# Logitech, Inc.

## Z-5450 MN: S0181A Multimedia Speaker System

September 07, 2005

Report No. LABT0140

**Report Prepared By** 



www.nwemc.com 1-888-EMI-CERT

© 2005 Northwest EMC, Inc



#### Certificate of Test Issue Date: September 07, 2005 Logitech, Inc. Model: Z-5450 MN: S0181A Multimedia Speaker System

| Emissions                                                        |                 |           |      |  |  |
|------------------------------------------------------------------|-----------------|-----------|------|--|--|
| Specification                                                    | Test Method     | Pass      | Fail |  |  |
| FCC 15.247(a) Occupied Bandwidth:2005-04                         | ANSI C63.4:2003 |           |      |  |  |
| FCC 15.247(a)(1) Channel Spacing:2005-04                         | ANSI C63.4:2003 |           |      |  |  |
| FCC 15.247(a)(1) Dwell Time:2005-04                              | ANSI C63.4:2003 | $\square$ |      |  |  |
| FCC 15.247(a)(1) Number of Hopping Frequencies:2005-04           | ANSI C63.4:2003 |           |      |  |  |
| FCC 15.247(b) Output Power:2005-04                               | ANSI C63.4:2003 |           |      |  |  |
| FCC 15.247(d) Band Edge Compliance:2005-04                       | ANSI C63.4:2003 | $\square$ |      |  |  |
| FCC 15.247(d) Spurious Conducted Emissions:2005-04               | ANSI C63.4:2003 |           |      |  |  |
| FCC 15.247(d) Spurious Radiated Emissions:2005-04                | ANSI C63.4:2003 |           |      |  |  |
| FCC 15.207 Class B:2005-04 AC Powerline Conducted Emissions      | ANSI C63.4:2003 | $\square$ |      |  |  |
| FCC 15.107 Class B:2005-04 AC Powerline Conducted Emissions      | ANSI C63.4:2003 |           |      |  |  |
| FCC 15.109(g) (CISPR 22:1997) Class B:2005-04 Radiated Emissions | ANSI C63.4:2003 |           |      |  |  |

#### Modifications made to the product See the Modifications section of this report

#### Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400; Hillsboro, OR 97124 Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada.

| Approved By:                         |  |
|--------------------------------------|--|
| ADU.K.P                              |  |
| Greg Kiemel, Director of Engineering |  |

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.



| Revision<br>Number | Description | Date | Page Number |
|--------------------|-------------|------|-------------|
|                    |             |      |             |
| 00                 | None        |      |             |



**FCC:** Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

**NVLAP:** Northwest EMC, Inc. is recognized under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 89/336/EEC, ANSI C63.4, MIL-STD 461E, DO-160D and SAE J1113. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

**Industry Canada:** Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

**CAB:** Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

**TÜV Product Service:** Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories, available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0401C.

**TÜV Rheinland:** Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.









NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

**Technology International:** Assessed in accordance with ISO Guide 25 defining the general international requirements for the competence of calibration and testing laboratories and with ITI assessment criteria LACO196. Based upon that assessment, Interference Technology International, Ltd., has granted approval for specifications implementing the EU Directive on EMC (89/336/EEC and amendments). The scope of the approval was provided on a Schedule of Assessment supplied with the certificate and is available upon request.

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071 and R-1025, Irvine: C-2094 and R-1943, Newberg: C-1877 and R-1760, Sultan: R-871, C-1784 and R-1761).

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

> SCOPE For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/scope.asp











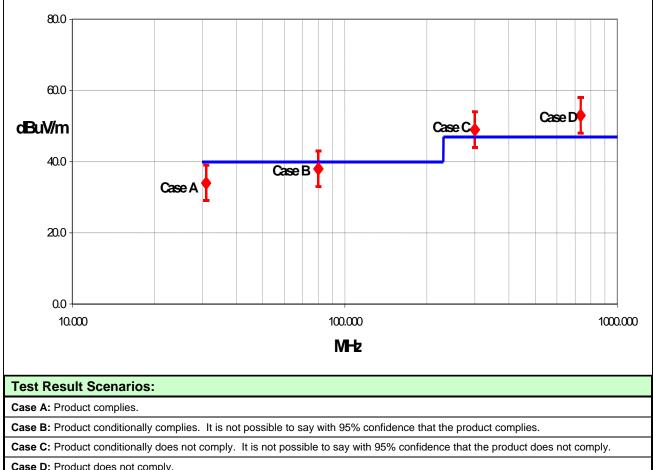
Revision 03/18/05

NEMKO





#### What is measurement uncertainty?


When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. The following statement of measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" value. In the case of transient tests (ESD, EFT, Surge, Voltage Dips and Interruptions), the test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements.

The following documents were the basis for determining the uncertainty levels of our measurements:

- "ISO Guide to the Expression of Uncertainty in Measurements", October 1993
- "NIS81: The Treatment of Uncertainty in EMC Measurements", May 1994
- "IEC CISPR 16-3 A1 f1 Ed.1: Radio-interference measurements and statistical techniques", December 2000

#### How might measurement uncertainty be applied to test results?

If the diamond marks the measured value for the test and the vertical bars bracket the range of + and measurement uncertainty, then test results can be interpreted from the diagram below.



Case D: Product does not comply.



| Radiated Emissions ≤ 1 GHz          |              | Value (               | dB)    |        |         |        |        |
|-------------------------------------|--------------|-----------------------|--------|--------|---------|--------|--------|
|                                     | Probability  | Probability Biconical |        | Log Pe | eriodic | D      | ipole  |
|                                     | Distribution | Ante                  | enna   | Ante   | enna    | An     | tenna  |
| Test Distance                       |              | 3m                    | 10m    | 3m     | 10m     | 3m     | 10m    |
| Combined standard                   | normal       | + 1.86                | + 1.82 | + 2.23 | + 1.29  | + 1.31 | + 1.25 |
| uncertainty <i>u<sub>c</sub>(y)</i> |              | - 1.88                | - 1.87 | - 1.41 | - 1.26  | - 1.27 | - 1.25 |
| Expanded uncertainty <b>U</b>       | normal (k=2) | + 3.72                | + 3.64 | + 4.46 | + 2.59  | + 2.61 | + 2.49 |
| (level of confidence $\approx$ 95%) |              | - 3.77                | - 3.73 | -2.81  | - 2.52  | - 2.55 | - 2.49 |

| Radiated Emissions > 1 GHz                            | Value (dB)   |                  |                  |
|-------------------------------------------------------|--------------|------------------|------------------|
|                                                       | Probability  | Without High     | With High        |
|                                                       | Distribution | Pass Filter      | Pass Filter      |
| Combined standard uncertainty <i>u<sub>c</sub>(y)</i> | normal       | + 1.29<br>- 1.25 | + 1.38<br>- 1.35 |
| Expanded uncertainty $U$                              | normal (k=2) | + 2.57           | + 2.76           |
| (level of confidence $\approx 95\%$ )                 |              | - 2.51           | 2.70             |

| Conducted Emissions                                           |                |          |  |  |  |  |
|---------------------------------------------------------------|----------------|----------|--|--|--|--|
|                                                               | Probability    | Value    |  |  |  |  |
|                                                               | Distribution   | (+/- dB) |  |  |  |  |
| Combined standard uncertainty <i>uc(y)</i>                    | normal         | 1.48     |  |  |  |  |
| Expanded uncertainty <i>U</i><br>(level of confidence ≈ 95 %) | normal (k = 2) | 2.97     |  |  |  |  |

| Radiated Immunity                                             |                |          |
|---------------------------------------------------------------|----------------|----------|
|                                                               | Probability    | Value    |
|                                                               | Distribution   | (+/- dB) |
| Combined standard uncertainty <i>uc(y)</i>                    | normal         | 1.05     |
| Expanded uncertainty <b>U</b><br>(level of confidence ≈ 95 %) | normal (k = 2) | 2.11     |

| Conducted Immunity                                            |                |          |  |  |  |  |
|---------------------------------------------------------------|----------------|----------|--|--|--|--|
|                                                               | Probability    | Value    |  |  |  |  |
|                                                               | Distribution   | (+/- dB) |  |  |  |  |
| Combined standard uncertainty <i>uc(y</i> )                   | normal         | 1.05     |  |  |  |  |
| Expanded uncertainty <b>U</b><br>(level of confidence ≈ 95 %) | normal (k = 2) | 2.10     |  |  |  |  |

#### Legend

 $u_c(y)$  = square root of the sum of squares of the individual standard uncertainties

U = combined standard uncertainty multiplied by the coverage factor: **k**. This defines an interval about the measured result that will encompass the true value with a confidence level of approximately 95%. If a higher level of confidence is required, then k=3 (CL of 99.7%) can be used. Please note that with a coverage factor of one, uc(y) yields a confidence level of only 68%.



## **Facilities**



#### California

Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 FAX (503) 844-3826



### Oregon

Evergreen Facility Labs EV01 – EV10

22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 FAX (503) 844-3826



#### Oregon

Trails End Facility Labs TE01 – TE03

30475 NE Trails End Lane Newberg, OR 97132 (503) 844-4066 FAX (503) 537-0735



#### Washington

## Sultan Facility

## Labs SU01 – SU07

14128 339<sup>th</sup> Ave. SE Sultan, WA 98294 (888) 364-2378 FAX (360) 793-2536

| Party Requesting the Test |                                              |
|---------------------------|----------------------------------------------|
| Company Name:             | Logitech, Inc.                               |
| Address:                  | 1499 SE Tech Center Place Suite 350          |
| City, State, Zip:         | Vancouver, WA 98683                          |
| Test Requested By:        | Mitchell Phillipi                            |
| Model:                    | Z-5450 MN: S-0181A Multimedia Speaker System |
| First Date of Test:       | July 15, 2005                                |
| Last Date of Test:        | August 8, 2005                               |
| Receipt Date of Samples:  | July 15, 2005                                |
| Equipment Design Stage:   | Production                                   |
| Equipment Condition:      | No visual damage.                            |

#### Information Provided by the Party Requesting the Test

| Clocks/Oscillators: | 49.152MHz                         |
|---------------------|-----------------------------------|
| I/O Ports:          | Fiber optic, Coax, Audio, Control |

#### Functional Description of the EUT (Equipment Under Test):

The S-0181A is a stand-alone, surround sound audio system with wireless rear satellite speakers. The wireless connection is achieved using frequency-hopping spread-spectrum (FHSS) radios in the front-located control pod and in the rear satellite speakers. The system consists of a control pod, amplifier/subwoofer assembly, three passive speaker systems, and a pair of wireless rear speakers. The Surround Sound Speaker system is to be used in a home or office environment, and connected to information technology equipment for audio entertainment purposes.

#### **Client Justification for EUT Selection:**

The product is a representative production sample.

#### **Client Justification for Test Selection:**

These tests satisfy the requirements of FCC 15.247 for FHSS devices.

The radios in the control pod and rear satellite speakers are identical except for their host devices. So radiated spurious emissions testing was performed on both the control pod and rear speakers, and antenna port direct connect measurements were made on only one configuration. AC Powerline Conducted emissions testing was also performed on both the control pod and rear speakers.



## **Modifications**

|      | Equipment modifications                   |            |                                                                           |                                                                                             |                                |  |  |
|------|-------------------------------------------|------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------|--|--|
| Item | Test                                      | Date       | Modification                                                              | Note                                                                                        | Disposition of<br>EUT          |  |  |
| 1    | Radiated<br>Emissions                     | 07/15/2005 | Internal antenna cable shortened and re-routed.                           | Modified from<br>delivered<br>configuration.<br>Modifications made by<br>Mitchell Phillipi. | EUT remained at Northwest EMC. |  |  |
| 2    | Dwell Time                                | 07/15/2005 | No EMI suppression devices were added or modified during this test.       | Same configuration as delivered.                                                            | EUT remained at Northwest EMC. |  |  |
| 3    | Spurious<br>Radiated<br>Emissions         | 07/17/2005 | No EMI suppression devices were added or modified during this test.       | Same configuration as previous test.                                                        | EUT remained at Northwest EMC. |  |  |
| 4    | Radiated<br>Emissions                     | 07/19/2005 | No EMI suppression devices were added or modified during this test.       | Same configuration as previous test.                                                        | EUT remained at Northwest EMC. |  |  |
| 5    | Band Edge<br>Compliance                   | 08/03/2005 | No EMI suppression devices were added or modified during this test.       | Same configuration as delivered.                                                            | EUT remained at Northwest EMC. |  |  |
| 6    | Number of<br>Hopping<br>Channels          | 08/03/2005 | No EMI suppression devices were added or modified during this test.       | Same configuration as previous test.                                                        | EUT remained at Northwest EMC. |  |  |
| 7    | Channel<br>Spacing                        | 08/03/2005 | No EMI suppression devices were added or modified during this test.       | Same configuration as previous test.                                                        | EUT remained at Northwest EMC. |  |  |
| 8    | Occupied<br>Bandwidth                     | 08/03/2005 | No EMI suppression devices were added or modified during this test.       | Same configuration as previous test.                                                        | EUT remained at Northwest EMC. |  |  |
| 9    | Spurious<br>Conducted<br>Emissions        | 08/03/2005 | No EMI suppression devices were added or modified during this test.       | Same configuration as previous test.                                                        | EUT remained at Northwest EMC. |  |  |
| 10   | Spurious<br>Radiated<br>Emissions         | 08/04/2005 | No EMI suppression devices were added or modified during this test.       | Same configuration as previous test.                                                        | EUT remained at Northwest EMC. |  |  |
| 11   | Output<br>Power                           | 08/05/2005 | No EMI suppression<br>devices were added or<br>modified during this test. | Same configuration as previous test.                                                        | EUT remained at Northwest EMC. |  |  |
| 12   | Spurious<br>Radiated<br>Emissions         | 08/07/2005 | No EMI suppression<br>devices were added or<br>modified during this test. | Same configuration as previous test.                                                        | EUT remained at Northwest EMC. |  |  |
| 13   | AC<br>Powerline<br>Conducted<br>Emissions | 08/08/2005 | No EMI suppression<br>devices were added or<br>modified during this test. | Same configuration as previous test.                                                        | EUT remained at Northwest EMC. |  |  |



#### Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

#### Channels in Specified Band Investigated:

15 channel frequency hopping set called out in script provided by customer

#### **Operating Modes Investigated:**

Frequency hopping

#### **Data Rates Investigated:**

Maximum

#### Power Input Settings Investigated:

120 VAC/60 Hz

| Software\Firmware Applied During Test                                                                     |                       |         |                   |  |  |  |
|-----------------------------------------------------------------------------------------------------------|-----------------------|---------|-------------------|--|--|--|
| Exercise software                                                                                         | Special Test Software | Version | Z6DW a0.3.3.1.2.6 |  |  |  |
| Description                                                                                               |                       |         |                   |  |  |  |
| The system was tested using special test codes on a remote laptop to exercise the functions of the device |                       |         |                   |  |  |  |
| during the testing.                                                                                       |                       |         |                   |  |  |  |

