious Emissions - Mid Channel 6.5GHz-15GHz

										Tek
10.0		*10.0dBm			10dB	87		Atten 100	1B	
0.0										
-10.0					-					
-10.0					:					
-20.Q										
-30.Q					· · ·					
-40.Q										
-50.Q					:					
-60.Q	pollowid, the for which the	1444 ware of the second	****	white a start where the second	New port of the state of the st	J _W ANNAMAN	witherwitherlast	nu ^{ber} nudhanthakhakhakhakhakhakhakhakhakhakhakhakhakh	www.	Wigers Made Analogy Hayle
-70.0										
					:					
-80.Q					· ·					
-90.0					:					
	6.499	∋GHz	to	15.0	OOGHz					
	ResBW 10	OOkHz		Vi	idBW 100kHz			SWP	4.85	
	LEVEL		SPAN	St	top 15.000GH	[z				
	KNOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST								
EMC		EMISSIONS I	DATA SH	EET		Rev BETA 01/30/01		
EUT:	F-0179A				Work Order	: LABT0059		
Serial Number:	none				Date	07/03/03		
Customer:	Logitech, Inc.				Temperature	: 73 F		
Attendees:	Attendees: Mitch Phillipi Tested by: Greg Kiemel							
Customer Ref. No.:	N/A		Power:	Battery	Job Site	: EV06		
TEST SPECIFICATION	IS							
Specification:	47 CFR 15.247(c)	Year: 2003	Method:	DA 00-705, ANSI C63.4	Year	: 1992		
SAMPLE CALCULATIO	ONS							
COMMENTS								
EUT OPERATING MOD								
Modulated by PRBS a								
DEVIATIONS FROM T	EST STANDARD							
None								
REQUIREMENTS								
	spurious emission outside of the	e authorized band is 20 dB down fr	om the fundamental					
RESULTS								
Pass								
SIGNATURE								
	ATTU.K.P							
Tested By:								
DESCRIPTION OF TES	ST							
	Antenna Condu	icted Spurious Emis	ssions - Mid (Channel 15G	Hz-25GHz			

Antenna Conducted Spurious Emissions - Mid Channel 15GHz-25GHz

								jej K
10.0	Ref Lvl*10.0d	Bm		10dB/		Atten 100	цВ	
0.0				•				
				•				
-10.0				:				
-20.0				· ·				
-30.0				•				
-40.Q								
-50.0				•	-	frahrisa ^{da, Nodefa, proteini}	Mapping the Ministry	MMMM
-60.0	NWAND AND MANY AND	watertowny way and the stand and the	preventedation that the grad and the	hina haddala a an	K //H			
				•				
-70.0				•				
-80.0				•				
-90.0				•				
	14.99GHz	to	25.00GHz					
	ResBW 100kHz		VidBW 100k	Hz		SWP	5.78	
	LEVEL	SPAN	Span 10GHz					
	KNOB 2	KNOB 1	KEYPAD	Te	ktronix	2784		

NORTHWEST						
EMC		EMISSIONS [DATA SHEET	Rev BETA 01/30/01		
EUT:	F-0179A			Work Order: LABT0059		
Serial Number:	none			Date: 07/03/03		
Customer:	Logitech, Inc.			Temperature: 73 F		
Attendees:	Mitch Phillipi		Tested by: Greg Kiemel	Humidity: 35% RH		
Customer Ref. No.:	N/A		Power: Battery	Job Site: EV06		
TEST SPECIFICATIONS						
Specification:	47 CFR 15.247(c)	Year: 2003	Method: DA 00-705, ANSI C63.4	Year: 1992		
SAMPLE CALCULATI	ONS					
COMMENTS						
COMMENTS						
EUT OPERATING MO	DES					
Modulated by PRBS a						
DEVIATIONS FROM T						
None						
REQUIREMENTS						
	spurious emission outside of the a	uthorized band is 20 dB down fro	om the fundamental			
RESULTS	-					
Pass						
SIGNATURE						
OIGHATORE						
	An U.K.P					
	i lit					
Tested By:						
DESCRIPTION OF TES	ST					
	Antenna Condu	cted Spurious Emi	ssions - High Channel 0M	Hz-3GHz		
L			<u> </u>			

