

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Low
Mid
High

Operating Modes Investigated: No Hop

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated:

120 VAC, 60 Hz.

Other Settings Investigated: Stand-alone mode

Software\Firmware Applied During Test					
Exercise software	N/A	Version	N/A		
Description					
The system was tested using special firmware developed to test all functions of the device during the test.					

EUT and Peripherals						
Description	Manufacturer	Model/Part Number	Serial Number			
AC/DC adaptor	Logitech, Inc	AG055V150T	None			
EUT - Cordless Headset for XBox	Logitech, Inc.	A-0363A	EMC #2			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Leads	No	1.8	PA	AC/DC adaptor	Cordless Headset for XBox
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Measurement Equipment						
Description	Manufacturer	Model	Identifier	Last Cal	Interval	
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo	

Test Description

Requirement: Per 47 CFR 15.247(d), the peak power spectral density conducted from the antenna port of a direct sequence transmitter must not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission.

Configuration: The peak power spectral density measurements were measured with the EUT set to low, mid, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate using direct sequence modulation. Per the procedure outlined in FCC 97-114, the spectrum analyzer was used as follows:

The emission peak(s) were located and zoom in on within the passband. The resolution bandwidth was set to 3 kHz, the video bandwidth was set to greater than or equal to the resolution bandwidth. The sweep speed was set equal to the span divided by 3 kHz (sweep = (SPAN/3 kHz)). For example, given a span of 1.5 MHz, the sweep should be $1.5 \times 106 \div 3 \times 103 = 500$ seconds. External attenuation was used and added to the reading. The following FCC procedure was used for modifying the power spectral density measurements:

"If the spectrum line spacing cannot be resolved on the available spectrum analyzer, the noise density function on most modern conventional spectrum analyzers will directly measure the noise power density normalized to a 1 Hz noise power bandwidth. Add 34.8 dB for correction to 3 kHz."

Completed by:	
Rochyle	Peling

NORTHWEST					
EMC	EMISSIONS [DATA SH	EET		Rev BETA 01/30/01
EUT: A-0363A Cordless Headset for		Work Order: LAB	T0106		
Serial Number: EMC #2				Date: 10/1	5//2004
Customer: Logitech, Inc.				Temperature: 71 °	F
Attendees: None		Tested by:	Rod Peloquin	Humidity: 48%	RH
Customer Ref. No.:		Power:	120VAC/60Hz	Job Site: EV0	6
TEST SPECIFICATIONS					
Specification: 47 CFR 15.247(d)	Year: 2003	Method:	FCC 97-114, ANSI C63.4	Year: 2003	3
SAMPLE CALCULATIONS					
Meter reading on spectrum analyzer is internally con	pensated for cable loss and external	attenuation.			
Power Spectral Density per 3kHz bandwidth = Power	Spectral Density per 1 Hz bandwidth	+ Bandwidth Correction	on Factor.		
Bandwidth Correction Factor = 10*log(3kHz/1Hz) = 34	I.8 dB				
COMMENTS					
EUT OPERATING MODES					
Modulated by PRBS at maximum data rate					
DEVIATIONS FROM TEST STANDARD					
None					
REQUIREMENTS					
Maximum peak power spectral density conducted from	om a DSSS transmitter does not excee	ed 8 dBm in any 3 kHz	band		
RESULTS		AMPLITUDE			
Pass Power Spectral Density = -6.4 dBm / 3kHz					
SIGNATURE					
Tested By:					
DESCRIPTION OF TEST	-				

NORTHWEST					
EMC	EMISSIONS I	DATA SH	EET		Rev BETA 01/30/01
EUT: A-0363A Cordless Headset for X-	Box			Work Order:	LABT0106
Serial Number: EMC #2				Date:	10/15//2004
Customer: Logitech, Inc.				Temperature:	71 °F
Attendees: None		Tested by:	Rod Peloquin	Humidity:	48% RH
Customer Ref. No.:		Power:	120VAC/60Hz	Job Site:	EV06
TEST SPECIFICATIONS					
Specification: 47 CFR 15.247(d)	Year: 2003	Method:	FCC 97-114, ANSI C63.4	4 Year:	2003
SAMPLE CALCULATIONS					
Meter reading on spectrum analyzer is internally compe	ensated for cable loss and external	attenuation			
Power Spectral Density per 3kHz bandwidth = Power Sp	pectral Density per 1 Hz bandwidth	+ Bandwidth Correction	on Factor.		
Bandwidth Correction Factor = 10*log(3kHz/1Hz) = 34.8	dB				
COMMENTS					
EUT OPERATING MODES					
Modulated by PRBS at maximum data rate					
DEVIATIONS FROM TEST STANDARD					
None					
REQUIREMENTS					
Maximum peak power spectral density conducted from	a DSSS transmitter does not exce	ed 8 dBm in any 3 kHz	band		
RESULTS AMPLITUDE					
Pass Power Spectral Density = -7.1 dBm / 3kHz					
SIGNATURE					
Rocky le Relenges					
DESCRIPTION OF TEST					

NORTHWEST					
EMC	EMISSIONS I	DATA SH	EET		Rev BETA 01/30/01
EUT: A-0363A Cordless Headset for X-	-Box			Work Order:	LABT0106
Serial Number: EMC #2				Date:	10/15//2004
Customer: Logitech, Inc.				Temperature:	71 °F
Attendees: None		Tested by:	Rod Peloquin	Humidity:	48% RH
Customer Ref. No.:		Power:	120VAC/60Hz	Job Site:	EV06
TEST SPECIFICATIONS					
Specification: 47 CFR 15.247(d)	Year: 2003	Method:	FCC 97-114, ANSI C63.	4 Year:	2003
SAMPLE CALCULATIONS					
Meter reading on spectrum analyzer is internally compe	ensated for cable loss and external	attenuation			
Power Spectral Density per 3kHz bandwidth = Power Sp	pectral Density per 1 Hz bandwidth	+ Bandwidth Correction	on Factor.		
Bandwidth Correction Factor = 10*log(3kHz/1Hz) = 34.8	dB				
COMMENTS					
EUT OPERATING MODES					
Modulated by PRBS at maximum data rate					
DEVIATIONS FROM TEST STANDARD					
None					
REQUIREMENTS					
Maximum peak power spectral density conducted from	a DSSS transmitter does not exce	ed 8 dBm in any 3 kHz	band		
RESULTS AMPLITUDE					
Pass Power Spectral Density = -6.2 dBm / 3kHz					
SIGNATURE					
Rocky te Relings					
DESCRIPTION OF TEST					

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
High
Mid
Low

Operating Modes Investigated: No Hop

Data Rates Investigated: Maximum

Power Input Settings Investigated: 120VAC, 60Hz

Other Settings Investigated:	
Simultaneously transmitting with Bluetooth dongle for Xbox	
Stand-Alone	

Frequency Range Investigated					
Start Frequency	30 MHz	Stop Frequency	26 GHz		

Software\Firmware Applied During Test									
Exercise software	N/A	Version	N/A						
Description	Description								
The system was tested us	sing standard operating mo	des, which do not require s	oftware.						