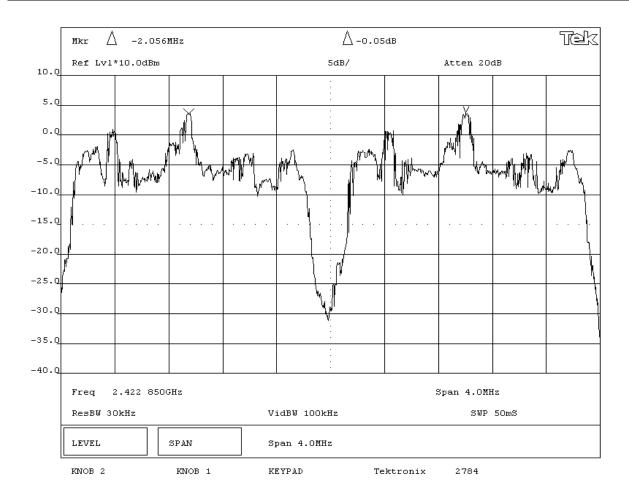
| EUT and Peripherals |                |                   |               |  |  |  |
|---------------------|----------------|-------------------|---------------|--|--|--|
| Description         | Manufacturer   | Model/Part Number | Serial Number |  |  |  |
| Subwoofer           | Logitech, Inc. | S-0181A           | Unknown       |  |  |  |
| Control Pod         | Logitech, Inc. | S-0181A           | Unknown       |  |  |  |
| XPD Module          | Logitech, Inc. | Unknown           | Unknown       |  |  |  |

| Remote Equipment Outside of Test Setup Boundary          |                                    |                                              |                              |  |  |
|----------------------------------------------------------|------------------------------------|----------------------------------------------|------------------------------|--|--|
| Description Manufacturer Model/Part Number Serial Number |                                    |                                              |                              |  |  |
| Notebook PC Dell, Inc. Latitude D600 99XL661             |                                    |                                              |                              |  |  |
| Equipment isolated from the                              | EUT so as not to contribute to the | e measurement result is considered to be out | side the test setup boundary |  |  |

| Cables                                                                                                 |        |            |         |              |              |
|--------------------------------------------------------------------------------------------------------|--------|------------|---------|--------------|--------------|
| Cable Type                                                                                             | Shield | Length (m) | Ferrite | Connection 1 | Connection 2 |
| AC Power                                                                                               | No     | 1.4        | No      | Subwoofer    | AC Mains     |
| Control                                                                                                | Yes    | 1.2        | PA      | Control Pod  | Subwoofer    |
| Serial                                                                                                 | Yes    | 1.5        | No      | Notebook PC  | XPD Module   |
| Ribbon                                                                                                 | No     | 0.2        | No      | XPD Module   | Control Pod  |
| PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown. |        |            |         |              |              |



| Measurement Equipment |              |       |            |            |          |
|-----------------------|--------------|-------|------------|------------|----------|
| Description           | Manufacturer | Model | Identifier | Last Cal   | Interval |
| Spectrum Analyzer     | Tektronix    | 2784  | AAO        | 01/02/2005 | 12 mo    |


**Requirement**: Per 47 CFR 15.247(a)(1), the hopping channel carrier frequencies must be separated by a minimum of 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The measurement is made with the spectrum analyzer's resolution bandwidth set to greater than or equal to 1% of the span, and the video bandwidth set to greater than or equal to the resolution bandwidth.

**Configuration**: The carrier frequency separation was measured between two hopping channels in the middle of the authorized band. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The hopping function of the EUT was enabled.

| Completed by: |        |
|---------------|--------|
| Rolyte        | Peling |

| NORTHWEST              |                                   |                                 |                                                |                                  |                      |  |  |
|------------------------|-----------------------------------|---------------------------------|------------------------------------------------|----------------------------------|----------------------|--|--|
| EMC                    |                                   | CHANNEL                         | SPACING                                        |                                  | Rev BETA<br>01/30/01 |  |  |
| EUT:                   | Z-5450 MN: S-0181A Multimedia S   | Speaker System                  |                                                | Work Order: LABT014              | 0                    |  |  |
| Serial Number:         | Unknown                           |                                 |                                                | Date: 08/03/05                   |                      |  |  |
| Customer:              | Logitech, Inc.                    | ogitech, Inc.                   |                                                |                                  |                      |  |  |
| Attendees:             | None                              | None Tested by: Rod Peloquin    |                                                |                                  |                      |  |  |
| Customer Ref. No.:     | None                              |                                 | Power: Battery                                 | Job Site: EV06                   |                      |  |  |
| TEST SPECIFICATION     | NS                                |                                 |                                                |                                  |                      |  |  |
| Specification:         | 47 CFR 15.247(a)(1)               | Year: 2005                      | Method: FCC DA 00-705, ANSI                    | C63.4 Year: 2000, 200            | 4                    |  |  |
| SAMPLE CALCULATI       | ONS                               |                                 |                                                |                                  |                      |  |  |
|                        |                                   |                                 |                                                |                                  |                      |  |  |
|                        |                                   |                                 |                                                |                                  |                      |  |  |
| COMMENTS               |                                   |                                 |                                                |                                  |                      |  |  |
| Measured with a direct | ct connection between the RF outp | ut and a spectrum analyzer.     |                                                |                                  |                      |  |  |
| EUT OPERATING MO       | DES                               |                                 |                                                |                                  |                      |  |  |
| Modulated by PRBS a    | t maximum data rate               |                                 |                                                |                                  | -                    |  |  |
| DEVIATIONS FROM T      | EST STANDARD                      |                                 |                                                |                                  |                      |  |  |
| None                   |                                   |                                 |                                                |                                  |                      |  |  |
| REQUIREMENTS           |                                   |                                 |                                                |                                  |                      |  |  |
| Frequency hopping s    | ystems operating in the 2400-2483 | .5 MHz band may have 20 dB band | dwidths up to 1.5 times the channel separation | on, provided the systems operate | with an              |  |  |
| output power no grea   | ter than 125 mW.                  |                                 |                                                |                                  |                      |  |  |
| RESULTS                |                                   |                                 | CHANNEL SPACING                                |                                  |                      |  |  |
| Pass                   |                                   |                                 | 2.056 MHz                                      |                                  |                      |  |  |
| SIGNATURE              |                                   |                                 |                                                |                                  |                      |  |  |
|                        | Porting to Reling                 |                                 |                                                |                                  |                      |  |  |
| Tested By:             |                                   |                                 |                                                |                                  |                      |  |  |
| DESCRIPTION OF TE      | ST                                |                                 |                                                |                                  |                      |  |  |
|                        |                                   | Channel                         | Speeing                                        |                                  |                      |  |  |

#### Channel Spacing







## **Dwell Time**

#### Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

#### Channels in Specified Band Investigated:

15 channel frequency hopping set called out in script provided by customer

#### Data Rates Investigated:

Maximum

#### Output Power Setting(s) Investigated:

Maximum

#### Power Input Settings Investigated:

120 VAC/60 Hz

| Software/Firmware Applied During Test                                                                     |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Exercise softwareSpecial Test SoftwareVersionZ6DW a0.3.3.1.2.6                                            |  |  |  |  |  |  |
| Description                                                                                               |  |  |  |  |  |  |
| The system was tested using special test codes on a remote laptop to exercise the functions of the device |  |  |  |  |  |  |
| during the testing.                                                                                       |  |  |  |  |  |  |

| EUT and Peripherals |                |                   |               |  |  |  |
|---------------------|----------------|-------------------|---------------|--|--|--|
| Description         | Manufacturer   | Model/Part Number | Serial Number |  |  |  |
| Subwoofer           | Logitech, Inc. | S-0181A           | Unknown       |  |  |  |
| Control Pod         | Logitech, Inc. | S-0181A           | Unknown       |  |  |  |
| XPD Module          | Logitech, Inc. | Unknown           | Unknown       |  |  |  |

| Remote Equipment Outside of Test Setup Boundary          |                                    |                                              |                              |  |  |
|----------------------------------------------------------|------------------------------------|----------------------------------------------|------------------------------|--|--|
| Description Manufacturer Model/Part Number Serial Number |                                    |                                              |                              |  |  |
| Notebook PC Dell, Inc. Latitude D600 99XL661             |                                    |                                              |                              |  |  |
| Equipment isolated from the                              | EUT so as not to contribute to the | e measurement result is considered to be out | side the test setup boundary |  |  |

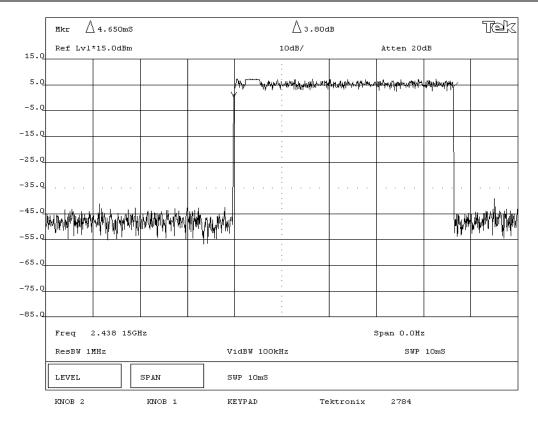
| Cables                                                                                                 |        |            |         |              |              |
|--------------------------------------------------------------------------------------------------------|--------|------------|---------|--------------|--------------|
| Cable Type                                                                                             | Shield | Length (m) | Ferrite | Connection 1 | Connection 2 |
| AC Power                                                                                               | No     | 1.4        | No      | Subwoofer    | AC Mains     |
| Control                                                                                                | Yes    | 1.2        | PA      | Control Pod  | Subwoofer    |
| Serial                                                                                                 | Yes    | 1.5        | No      | Notebook PC  | XPD Module   |
| Ribbon                                                                                                 | No     | 0.2        | No      | XPD Module   | Control Pod  |
| PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown. |        |            |         |              |              |

| Measurement Equipment |              |       |            |            |          |  |
|-----------------------|--------------|-------|------------|------------|----------|--|
| Description           | Manufacturer | Model | Identifier | Last Cal   | Interval |  |
| Spectrum Analyzer     | Tektronix    | 2784  | AAO        | 01/02/2005 | 12 mo    |  |

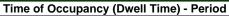
Requirement: Per 47 CFR 15.247(a)(1), the average dwell time per hopping channel is measured.

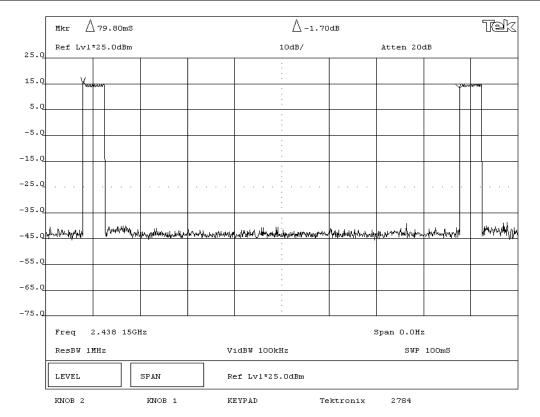
Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

The measurement is made with the spectrum analyzer's span set to zero, the resolution bandwidth set to 1 MHz, and the video bandwidth set to 100 kHz. The measurement is made in two steps. First, the sweep speed is adjusted to capture the pulse width or dwell time of a single transmission. Then, the sweep speed is set to 6 seconds to count the number of transmissions during that period. The dwell time of a single transmission multiplied by the number of transmissions during a 6 second period equals the average time of occupancy during a 30 second period.


Dwell time = (single transmission (4.65 mS)) X (number of channels(15) x 0.4S) = .3627 Seconds

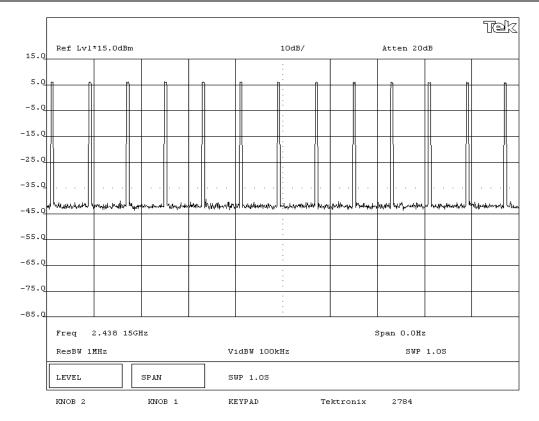
**Configuration**: The average dwell time per hopping channel was measured at one hopping channel in the middle of the authorized band. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The hopping function of the EUT was enabled.

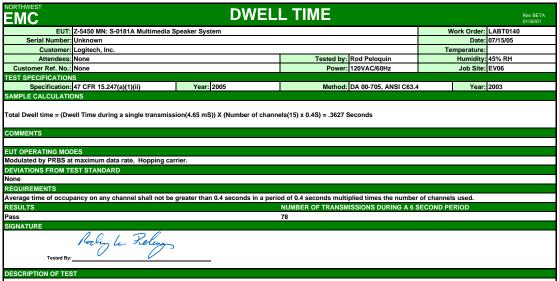

Completed by: Le Reling


| NORTHWEST DWELL TIME                                          |                                         |                                              |                  |          |  |  |  |
|---------------------------------------------------------------|-----------------------------------------|----------------------------------------------|------------------|----------|--|--|--|
| EUT: Z-5450 MN: S-0181A Multimedia Speak                      | aker System                             |                                              | Work Order:      | 01/30/01 |  |  |  |
| Serial Number: Unknown                                        |                                         |                                              |                  | 07/15/05 |  |  |  |
| Customer: Logitech, Inc.                                      |                                         |                                              | Temperature:     |          |  |  |  |
| Attendees: None                                               | Attendees: None Tested by: Rod Peloquin |                                              |                  |          |  |  |  |
| Customer Ref. No.: None                                       |                                         | Power: 120VAC/60Hz                           | Job Site:        | EV06     |  |  |  |
| TEST SPECIFICATIONS                                           |                                         |                                              |                  |          |  |  |  |
| Specification: 47 CFR 15.247(a)(1)(ii)                        | Year: 2005                              | Method: DA 00-705, ANSI C63.4                | Year:            | 2003     |  |  |  |
| SAMPLE CALCULATIONS                                           |                                         |                                              |                  |          |  |  |  |
| Total Dwell time = (Dwell Time during a single transmission(4 | (4.65 mS)) X (Number of channe          | els(15) x 0.4S) = .3627 Seconds              |                  |          |  |  |  |
| COMMENTS                                                      |                                         |                                              |                  |          |  |  |  |
|                                                               | ·····                                   |                                              |                  |          |  |  |  |
| EUT OPERATING MODES                                           |                                         |                                              |                  |          |  |  |  |
| Modulated by PRBS at maximum data rate. Hopping carrier.      | •                                       |                                              |                  |          |  |  |  |
| DEVIATIONS FROM TEST STANDARD None                            |                                         |                                              |                  |          |  |  |  |
| REQUIREMENTS                                                  |                                         |                                              |                  |          |  |  |  |
| Average time of occupancy on any channel shall not be greated | ater than 0.4 seconds in a perio        | d of 0.4 seconds multiplied times the number | of channels used |          |  |  |  |
| RESULTS                                                       |                                         | DWELL TIME DURING A SINGLE TRANSMISS         |                  |          |  |  |  |
| Pass                                                          |                                         | 4.65 mS                                      |                  |          |  |  |  |
| SIGNATURE                                                     |                                         |                                              |                  |          |  |  |  |
| Norty to Peluy                                                |                                         |                                              |                  |          |  |  |  |
| DESCRIPTION OF TEST                                           |                                         |                                              |                  |          |  |  |  |
| Time of Oc                                                    | ccupancy (Dwell ]                       | Time) - Single Transmissi                    | on               |          |  |  |  |