Antenna Conducted Spurious Emissions - High Channel 0MHz-3GHz

	Mkr 2	.451GHz	*-39	9.50dBm											J	떬
10.0	Ref Lvl	*10.OdBm					10dB/			A	tten 1	LOdE	З			
0.0																
0.0							•						1			
-10.0							•	+					+			
-20.0							•	_					_			
-30.0								_								
-40.Q							· · · · · · ·						í			
-50.0							•			_		_				
-60.0	her wood wheeling	Mallin de Marthe Sparmer	an the and a show	vernalista	whith	deherun	the try have the start	brand the the	manufat	ww	www.	***		iqi.hoyinddayaad	man	han an a
-70.0							•									
-80.0							•									
-90.0																
-0.0	OMHz	1	to	3.0	OOGH	Iz									1	
	ResBW 1	OOkHz		v:	idBW	100k)	Hz				ຣພ	P 1	.7	'S		
	LEVEL		SPAN	M	cr	2.45	1GHz									
	KINOB 2		KNOB 1	KI	EYPA	D		Tekt	ronix		2784					

NORTHWEST											
EMC		EMISSIONS I	JATA SHEET		Rev BETA 01/30/01						
EUT:	F-0179A			Work Order	LABT0059						
Serial Number:	none			Date	07/03/03						
Customer:	Logitech, Inc.			Temperature:	73 F						
Attendees:	Mitch Phillipi		Tested by: Greg Kiemel	Humidity	35% RH						
Customer Ref. No.:	N/A		Power: Battery	Job Site:	EV06						
TEST SPECIFICATION	IS										
	47 CFR 15.247(c)	Year: 2003	Method: DA 00-705, ANSI Ce	3.4 Year:	1992						
SAMPLE CALCULATION	ONS										
COMMENTS											
EUT OPERATING MOI											
Modulated by PRBS a											
DEVIATIONS FROM T	EST STANDARD										
None											
REQUIREMENTS											
	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental								
RESULTS											
Pass											
SIGNATURE											
	AMU.K.P										
Tested By:	00										
DESCRIPTION OF TES	ST										
	Antenna Condu	cted Spurious Emis	sions - High Channel 30	GHz-6.5GHz							

Antenna Conducted Spurious Emissions - High Channel 3GHz-6.5GHz

								Tek
10.0	Ref Lvl*10.0dBm			10dB/		Atten 100	iB	
0.0								
0.0								
-10.0				•				
-20.0				•				
-30.0				•				
-40.0				· · ·				
-50.0				- - - -				
	www.	Marin Markan Julia - day	www.human	remailingenter the the second	yan an a	halay variately and a former	hilling	physiolicalistical and
-60.0								
-70.0								
-80.0				•				
-90.0				•				
	2.990GHz	to	6.5000	GHz				
	ResBW 100kHz		VidE	3W 100kHz		SWP	2.05	
	LEVEL	SPAN	Stop	6.500GHz				
	KINOB 2	KNOB 1	KEYF	PAD	Tektronix	2784		

NORTHWEST						
EMC		EMISSIONS	DATA SHE	EET		Rev BETA
	1					01/30/01
-	F-0179A				Work Order	
Serial Number:						07/03/03
	Logitech, Inc.				Temperature:	
	Mitch Phillipi		Tested by: 0	v v	Humidity	
Customer Ref. No.:			Power: E	Battery	Job Site:	EV06
TEST SPECIFICATION						
Specification:	47 CFR 15.247(c)	Year: 2003	Method:	DA 00-705, ANSI C63.4	Year	1992
SAMPLE CALCULATI	ONS					
COMMENTS						
EUT OPERATING MO	DES					
Modulated by PRBS a	t maximum data rate					
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental			
RESULTS						
Pass						
SIGNATURE						
	An V.K.P					
	() ()					
Tested By:						
DESCRIPTION OF TE	ST					
		ted Spurious Finis	alana Hirk (Channel 6 50		
	Antenna Conduc	ted Spurious Emis	sions - High C	nannel 6.5G	Inz-19GHZ	