EUT and Peripherals Description Manufacturer Model/Part Number Serial Number EUT - Cordless Headset for XBox Logitech, Inc. A-0363A EMC #1 AC/DC adaptor AU055V150T Logitech, Inc None Bluetooth Dongle for Game Pad F0363B Dongle Logitech, Inc. none Video Game System Microsoft, Inc Xbox 441334233606 Xbox Game Pad Microsoft X08-17160 047355112 Monitor Thomson 418XTX807C 4088

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Leads	No	1.8	PA	AC/DC adaptor	Cordless Headset for Xbox
Game Pad	PA	1.9	PA	Xbox Game Pad	Video Game System
AC Power	No	2.0	Yes	Video Game System	AC Mains
Video	Yes	2.6	Yes	Video Game System	Monitor
AC Power	No	1.8	Ν	Monitor	AC Mains

PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.

Measurement Equi	pment				
Description	Manufacturer	Model	Identifier	Last Cal	Interval
Pre-Amplifier	Miteq	AMF-4D-005180-24- 10P	APC	10/08/2003	12 mo
Antenna, Horn	EMCO	3160-08	AHK	NCR	NA
Antenna, Horn	EMCO	3160-09	AHG	NCR	NA
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	10/08/2003	12 mo
Antenna, Horn	EMCO	3115	AHC	09/07/2004	12 mo
High Pass Filter	Micro-Tronics	HPM50111	HFO	04/13/2004	13 mo
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	12/23/2003	13 mo
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	12/23/2003	13 mo
Spectrum Analyzer Display	Hewlett Packard	85662A	AALD	12/23/2003	13 mo
Antenna, Biconilog	EMCO	3141	AXE	12/03/2003	24 mo
Pre-Amplifier	Amplifier Research	LN1000A	APS	02/05/2004	13 mo
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APJ	01/05/2004	13 mo
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo

Test Description

<u>Requirement</u>: The field strength of any spurious emissions or modulation products that fall in a restricted band, as defined in 47 CFR 15.205, is measured. The peak level must comply with the limits specified in 47 CFR 15.35(b). The average level (taken with a 10Hz VBW) must comply with the limits specified in 15.209.

<u>Configuration</u>: The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:1992). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

Bandwidths Used for Me	asurements		
Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 – 0.15	1.0	0.2	0.2
0.15 – 30.0	10.0	9.0	9.0
30.0 – 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0
Measurements were m	nade using the bandwidths a	and detectors specified. No	video filter was used.

Completed by	y:
Ille	Silingh

	RTHWEST MC	г				R/	١C) A	T	ΕI)	E١	ЛI	S	S	0	Ν	S	DA		S	H						10	REV df4.4
		FUT	A-03	363A C	ordu	ess l	lead	set fr	or X.I	Box													Wo	rk O	rder:	LAR	T0106		<i>"</i> /2004
Ser	rial Nu	mber:	EMO	; #1	- or un	0331	Icau	30110	// / -1	507														1 1	Date:	10/2	2/04		
	Cust	tomer:	Loa	itech.	Inc.																		ſem	pera	ture:	73			
	Atte	ndees	Non	e																			I	lumi	idity:	42%			
Cu	ist. Re	f. No.:		-																	Ba	rome	tric	Pres	sure	30.0	1		
	Test	ed by:	Holl	y Ashl	kann	ejha	d								Р	ower	r: B	attery						Job	Site:	EV0'	1		
TEST SP	PECIF	ICAT	IONS															, i											
S	pecific	cation:	FCC	15.24	7(c)	Spur	ious	Radi	ated	Emi	ssio	ns												١	fear:	2003	;		
	М	ethod:	ANS	61 C63.	4																			١	/ear:	2001	í –		
SAMPLE	E CAL	_CUL/	ATIOI	NS																									
Radiat	ted Em	issions	Field	Strength	n = Me	asure	d Leve	el + Ant	enna I	actor	+ Ca	ble Fa	ctor -	Am	plifier	Gain +	+ Dis	tance A	djustm	ent Factor	+ Exter	mal Att	enua	ation					
Conduct	ted Em	issions	Adjus	ted Leve	el = Me	easure	d Lev	el + Tra	ansduo	cer Fa	ctor +	Cable	e Atte	nuat	tion Fa	actor +	- Exte	ernal Att	enuato	r									
COMME	NTS																												
Head-set i	n stan	d-alone	confi	guration	1																								
FUT OP	FRAT			s																									
Transmitti	ina Blu	etooth	High (Channel	1																								
	5		5																										
	IONS	FRO		ST ST/		RD																							
No deviati	ions.																												
RESULT	ſS																									Run	#		
Pass																												3	
Other																													
																					1	1		1	1)			
																			1	Lu	2/2	hr	in	VL	\sim				
																			4	10 0	//							_	
																						Tes	ted	By:					
80.0	1																												
	l r				_		-			_		_		-	_				-					-					
70.0	-													_										_					
60.0	++						_																	_				_	
00.0																													
	1 -						_							_															
50.0																													
50.0		*																											
		1 × 1																											
40.0	I I																												
40.0	T																												
20.0																													
30.0																													
00.0																													
20.0																													
100																													
10.0																												_	
0.0	+					-							+			-						1						\neg	
0.	000		5000	.000	10	0000	.000	1	5000	.000)	2000	0.00	00	25	5000	.00	03	0000	.000	3500	0.00	0	40	000.	000	450)00.	000
			1				1		1			1		-,	Evt	ernal			1		Die	tance	Т					Con	inared to
F	rea		Am	plitude	Fa	actor		Azimuth	n l	Heid	ght	Dis	stance	e	Atten	uatior	n	Polarity		Detector	Adju	stment		Adjus	sted	Spec	c. Limit	001	Spec.
0	MHz)		(d	BuV)	(dB)	((degrees	s)	(met	ers)	(m	eters)	(c	iB)		,			(dB)		dBu\	//m	dBi	uV/m		(dB)
	248	33.500		12.4		30.	2	304	1.0		1.2	•	1	0.1		0.	0	H-Hori	1	AV	<u> </u>	-9.	5		33.1		54.0		-20.9
	248	33.500		12.1		30.	2	207	7.0		1.0		1	0.1		0.	0	V-Horr	ı	AV		-9.	5		32.8		54.0		-21.2
	248	33.500		27.3		30.	2	207	7.0		1.0		1	0.1		0.	0	V-Horr	ı	PK		-9.	5		48.0		74.0		-26.0
	248	33.500		26.2		30.	2	304	1.0		1.2		1	0.1		0.	0	H-Hori	۱	PK		-9.	5		46.9		74.0		-27.1