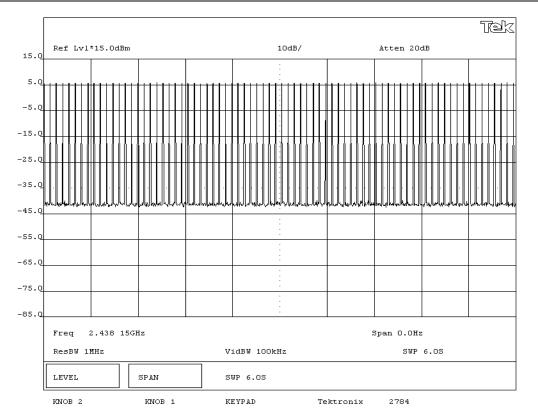
Time of Occupancy (Dwell Time) - Single Transmission




| NORTHWEST<br>EMC                                       | DWEL                                   | LTIME                                         |                   | Rev BETA<br>01/30/01 |  |
|--------------------------------------------------------|----------------------------------------|-----------------------------------------------|-------------------|----------------------|--|
| EUT: Z-5450 MN: S-0181A Multimedia                     | a Speaker System                       |                                               | Work Order        | LABT0140             |  |
| Serial Number: Unknown                                 |                                        |                                               |                   | : 07/15/05           |  |
| Customer: Logitech, Inc.                               | Customer: Logitech, Inc.               |                                               |                   |                      |  |
| Attendees: None                                        |                                        | Tested by: Rod Peloquin                       | Humidity          | /: 45% RH            |  |
| Customer Ref. No.: None                                |                                        |                                               |                   |                      |  |
| TEST SPECIFICATIONS                                    |                                        |                                               |                   |                      |  |
| Specification: 47 CFR 15.247(a)(1)(ii)                 | Year: 2005                             | Method: DA 00-705, ANSI C63.4                 | Year              | : 2003               |  |
| SAMPLE CALCULATIONS                                    |                                        |                                               |                   |                      |  |
| Total Dwell time = (Dwell Time during a single transmi | ssion(4.65 mS)) X (Number of channe    | els(15) x 0.4S) = .3627 Seconds               |                   |                      |  |
| COMMENTO                                               |                                        |                                               |                   |                      |  |
| EUT OPERATING MODES                                    |                                        |                                               |                   |                      |  |
| Modulated by PRBS at maximum data rate. Hopping of     | arrier.                                |                                               |                   |                      |  |
| DEVIATIONS FROM TEST STANDARD                          |                                        |                                               |                   |                      |  |
| None                                                   |                                        |                                               |                   |                      |  |
| REQUIREMENTS                                           |                                        |                                               |                   |                      |  |
| Average time of occupancy on any channel shall not l   | be greater than 0.4 seconds in a perio | od of 0.4 seconds multiplied times the number | of channels used. |                      |  |
| RESULTS                                                |                                        | PERIOD                                        |                   |                      |  |
| Pass                                                   |                                        | 79.8 mS                                       |                   |                      |  |
| SIGNATURE                                              |                                        |                                               |                   |                      |  |
| Rocky le Pieling<br>Tested By:                         | с<br>с                                 |                                               |                   |                      |  |
| DESCRIPTION OF TEST                                    |                                        |                                               |                   |                      |  |
|                                                        | Time of Occupancy                      | (Dwell Time) - Period                         |                   |                      |  |







| NORTHWEST                                                               | DWEL                             | LTIME                                         |             |            | Rev BETA<br>01/30/01 |  |
|-------------------------------------------------------------------------|----------------------------------|-----------------------------------------------|-------------|------------|----------------------|--|
| EUT: Z-5450 MN: S-0181A Multimedia Speaker System Work Order: LA        |                                  |                                               |             |            |                      |  |
| Serial Number: Unknown                                                  |                                  |                                               |             |            |                      |  |
| Customer: Logitech, Inc.                                                |                                  |                                               | Ter         | mperature: |                      |  |
| Attendees: None                                                         |                                  | Tested by: Rod Peloquin                       |             | Humidity:  | 45% RH               |  |
| Customer Ref. No.: None                                                 |                                  | Power: 120VAC/60Hz                            |             | Job Site:  | EV06                 |  |
| TEST SPECIFICATIONS                                                     |                                  |                                               |             |            |                      |  |
| Specification: 47 CFR 15.247(a)(1)(ii)                                  | Year: 2005                       | Method: DA 00-705, ANSI C63.4                 |             | Year:      | 2003                 |  |
| SAMPLE CALCULATIONS                                                     |                                  |                                               |             |            |                      |  |
| Total Dwell time = (Dwell Time during a single transmission<br>COMMENTS | (4.65 mS)) X (Number of channe   | els(15) x 0.4S) = .3627 Seconds               |             |            |                      |  |
| EUT OPERATING MODES                                                     |                                  |                                               |             |            |                      |  |
| Modulated by PRBS at maximum data rate. Hopping carrier                 | r.                               |                                               |             |            |                      |  |
| DEVIATIONS FROM TEST STANDARD                                           |                                  |                                               |             |            |                      |  |
| None<br>REQUIREMENTS                                                    |                                  |                                               |             |            |                      |  |
| Average time of occupancy on any channel shall not be gre               | eter then 0.4 seconds in a naris | ad of 0.4 accords multiplied times the number | of channels | used       |                      |  |
| RESULTS                                                                 |                                  | NUMBER OF TRANSMISSIONS DURING A 1 S          |             |            |                      |  |
| Pass                                                                    |                                  | 13                                            | LCOND FL    | RIOD       |                      |  |
| SIGNATURE                                                               |                                  | 15                                            |             |            |                      |  |
| Tested By:                                                              |                                  |                                               |             |            |                      |  |

Time of Occupancy (Dwell Time) - Number of transmissions during a 1 second period





Time of Occupancy (Dwell Time) - Number of transmissions during a 1 second period







#### Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

#### Channels in Specified Band Investigated:

15 channel frequency hopping set called out in script provided by customer

#### **Operating Modes Investigated:**

**Frequency Hopping** 

**Data Rates Investigated:** 

Maximum

Output Power Setting(s) Investigated: Maximum

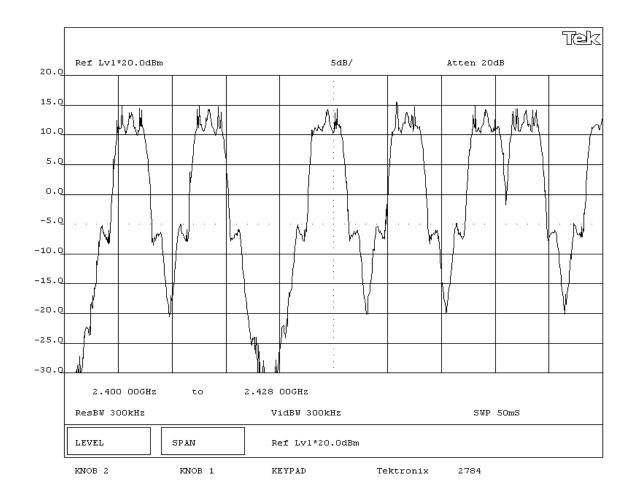
Power Input Settings Investigated: 120 VAC/60 Hz

| Software\Firmware Appl   | ied During Test             |                             |                            |
|--------------------------|-----------------------------|-----------------------------|----------------------------|
| Exercise software        | Special Test Software       | Version                     | Z6DW a0.3.3.1.2.6          |
| Description              |                             |                             |                            |
| The system was tested us | ing special test codes on a | remote laptop to exercise t | he functions of the device |
| during the testing.      |                             |                             |                            |

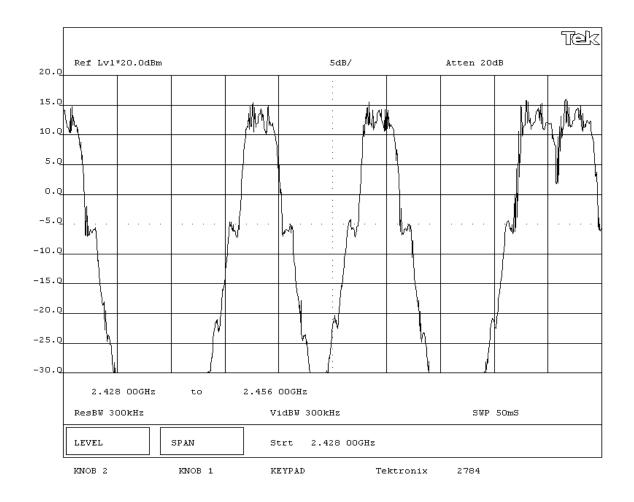
| EUT and Peripherals |                |                   |               |  |
|---------------------|----------------|-------------------|---------------|--|
| Description         | Manufacturer   | Model/Part Number | Serial Number |  |
| Subwoofer           | Logitech, Inc. | S-0181A           | Unknown       |  |
| Control Pod         | Logitech, Inc. | S-0181A           | Unknown       |  |
| XPD Module          | Logitech, Inc. | Unknown           | Unknown       |  |

| Remote Equipment Outside of Test Setup Boundary                                                                                       |              |                   |               |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|---------------|--|--|
| Description                                                                                                                           | Manufacturer | Model/Part Number | Serial Number |  |  |
| Notebook PC                                                                                                                           | Dell, Inc.   | Latitude D600     | 99XL661       |  |  |
| Equipment isolated from the EUT so as not to contribute to the measurement result is considered to be outside the test setup boundary |              |                   |               |  |  |

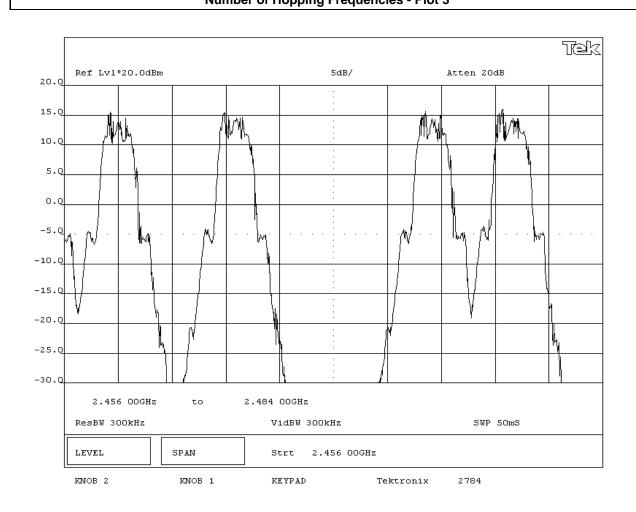
| Cables                                                                                                 |        |            |         |              |              |
|--------------------------------------------------------------------------------------------------------|--------|------------|---------|--------------|--------------|
| Cable Type                                                                                             | Shield | Length (m) | Ferrite | Connection 1 | Connection 2 |
| AC Power                                                                                               | No     | 1.4        | No      | Subwoofer    | AC Mains     |
| Control                                                                                                | Yes    | 1.2        | PA      | Control Pod  | Subwoofer    |
| Serial                                                                                                 | Yes    | 1.5        | No      | Notebook PC  | XPD Module   |
| Ribbon                                                                                                 | No     | 0.2        | No      | XPD Module   | Control Pod  |
| PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown. |        |            |         |              |              |


| Measurement Equipment | 1            |       |            |            |          |
|-----------------------|--------------|-------|------------|------------|----------|
| Description           | Manufacturer | Model | Identifier | Last Cal   | Interval |
| Spectrum Analyzer     | Tektronix    | 2784  | AAO        | 01/02/2005 | 12 mo    |

**Requirement**: Per 47 CFR 15.247(a)(1)(iii), Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The measurement is made with the spectrum analyzer's resolution bandwidth set to 100 kHz, and the video bandwidth set to greater than or equal to the resolution bandwidth.


**Configuration**: The number of hopping frequencies was measured across the authorized band. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The hopping function of the EUT was enabled.

| Completed by: |        |
|---------------|--------|
| Rocky le      | Peling |


| NORTHWEST<br>EMC   | NUME                              |                                   | ING FREQUENCIE                | S            | Rev BETA<br>01/30/01 |  |  |
|--------------------|-----------------------------------|-----------------------------------|-------------------------------|--------------|----------------------|--|--|
| EUT:               | Z-5450 MN: S-0181A Multimedia     | Speaker System                    |                               | Work Order:  | LABT0140             |  |  |
| Serial Number:     | Unknown                           |                                   |                               | Date:        | 08/03/05             |  |  |
| Customer:          | Logitech, Inc.                    |                                   |                               | Temperature: | 70 °F                |  |  |
| Attendees:         | None Tested by: Rod Peloquin      |                                   |                               | Humidity:    | 43% RH               |  |  |
| Customer Ref. No.: | None                              |                                   | Power: Battery                | Job Site:    | EV06                 |  |  |
| TEST SPECIFICATION | IS                                |                                   |                               |              |                      |  |  |
| Specification:     | 47 CFR 15.247(a)(1)(i)            | Year: 2005                        | Method: FCC DA 00-705, ANSI   | C63.4 Year:  | 2000, 2004           |  |  |
| SAMPLE CALCULATIO  | ONS                               |                                   |                               |              |                      |  |  |
|                    |                                   |                                   |                               |              |                      |  |  |
| COMMENTS           |                                   |                                   |                               |              |                      |  |  |
|                    | t connection between the RF outp  | out and a spectrum analyzer.      |                               |              |                      |  |  |
| EUT OPERATING MOI  |                                   |                                   |                               |              |                      |  |  |
|                    | m data rate, at maximum output p  | ower                              |                               |              |                      |  |  |
| DEVIATIONS FROM T  | EST STANDARD                      |                                   |                               |              |                      |  |  |
|                    |                                   |                                   |                               |              |                      |  |  |
| REQUIREMENTS       | stems in the 2400-2483.5 MHz ba   | nd shall use at least 15 shannels |                               |              |                      |  |  |
| . ,,               | vstems in the 2400-2465.5 Minz ba |                                   |                               |              |                      |  |  |
| RESULTS            |                                   |                                   | NUMBER OF HOPPING FREQUENCIES |              |                      |  |  |
| Pass<br>SIGNATURE  |                                   |                                   | 15                            |              |                      |  |  |
|                    | Porty le Reling                   |                                   |                               |              |                      |  |  |
| DESCRIPTION OF TES | ST                                |                                   |                               |              |                      |  |  |
|                    |                                   | Number of Hopping                 | Frequencies - Plot 1          |              |                      |  |  |