Antenna Conducted Spurious Emissions - High Channel 6.5GHz-15GHz

										Tek
10.0	Ref Lvl*	10.0dBm				10dB/		Atten 100	цВ	
0.0										
						· ·				
-10.0						· :				
-20.0						:				
-30.0						· ·				
-40.0						· · · · · · · · ·				
-50.0										
-60.Q	mmillionalycerarch	MANAGE BANG	MANYANA	hyperson and the second	Windman	4 Marrison Marriel	were when the second of the	1~~ ^{~~~} ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1241-1441144 against and the	Anudor tuby my you
-70.0										
						:				
-80.0						· ·				
-90.0						:				
	6.491	lGHz	to	14.9	91GHz					
	ResBW 10)OkHz		V:	idBW 100%	Hz		SWP	4.85	
	LEVEL		SPAN		op 14.9	91GHz				
	KNOB 2		KNOB 1	к	EYPAD	Τe	ektronix	2784		

NORTHWEST				
EMC		EMISSIONS [DATA SHEET	Rev BETA 01/30/01
	F-0179A			Work Order: LABT0059
Serial Number:	none			Date: 07/03/03
Customer:	Logitech, Inc.			Temperature: 73 F
Attendees:	Mitch Phillipi		Tested by: Greg Kiemel	Humidity: 35% RH
Customer Ref. No.:	N/A		Power: Battery	Job Site: EV06
TEST SPECIFICATION	IS			
Specification:	47 CFR 15.247(c)	Year: 2003	Method: DA 00-705, ANSI C63.4	Year: 1992
SAMPLE CALCULATIO	ONS			
COMMENTS				
EUT OPERATING MOI	DES			
Modulated by PRBS a	t maximum data rate			
DEVIATIONS FROM T	EST STANDARD			
None				
REQUIREMENTS				
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental	
RESULTS				
Pass				
SIGNATURE				
	An U.K.P			
	()ct			
Tested By:				
DESCRIPTION OF TES	э т			
DESCRIPTION OF TEX				
	Antenna Conduc	tea Spurious Emis	sions - High Channel 15G	HZ-25GHZ

Antenna Conducted Spurious Emissions - High Channel 15GHz-25GHz

										Tek
10.0	Ref Lvl*:	10.0dBm			1	.0dB/		Atten 100	1B	
0.0										
-10.0										
-20.0					:					
-30.0										
-40.0										
-50.0							Millinghalpo	with And And And And	dryl _{berl} hetyleferidetet	har we have a state of the second
-60.Q	with the case of a sport of the	washing	++++++++++++++++++++++++++++++++++++++	willyn ar Monadau y	and a descent which had	th wy _{la} dholewid _a nither	wv**			
-70.0										
-80.0					:					
-90.0										
	14.99GH	Hz	to	25.	OOGHz					
	ResBW 100	OkHz		V:	idBW 100kH	Iz		SWP	5.78	
	LEVEL		SPAN	SI	pan 10GHz					
	KINOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
High
Mid
Low

Operating Modes Investigated: No Hop

Data Rates Investigated:	
Maximum	

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated: Battery

Software\Firmware Applied During Test							
Exercise software	Special Test Software	Version	Unknown				
Description							
The system was tested us	ing special software develo	oped to test all functions of t	the device during the test.				

EUT and Peripherals

Description	Manufacturer	Model/Part Number	Serial Number
Bluetooth Headset (low channel)	Logitech Inc.	F-0179A	N/A
Bluetooth Headset (mid channel)	Logitech Inc.	F-0179A	N/A
Bluetooth Headset (high channel)	Logitech Inc.	F-0179A	N/A

Cables

Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
N/A	N/A	N/A	N/A	N/A	N/A

PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.