N	ORTHWES	T				R	R A			47		- [)	E	M	18	55	SI	01	15	5	D	A	ΓΑ		Sł	-16		Ī					REV df4.4 10/22/2004
		EUT:	A-0	363A	Cor	dles	ss H	lead	set	for 2	х-в	ox																Wor	k Or	rder:	LAB	T010	6	
S	erial Nu	mber:	EMO	C #1																									D	Date:	10/2	2/04		-
	Cus	tomer:	Log	itech	ı, Inc	.																					Т	emp	erat	ture:	73			
	Atte	ndees	Nor	ie																								H	umi	dity:	42%			
	Cust. Re	ef. No.:			hka		le e el										1			Dett					_	Baro	ome	tric F	res	sure	30.0	1		
TEST	SPECIE			IY AS	пка	nnej	nao											PC	ower:	вап	ery								aol	Site:	EVU	1		
TEOT (Snecifi	ration.	ECC	. 15 :	247(c) Si	nuri	0115	Ra	diate	d F	mis	sion	15															Y	ear.	2003	2		
	M	ethod:	ANS	SI C6	3.4	0,01	pun	000	Ttu	aiatt																			Ý	ear:	2001	<u> </u>		
SAMP	LE CAI	CUL	ATIO	NS																														
Rad Condu COMM Head-se	liated Em ucted Em IENTS et in simu	issions: issions: iltaneo	: Field : Adjus us tra	Stren sted Le	gth = evel = mode	Meas Mea: with	sured sured n Log	Leve d Lev gitech	el + A el + T h Blu	ntenr Trans Ietool	ha Fa duce th De	r Fac	+ Cat tor +	ole Fa Cabl	actor le Att	r - Ar tenu	mplif atior	ier G n Fac	ain + I ctor + E	Distan Extern	ice Ai al Att	djust tenua	ment ator	Facto	r + E:	xterna	al Att	enua	tion					
EUT O	PERA1		MODI	ES	nol																													
		EPOI	nign A TE	Chan		DAE																												
No devia	ations.	TROI	W IE	তা ১	TAN	DAF	ΥD.																											
RESU	LTS																														Run	#		
Pass																																	4	
Other																						2	4	li	, ,	A	ر Test	ied E	A By:	2	7			
	80.0	1																											<i>.</i>					7
															-																	+++	-	†
	70.0	+					+																										-	-
	60.0																																	
	00.0																																	1
								_		_		_			_		_											_				+++	_	+
	50.0																																	_
																		\$																
<u>ا</u>																																		
_ `	40.0	-						_							-																	_	-	-
8																																		
0																																		
	30.0																																	-
	20.0																																	_
	10.0	-						_							-																		-	-
	0.0	+	-			-																	-						_		+			-
	248	3.000	2	483.	100	24	483	.200)	248	3.30	00	24	83.4	400		248	33.5	500	248	33.6	00	24	183.7	700	2	483	.800)	248	3.900	02	2484	4.000
																	N	/H	z															
	Free		۸m	nlitud		Fac	tor		۵zim	utb	1	Heid	nt		istan	ICP.	A 4	Exter	rnal	D,	larit	,	Def	actor		Dista	nce		dive	ted	Sno	c limit		ompared to
	(MHz)		Aili (d	ipinuute IBuV)	~	dE	3)	(degre	es)	(mete	rs)	(n	neter	rs)		dE)	3)	r'(nanty	'	Del	ອບເປເ		dE) (dE	11011L 3)		dBuV	/m	dB	uV/m	·	(dB)
L	248	33.500	, <u>(</u> °	13	.2	(, 30.2	2	1	68.0	. `		1.0	, (A		1.0)	(, 0.0	H-	Hor	n	A	١V		,	-9.5	5	:	33.9		54.(5	-20.1
	248	33.500)	12	.2		30.2	2	1	65.0			1.2			1.0)		0.0	V-	Hori	n	ļ	Ŵ			-9.5	5		32.9		54.0	0	-21.1
	248	33.500)	27	.3		30.2	2	1	68.0			1.0			1.0)		0.0	H-	Hor	n	F	ΡK			-9.5	5	4	48.0		74.0	D	-26.0
	248	33.500)	26	.1		30.2	2	1	65.0			1.2			1.0)		0.0	V-	Hori	n	F	٩K			-9.5	5	4	46.8		74.0	0	-27.2

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Low
Mid
High

Operating Modes Investigated: No Hop

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated:

120 VAC, 60 Hz.

Other Settings Investigated: Stand-alone mode

Software\Firmware Applied During Test									
Exercise software	N/A	Version	N/A						
Description									
The system was tested using special firmware developed to test all functions of the device during the test.									

EUT and Peripherals											
Description	Manufacturer	Model/Part Number	Serial Number								
EUT - Cordless Headset for XBox	Logitech, Inc.	A-0363A	EMC #1								
AC/DC adaptor	Logitech, Inc	AU055V150T	None								

Cables											
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2						
DC Leads	No	1.8	PA	AC/DC adaptor	Cordless Headset for XBox						
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.											

Measurement Equipment					
Description	Manufacturer	Model	Identifier	Last Cal	Interval
LISN	Solar	9252-50-R-24-BNC	LIN	12/16/2003	13 mo
High Pass Filter	TTE	H97-100k-50-720B	HFC	02/01/2004	13 mo
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	12/23/2003	13 mo
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	12/23/2003	13 mo
Spectrum Analyzer Display	Hewlett Packard	85662A	AALD	12/23/2003	13 mo

Test Description

<u>Requirement:</u> Per 47 15.207(d), if the EUT is connected to the AC power line indirectly, obtaining its power from another device that is connected to the AC power line, then it should be tested to demonstrate compliance with the conducted limits of 15.207.

Configuration: The EUT will be powered from a device that could be connected to the AC power line. Therefore, the measurements were made on the device used to power the EUT. The AC power line conducted emissions were measured with the EUT operating at the lowest, the highest, and a middle channel in the operational band. The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.4-1992.