| NORTHWEST<br>EMC   | NUME                               |                                   | ING FREQUENCIE                | S            | Rev BETA<br>01/30/01 |  |  |
|--------------------|------------------------------------|-----------------------------------|-------------------------------|--------------|----------------------|--|--|
| EUT:               | Z-5450 MN: S-0181A Multimedia S    | Speaker System                    |                               | Work Order:  | LABT0140             |  |  |
| Serial Number:     | Unknown                            |                                   |                               | Date:        | 08/03/05             |  |  |
| Customer:          | Logitech, Inc.                     |                                   |                               | Temperature: | 70 °F                |  |  |
| Attendees:         | None Tested by: Rod Peloquin       |                                   |                               | Humidity:    | 43% RH               |  |  |
| Customer Ref. No.: | None                               |                                   | Power: Battery                | Job Site:    | EV06                 |  |  |
| TEST SPECIFICATION | IS                                 |                                   |                               |              |                      |  |  |
| Specification:     | 47 CFR 15.247(a)(1)(i)             | Year: 2005                        | Method: FCC DA 00-705, ANSI   | C63.4 Year:  | 2000, 2004           |  |  |
| SAMPLE CALCULATIO  | ONS                                |                                   |                               |              |                      |  |  |
|                    |                                    |                                   |                               |              |                      |  |  |
| COMMENTS           |                                    |                                   |                               |              |                      |  |  |
|                    | t connection between the RF outp   | out and a spectrum analyzer.      |                               |              |                      |  |  |
| EUT OPERATING MOI  |                                    |                                   |                               |              |                      |  |  |
|                    | m data rate, at maximum output p   | ower                              |                               |              |                      |  |  |
| DEVIATIONS FROM T  | EST STANDARD                       |                                   |                               |              |                      |  |  |
|                    |                                    |                                   |                               |              |                      |  |  |
| REQUIREMENTS       | stems in the 2400-2483.5 MHz ba    | nd shall use at least 15 shannels |                               |              |                      |  |  |
| . ,,               | vsteins in the 2400-2485.5 MHz bai |                                   |                               |              |                      |  |  |
| RESULTS            |                                    |                                   | NUMBER OF HOPPING FREQUENCIES |              |                      |  |  |
| Pass<br>SIGNATURE  |                                    |                                   | 15                            |              |                      |  |  |
|                    | Porting to Roling                  |                                   |                               |              |                      |  |  |
| DESCRIPTION OF TES | ST                                 |                                   |                               |              |                      |  |  |
|                    |                                    | Number of Hopping                 | Frequencies - Plot 2          |              |                      |  |  |



| NORTHWEST           |                                   |                                    | ING FREQUENCIE                | 'e                     |
|---------------------|-----------------------------------|------------------------------------|-------------------------------|------------------------|
| EMC                 | INDIVIE                           |                                    | ING FREQUENCIE                | Rev BETA<br>01/30/01   |
| EUT:                | Z-5450 MN: S-0181A Multimedia     | Speaker System                     |                               | Work Order: LABT0140   |
| Serial Number:      | Unknown                           |                                    |                               | Date: 08/03/05         |
| Customer:           | Logitech, Inc.                    |                                    |                               | Temperature: 70 °F     |
| Attendees:          | None                              |                                    | Tested by: Rod Peloquin       | Humidity: 43% RH       |
| Customer Ref. No.:  | None                              |                                    | Power: Battery                | Job Site: EV06         |
| TEST SPECIFICATION  | NS                                |                                    |                               |                        |
| Specification:      | 47 CFR 15.247(a)(1)(i)            | Year: 2005                         | Method: FCC DA 00-705, ANSI   | C63.4 Year: 2000, 2004 |
| SAMPLE CALCULATI    | ONS                               |                                    |                               |                        |
|                     |                                   |                                    |                               |                        |
|                     |                                   |                                    |                               |                        |
|                     |                                   |                                    |                               |                        |
| COMMENTS            |                                   |                                    |                               |                        |
|                     | ct connection between the RF outp | out and a spectrum analyzer.       |                               |                        |
| EUT OPERATING MO    |                                   |                                    |                               |                        |
| Modulated at maximu | im data rate, at maximum output p | ower                               |                               |                        |
| DEVIATIONS FROM T   | EST STANDARD                      |                                    |                               |                        |
| None                |                                   |                                    |                               |                        |
| REQUIREMENTS        |                                   |                                    |                               |                        |
| Frequency hopping s | ystems in the 2400-2483.5 MHz ba  | nd shall use at least 15 channels. |                               |                        |
| RESULTS             |                                   |                                    | NUMBER OF HOPPING FREQUENCIES |                        |
| Pass                |                                   |                                    | 15                            |                        |
| SIGNATURE           |                                   |                                    |                               |                        |
| Tested By           | Porting to Feling                 |                                    |                               |                        |
| DESCRIPTION OF TE   | ST                                |                                    |                               |                        |
|                     |                                   | Number of Hopping                  | Frequencies - Plot 3          |                        |







#### Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

| Channels in Specified Band Investigated: |
|------------------------------------------|
| Low                                      |
| Mid                                      |
| High                                     |

Data Rates Investigated:

Maximum

Output Power Setting(s) Investigated: Maximum

#### Power Input Settings Investigated: 120 VAC/60 Hz

| Software\Firmware Applied During Test |                             |                             |                            |  |  |  |  |  |
|---------------------------------------|-----------------------------|-----------------------------|----------------------------|--|--|--|--|--|
| Exercise software                     | Special Test Software       | Version                     | Z6DW a0.3.3.1.2.6          |  |  |  |  |  |
| Description                           |                             |                             |                            |  |  |  |  |  |
| The system was tested us              | ing special test codes on a | remote laptop to exercise t | he functions of the device |  |  |  |  |  |
| during the testing.                   |                             |                             |                            |  |  |  |  |  |

| EUT and Peripherals |                |                   |               |  |  |  |  |  |
|---------------------|----------------|-------------------|---------------|--|--|--|--|--|
| Description         | Manufacturer   | Model/Part Number | Serial Number |  |  |  |  |  |
| Subwoofer           | Logitech, Inc. | S-0181A           | Unknown       |  |  |  |  |  |
| Control Pod         | Logitech, Inc. | S-0181A           | Unknown       |  |  |  |  |  |
| XPD Module          | Logitech, Inc. | Unknown           | Unknown       |  |  |  |  |  |

| Remote Equipment Outside of Test Setup Boundary |                                    |                                              |                              |  |  |  |  |
|-------------------------------------------------|------------------------------------|----------------------------------------------|------------------------------|--|--|--|--|
| Description                                     | Manufacturer                       | Model/Part Number                            | Serial Number                |  |  |  |  |
| Notebook PC                                     | Dell, Inc.                         | Latitude D600                                | 99XL661                      |  |  |  |  |
| Equipment isolated from the                     | EUT so as not to contribute to the | e measurement result is considered to be out | side the test setup boundary |  |  |  |  |

| Cables             |                |                    |               |                          |                 |  |  |  |
|--------------------|----------------|--------------------|---------------|--------------------------|-----------------|--|--|--|
| Cable Type         | Shield         | Length (m)         | Ferrite       | Connection 1             | Connection 2    |  |  |  |
| AC Power           | No             | 1.4                | No            | Subwoofer                | AC Mains        |  |  |  |
| Control            | Yes            | 1.2                | PA            | Control Pod              | Subwoofer       |  |  |  |
| Serial             | Yes            | 1.5                | No            | Notebook PC              | XPD Module      |  |  |  |
| Ribbon             | No             | 0.2                | No            | XPD Module               | Control Pod     |  |  |  |
| PA = Cable is perm | nanently attac | hed to the device. | Shielding and | d/or presence of ferrite | may be unknown. |  |  |  |

| Measurement Equipment |              |        |            |            |          |  |  |  |
|-----------------------|--------------|--------|------------|------------|----------|--|--|--|
| Description           | Manufacturer | Model  | Identifier | Last Cal   | Interval |  |  |  |
| Spectrum Analyzer     | Agilent      | E4446A | AAQ        | 04/08/2005 | 13 mo    |  |  |  |

#### Requirement:

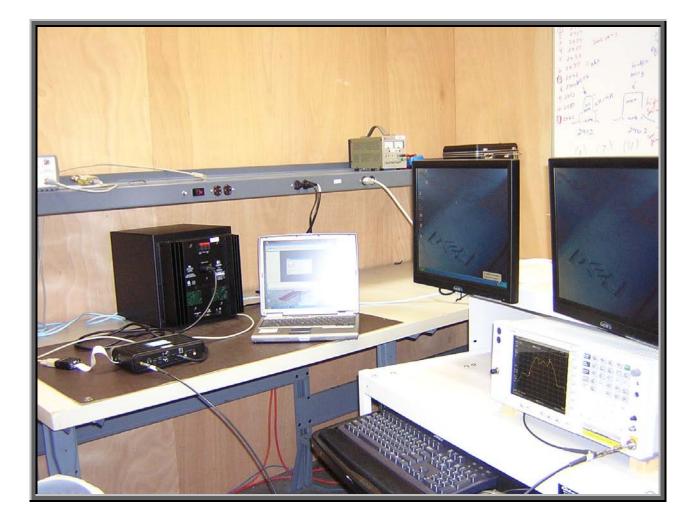
Per 47 CFR 15.247(a)(1), the hopping channel carrier frequencies must be separated by a minimum of 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Per an FCC Interpretation sent to TCBs on October 8, 2002, frequency hoppers in the 2.4 GHz band operating under 15.247 are required to use a minimum of 15 non-overlapping channels. The hopping channel bandwidth can be wider than 1 MHz as long as the channels do not overlap and all emissions stay within the 2400-2483.5 MHz band. For example, a system that uses the minimum 15 channels can have hopping channel bandwidth that are up to 5 MHz wide. The measurement is made with the spectrum analyzer's resolution bandwidth set to  $\geq$ 1% of the 20dB bandwidth, and the video bandwidth set to greater than or equal to the resolution bandwidth.

<u>Configuration</u>: The occupied bandwidth was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode.

Completed by: , Le Pelen

| С                  |                          | OCCUPI                                | ED BANDWI                       | DTH                           |                    | Rev B<br>01/30/ |
|--------------------|--------------------------|---------------------------------------|---------------------------------|-------------------------------|--------------------|-----------------|
| EUT:               | Z-5450 MN: S-0181A Mu    | ultimedia Speaker System              |                                 |                               | Work Order: L/     | ABT0140         |
| Serial Number:     |                          |                                       |                                 |                               | Date: 08           |                 |
| Customer:          | Logitech, Inc.           |                                       |                                 |                               | Temperature: 70    | )°F             |
| Attendees:         |                          |                                       | Tested by                       | Rod Peloquin                  | Humidity: 43       |                 |
| omer Ref. No.:     | None                     |                                       |                                 | Battery                       | Job Site: E        |                 |
| ECIFICATIONS       |                          |                                       |                                 |                               |                    |                 |
| Specification:     | 47 CFR 15.247(a)         | Year: 2005-04                         | Method                          | DA 00-705, ANSI C63.4         | Year: 20           | 003             |
| CALCULATIO         |                          |                                       |                                 |                               |                    |                 |
| ENTS               | ennestien between th     | - DE cuteut and a construm analysis   |                                 |                               |                    |                 |
| ERATING MOD        |                          | e RF output and a spectrum analyzer   |                                 |                               |                    |                 |
|                    | naximum data rate        |                                       |                                 |                               |                    |                 |
| -                  |                          |                                       |                                 |                               |                    |                 |
| ONS FROM TE        | ST STANDARD              |                                       |                                 |                               |                    |                 |
| EMENTS             |                          |                                       |                                 |                               |                    |                 |
|                    | stems operating in the f | 2400-2483.5 MHz band may have 20 d    | B bandwidths up to 1 5 times 4  | e channel congration provide  | d the systems on a | ate with on co  |
| o greater than     |                          |                                       | B Bandwidths up to 1.5 times th | e channel separation, provide | a me systems oper  |                 |
| S greater than     | LV (1111.                |                                       | BANDWIDTH                       |                               |                    |                 |
| 3                  |                          |                                       | 2.12 MHz                        |                               |                    |                 |
| URE                |                          |                                       |                                 |                               |                    |                 |
| UKE                | 10.0                     |                                       |                                 |                               |                    |                 |
|                    | Rock 1. 7                | elen                                  |                                 |                               |                    |                 |
|                    | Rochy Le F.              | - man                                 |                                 |                               |                    |                 |
| Tested By:         |                          |                                       |                                 |                               |                    |                 |
|                    |                          |                                       |                                 |                               |                    |                 |
| PTION OF TES       | i i                      |                                       |                                 |                               |                    |                 |
|                    |                          | 20dB Band                             | dwidth - Low Chan               | nel                           |                    |                 |
|                    |                          |                                       |                                 |                               |                    |                 |
| A                  | 14.10.20 0.              |                                       |                                 |                               |                    |                 |
| Aglient            | 14:19:38 Au              | 19 S, 2005                            |                                 |                               |                    |                 |
|                    |                          |                                       |                                 |                               | <b>∆</b> Mkr1      | 2120            |
|                    |                          |                                       |                                 |                               |                    |                 |
| 20 dBm             |                          | Atten 10 dB                           |                                 |                               |                    | 0.48            |
|                    |                          |                                       |                                 |                               |                    |                 |
|                    |                          |                                       |                                 |                               |                    |                 |
|                    |                          |                                       |                                 |                               |                    |                 |
|                    |                          |                                       |                                 |                               |                    |                 |
|                    |                          |                                       |                                 |                               |                    |                 |
|                    |                          |                                       |                                 |                               |                    |                 |
|                    |                          |                                       |                                 | <u> </u>                      |                    |                 |
|                    |                          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | man mul                         | l l                           |                    |                 |
|                    |                          | /                                     | × ×                             |                               |                    |                 |
|                    |                          | / /                                   |                                 | l l                           |                    |                 |
|                    |                          |                                       |                                 |                               |                    |                 |
|                    |                          |                                       |                                 |                               |                    |                 |
|                    |                          |                                       |                                 |                               |                    |                 |
|                    |                          |                                       |                                 | +                             |                    |                 |
|                    |                          |                                       |                                 |                               |                    |                 |
|                    |                          |                                       |                                 |                               |                    |                 |
|                    |                          |                                       |                                 | <u>\</u> 1                    |                    |                 |
|                    |                          |                                       |                                 |                               |                    |                 |
|                    |                          | ダ                                     |                                 | l V                           |                    |                 |
| 521                | 1 mm                     | June 1                                |                                 |                               | harm               | 1               |
| 32<br>•C           | 7                        |                                       |                                 |                               | ~~~                |                 |
| · U                |                          |                                       |                                 |                               |                    |                 |
|                    |                          |                                       |                                 |                               |                    |                 |
|                    |                          |                                       |                                 |                               |                    | $\rightarrow$   |
|                    |                          |                                       |                                 |                               |                    |                 |
| k www              |                          |                                       |                                 |                               |                    |                 |
| N 10               |                          |                                       |                                 |                               |                    |                 |
|                    |                          |                                       |                                 |                               |                    |                 |
|                    |                          |                                       |                                 |                               |                    |                 |
|                    |                          |                                       |                                 |                               |                    |                 |
|                    |                          |                                       |                                 |                               |                    |                 |
|                    |                          |                                       |                                 |                               |                    |                 |
|                    |                          |                                       |                                 |                               |                    |                 |
|                    |                          |                                       |                                 |                               |                    |                 |
|                    |                          |                                       |                                 |                               |                    |                 |
| or 2.403           | 280 54-                  |                                       |                                 |                               |                    | non <u>1 t</u>  |
| er 2.403<br>BW 200 | 3 360 GHz                |                                       |                                 |                               | S<br>veep 1 ms     | pan 4 l         |