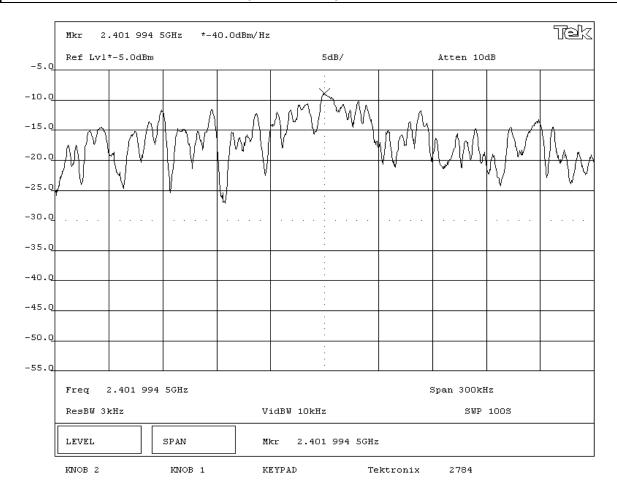
Measurement Equipment

Description	Manufacturer	Model	Identifier	Last Cal	Interval
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo

Test Description

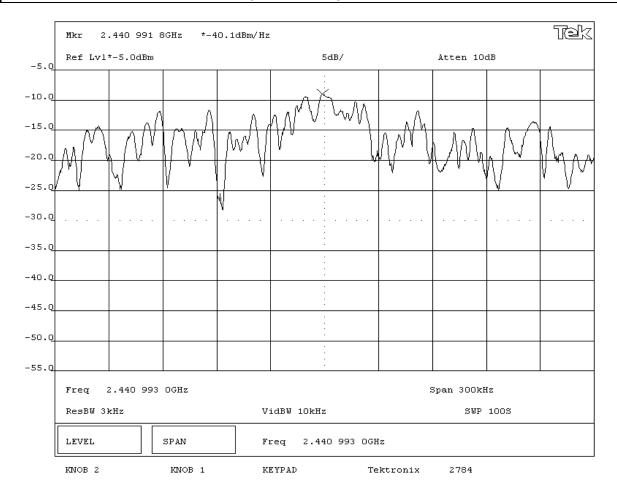
Requirement: Per 47 CFR 15.247(d), the peak power spectral density conducted from the antenna port of a direct sequence transmitter must not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission.

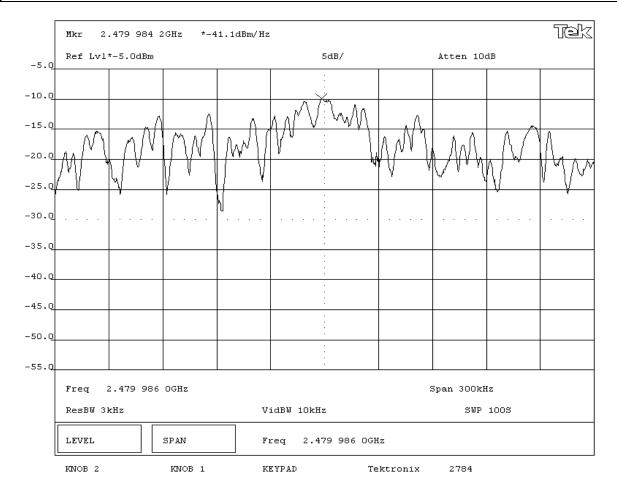
Configuration: The peak power spectral density measurements were measured with the EUT set to low, mid, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate using direct sequence modulation. Per the procedure outlined in FCC 97-114, the spectrum analyzer was used as follows:


The emission peak(s) were located and zoom in on within the passband. The resolution bandwidth was set to 3 kHz, the video bandwidth was set to greater than or equal to the resolution bandwidth. The sweep speed was set equal to the span divided by 3 kHz (sweep = (SPAN/3 kHz)). For example, given a span of 1.5 MHz, the sweep should be 1.5 x 106 \div 3 x 103 = 500 seconds. External attenuation was used and added to the reading. The following FCC procedure was used for modifying the power spectral density measurements:

"If the spectrum line spacing cannot be resolved on the available spectrum analyzer, the noise density function on most modern conventional spectrum analyzers will directly measure the noise power density normalized to a 1 Hz noise power bandwidth. Add 34.8 dB for correction to 3 kHz."