Completed by:
Holy Arlight

		sт			0	N	DU	C1	ED	EM	IS	SI	0	NS	D	A٦	ra s	SHE	ET		1	REV df4.4)/22 <u>/2004</u>
		EUT:	A-036	3A Co	rdless	Head	set fo	r X-B	оx									Wo	rk Order	LABT010	6	
	Serial N	umber:	EMC #	¥1 vch In	<u> </u>													Tom	Date	10/22/04		
	Atte	endees:	None	, in	0.													H	lumidity	: 42%		
	Cust. R	ef. No.:		A - I- I		!						_	40			_	Baro	metric	Pressure	30.01		
TEST	Tes	sted by:	Holly	Ashka	nnejh	ad						Power	: 12	OVAC,	60H	z			Job Site	EV01		
	Specif	ication:	FCC 1	5.207	AC Po	werlin	ne Cor	nduct	ed Emis	ssions									Year	2004		
SAME		Aethod:		C63.4															Year	2003		
Ra	diated Er	missions:	Field St	rength =	Measur	ed Leve	el + Ante	nna Fa	ctor + Cal	ble Factor - A	mplifi	er Gain +	- Dista	ance Adj	ustme	nt Fact	or + Externa	al Attenua	ation			
Cond	ducted Er	nissions:	Adjuste	d Level :	= Measu	red Lev	el + Tra	nsduce	r Factor +	Cable Atten	uation	Factor +	Exte	rnal Atte	nuato	r						
EUT (DPERA	nd-alone	configu	iration																		
Transm	nitting Bl	Letooth	Mid Cha	Innel		1																
No dev RESU	iations.	STROM	TLOI	JIAN													Line			Run #		
Pass																		L1			1	
Othor		_											T									
Other															t	fol	y A	ling	1	2	_	
<u> </u>	80 г								1				-					resteu	Бу.			_
	70																					
	70																					
	60								-													
	50																				_	_
dBuV	40		.ilh	Ոսե		11			_													_
	30			W	al at ki						I. Jahr	bile.	1.64	ور المربعات	معاماته	ار بياليا	(The Fills	Pd Annellah	k ht			_
	20		√ ^{II} 1	WI IP	Man	K ulinik	WWW	hiph		tr And Manufa	ırdd.	h. bel insata	for the		. D.L. work		1919-booten-s					
	10																					
	10																					
	0								4													
	0.	1							1		N	lHz				10						100
	Freq (MHz))	Amplit (dBu	tude IV)				Tra	ansducer (dB)	Cable (dB)	E Ati	External tenuation (dB)	1		(bla (P	Detector nk equal pe K) from scar	r aks n)	,	Adjusted dBuV	Spec. Limit dBuV	Cor	npared to Spec. (dB)
		0.438		17.8					0.0	0.1	2	20.0	2						38.0	47.	1	-9.1
		0.416 0.429		18.2 17.6					0.0 0.0	0.:	∠ 2	20.0))						38.4 37.8	+ 47.5 3 47 1	3	-9.1 -9.5
		0.443		17.1					0.0	0.1	2	20.0	5						37.3	3 47.0)	-9.7
		0.410		16.2					0.0	0.1	2	20.0	0						36.4	47.6	5	-11.2
		0.453		13.1 14.7					0.0	0.1	∠ 2	20.0 20.0	5						35.3 34,9	9 46.8 9 46.1	5 7	-11.5 -11.8
		0.421		14.7					0.0	0.3	2	20.0	0						34.9) 47.4	1	-12.5
		0.188		21.5					0.0	0.	1 ว	20.0	D D						41.6	54.	1	-12.5
		0.255 0.435		10.4 13.6					0.0	0.1	∠ 2	20.0 20.0	5						38.6 33.8	51.6 3 47.2	2	-13.0
		0.216		19.2					0.0	0.	1	20.0	C						39.3	3 53.0)	-13.7
		0.180		20.4					0.0	0.	1	20.0	0						40.5	5 54.5	5	-14.0
		0.234		18.8					0.0 0.0	0.3	∠ 1	20.0	5						38.2	52.3 53 (3	-14.1 -14.4
		0.261		16.8					0.0	0.1	2	20.0	0						37.0) 51.4	1	-14.4
		0.243		17.2					0.0	0.:	2	20.0	0						37.4	52.0)	-14.6
		0.286		15.8 19.1					0.0	0. 0.	י 1	20.0 20.0)						35.9 39.2	50.6 2 53.9)	-14.7 -14.7

		ST		(CO	N	כו	JC	C	ED	E N		SSIC	D	NS	D	A	ΓΑ S	SHE	EET	•		REV df4.4 10/22/2004
		EUT:	A-036	63A Co	rdless	Head	set	for)	(-Bo	x									Wo	rk Order	LABT01)6	
	Serial N	umber:	EMC	#1	_														T	Date	10/22/04		
	Atte	endees:	None	ecn, m	U.														lein	Humidity	: 42%		
	Cust. R	ef. No.:																Baro	metric	Pressure	30.01		
тгет	Tes	ted by:	Holly	Ashka	nnejh	ad							Power:	: 12	OVAC,	60H	z			Job Site	: EV01		
IESI	Specif	ication:	FCC '	15.207	AC Po	werli	ne C	cond	ucte	ed Emis	sions									Year	2004		
	N	lethod:	ANSI	C63.4																Year	2003		
SAMP		LCULA		S transith	Maggin	od Lou		ntonn	а Га	atar I Cal	la Fastar	A	nlifier Cain I	Diel	ionoo Adii		nt Foot	er i Evterne	Attonu	ation			
Cond	ducted Er	nissions:	Adjuste	ed Level	= Measu	red Lev	el + 1	Transo	a ra ducer	· Factor +	Cable Atter	nuat	tion Factor +	Exte	ernal Atter	isime nuato	rii Faci	UI + EXLEITIE	II Allenua	auon			
COMI Head-s	MENTS et in sta	nd-alone	config	uration																			
EUT (Transm	OPERA	TING M uetooth	IODES Mid Cha	S annel																			
DEVI/ No dev	ATIONS iations.	S FROM	1 TES	T STAN	IDARI	כ																	
RESU	ILTS																	Line			Run #	_	
Pass									_										L2		I	2	
Other																Ŧ	fol	y A	ling	N	2		
	80 -																	1	Tested	By:			
	00																						
	70																						
	60																						
	50																						
dBuV	40		u		.																		
	30			$\mathbb{N}_{\mathbb{N}}$	₩				Į.	hmm	withmand	144	state and the state of the	in.		M				()			_
	20		11	r · 11		n a tiell		rit iti															
	10																						
	0																						
	0.	1								1			MHz				10						100
	Freq (MHz)	I	Ampl (dB	itude uV)					Tra	insducer (dB)	Cable (dB)		External Attenuation (dB)			(bla [F	Detector nk equal pe K] from scar	r aks n)		Adjusted dBuV	Spec. Lim dBuV	it	ompared to Spec. (dB)
		0.425		18.3			_		-	0.0	0).2	20.0)		_				38.5	5 47	4	-8.9
		0.441		17.9 18,2						0.0	0	.∠).2	∠0.0 20.0	,)						38.1 38.4	47. 47	5	-8.9 -9.1
		0.444		17.5						0.0	0).2	20.0)						37.7	47	0	-9.3
		0.452		17.3						0.0	0).2	20.0)						37.5	5 46	8	-9.3
		0.398		17.1 15.1						0.0 0.0	0).2).2	20.0 20.0))						37.3	5 47. 3 46	9	-10.6 -10 7
		0.403		16.8						0.0	0).2	20.0)						37.0) 47.	8	-10.8
		0.607		14.2						0.0	0).2	20.0)						34.4	46	0	-11.6
		0.621		14.1 18 5						0.0	0).2	20.0)						34.3	3 46. S 50	0 4	-11.7 -11 9
		0.294		14.0						0.0	0	,.ı).2	20.0	,)						34.2	2 46	0	-11.8
		0.626		13.9						0.0	0).2	20.0)						34.1	46	0	-11.9
		0.469		14.4						0.0	0).2	20.0)						34.6	6 46	5	-11.9
		0.564		13.8 13.6						0.0 0.0	0).2)2	20.0))						34.0	y 46. 3 46	0	-12.0 -12.2
		0.299		17.8						0.0	0).1	20.0)						37.9	9 50	3	-12.4
		0.578		13.4						0.0	0).2	20.0)						33.6	6 46	0	-12.4
		0.638		13.3						0.0	0).2	20.0	J						33.5	4 6	0	-12.5