|                                           |                      | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PIED BAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NDWID            | DTH                   |                        | Rev I<br>01/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EUT: Z-5                                  | 450 MN: S-0181A Mu   | Iltimedia Speaker System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       | Work Order             | LABT0140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Serial Number: Uni                        | known                | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       | Date                   | : 08/03/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Customer: Log                             | litech, Inc.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       | Temperature            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Attendees: Nor                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tested by:       | Rod Peloquin          |                        | /: 43% RH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| omer Ref. No.: Nor                        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Battery               | Job Site               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PECIFICATIONS                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Specification: 47                         | CFR 15.247(a)        | Year: 2005-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Method:          | DA 00-705, ANSI C63   | .4 Year                | r: 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| E CALCULATIONS                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ENTS                                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           | nection between the  | e RF output and a spectrum ana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lyzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ERATING MODES                             | meetion between the  | e Ri Output and a spectrum and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19261.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ed by PRBS at max                         | vimum data rate      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IONS FROM TEST                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IONS PROM TEST                            | JTANDARD             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| REMENTS                                   | e operating in the 2 | 200-2483 5 MHz band may bare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 dB bandwidthe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | to 1 5 times the | channel constation    | provided the systems   | perate with on a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| icy hopping systen<br>to greater than 125 |                      | 400-2483.5 MHz band may have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 dB bandwidths up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | to 1.5 times the | e channel separation, | provided the systems o | perate with an o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| rs                                        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.12 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14               |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TURE                                      | 1 .                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           | 6.17                 | ale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           | boling her F.        | and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tested By:                                | V                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IPTION OF TEST                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                      | 20dB B:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | andwidth - L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ow Chan          | nel                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Agilent 14                                | 4:18:27 Au           | 1g 3, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       | <b>∆</b> Mkr           | 1 -553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 20 dBm                                    |                      | Atten 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                       |                        | -19.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        | 10.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                      | 1R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | m                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                      | $\Gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 (              |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| t                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | my (             |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                      | f in the second s | <b>W</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\sim$           | n n                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| t                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                      | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | <u> </u>              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                      | f"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| /                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                      | ダ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       | hum                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| s2l -                                     | mm -                 | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       | Mr. Larra              | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| \$2<br>=C /                               | M.,                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       | ~~~~                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -C  /                                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        | N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| : /                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        | <u>۲</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| lk www                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ar 2 402 -                                | zéa cu-              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        | Sman A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| er 2.403 0                                | SOU GHZ              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                        | Span 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BW 200 k                                  | Hz                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | #VBW 300 k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | :Hz              |                       | Sweep 1 m              | ıs (601 r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                           | 2010                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A CONTRACT OF A CONTRACTACT OF A CONTRACT OF A CONTRACTACT OF A CONTRACT OF A CONTRACTACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTR | 21.12            |                       |                        | Contraction of the local distance of the loc |

| IC                                       |                                             | OCCUPIEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |                             | Rev<br>01/3                          |
|------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------|--------------------------------------|
|                                          |                                             | lultimedia Speaker System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |                             | Work Order: LABT0140                 |
| Serial Number:                           | Unknown<br>Logitech, Inc.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             | Date: 08/03/05<br>Temperature: 70 °F |
| Attendees:                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tested by:                   | Rod Peloquin                | Humidity: 43% RH                     |
| stomer Ref. No.:                         |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Power:                       | Battery                     | Job Site: EV06                       |
| SPECIFICATION<br>Specification:          | IS<br>47 CFR 15.247(a)                      | Year: 2005-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Method:                      | DA 00-705, ANSI C63.4       | Year: 2003                           |
| LE CALCULATI                             |                                             | Tear: 2005-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | wethou:                      | DA 00-705, ANSI C63.4       | rear: 2003                           |
| PERATING MOI                             | DES                                         | he RF output and a spectrum analyzer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                             |                                      |
|                                          | t maximum data rate<br>EST STANDARD         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                                      |
| IREMENTS                                 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                                      |
|                                          | vstems operating in the<br>ter than 125 mW. | 2400-2483.5 MHz band may have 20 dE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 bandwidths up to 1.5 times | the channel separation, pro | vided the systems operate with a     |
| LTS                                      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BANDWIDTH                    |                             |                                      |
|                                          |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.64 MHz                     |                             |                                      |
| ATURE                                    | 10                                          | 2 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |                             |                                      |
| Tested By:                               | Rocky le F                                  | elen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |                             |                                      |
| RIPTION OF TES                           | ST                                          | 20dB Bandw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | vidth - Mid Chan             | nel                         |                                      |
| Agilent                                  | 14:12:09 A                                  | ug 3, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                             |                                      |
| 20 dBm                                   |                                             | Atten 10 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                             | ▲ Mkr1 2.640<br>0.19                 |
| k 🔽                                      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             | 0.10                                 |
|                                          |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                                      |
|                                          |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                                      |
|                                          |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                                      |
| ′                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                                      |
| st 🔚 🚽                                   |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | ~~~~                        |                                      |
| st 📃                                     |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $-\Lambda$                   | <u>\</u> .                  |                                      |
|                                          |                                             | L / M~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sum - S                      | ۳                           |                                      |
|                                          |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | <u>\</u>                    |                                      |
|                                          |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                                      |
|                                          |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                                      |
|                                          |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                                      |
| v 📖                                      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | L                           |                                      |
|                                          | 1 R                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                                      |
| S2[                                      | 1 R<br>Ø                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             | how                                  |
| \$2<br>FC                                | 1 man                                       | A MARINE IN THE REAL OF THE RE |                              |                             | man                                  |
|                                          | /                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             | $\lambda$                            |
| )· – – – – – – – – – – – – – – – – – – – |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                                      |
| ):<br>0k _/                              |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                                      |
|                                          |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                                      |
| and a second                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                                      |
|                                          |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                                      |
|                                          |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                                      |
|                                          |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                                      |
|                                          |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             |                                      |
|                                          | 2 270 GHz                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                             | Span 4 1                             |

| IC                                |                        | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UPIED B/                   | ANDWIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ЛН               |                  |                         | Rev E<br>01/30   |
|-----------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|-------------------------|------------------|
|                                   |                        | lultimedia Speaker System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | V                | Vork Order:             |                  |
| Serial Number:                    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | -                |                         | 08/03/05         |
| Attendees:                        | Logitech, Inc.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Tested by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rod Peloquin     | Te               | mperature:<br>Humidity: | 70 °F<br>43% RH  |
| stomer Ref. No.:                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Battery          |                  |                         | EV06             |
| SPECIFICATION                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         |                  |
| Specification:<br>PLE CALCULATION | 47 CFR 15.247(a)       | Year: 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5-04                       | Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DA 00-705, ANSI  | C63.4            | Year:                   | 2003             |
| MENTS                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         |                  |
|                                   |                        | he RF output and a spectr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | um analyzer.               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         |                  |
|                                   | t maximum data rate    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         |                  |
| TIONS FROM TI                     | EST STANDARD           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         |                  |
| IREMENTS                          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         |                  |
|                                   | stems operating in the | 2400-2483.5 MHz band ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ay have 20 dB bandwid      | ths up to 1.5 times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the channel sepa | ration, provided | the system              | s operate with a |
| t power no great                  | er than 125 mW.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         |                  |
| LTS                               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         |                  |
| TURE                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.6                        | 4 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                  |                         |                  |
|                                   | 1017                   | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         |                  |
|                                   | Rocky Le F             | eling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         |                  |
| Tested By:                        | 0                      | $\mathcal{O}^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         |                  |
| -                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         |                  |
| RIPTION OF TES                    | Τ                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         |                  |
|                                   |                        | 20dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bandwidth -                | Mid Chan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nel              |                  |                         |                  |
| Agilent                           | 14:07:02 Au            | ug 3,2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  | Mke1                    | -2.067           |
| 20 dBm                            |                        | Atten 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .0 dB                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | A                | PIKI I                  | -19.89           |
| k 🔽                               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         |                  |
|                                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         |                  |
|                                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         |                  |
| ,                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.5              |                  |                         |                  |
| /                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1R<br>🔷          |                  |                         |                  |
| st                                |                        | N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ~                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -Xn-1            |                  |                         |                  |
| L                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\rightarrow$ $\checkmark$ | $\sim$ /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ٩.               |                  |                         |                  |
|                                   |                        | / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sur and                    | 1 mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | শ                |                  |                         |                  |
|                                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | , in the second se | <u>م</u>         |                  |                         |                  |
|                                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | ١                |                         |                  |
|                                   |                        | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         |                  |
|                                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         |                  |
| v 🗆                               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         |                  |
| •                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         |                  |
|                                   | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         |                  |
| S2                                | ♦                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | ή.,              |                         |                  |
| \$2<br>FC                         | 1 mm                   | and the second s |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | We way           | ~~~                     | $\sim$           |
|                                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         | $\setminus$      |
|                                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         | $-\lambda$       |
| ):   /                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         |                  |
| ):<br>0k                          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         |                  |
|                                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         | $\rightarrow$    |
| <b>*</b> *                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         |                  |
|                                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         |                  |
|                                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         |                  |
|                                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         |                  |
|                                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         |                  |
|                                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         |                  |
| ter 2.442                         | 2 270 GHz              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                  |                         | <br>Span 4 №     |

| С                            |                                         | OCCUP                           | ED BAI           | ADAAIT          |                     |                           | Rev 8<br>01/30    |
|------------------------------|-----------------------------------------|---------------------------------|------------------|-----------------|---------------------|---------------------------|-------------------|
|                              |                                         | ultimedia Speaker System        |                  |                 |                     | Work Order:               | : LABT0140        |
| Serial Number:               |                                         |                                 |                  |                 |                     |                           | 08/03/05          |
|                              | Logitech, Inc.                          |                                 |                  | Toptod hu       | Rod Peloguin        | Temperature:              |                   |
| Attendees:<br>omer Ref. No.: | None<br>None                            |                                 |                  |                 | Battery             | Humidity:<br>Job Site:    |                   |
| PECIFICATION                 |                                         |                                 |                  | rower.          |                     |                           | 1                 |
| Specification:               | 47 CFR 15.247(a)                        | Year: 2005-04                   |                  | Method:         | DA 00-705, ANSI C6  | 3.4 Year:                 | 2003              |
| E CALCULATIO                 | ONS                                     |                                 |                  |                 |                     |                           |                   |
| ENTS                         |                                         |                                 |                  |                 |                     |                           |                   |
| PERATING MO                  | DES                                     | he RF output and a spectrum ana | lyzer.           |                 |                     |                           |                   |
| -                            | t maximum data rate<br>EST STANDARD     |                                 |                  |                 |                     |                           |                   |
|                              |                                         |                                 |                  |                 |                     |                           |                   |
| REMENTS                      |                                         |                                 |                  |                 |                     |                           |                   |
|                              | stems operating in the ter than 125 mW. | 2400-2483.5 MHz band may have   | 20 dB bandwidths | up to 1.5 times | the channel separat | tion, provided the system | ns operate with a |
| TS                           |                                         |                                 | BANDV            |                 |                     |                           |                   |
|                              |                                         |                                 | 2.68 MF          |                 |                     |                           |                   |
| URE                          |                                         |                                 |                  |                 |                     |                           |                   |
|                              | ROIJ                                    | 2.l.                            |                  |                 |                     |                           |                   |
|                              | Porting to F.                           | ening                           |                  |                 |                     |                           |                   |
| Tested By:                   |                                         |                                 |                  |                 |                     |                           |                   |
| IPTION OF TES                | эт <u> </u>                             |                                 |                  |                 |                     |                           |                   |
|                              |                                         | 20dB Ban                        | dwidth - Hi      | ah Chan         | nel                 |                           |                   |
|                              |                                         |                                 | awiaui - Ai      | gir Clidi       |                     |                           |                   |
| 0 milant                     | 14.00.00 0.                             | ~ 2 200E                        |                  |                 |                     |                           |                   |
| Aglient                      | 14:00:26 Au                             | 1g 3, 2005                      |                  |                 |                     |                           |                   |
|                              |                                         |                                 |                  |                 |                     | ⊿ Mkr1                    | . 2.680           |
| 20 dBm                       |                                         | Atten 10 dl                     | R                |                 |                     |                           | 0.06              |
|                              |                                         |                                 |                  |                 |                     |                           | 0.00              |
|                              |                                         |                                 |                  |                 |                     |                           |                   |
|                              |                                         |                                 |                  |                 |                     |                           |                   |
|                              |                                         |                                 |                  |                 |                     |                           |                   |
|                              |                                         |                                 |                  |                 | $\sim$              |                           |                   |
|                              |                                         |                                 |                  |                 | $r \sim 1$          |                           |                   |
| :                            |                                         |                                 |                  | Som 1           |                     |                           |                   |
| t                            |                                         |                                 | $\sim$           | $\sim$          | λ.                  |                           |                   |
|                              |                                         |                                 |                  |                 |                     |                           |                   |
|                              |                                         |                                 |                  |                 |                     |                           |                   |
|                              |                                         |                                 |                  |                 |                     | 1                         |                   |
|                              |                                         |                                 |                  |                 |                     |                           |                   |
|                              |                                         |                                 |                  |                 |                     | 1                         |                   |
|                              |                                         |                                 |                  |                 |                     |                           |                   |
|                              | 1 R                                     |                                 |                  |                 |                     | 11                        |                   |
|                              | <b>A</b>                                |                                 |                  |                 |                     | ×                         |                   |
|                              | /~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  | A way                           |                  |                 |                     | mon                       | $\sim$            |
| 52                           |                                         |                                 |                  |                 |                     |                           | <u> </u>          |
| S2<br>⁼C                     | /                                       |                                 |                  |                 |                     |                           | 1                 |
|                              |                                         |                                 |                  |                 |                     |                           |                   |
|                              |                                         |                                 |                  |                 |                     |                           |                   |
| 1                            |                                         |                                 |                  |                 |                     |                           |                   |
| :<br>Ik                      |                                         |                                 |                  |                 |                     |                           |                   |
| <sup>m</sup>                 |                                         |                                 |                  |                 |                     |                           |                   |
|                              |                                         |                                 |                  |                 |                     |                           |                   |
|                              |                                         |                                 |                  |                 |                     |                           |                   |
|                              |                                         |                                 |                  |                 |                     |                           |                   |
|                              |                                         |                                 |                  |                 |                     |                           |                   |
|                              |                                         |                                 |                  |                 |                     |                           |                   |
|                              |                                         |                                 |                  |                 |                     |                           |                   |
| er <u>2.47</u> :             | 9138 GHz                                |                                 |                  |                 |                     |                           | Span 4 I          |
| BW 200                       |                                         | #                               | VBW 300 k        | Hz              |                     | Sweep 1 m                 |                   |
|                              |                                         | π                               | <b>A 000 MOV</b> | 112             |                     | ALCON T III               | a voor h          |