Completed by: Northy the Relenge


		EMISSIONS [DATA SH	FFT		Rev BETA
EMC						01/30/01
EUT:	F-0179A				Work Order:	LABT0059
Serial Number:	none				Date:	07/03/03
Customer:	Logitech, Inc.				Temperature:	73 F
Attendees:	Mitch Phillipi		Tested by:	Greg Kiemel	Humidity:	35% RH
Customer Ref. No.:	N/A		Power:	Battery	Job Site:	EV06
TEST SPECIFICATION	IS					
Specification:	47 CFR 15.247(d)	Year: 2003	Method:	FCC 97-114, ANSI C63.4	4 Year:	1992
SAMPLE CALCULATION	ONS					
Meter reading on spec	trum analyzer is internally compe	nsated for cable loss and external	attenuation.			
Power Spectral Densit	ty per 3kHz bandwidth = Power Sp	ectral Density per 1 Hz bandwidth	+ Bandwidth Correction	on Factor.		
Bandwidth Correction	Factor = 10*log(3kHz/1Hz)					
COMMENTS						
EUT OPERATING MOI	DES					
Modulated by PRBS a	t maximum data rate					
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
Maximum peak power	spectral density conducted from a	a DSSS transmitter does not excee	ed 8 dBm in any 3 kHz	band		
RESULTS			AMPLITUDE			
Pass			Power Spectral Densit	y =5.2 dBm / 3kHz		
SIGNATURE						
Tested By:	A BU.K.P					
DESCRIPTION OF TES	ST T					


NORTHWEST EMC		EMISSIONS [DATA SH	EET		Rev BETA
						01/30/01
	F-0179A				Work Order:	
Serial Number:	none				Date:	07/03/03
	Logitech, Inc.				Temperature:	
Attendees:	Mitch Phillipi		Tested by:	Greg Kiemel	Humidity:	35% RH
Customer Ref. No.:	N/A		Power:	Battery	Job Site:	EV06
TEST SPECIFICATION	IS					
Specification:	47 CFR 15.247(d)	Year: 2003	Method:	FCC 97-114, ANSI C63.	4 Year:	1992
SAMPLE CALCULATION	ONS					
Meter reading on spec	trum analyzer is internally compe	nsated for cable loss and external	attenuation			
Power Spectral Densit	ty per 3kHz bandwidth = Power Sp	ectral Density per 1 Hz bandwidth	+ Bandwidth Correction	on Factor.		
Bandwidth Correction	Factor = 10*log(3kHz/1Hz)					
COMMENTS						
EUT OPERATING MOI	DES					
Modulated by PRBS a	t maximum data rate					
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
Maximum peak power	spectral density conducted from a	a DSSS transmitter does not exce	ed 8 dBm in any 3 kHz	band		
RESULTS			AMPLITUDE			
Pass			Power Spectral Densit	v = -5.3 dBm / 3kHz		
SIGNATURE						
Tested By:	ADU.K.P					
DESCRIPTION OF TES	ST					