		ST		(0	NC)U	C1	ΓED) EM	IS	SIC	ON	S I	D/	\T	A S	HE	ET		REV df4.4 10/22/2004
	-11/0	EUT:	A-036	3A Cor	dless	Head	set fo	r X-B	ox									Work	Order:	LABT0106	
	Serial N	umber:	EMC #	1															Date:	10/22/04	
	Cus	stomer:	Logite	ch, Inc	c													Temp	erature:	73	
	Atte	ef. No	None														Baron	Hu netric P	imidity:	42% 30.01	
	Tes	ted by:	Holly	Ashkai	nnejha	ad						Power:	: 120V/	AC, 6	OHz		Buron	J	ob Site:	EV01	
TEST	SPECI	FICATI	ONS																		
	Specifi	cation:	FCC 1	5.207 / C63 4	AC Po	werlin	e Cor	nduc	ted Emi	ssions									Year:	2004	
SAMF	LE CA		TIONS	500.4															rear.	2000	
Ra	diated En	nissions:	Field Str	ength =	Measur	ed Leve	+ Ante	nna F	actor + Ca	ble Factor - A	mplifie	er Gain +	Distance	Attopu	tment	Factor ·	+ External	Attenuati	on		
COMI Head-s	MENTS et in star	nd-alone	configu	ration	Weasu		r Ha	IISUUC	er Factor 4	Cable Attent	allon	Factor	External	Allenu	ator						
EUT (OPERA	TING N	IODES																		
Transm	hitting Bl	EPON	High Chi	annel	DARD																
No dev RESU	iations.	FROM	TEST	STAN	DARL												Line			Run #	
Pass																		Ν			3
Othor													1								
Other															1	lis	A	ling	N	2	
														-	A	0	Te	ested B	y:		
	80																				
	70								_												
	60																				
	00		$ \rightarrow $			\searrow															
	50																				
dBu	40		1 .	1.1.1	н.	.															
	30								1 mm	namaland	ulifue	a dha abbh	المعارية ال	والواريان	11	Adda	International	ninenti			
	20		VU -1	ı alı, ahla	. MMuu		per de	11-17-1.		An alatha i	44° • • 1	aand moo	and the second sec	lie of the s		line k m					
	10																				
	10																				
	0 ⊢ 0.1	1							1						1	0					100
											Μ	lHz									
	Freq		Amplit	ude				т	ansducer	Cable	E Att	External			De	ector		A	diusted	Spec Limit	Compared to
	(MHz)		(dBu	V)					(dB)	(dB)		(dB)			(blank e [PK] f	qual peaks om scan)			dBuV	dBuV	(dB)
		0.425		19.7					0.0	0.2	2	20.0)						39.9	47.3	-7.4
		0.414		18.3 17 4					0.0	0.2	2 2	20.0)						38.5	47.6	-9.1
		0.559		15.1					0.0	0.2	2	20.0)						35.3	46.0	-10.7
		0.460		15.3					0.0	0.2	2	20.0)						35.5	46.7	-11.2
		0.472		14.9 16 1					0.0 0.0	0.2	2	20.0)						35.1	46.5 47 0	-11.4
		0.402		15.9					0.0	0.2	2	20.0)						36.1	47.8	-11.7
		0.215	:	20.9					0.0	0.	1	20.0)						41.0	53.0	-12.0
		0.682		13.7					0.0	0.2	2	20.0)						33.9	46.0	-12.1
		0.421		15.0 18.5					0.0	0.2	∠ 2	20.0 20.0	,)						38.7	47.4 51 0	-12.2
		0.532		13.4					0.0	0.2	2	20.0)						33.6	46.0	-12.4
		0.247		19.2					0.0	0.2	2	20.0)						39.4	51.9	-12.5
		0.435		14.2 21.2					0.0	0.2	2	20.0)						34.4 ⊿1 2	47.2 54 1	-12.8 -12.9
		0.671		12.9					0.0	0.2	2	20.0	,)						33.1	46.0	-12.0
		0.383		15.1					0.0	0.2	2	20.0)						35.3	48.2	-12.9
		0.520		12.8					0.0	0.2	2	20.0)						33.0	46.0	-13.0