| IC                               |                            |                                       |                              |                               |                             | Rev B<br>01/30/ |
|----------------------------------|----------------------------|---------------------------------------|------------------------------|-------------------------------|-----------------------------|-----------------|
|                                  |                            | ultimedia Speaker System              |                              |                               | Work Order: LA              |                 |
| Serial Number:<br>Customer:      | Unknown<br>Logitech, Inc.  |                                       |                              |                               | Date: 08<br>Temperature: 70 |                 |
| Attendees:                       |                            |                                       | Tested by:                   | Rod Peloquin                  |                             | % RH            |
| stomer Ref. No.:                 | None                       |                                       | Power:                       |                               | Job Site: EV                | /06             |
| SPECIFICATION                    |                            |                                       |                              |                               |                             |                 |
| Specification:<br>LE CALCULATION | 47 CFR 15.247(a)           | Year: 2005-04                         | Method:                      | DA 00-705, ANSI C63.4         | Year: 20                    | 03              |
| MENTS<br>ured with a direc       | t connection between t     | he RF output and a spectrum analyzer. |                              |                               |                             |                 |
| PERATING MOI                     | DES<br>t maximum data rate |                                       |                              |                               |                             |                 |
| TIONS FROM T                     | EST STANDARD               |                                       |                              |                               |                             |                 |
| IREMENTS                         |                            |                                       |                              |                               |                             |                 |
| ency hopping sy                  |                            | 2400-2483.5 MHz band may have 20 dl   | B bandwidths up to 1.5 times | the channel separation, provi | ded the systems o           | perate with a   |
|                                  | ter than 125 mW.           |                                       |                              |                               |                             |                 |
| LTS                              |                            |                                       | BANDWIDTH<br>2.68 MHz        |                               |                             |                 |
| TURE                             |                            |                                       | 2.00 WIF12                   |                               |                             |                 |
| Tested By:                       | Rochy Le F                 | Celing                                |                              |                               |                             |                 |
|                                  |                            | 20dB Bandw                            | idth - High Chan             | inel                          |                             |                 |
| Agilent                          | 14:02:10 Au                | ıg 3, 2005                            |                              |                               | n Mlex1                     | 1.000           |
| 20 dBm                           |                            | Atten 10 dB                           |                              |                               | <b>∆</b> Mkr1               | 19.88           |
| k 🔽                              |                            |                                       |                              |                               |                             |                 |
|                                  |                            |                                       |                              |                               |                             |                 |
|                                  |                            | 11                                    |                              |                               |                             |                 |
|                                  |                            |                                       |                              | <u> </u>                      |                             |                 |
|                                  |                            |                                       |                              |                               |                             |                 |
| it 🖂                             |                            | └─── \/ ── \                          | $\sim$ $\sim$ /              | <b>└──</b> े <b>\</b>         |                             |                 |
| it                               |                            | / ~                                   | $\sim$ $\sim$                | λ.                            |                             |                 |
| ·   .                            |                            |                                       |                              |                               |                             |                 |
|                                  |                            |                                       |                              |                               |                             |                 |
|                                  |                            |                                       |                              | 1 N                           |                             |                 |
|                                  |                            |                                       |                              |                               |                             |                 |
|                                  |                            |                                       |                              |                               |                             |                 |
|                                  |                            |                                       |                              |                               |                             |                 |
| v 📖                              | 1R                         |                                       |                              |                               |                             |                 |
|                                  | ۶~~                        | - Aleren                              |                              | <u>М</u>                      | . long                      | ~ I             |
| S2                               | / ~~~                      |                                       |                              |                               |                             |                 |
| \$2<br>FC                        |                            |                                       |                              |                               |                             |                 |
|                                  |                            |                                       |                              |                               |                             | 1               |
|                                  |                            |                                       |                              |                               |                             | 1               |
| · /                              |                            |                                       |                              |                               |                             |                 |
| · /                              |                            |                                       |                              |                               |                             |                 |
| ak 🖉                             |                            |                                       |                              |                               |                             |                 |
| ðk 🦯                             |                            |                                       |                              |                               |                             |                 |
| ðk                               |                            |                                       |                              |                               |                             |                 |
| ):<br>0k                         |                            |                                       |                              |                               |                             |                 |
| ðk                               |                            |                                       |                              |                               |                             |                 |
| ðk                               |                            |                                       |                              |                               |                             |                 |
| )k                               |                            |                                       |                              |                               |                             |                 |
|                                  | 9 138 GHz                  |                                       |                              |                               |                             | pan 4 M         |





# **Output Power**

## Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

| Channels in Specified Band Investigated: |
|------------------------------------------|
| Low                                      |
| Mid                                      |
| High                                     |

**Operating Modes Investigated:** No Hop

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated:

120 VAC/60 Hz

| Software\Firmware Applied During Test                                                                                         |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Exercise softwareSpecial Test SoftwareVersionZ6DW a0.3.3.1.2.6                                                                |  |  |  |  |  |
| Description                                                                                                                   |  |  |  |  |  |
| The system was tested using special test codes on a remote laptop to exercise the functions of the device during the testing. |  |  |  |  |  |

| EUT and Peripherals |                |                   |               |  |  |
|---------------------|----------------|-------------------|---------------|--|--|
| Description         | Manufacturer   | Model/Part Number | Serial Number |  |  |
| Subwoofer           | Logitech, Inc. | S-0181A           | Unknown       |  |  |
| Control Pod         | Logitech, Inc. | S-0181A           | Unknown       |  |  |
| XPD Module          | Logitech, Inc. | Unknown           | Unknown       |  |  |

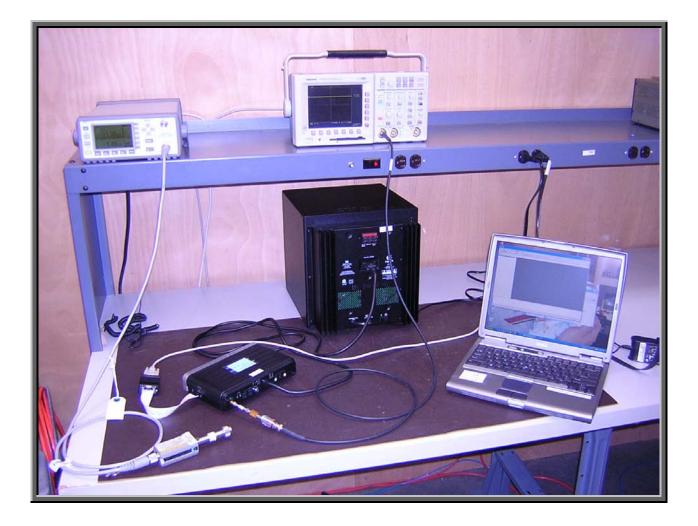
| Remote Equipment Outside of Test Setup Boundary          |                                                                                                                                       |  |  |  |  |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Description Manufacturer Model/Part Number Serial Number |                                                                                                                                       |  |  |  |  |
| Notebook PC Dell, Inc. Latitude D600 99XL661             |                                                                                                                                       |  |  |  |  |
| Equipment isolated from the                              | Equipment isolated from the EUT so as not to contribute to the measurement result is considered to be outside the test setup boundary |  |  |  |  |

| Cables                                                                                                 |        |            |         |              |              |
|--------------------------------------------------------------------------------------------------------|--------|------------|---------|--------------|--------------|
| Cable Type                                                                                             | Shield | Length (m) | Ferrite | Connection 1 | Connection 2 |
| AC Power                                                                                               | No     | 1.4        | No      | Subwoofer    | AC Mains     |
| Control                                                                                                | Yes    | 1.2        | PA      | Control Pod  | Subwoofer    |
| Serial                                                                                                 | Yes    | 1.5        | No      | Notebook PC  | XPD Module   |
| Ribbon                                                                                                 | No     | 0.2        | No      | XPD Module   | Control Pod  |
| PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown. |        |            |         |              |              |

| Measurement Equipment |                 |          |            |            |          |
|-----------------------|-----------------|----------|------------|------------|----------|
| Description           | Manufacturer    | Model    | Identifier | Last Cal   | Interval |
| Power Meter           | Hewlett Packard | E4418A   | SPA        | 07/23/2004 | 24 mo    |
| Power Sensor          | Hewlett-Packard | 8481H    | SPB        | 07/23/2004 | 24 mo    |
| Signal Generator      | Hewlett Packard | 8341B    | TGN        | 02/07/2005 | 13 mo    |
| Oscilloscope          | Tektronix       | TDS 3052 | TOF        | 12/02/2004 | 13 mo    |
| RF Detector           | RLC Electronics | CR-133-R | ZZA        | NCR        | NA       |

**Requirement**: Per 47 CFR 15.247(a)(1), for this application frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

<u>Configuration</u>: The peak output power was measured with the EUT set to low, medium, and high transmit frequencies. The EUT was transmitting at its maximum output power. The data rate of the radio was varied to determine the level that produced the highest output power.


The measurement was made using a direct connection between the RF output of the EUT and a RF detector diode. The DC output of the diode was measured with the oscilloscope. The signal generator, tuned to the transmit frequency, was then substituted for the EUT. The CW output of the signal generator was adjusted until the DC output of the RF detector diode match the peak level produced when connected to the EUT. To further reduce measurement error, the power meter and sensor were then used to measure the output power level of the signal generator.

**De Facto EIRP Limit:** Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36dBm.

Completed by: in he Reling

| NORTHWEST           |                               |               |                                                                                             |                        |                      |  |
|---------------------|-------------------------------|---------------|---------------------------------------------------------------------------------------------|------------------------|----------------------|--|
| EMC                 |                               | OUTPU         | T POWER                                                                                     |                        | Rev BETA<br>01/30/01 |  |
| EUT:                | Z-5450 MN: S-0181A Multimedia |               | Work Order:                                                                                 | LABT0140               |                      |  |
| Serial Number:      | Unknown                       | Inknown       |                                                                                             |                        | 08/05/05             |  |
| Customer:           | Logitech, Inc.                |               |                                                                                             | Temperature:           | 70 °F                |  |
| Attendees:          | None                          |               | Tested by: Rod Peloquin                                                                     | Humidity:              | 45% RH               |  |
| Customer Ref. No.:  |                               |               | Power: 120VAC/60Hz                                                                          | Job Site:              | EV06                 |  |
| TEST SPECIFICATION  | NS                            |               |                                                                                             |                        |                      |  |
|                     | 47 CFR 15.247(b)              | Year: 2005-04 | Method: DA 00-705, ANSI C63.4                                                               | Year:                  | 2003                 |  |
| SAMPLE CALCULATI    | ONS                           |               |                                                                                             |                        |                      |  |
| COMMENTS            |                               |               |                                                                                             |                        |                      |  |
|                     |                               |               |                                                                                             |                        |                      |  |
| EUT OPERATING MO    |                               |               |                                                                                             |                        |                      |  |
| Modulated by PRBS a |                               |               |                                                                                             |                        |                      |  |
| DEVIATIONS FROM T   | EST STANDARD                  |               |                                                                                             |                        |                      |  |
| None                |                               |               |                                                                                             |                        |                      |  |
| REQUIREMENTS        |                               |               |                                                                                             |                        |                      |  |
|                     |                               |               | g channel carrier frequencies that are separated<br>te with an output power no greater than | 1 by 25 kHz or two-thi | rds of the 20 dB     |  |
| RESULTS             |                               |               | AMPLITUDE                                                                                   |                        |                      |  |
| Pass                | 53.58 mW                      |               |                                                                                             |                        |                      |  |
| SIGNATURE           |                               |               |                                                                                             |                        |                      |  |
| Korly & Fielings    |                               |               |                                                                                             |                        |                      |  |
| DESCRIPTION OF TES  | ST                            |               |                                                                                             |                        |                      |  |
|                     | Output Power                  |               |                                                                                             |                        |                      |  |

| Frequency<br>(MHz) | Peak Power Measured w/ Diode<br>Detector<br>(dBm) | Peak Power<br>(mW) | Spec<br>(mW) |
|--------------------|---------------------------------------------------|--------------------|--------------|
| 2403.4             | 15.74                                             | 37.50              | 125.0        |
| 2441.0             | 16.37                                             | 43.35              | 125.0        |
| 2480.0             | 17.29                                             | 53.58              | 125.0        |





The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

| Channels in Specified Band Investigated: |
|------------------------------------------|
| High                                     |
| Low                                      |

# **Operating Modes Investigated:** No Hop

Data Rates Investigated: Maximum

# Power Input Settings Investigated:

120 VAC/60 Hz

| Software\Firmware Applied During Test                                                                     |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Exercise softwareSpecial Test SoftwareVersionZ6DW a0.3.3.1.2.6                                            |  |  |  |  |  |
| Description                                                                                               |  |  |  |  |  |
| The system was tested using special test codes on a remote laptop to exercise the functions of the device |  |  |  |  |  |
| during the testing.                                                                                       |  |  |  |  |  |

| EUT and Peripherals |                |                   |               |  |  |
|---------------------|----------------|-------------------|---------------|--|--|
| Description         | Manufacturer   | Model/Part Number | Serial Number |  |  |
| Subwoofer           | Logitech, Inc. | S-0181A           | Unknown       |  |  |
| Control Pod         | Logitech, Inc. | S-0181A           | Unknown       |  |  |
| XPD Module          | Logitech, Inc. | Unknown           | Unknown       |  |  |

| Remote Equipment Outside of Test Setup Boundary                                                                                       |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Description Manufacturer Model/Part Number Serial Number                                                                              |  |  |  |  |  |
| Notebook PC Dell, Inc. Latitude D600 99XL661                                                                                          |  |  |  |  |  |
| Equipment isolated from the EUT so as not to contribute to the measurement result is considered to be outside the test setup boundary |  |  |  |  |  |

| Cables                                                                                                 |        |            |         |              |              |  |  |  |
|--------------------------------------------------------------------------------------------------------|--------|------------|---------|--------------|--------------|--|--|--|
| Cable Type                                                                                             | Shield | Length (m) | Ferrite | Connection 1 | Connection 2 |  |  |  |
| AC Power                                                                                               | No     | 1.4        | No      | Subwoofer    | AC Mains     |  |  |  |
| Control                                                                                                | Yes    | 1.2        | PA      | Control Pod  | Subwoofer    |  |  |  |
| Serial                                                                                                 | Yes    | 1.5        | No      | Notebook PC  | XPD Module   |  |  |  |
| Ribbon                                                                                                 | No     | 0.2        | No      | XPD Module   | Control Pod  |  |  |  |
| PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown. |        |            |         |              |              |  |  |  |

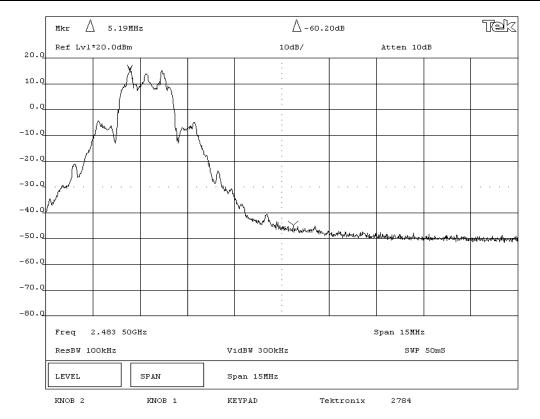


| Measurement Equipment |              |       |            |            |          |  |  |
|-----------------------|--------------|-------|------------|------------|----------|--|--|
| Description           | Manufacturer | Model | Identifier | Last Cal   | Interval |  |  |
| Spectrum Analyzer     | Tektronix    | 2784  | AAO        | 01/02/2005 | 12 mo    |  |  |

**Requirement**: Per 47 CFR 15.247(d), in any 100 kHz bandwidth outside the authorized band, the maximum level of radio frequency power must be at least 20dB down from the highest emission level within the authorized band. The measurement is made with the spectrum analyzer's resolution bandwidth set to 100 kHz, and the video bandwidth set to greater than or equal to the resolution bandwidth.