NORTHWEST							
EMC		EMISSIONS I	DATA SH	EET			Rev BETA 01/30/01
EUT:	F-0179A				Wo	ork Order:	LABT0059
Serial Number:	none					Date:	07/03/03
Customer:	Logitech, Inc.				Terr	perature:	73 F
Attendees:	Mitch Phillipi		Tested by:	Greg Kiemel		Humidity:	35% RH
Customer Ref. No.:	N/A		Power:	Battery		Job Site:	EV06
TEST SPECIFICATION	IS						
Specification:	47 CFR 15.247(d)	Year: 2003	Method:	FCC 97-114, ANSI C63.	.4	Year:	1992
SAMPLE CALCULATION	ONS						
Meter reading on spec	ctrum analyzer is internally compe	nsated for cable loss and external	attenuation				
Power Spectral Densit	ty per 3kHz bandwidth = Power Sp	ectral Density per 1 Hz bandwidth	+ Bandwidth Correction	on Factor.			
Bandwidth Correction	Factor = 10*log(3kHz/1Hz)						
COMMENTS							
EUT OPERATING MOI							
Modulated by PRBS a	t maximum data rate						
DEVIATIONS FROM T	EST STANDARD						
None							
REQUIREMENTS							
Maximum peak power	spectral density conducted from a	a DSSS transmitter does not exce	ed 8 dBm in any 3 kHz	band			
RESULTS			AMPLITUDE				
Pass			Power Spectral Densit	y = -6.3 dBm / 3kHz			
SIGNATURE							
Tested By:							
DESCRIPTION OF TEST							

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:		
High		
Mid		
Low		

Operating Modes Investigated: No Hop

Data Rates Investigated:	
Maximum	

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated: Battery

Frequency Range Investigated				
Start Frequency	30 MHz	Stop Frequency	25 GHz	

Software\Firmware Applied During Test						
Exercise software N/A Version N/A						
Description						
The system was tested using standard operating modes that do not require software. The unit was set to						
transmit at low, mid, and high channels.						

EUT and Peripherals

Description	Manufacturer	Model/Part Number	Serial Number
Bluetooth Headset (low channel)	Logitech Inc.	F-0179A	N/A
Bluetooth Headset (mid channel)	Logitech Inc.	F-0179A	N/A
Bluetooth Headset (high channel)	Logitech Inc.	F-0179A	N/A