		ат 			CO	NC	DU	C٦	ſED) EM	IIS	SIC	DN	IS	D	AT	A S	HE	ET		REV df4.4 10/22/2004
		EUT:	A-036	3A Co	rdless	Head	set fo	r X-B	ох									Wor	k Order:	LABT010	6
;	Serial N Cus	umber: tomer:	EMC :	#1 ech, In	c.													Temp	Date: erature:	10/22/04 73	
	Atte	ndees:	None	,													_	Ĥ	umidity:	42%	
	Cust. R Tes	ef. No.: ted bv:	Holly	Ashka	nneih	ad						Power:	120	VAC.	60H	z	Baror	netric P J	Pressure lob Site:	30.01 EV01	
TEST	SPECI	FICATI	ONS											,,							
	Specifi	cation:	FCC 1	15.207 C63 4	AC Po	werlin	ie Cor	nduct	ed Emi	ssions									Year:	2004	
SAMF	PLE CA	LCULA	TION	5															reur.	2000	
Ra	diated En	nissions:	Field St	rength =	Measur	ed Leve	I + Ante	nna Fa	actor + Ca	ble Factor - A	Amplifi	ier Gain +	Distar Extern	nce Adji	ustme	nt Factor	+ External	Attenuat	tion		
COM Head-s	MENTS et in star	id-alone	configu	ration	- Weasu	Ieu Leve	art IIa	ISCUCE	I Factor +	Cable Atten	luation	I Factor +	Extern	iai Allei	luator						
EUT	OPERA	TING M	IODES	8																	
Transn	nitting Bl	uetooth	High Ch	annel																	
DEVI/ No dev RESU	ATIONS iations. ILTS	FROM	TEST	I STAN	IDARI)											Line			Run #	
Pass																		L1			4
Othor													.								
Other															4	foly	A	ling	N	7	
															1	0	Т	ested B	By:		
	80																				
	70								-												
	60																				
	50																				
>	50					\searrow															
dBu	40			Lida	ul																
	30		M	١M	MI.	سالي	ا المر و المعا	الملالمين	harlow	Maria	N M	ANNIN MAR	ulwww	Hala da	W M	ni en lit.	an de Addilla De La dara de J				
	20		w (14° 4	1 1	hal a linta.	, and the set														
	10																				
	0																				
	0.1	1							1							10					100
											N	/Hz									
	Freq		Ampli	tude				Tr	ansducer	Cable	At	External tenuation			(bla	etector		А	djusted	Spec. Limit	Compared to Spec.
	(MHZ)		(UDI	10)					(0D)	(ub)		(ub)			[PI	() from scan)			abav	abav	(ub)
		0.308		16.1					0.0	0.	.1	20.0	1						36.2	50.0	-13.8
		0.209		12.0					0.0	0. 0.	.2	20.0 20.0							39.4 32.2	53.3 46.7	-13.8 -14.5
		0.246		17.2					0.0	0.	.2	20.0	1						37.4	51.9	-14.5
		0.257		16.8 17.7					0.0 0.0	0. 0	.2	20.0 20.0	1						37.0 37.9	51.5 52 5	-14.5 .14.7
		0.304		15.1					0.0	0.	.1	20.0							35.2	50.1	-14.9
		0.268		15.9 15.3					0.0	0. 0	.2 1	20.0	i i						36.1 35.4	51.2 50 6	-15.1
		0.484		10.6					0.0	0. 0.	.2	20.0							30.8	46.3	-15.5
		0.342		13.2					0.0	0.	.1	20.0	1						33.3	49.2	-15.8
		0.456 0.329		10.7 13.4					0.0 0 0	0. N	.2	20.0 20 0							30.9 33.5	46.8 49 F	i -15.9 i -15.9
		0.473		10.3					0.0	0.	.2	20.0							30.5	46.5	-16.0
		0.264		15.1					0.0	0.	.2	20.0	1						35.3	51.3	-16.0
		0.236		10.0 9.3					0.0 0.0	0. 0.	.∠ .3	20.0 20.0							36.2 29.6	52.2 46.0	16.0 -16.4
		0.293		13.7					0.0	0.	.1	20.0	1						33.8	50.4	-16.6
		4.557		8.2					0.0	0.	.7	20.0)						28.9	46.0	-17.1

		ST			CO	N	C	JC	TEI) El	M	ISS	IC	DNS	S [)/	AT	A S	HE	ET		1	REV df4.4 0/22/2004
		EUT:	A-036	3A Co	rdless	Head	lset f	or X-I	Box										Wor	k Order	LABT010	6	
:	Serial N	umber:	EMC	#1															Tomr	Date	10/22/04		
	Atte	endees:	None	ecn, m	U.														H	lumidity	42%		
	Cust. R	ef. No.:																Baror	netric I	Pressure	30.01		
TEST	Tes	sted by:		Ashka	nnejh	ad						Pow	/er:	120VA	C, 60	Hz				Job Site:	EV01		
LOT	Specif	ication:	FCC '	15.207	AC Po	werli	ne Co	onduc	cted Em	issions										Year	2004		
	N	lethod:	ANSI	C63.4																Year	2003		
SAME	diated Er	LCULA	Field St	S trenath =	Measu	red Leve	əl + An	itenna l	Eactor + C	able Eacto	r - Ar	nnlifier Gai	n + D	istance /	Adiustr	nent	Eactor -	+ External	Attenua	tion			
Cond	ducted Er	nissions:	Adjuste	d Level	= Measu	ired Lev	el + Ti	ransduo	cer Factor	+ Cable At	ttenua	ation Facto	r + E:	xternal A	ttenua	tor	- doto:	External	7	aon			
COMI Head-s	MENTS et in sta	nd-alone	configu	uration																			
EUT (Transm	DPERA	TING N luetooth	IODES	annel																			
DEVI/ No dev	ATIONS iations.	6 FROM	I TEST	T STAN	NDARI	נ																	
RESU Pass	ILTS																	Line	11		Run #	5	
																					·	_	
Other	•														9	4	oly	A	ling	N	7	_	
	80 -																	Т	ested E	By:			
	70																						
	60																						
	50													_									
dBuV	40			1	11.	.dl.																	
	30						When.	ار ارد		w m	hwm	monet	win	nya ang fang	m,10							_	
	20			. da i ha	•		n di antali	. Technologie														_	
	10																						
	0																						
	0.	1							1			MHz				1	0						100
	Freq (MHz))	Ampli (dBi	tude JV)				٦	Fransduce (dB)	r Cabl (dB	le 5)	Externa Attenuat (dB)	al ion		(De blank ([PK] f	tector qual peaks rom scan)		A	Adjusted dBuV	Spec. Limit dBuV	Co	mpared to Spec. (dB)
		0.434		17.1					0.	0	0.2	2	0.0							37.3	47.	2	-9.9
		0.416		15.7					0.	0	0.2	2	0.0							35.9	, 47.4) 47.5	5	-10.4
		0.445		14.8					0.	0	0.2	2	0.0							35.0	47.0)	-12.0
		0.402		15.1 20 8					0.	U N	0.2	2	0.0 0 0							35.3 ⊿∩ 0	47. 54	3 1	-12.5
		0.302		16.0					0.	0	0.1	2	0.0							36.1	50.1	2	-14.1
		0.289		16.2					0.	0	0.1	2	0.0							36.3	50.	6	-14.2
		0.395		13.5 12 P					0.	U N	0.2	2	0.0 0 0							33.7	48.0	J	-14.3
		0.410		12.0 18.5					0.	0	0.2	2	0.0							38.6	, 47.0 5 53.3	3	-14.0 -14.7
		0.282		15.9					0.	D	0.1	2	0.0							36.0	50.	7	-14.7
		0.163		20.5					0.	0	0.1	2	0.0							40.6	55.	3	-14.7
		0.183 0.319		19.5 14.4					0.	0 D	0.1	2	0.0 0.0							39.6 34 F	54.3 5 <u>4</u> 0	5 7	-14.7 -15.2
		0.156		20.1					0.	- D	0.1	2	0.0							40.2	2 55.	7	-15.5
		0.150		20.1					0.	0	0.1	2	0.0							40.2	56.	2	-15.8
		0.330 4.057		13.5 9.5					0. 0.	0	0.1 0.6	2	0.0 0.0							33.6 30.1	9 49. 46.0))	-15.8 -15.9