**Configuration**: The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to low and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode. The channels closest to the band edges were selected. The spectrum was scanned across each band edge from 5 MHz below the band edge to 5 MHz above the band edge.

| Completed by: |        |
|---------------|--------|
| Roly le       | Peling |


| Nontingest       BANDEDGE COMPLIANCE         OWARD AND AND AND AND AND AND AND AND AND AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                    |                                  |                               |              |          |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------|----------------------------------|-------------------------------|--------------|----------|--|--|--|--|
| Serial Number:     Unknown     Date:     08/03/05       Customer:     Logitech, Inc.     Temperature:     70 °F       Attendees:     None     Tested by:     Rod Peloquin     Humidity:     43% RH       Customer Ref. No.:     None     Power:     120VAC/60Hz     Job Site:     EV06       TEST SPECIFICATIONS     Specification:     47 CFR 15.247(d)     Year:     2005-04     Method:     DA 00-705, ANSI C63.4     Year:     2003       SAMPLE CALCULATIONS     EUT OPERATING MODES     EUT OPERATING MODES     Modulated by PRBS at maximum data rate       Deventions     EUT OPERATING STANDARD     None     None     None     Date:     Date: | EMC                |                                    | BAND EDGE                        | COMPLIANCE                    |              |          |  |  |  |  |
| Customer:     Logitech, Inc.     Temperature:     70 °F       Attendees:     None     Tested by:     Rod Peloquin     Humidity:     43% RH       Customer Ref. No.:     None     Power:     120VAC/60Hz     Job Site:     EV06       TEST SPECIFICATIONS     Specification:     47 CFR 15.247(d)     Year:     2005-04     Method:     DA 00-705, ANSI C63.4     Year:     2003       SAMPLE CALCULATIONS     EUT OPERATING MODES     EUT OPERATING MODES     EUT OPERATING MODES     EUT OPERATING MODES       Modulated by PRBS at maximum data rate     DEVIATIONS FROM TEST STANDARD     None     EUT OPERATING MODES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EUT:               | Z-5450 MN: S-0181A Multimedia S    | speaker System                   |                               | Work Order:  | LABT0140 |  |  |  |  |
| Attendees:       None       Tested by:       Rod Peloquin       Humidity:       43% RH         Customer Ref. No.:       None       Power:       120VAC/60Hz       Job Site:       EV06         TEST SPECIFICATIONS       Specification:       47 CFR 15.247(d)       Year:       2005-04       Method:       DA 00-705, ANSI C63.4       Year:       2003         SAMPLE CALCULATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Serial Number:     | Unknown                            |                                  |                               | Date:        | 08/03/05 |  |  |  |  |
| Customer Ref. No.:     None     Power:     120VAC/60Hz     Job Site:     EV06       TEST SPECIFICATIONS     Specification:     47 CFR 15.247(d)     Year:     2003       SAMPLE CALCULATIONS     Sample CALCULATIONS     Vear:     2003       COMMENTS     EUT OPERATING MODES     Modulated by PRBS at maximum data rate       DEVIATIONS FROM TEST STANDARD     None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Customer:          | Logitech, Inc.                     |                                  |                               | Temperature: | 70 °F    |  |  |  |  |
| TEST SPECIFICATIONS         Specification:       47 CFR 15.247(d)       Year:       2005-04       Method:       DA 00-705, ANSI C63.4       Year:       2003         SAMPLE CALCULATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Attendees:         | None                               |                                  | Tested by: Rod Peloquin       | Humidity:    | 43% RH   |  |  |  |  |
| Specification:       47 CFR 15.247(d)       Year:       2005-04       Method:       DA 00-705, ANSI C63.4       Year:       2003         SAMPLE CALCULATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Customer Ref. No.: | None                               |                                  | Power: 120VAC/60Hz            | Job Site:    | EV06     |  |  |  |  |
| SAMPLE CALCULATIONS COMMENTS EUT OPERATING MODES Modulated by PRBS at maximum data rate DEVIATIONS FROM TEST STANDARD None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                                    |                                  |                               |              |          |  |  |  |  |
| COMMENTS<br>EUT OPERATING MODES<br>Modulated by PRBS at maximum data rate<br>DEVIATIONS FROM TEST STANDARD<br>None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Specification:     | 47 CFR 15.247(d)                   | Year: 2005-04                    | Method: DA 00-705, ANSI C63.4 | Year:        | 2003     |  |  |  |  |
| EUT OPERATING MODES<br>Modulated by PRBS at maximum data rate<br>DEVIATIONS FROM TEST STANDARD<br>None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLE CALCULATI   | IONS                               |                                  |                               |              |          |  |  |  |  |
| EUT OPERATING MODES<br>Modulated by PRBS at maximum data rate<br>DEVIATIONS FROM TEST STANDARD<br>None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                    |                                  |                               |              |          |  |  |  |  |
| EUT OPERATING MODES<br>Modulated by PRBS at maximum data rate<br>DEVIATIONS FROM TEST STANDARD<br>None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                    |                                  |                               |              |          |  |  |  |  |
| EUT OPERATING MODES<br>Modulated by PRBS at maximum data rate<br>DEVIATIONS FROM TEST STANDARD<br>None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                    |                                  |                               |              |          |  |  |  |  |
| Modulated by PRBS at maximum data rate DEVIATIONS FROM TEST STANDARD None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COMMENTS           |                                    |                                  |                               |              |          |  |  |  |  |
| Modulated by PRBS at maximum data rate DEVIATIONS FROM TEST STANDARD None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                    |                                  |                               |              |          |  |  |  |  |
| DEVIATIONS FROM TEST STANDARD<br>None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                                    |                                  |                               |              |          |  |  |  |  |
| None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                                    |                                  |                               |              |          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | EST STANDARD                       |                                  |                               |              |          |  |  |  |  |
| REQUIREMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                                    |                                  |                               |              |          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | REQUIREMENTS       |                                    |                                  |                               |              |          |  |  |  |  |
| Maximum level of any spurious emission at the edge of the authorized band is 20 dB down from the fundamental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | / spurious emission at the edge of | the authorized band is 20 dB dow |                               |              |          |  |  |  |  |
| RESULTS AMPLITUDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RESULTS            |                                    |                                  | AMPLITUDE                     |              |          |  |  |  |  |
| Pass -54.4 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                    |                                  |                               |              |          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SIGNATURE          |                                    |                                  |                               |              |          |  |  |  |  |
| Rocky to Reling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                                    |                                  |                               |              |          |  |  |  |  |
| DESCRIPTION OF TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DESCRIPTION OF TE  | ST                                 |                                  |                               |              |          |  |  |  |  |
| Band Edge Compliance - Low Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                    | Band Edge Compli                 | ance - Low Channel            |              |          |  |  |  |  |



| [     | Mkr 🛆 -3.34              | 4MHz                                                                                                             |                                                   |         |           |      | Tek      |
|-------|--------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------|-----------|------|----------|
| 20.0  | Ref Lv1*20.0dBn          | a                                                                                                                | 10dB/                                             |         | Atten 10d | В    |          |
| 10.0  |                          |                                                                                                                  |                                                   | X       | ΛΛ        |      |          |
| 0.0   |                          |                                                                                                                  |                                                   |         |           |      |          |
| -10.0 |                          |                                                                                                                  |                                                   |         |           |      |          |
| -20.0 |                          |                                                                                                                  |                                                   | / /     | V         |      |          |
| -30.Q |                          |                                                                                                                  | N                                                 |         |           |      |          |
| -40.0 |                          |                                                                                                                  |                                                   |         |           |      | **       |
| -50.0 | mussonnellipterstantions | man and a second second and a second and a second | What with a way way way way way way way way way w |         |           |      | Munnard. |
| -60.0 |                          |                                                                                                                  | -                                                 |         |           |      |          |
| -70.Q |                          |                                                                                                                  | -                                                 |         |           |      |          |
| -80.Q |                          |                                                                                                                  | •                                                 |         |           |      |          |
|       | Freq 2.400 00            | )GHz                                                                                                             |                                                   | នា      | pan 15MHz |      |          |
|       | ResBW 100kHz             | v                                                                                                                | idBW 300kHz                                       |         | SWP 5     | 50mS |          |
|       | LEVEL                    | SPAN F                                                                                                           | req 2.400 00GHz                                   |         |           |      |          |
| _     | KNOB 2                   | KNOB 1 K                                                                                                         | EYPAD Te                                          | ktronix | 2784      |      |          |

| EMC BAND EDGE COMPLIANCE |                                     |                                   |                      |                       |      |            |          |  |
|--------------------------|-------------------------------------|-----------------------------------|----------------------|-----------------------|------|------------|----------|--|
|                          | Z-5450 MN: S-0181A Multimedia S     | Speaker System                    |                      |                       | Wo   | ork Order: | 01/30/01 |  |
| Serial Number:           |                                     |                                   |                      |                       |      |            | 08/03/05 |  |
| Customer:                | Logitech, Inc.                      |                                   |                      |                       | Terr | perature:  | 70 °F    |  |
| Attendees:               |                                     |                                   | Tested by:           | Rod Peloquin          |      | Humidity:  |          |  |
| Customer Ref. No.:       | None                                |                                   | Power:               | 120VAC/60Hz           |      | Job Site:  | EV06     |  |
| TEST SPECIFICATION       | IS                                  |                                   |                      |                       |      |            |          |  |
| Specification:           | 47 CFR 15.247(d)                    | Year: 2005-04                     | Method:              | DA 00-705, ANSI C63.4 |      | Year:      | 2003     |  |
| SAMPLE CALCULATIO        | ONS                                 |                                   |                      |                       |      |            |          |  |
| COMMENTS                 | COMMENTS                            |                                   |                      |                       |      |            |          |  |
|                          |                                     |                                   |                      |                       |      |            |          |  |
| EUT OPERATING MOD        | DES                                 |                                   |                      |                       |      |            |          |  |
| Modulated by PRBS at     | t maximum data rate                 |                                   |                      |                       |      |            |          |  |
| DEVIATIONS FROM T        | EST STANDARD                        |                                   |                      |                       |      |            |          |  |
| None                     |                                     |                                   |                      |                       |      |            |          |  |
| REQUIREMENTS             |                                     |                                   |                      |                       |      |            |          |  |
|                          | spurious emission at the edge of t  | the authorized band is 20 dB down | from the fundamental |                       |      |            |          |  |
| RESULTS                  |                                     |                                   | AMPLITUDE            |                       |      |            |          |  |
| Pass                     | Pass -60.2 dB                       |                                   |                      |                       |      |            |          |  |
| SIGNATURE                |                                     |                                   |                      |                       |      |            |          |  |
| Tested By:               | Porting to Reling                   |                                   |                      |                       |      |            |          |  |
| DESCRIPTION OF TES       | БТ                                  |                                   |                      |                       |      |            |          |  |
|                          | Band Edge Compliance - High Channel |                                   |                      |                       |      |            |          |  |









The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

| Channels in Specified Band Investigated: |
|------------------------------------------|
| Low                                      |
| Mid                                      |
| High                                     |

**Operating Modes Investigated:** No Hop

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated:

120 VAC/60 Hz

| Software\Firmware Applied During Test                                                                                         |                       |         |                   |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------|-------------------|--|--|--|--|
| Exercise software                                                                                                             | Special Test Software | Version | Z6DW a0.3.3.1.2.6 |  |  |  |  |
| Description                                                                                                                   |                       |         |                   |  |  |  |  |
| The system was tested using special test codes on a remote laptop to exercise the functions of the device during the testing. |                       |         |                   |  |  |  |  |

| EUT and Peripherals |                |                   |               |  |  |  |  |  |
|---------------------|----------------|-------------------|---------------|--|--|--|--|--|
| Description         | Manufacturer   | Model/Part Number | Serial Number |  |  |  |  |  |
| Subwoofer           | Logitech, Inc. | S-0181A           | Unknown       |  |  |  |  |  |
| Control Pod         | Logitech, Inc. | S-0181A           | Unknown       |  |  |  |  |  |
| XPD Module          | Logitech, Inc. | Unknown           | Unknown       |  |  |  |  |  |

| Remote Equipment Outside of Test Setup Boundary                                                                                       |              |                   |               |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|---------------|--|--|--|
| Description                                                                                                                           | Manufacturer | Model/Part Number | Serial Number |  |  |  |
| Notebook PC                                                                                                                           | Dell, Inc.   | Latitude D600     | 99XL661       |  |  |  |
| Equipment isolated from the EUT so as not to contribute to the measurement result is considered to be outside the test setup boundary |              |                   |               |  |  |  |

| Cables                                                                                                 |        |            |         |              |              |  |  |  |
|--------------------------------------------------------------------------------------------------------|--------|------------|---------|--------------|--------------|--|--|--|
| Cable Type                                                                                             | Shield | Length (m) | Ferrite | Connection 1 | Connection 2 |  |  |  |
| AC Power                                                                                               | No     | 1.4        | No      | Subwoofer    | AC Mains     |  |  |  |
| Control                                                                                                | Yes    | 1.2        | PA      | Control Pod  | Subwoofer    |  |  |  |
| Serial                                                                                                 | Yes    | 1.5        | No      | Notebook PC  | XPD Module   |  |  |  |
| Ribbon                                                                                                 | No     | 0.2        | No      | XPD Module   | Control Pod  |  |  |  |
| PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown. |        |            |         |              |              |  |  |  |

| Measurement Equipment |              |       |            |            |          |  |  |
|-----------------------|--------------|-------|------------|------------|----------|--|--|
| Description           | Manufacturer | Model | Identifier | Last Cal   | Interval |  |  |
| Spectrum Analyzer     | Tektronix    | 2784  | AAO        | 01/02/2005 | 12 mo    |  |  |

**Requirement**: Per 47 CFR 15.247(d), in any 100 kHz bandwidth outside the authorized band, the maximum level of radio frequency power must be at least 20dB down from the highest emission level within the authorized band. The measurement is made with the spectrum analyzer's resolution bandwidth set to 100 kHz, and the video bandwidth set to greater than or equal to the resolution bandwidth.