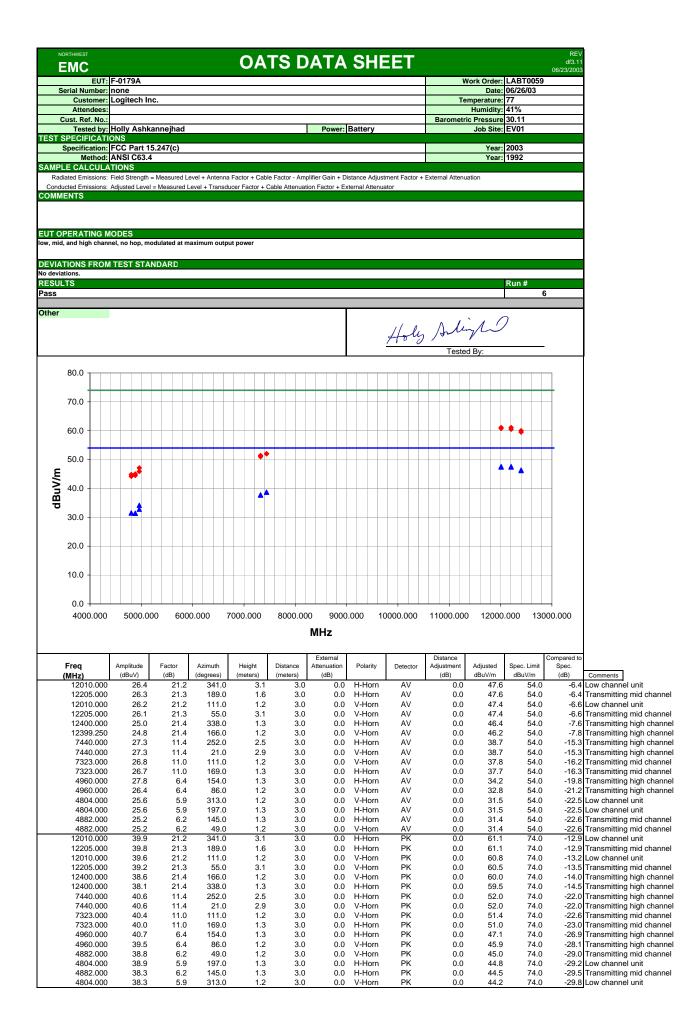
Measurement Equipment

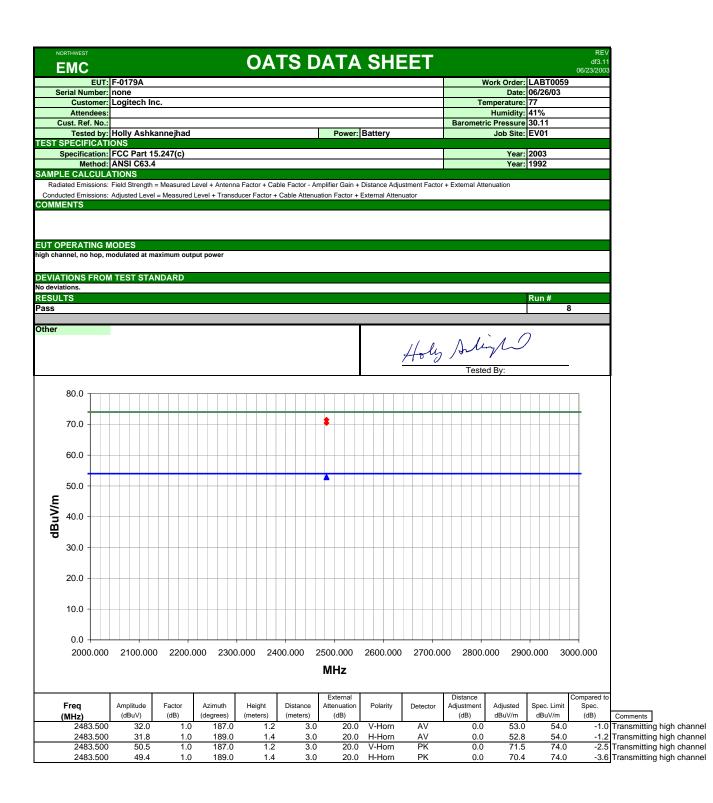
Description	Manufacturer	Model	Identifier	Last Cal	Interval
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	01/07/2003	12 mo
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	01/07/2003	12 mo
Antenna, Horn	EMCO	3115	AHC	08/12/2002	12 mo
Antenna, Biconilog	EMCO	3141	AXE	12/31/2001	36 mo
Pre-Amplifier	Amplifier Research	LN1000A	APS	01/06/2003	12 mo
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APJ	01/06/2003	12 mo
High Pass Filter	RLC Electronics	F-100-4000-5-R (HPF>4GHz up to	HFF	05/01/2003	12 mo
Antenna, Horn	EMCO	3160-09	AHG	01/15/2003	12 mo
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	01/15/2003	12 mo

Test Description

Requirement: The field strength of any spurious emissions or modulation products that fall in a restricted band, as defined in 47 CFR 15.205, is measured. The peak level must comply with the limits specified in 47 CFR 15.35(b). The average level (taken with a 10Hz VBW) must comply with the limits specified in 15.209.

Configuration: The only antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. The EUT was transmitting at its maximum data rate in a no hop mode. For each configuration, the spectrum was scanned from 30 MHz to 25 GHz. In addition, measurements were made in the restricted band of 2.4835 to 2.5 GHz to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT in 3 orthogonal planes (per ANSI C63.4:1992). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.


Bandwidths Used for Measurements


Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)	
0.01 – 0.15	1.0	0.2	0.2	
0.15 - 30.0	10.0	9.0	9.0	
30.0 - 1000	100.0	120.0	120.0	
Above 1000	1000.0	N/A	1000.0	
Measurements were made using the bandwidths and detectors enablied. No video filter was used				

Measurements were made using the bandwidths and detectors specified. No video filter was used.

Completed by:

Holy Arlingh