ł		ST		CO	ND	UC	T	ED	EM	ISS	IC	ONS	D	AT	A SH	IEET		REV df4.4 10/22/2004
		EUT:	A-0363A C	ordless I	leadse	t for)	X-Box									Work Order:	LABT010	5
5	Serial N	umber:	EMC #1													Date	10/22/04	
	Cus	stomer:	Logitech,	nc.											T	emperature	73	
	Atte Cust. R	endees:	None												Baromet	ric Pressure	42% 30.01	
	Tes	sted by:	Holly Ashl	annejha	d					Pov	ver:	120VAC,	60H	z	Baromet	Job Site:	EV01	
TEST	SPECI	FICATI	ONS															
	Specif	ication:	FCC 15.20	7 AC Pov 1	verline	Cond	lucted	Emis	sions							Year	2004	
SAMP	LE CA	LCULA	TIONS	•												rear.	2003	
Ra	diated Er	missions:	Field Strength	= Measured	d Level +	Antenr	na Facto	or + Cab	le Factor - A	mplifier Ga	in + [Distance Adj	ustme	nt Factor	+ External Atte	enuation		
Cond	lucted Er	missions:	Adjusted Leve	I = Measure	d Level +	 Trans 	ducer F	actor +	Cable Attenu	ation Facto	or + E	External Atte	nuato					
Head-s	et in sta	nd-alone	configuration	l														
EUT (PERA		IODES															
Transm	nitting BI	luetooth	Low Channel															
DEVIA No devi	ATIONS	S FROM	I TEST STA	NDARD														
RESU	LTS														Line		Run #	
Pass																N		6
Other		_									_	-						
Other															A /	11	2	
													1	Lle	Au	mi		
													P	00		/		_
															leste	ed By:		
	80 -																	
	70																	
	60																	
												┛╵╵						
	50																	
	50																	
≥																		
Bu	40		li a								_							
σ			i i i i i	la l	hh.													
	30						. 1								h			
			M YIII	1"Lank		b 1	س الما ال	my	whent	and the states of	WW	With With With			Transmitting and	L MILL		
	20		un la c		ere l'inte	1 1 1 1 1	at the ball											
	20																	
	10																	
	0																	
	0.	1					1							10				100
										N411-	_							
											-							
			1				r –			Eutore			-		1		1	Compared to
	Freq		Amplitude				Trans	ducer	Cable	Attenua	tion		[Detector		Adjusted	Spec. Limit	Spec.
	(MHz))	(dBuV)				(d	B)	(dB)	(dB))		(bla [P	nk equal peaks K] from scan)		dBuV	dBuV	(dB)
		0 4 4 0	17.6					0.0	0.3		20.0					37.8	16.0	-0.1
		0.475	15.8					0.0	0.2	2 2	20.0					36.0	40.9	-10.4
		0.521	14.4					0.0	0.2	2 2	20.0					34.6	46.0	-11.4
		0.554	13.9					0.0	0.2	2 2	20.0					34.1	46.0	-11.9
		0.499	13.4 18.0					0.0	0.2	2 2 9	20.0 20.0					33.6	46.0 50.5	-12.4
		0.210	20.3					0.0	0.1	1 2	20.0					40.4	53.2	-12.8
		0.757	12.8					0.0	0.2	2 2	20.0					33.0	46.0	-13.0
		0.250	18.5					0.0	0.2	2 2	20.0					38.7	51.8	-13.1
		0.245 0.512	18.6					0.0	0.2	2 2	20.0					38.8 32 8	51.9 46.0	-13.1
		0.311	16.5					0.0	0.1	1 2	20.0					36.6	49.9	-13.3
		0.271	17.6					0.0	0.2	2 2	20.0					37.8	51.1	-13.3
		0.525	12.3					0.0	0.2	2 2	20.0					32.5	46.0	-13.5
		0.506	12.1 10.1					0.0	0.2	2 2 9	20.0 20.0					32.3	46.0	-13.7
		0.222	18.8					0.0	0.1	1 2	20.0					38.9	52.7	-13.8
		0.263	17.3					0.0	0.2	2 2	20.0					37.5	51.4	-13.9
		0.241	18.0					0.0	0.2	2 2	20.0					38.2	52.1	-13.9

BLUETOOTH APPROVALS

FCC Procedure Received from Joe Dichoso on 2-15-02

The following exhibit indicates the FCC Spread Spectrum requirements in Section 15.247 for devices meeting the Bluetooth Specifications in the 2.4 GHz band as of February 2001 operating in the USA. The purpose of this exhibit is to help expedite the approval process for Bluetooth devices. This exhibit provides items that vary for each device and also provides a list of items that are common to Bluetooth devices that explains the remaining requirements. The list of common items can be submitted for each application for equipment authorization. This exhibit only specifies requirements in Section 15.247, requirements in other rule Sections for intentional radiators such as in Section 15.203 or 15.207 must be also be addressed. A Bluetooth device is a FHSS transmitter in the data mode and applies as a Hybrid spread spectrum device in the acquisition mode.

For each individual device, the following items, 1-7 will vary from one device to another and must be submitted.

- 1) The occupied bandwidth in Section 15.247(a)(1)(ii).
- 2) Conducted output power specified in Section 15.247(b)(1).
- 3) EIRP limit in Section 15.247(b)(3).
- 4) RF safety requirement in Section 15.247(b)(4)
- 5) Spurious emission limits in Section 15.247(c).
- 6) Processing gain and requirements for Hybrids in Section 15.247(f) in the acquisition mode.
- 7) Power spectral density requirement in Section 15.247(f) in the acquisition mode.

For all devices, the following items, 1-12, are common to all Bluetooth devices and will not vary from one device to another. This list can be copied into the filing.

1 Output power and channel separation of a Bluetooth device in the different operating modes:

The different operating modes (data-mode, acquisition-mode) of a Bluetooth device don't influence the output power and the channel spacing. There is only one transmitter which is driven by identical input parameters concerning these two parameters.

Only a different hopping sequence will be used. For this reason, the RF parameters in one op-mode is sufficient.

2 Frequency range of a Bluetooth device:

The maximum frequency of the device is: 2402 - 2480 MHz.

This is according the Bluetooth Core Specification V 1.0B (+ critical errata) for devices which will be operated in the USA. Other frequency ranges (e.g. for Spain, France, Japan) which are allowed according the Core Specification must **not be** supported by the device.

3 Co-ordination of the hopping sequence in data mode to avoid simultaneous occupancy by multiple transmitters:

Bluetooth units which want to communicate with other units must be organized in a structure called piconet. This piconet consist of max. 8 Bluetooth units. One unit is the master the other seven are the slaves. The master co-ordinates frequency occupation in this piconet for all units. As the master hop sequence is derived from it's BD address which is unique for every Bluetooth device, additional masters intending to establish new piconets will always use different hop sequences.

4 Example of a hopping sequence in data mode:

Example of a 79 hopping sequence in data mode:

40, 21, 44, 23, 42, 53, 46, 55, 48, 33, 52, 35, 50, 65, 54, 67, 56, 37, 60, 39, 58, 69, 62, 71, 64, 25, 68, 27, 66, 57, 70, 59, 72, 29, 76, 31, 74, 61, 78, 63, 01, 41, 05, 43, 03, 73, 07, 75, 09, 45, 13, 47, 11, 77, 15, 00, 64, 49, 66, 53, 68, 02, 70, 06, 01, 51, 03, 55, 05, 04

5 Equally average use of frequencies in data mode and short transmissions:

The generation of the hopping sequence in connection mode depends essentially on two input values:

1. LAP/UAP of the master of the connection

2. Internal master clock

The LAP (lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP (upper address part) are the 24 MSB's of the 48 BD_ADDRESS. The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For synchronization with other units, only the offsets are used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5 µs. The clock has a cycle of about one day (23h30). In most case it is implemented as 28 bit counter. For the deriving of the hopping sequence the entire LAP (24 bits), 4 LSB's (4 bits) (Input 1) and the 27 MSB's of the clock (Input 2) are used. With this input values different mathematical procedures (permutations, additions, XOR-operations) are performed to generate the sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions, the Bluetooth system has the following behavior: The first connection between the two devices is established, a hopping sequence is generated. For transmitting the wanted data, the complete hopping sequence is not used and the connection ends. The second connection will be established. A new hopping sequence is generated. Due to the fact that the Bluetooth clock has a different value, because the period between the two transmission is longer (and it cannot be shorter) than the minimum resolution of the clock (312.5 μ s). The hopping sequence will always differ from the first one.

6 Receiver input bandwidth, synchronization and repeated single or multiple packets:

The input bandwidth of the receiver is 1 MHz.

In every connection, one Bluetooth device is the master and the other one is the slave. The master determines the hopping sequence (see chapter 5). The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally the type of connection (e.g. single or multi-slot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing is according to the packet type of the connection. Also, the slave of the connection uses these settings. Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence

7 Dwell time in data mode

The dwell time of 0.3797s within a 30 second period in data mode is independent from the packet type (packet length). The calculation for a 30 second period is a follows: Dwell time = time slot length * hop rate / number of hopping channels *30s Example for a DH1 packet (with a maximum length of one time slot) Dwell time = 625 μ s * 1600 1/s / 79 * 30s = 0.3797s (in a 30s period) For multi-slot packet the hopping is reduced according to the length of the packet. Example for a DH5 packet (with a maximum length of five time slots)

Dwell time = $5 * 625 \ \mu s * 1600 * 1/5 * 1/s / 79 * 30s = 0.3797s$ (in a 30s period) This is according the Bluetooth Core Specification V 1.0B (+ critical errata) for all Bluetooth devices. Therefore, all Bluetooth devices **comply** with the FCC dwell time requirement in the data mode.

This was checked during the Bluetooth Qualification tests.

The Dwell time in hybrid mode is approximately 2.6 mS (in a 12.8s period)

8 Channel Separation in hybrid mode

The nominal channel spacing of the Bluetooth system is 1Mhz independent of the operating mode.

The maximum "initial carrier frequency tolerance" which is allowed for Bluetooth is fcenter = 75 kHz.

This was checked during the Bluetooth Qualification tests (Test Case: TRM/CA/07-E) for three frequencies (2402, 2441, 2480 MHz).

9 Derivation and examples for a hopping sequence in hybrid mode

For the generation of the inquiry and page hop sequences the same procedures as described for the data mode are used (see item 5), but this time with different input vectors:

**For the inquiry hop sequence, a predefined fixed address is always used. This results in the same 32 frequencies used by all devices doing an inquiry but every time with a different start frequency and phase in this sequence.

**For the page hop sequence, the device address of the paged unit is used as the input vector. This results in the use of a subset of 32 frequencies which is specific for that initial state of the connection establishment between the two units. A page to different devices would result in a different subset of 32 frequencies.

So it is ensured that also in hybrid mode, the frequency is used equally on average. Example of a hopping sequence in inquiry mode:

48, 50, 09, 13, 52, 54,41, 45, 56, 58, 11, 15, 60, 62, 43, 47, 00, 02, 64, 68, 04, 06, 17, 21, 08, 10, 66, 70, 12, 14, 19, 23

Example of a hopping sequence in paging mode:

08, 57, 68, 70, 51, 02, 42, 40, 04, 61, 44, 46, 63, 14, 50, 48, 16, 65, 52, 54, 67, 18, 58, 56, 20, 53, 60, 62, 55, 06, 66, 64

10 Receiver input bandwidth and synchronization in hybrid mode:

The receiver input bandwidth is the same as in the data mode (1 MHz). When two Bluetooth devices establish contact for the first time, one device sends an inquiry access code and the other device is scanning for this inquiry access code. If two devices have been connected previously and want to start a new transmission, a similar procedure takes place. The only difference is, instead of the inquiry access code, a special access code, derived from the BD_ADDRESS of the paged device will be, will be sent by the master of this connection. Due to the fact that both units have been connected before (in the inquiry procedure) the paging unit has timing and frequency information about the page scan of the paged unit. For this reason the time to establish the connection is reduced.

11 Spread rate / data rate of the direct sequence signal

The Spread rate / Data rate in inquiry and paging mode can be defined via the access code. The access code is the only criterion for the system to check if there is a valid transmission or not. If you regard the presence of a valid access code as one bit of information, and compare it with the length of the access code of 68 bits, the Spread rate / Data rate will be 68/1.

12 Spurious emission in hybrid mode

The Dwell in hybrid mode is shorter than in data mode. For this reason the spurious emissions average level in data mode is worst case. The spurious emissions peak level is the same for both modes.