**Configuration**: The spurious RF conducted emissions were measured with the EUT set to low, medium, and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode. For each transmit frequency, the spectrum was scanned throughout the specified frequency.

| Completed by: |        |
|---------------|--------|
| Rocky la      | Peling |

| EMC EMIS                                                              | SIONS DATA SH                      | EET                   |              | Rev BETA |  |  |  |
|-----------------------------------------------------------------------|------------------------------------|-----------------------|--------------|----------|--|--|--|
| EUT: Z-5450 MN: S-0181A Multimedia Speaker System                     |                                    |                       | Work Order:  | 01/30/01 |  |  |  |
| Serial Number: Unknown                                                |                                    |                       |              | 08/03/05 |  |  |  |
| Customer: Logitech, Inc.                                              |                                    |                       | Temperature: |          |  |  |  |
| Attendees: None                                                       | Tested by:                         | Rod Peloquin          | Humidity:    |          |  |  |  |
| Customer Ref. No.: None                                               |                                    | 120VAC/60Hz           | Job Site:    |          |  |  |  |
| TEST SPECIFICATIONS                                                   |                                    |                       |              |          |  |  |  |
| Specification: 47 CFR 15.247(d) Year: 200                             | 5-04 Method:                       | DA 00-705, ANSI C63.4 | Year:        | 2003     |  |  |  |
| SAMPLE CALCULATIONS                                                   |                                    |                       |              |          |  |  |  |
|                                                                       |                                    |                       |              |          |  |  |  |
| COMMENTS                                                              |                                    |                       |              |          |  |  |  |
|                                                                       |                                    |                       |              |          |  |  |  |
| EUT OPERATING MODES                                                   |                                    |                       |              |          |  |  |  |
| Modulated by PRBS at maximum data rate                                |                                    |                       |              |          |  |  |  |
| DEVIATIONS FROM TEST STANDARD                                         |                                    |                       |              |          |  |  |  |
| None                                                                  |                                    |                       |              |          |  |  |  |
| REQUIREMENTS                                                          |                                    |                       |              |          |  |  |  |
| Maximum level of any spurious emission outside of the authorized band | is 20 dB down from the fundamental |                       |              |          |  |  |  |
| RESULTS                                                               |                                    |                       |              |          |  |  |  |
| Pass                                                                  |                                    |                       |              |          |  |  |  |
| SIGNATURE                                                             |                                    |                       |              |          |  |  |  |
| Roching her Pielings                                                  |                                    |                       |              |          |  |  |  |
|                                                                       |                                    |                       |              |          |  |  |  |
| DESCRIPTION OF TEST                                                   |                                    |                       |              |          |  |  |  |
| Antenna Conducted Sp                                                  | ourious Emissions - Low            | Channel 0MH           | lz-3GHz      |          |  |  |  |

Antenna Conducted Spurious Emissions - Low Channel 0MHz-3GHz

|       |                                                                                                                 |                                       |                  |                           |                                         |               |                                         | Tek |
|-------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------|---------------------------|-----------------------------------------|---------------|-----------------------------------------|-----|
| 20.0  | Ref Lv1*20.0dB                                                                                                  | m                                     |                  | 10dB/                     |                                         | Atten 10d     | lB                                      |     |
| 10.0  |                                                                                                                 |                                       |                  |                           |                                         |               |                                         |     |
|       |                                                                                                                 |                                       |                  | •                         |                                         |               |                                         |     |
| 0.0   |                                                                                                                 |                                       |                  | ·<br>·                    |                                         |               |                                         |     |
| -10.0 |                                                                                                                 |                                       |                  |                           |                                         |               |                                         |     |
| -20.Q |                                                                                                                 |                                       |                  | :<br>:<br>:               |                                         |               |                                         |     |
| -30.0 |                                                                                                                 |                                       |                  |                           |                                         |               |                                         |     |
| -40.Q |                                                                                                                 |                                       |                  |                           |                                         |               |                                         |     |
| -50.0 |                                                                                                                 |                                       |                  |                           |                                         |               | Conception .                            |     |
| -60.0 | aperature and a second a second a | electer and the second and the second | have deres where | northern and and a second | ana ang ang ang ang ang ang ang ang ang | ~             | ·····••>>>+++++++++++++++++++++++++++++ | p-y |
| -70.0 |                                                                                                                 |                                       |                  | •                         |                                         |               |                                         |     |
| -80.0 |                                                                                                                 |                                       |                  |                           |                                         |               |                                         |     |
|       | OMHz                                                                                                            | to                                    | 3.000GH          | z                         |                                         | · · · · · · · |                                         |     |
|       | ResBW 100kHz                                                                                                    |                                       | VidBW            | 300kHz                    |                                         | SWP           | 1.75                                    |     |
|       | LEVEL                                                                                                           | SPAN                                  | Ref L            | vl*20.0dBm                |                                         |               |                                         |     |
|       | KINOB 2                                                                                                         | KNOB 1                                | KEYPA            | D Te                      | ektronix                                | 2784          |                                         |     |

| NORTHWEST            |                                  |                                   |                    |                       |             |                      |  |  |
|----------------------|----------------------------------|-----------------------------------|--------------------|-----------------------|-------------|----------------------|--|--|
| EMC                  |                                  | EMISSIONS [                       | DATA SH            | EET                   |             | Rev BETA<br>01/30/01 |  |  |
| EUT:                 | Z-5450 MN: S-0181A Multimedia S  | peaker System                     |                    |                       | Work Order  | LABT0140             |  |  |
| Serial Number:       | Unknown                          |                                   |                    |                       | Date        | 08/03/05             |  |  |
| Customer:            | Logitech, Inc.                   |                                   |                    |                       | Temperature | 72°F                 |  |  |
| Attendees:           |                                  |                                   |                    | Rod Peloquin          | Humidity    | 45% RH               |  |  |
| Customer Ref. No.:   | None                             |                                   | Power:             | 120VAC/60Hz           | Job Site    | EV06                 |  |  |
| TEST SPECIFICATION   | IS                               |                                   |                    |                       |             |                      |  |  |
| Specification:       | 47 CFR 15.247(d)                 | Year: 2005-04                     | Method:            | DA 00-705, ANSI C63.4 | Year        | 2003                 |  |  |
| SAMPLE CALCULATION   | ONS                              |                                   |                    |                       |             |                      |  |  |
|                      |                                  |                                   |                    |                       |             |                      |  |  |
|                      |                                  |                                   |                    |                       |             |                      |  |  |
| COMMENTS             |                                  |                                   |                    |                       |             |                      |  |  |
| COMMENTO             |                                  |                                   |                    |                       |             |                      |  |  |
| EUT OPERATING MOD    | DES                              |                                   |                    |                       |             |                      |  |  |
| Modulated by PRBS a  | t maximum data rate              |                                   |                    |                       |             |                      |  |  |
| DEVIATIONS FROM T    | EST STANDARD                     |                                   |                    |                       |             |                      |  |  |
| None                 |                                  |                                   |                    |                       |             |                      |  |  |
| REQUIREMENTS         |                                  |                                   |                    |                       |             |                      |  |  |
| Maximum level of any | spurious emission outside of the | authorized band is 20 dB down fro | om the fundamental |                       |             |                      |  |  |
| RESULTS              |                                  |                                   |                    |                       |             |                      |  |  |
| Pass                 |                                  |                                   |                    |                       |             |                      |  |  |
| SIGNATURE            |                                  |                                   |                    |                       |             |                      |  |  |
| Rochy Le Reling      |                                  |                                   |                    |                       |             |                      |  |  |
|                      | Tested By:                       |                                   |                    |                       |             |                      |  |  |
| DESCRIPTION OF TES   |                                  |                                   |                    |                       |             |                      |  |  |
|                      | Antenna Condu                    | cted Spurious Emis                | ssions - Low       | Channel 3GH           | lz-6.5GHz   |                      |  |  |

# Antenna Conducted Spurious Emissions - Low Channel 3GHz-6.5GHz

|       |              |        |        |               |                         |                           |                                                                                                                 |                    | Tek                     |
|-------|--------------|--------|--------|---------------|-------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------|-------------------------|
| 20.0  | Ref Lv1*2    | 0.0dBm |        |               | 10dB/                   |                           | Atten 10                                                                                                        | ldB                |                         |
| _     |              |        |        |               |                         |                           |                                                                                                                 |                    |                         |
| 10.0  |              |        |        |               |                         |                           |                                                                                                                 |                    |                         |
| 0.0   |              |        |        |               | · · ·                   |                           |                                                                                                                 |                    |                         |
| -10.0 |              |        |        |               |                         |                           |                                                                                                                 |                    |                         |
| -20.Q |              |        |        |               | ·<br>·                  |                           |                                                                                                                 |                    |                         |
| -30.Q |              |        |        |               |                         |                           |                                                                                                                 |                    |                         |
| -40.Q |              |        |        |               |                         |                           |                                                                                                                 |                    |                         |
| -50.Q |              |        |        |               |                         |                           |                                                                                                                 |                    |                         |
|       |              | 41     | www    | www.williams. | www.www.www.www.worker. | , market war had been see | enter and the second | www.wellow.com.com | - Hatter and the Arabit |
| -60.Q |              |        |        |               |                         |                           |                                                                                                                 |                    |                         |
| -70.0 |              |        |        |               |                         |                           |                                                                                                                 |                    |                         |
| -80.0 |              |        |        |               |                         |                           |                                                                                                                 |                    |                         |
|       | 2.990G       | Hz     | to     | 6.5           | OOGHz                   |                           |                                                                                                                 |                    |                         |
|       | ResBW 100kHz |        | v:     | VidBW 300kHz  |                         | SWP                       | 2.05                                                                                                            | _                  |                         |
|       | LEVEL        |        | SPAN   | Re            | ≥f Lv1*20.0dBm          |                           |                                                                                                                 |                    |                         |
|       | KNOB 2       |        | KNOB 1 | KI            | EYPAD                   | Tektroni                  | ix 2784                                                                                                         |                    |                         |

| NORTHWEST                |                                  |                                   |                           |              |          |  |  |
|--------------------------|----------------------------------|-----------------------------------|---------------------------|--------------|----------|--|--|
| EMISSIONS DATA SHEET     |                                  |                                   |                           |              |          |  |  |
| EUT:                     | Z-5450 MN: S-0181A Multimedia S  | peaker System                     |                           | Work Order   | LABT0140 |  |  |
| Serial Number:           | Unknown                          |                                   |                           | Date:        | 08/03/05 |  |  |
| Customer:                | Logitech, Inc.                   |                                   |                           | Temperature: | 72°F     |  |  |
| Attendees:               | None                             |                                   |                           |              | 45% RH   |  |  |
| Customer Ref. No.:       | None                             | Job Site:                         | EV06                      |              |          |  |  |
| TEST SPECIFICATION       | IS                               |                                   |                           |              |          |  |  |
| Specification:           | 47 CFR 15.247(d)                 | Year: 2005-04                     | Method: DA 00-705, ANSI C | 3.4 Year:    | 2003     |  |  |
| SAMPLE CALCULATI         | ONS                              |                                   |                           |              |          |  |  |
|                          |                                  |                                   |                           |              |          |  |  |
|                          |                                  |                                   |                           |              |          |  |  |
| COMMENTS                 |                                  |                                   |                           |              |          |  |  |
|                          |                                  |                                   |                           |              |          |  |  |
| EUT OPERATING MO         | DES                              |                                   |                           |              |          |  |  |
| Modulated by PRBS a      | t maximum data rate              |                                   |                           |              |          |  |  |
| <b>DEVIATIONS FROM T</b> | EST STANDARD                     |                                   |                           |              |          |  |  |
| None                     |                                  |                                   |                           |              |          |  |  |
| REQUIREMENTS             |                                  |                                   |                           |              |          |  |  |
| Maximum level of any     | spurious emission outside of the | authorized band is 20 dB down fro | om the fundamental        |              |          |  |  |
| RESULTS                  |                                  |                                   |                           |              |          |  |  |
| Pass                     |                                  |                                   |                           |              |          |  |  |
| SIGNATURE                |                                  |                                   |                           |              |          |  |  |
| Korling Le Peeling       |                                  |                                   |                           |              |          |  |  |
| 100100 591               | -                                |                                   |                           |              |          |  |  |
| DESCRIPTION OF TE        | ST                               |                                   |                           |              |          |  |  |
|                          | Antenna Conduc                   | cted Spurious Emis                | sions - Low Channel 6.    | GHz-15GHz    |          |  |  |

Antenna Conducted Spurious Emissions - Low Channel 6.5GHz-15GHz

|       |                      |                               |                                         |                             |                                 |                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Tek                              |
|-------|----------------------|-------------------------------|-----------------------------------------|-----------------------------|---------------------------------|---------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------|
| 20.0  | Ref Lvl <sup>;</sup> | 20.0dBm                       |                                         |                             | 10                              | ldB/                            |                               | Atten 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1B                      |                                  |
| 10.0  |                      |                               |                                         |                             |                                 |                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                  |
|       |                      |                               |                                         |                             | :                               |                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                  |
| 0.0   |                      |                               |                                         |                             | · ·                             |                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                  |
| -10.Q |                      |                               |                                         |                             |                                 |                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                  |
| -20.Q |                      |                               |                                         |                             |                                 |                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                  |
| -30.Q |                      |                               |                                         |                             |                                 |                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                  |
| -40.Q |                      |                               |                                         |                             | :                               |                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                  |
| -50.Q |                      |                               |                                         |                             |                                 |                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                  |
| -60.0 |                      | and all for a far and the ser | nan an | for the state of the second | Mary Madridge and Mary and Mary | <sup>b</sup> ishkanghe Langerse | rifeteren antereteranteranter | verment the offered and the start of the sta | Adversed to be assessed | the physical and the store which |
| -70.0 |                      |                               |                                         |                             |                                 |                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                  |
| -80.0 |                      |                               |                                         |                             |                                 |                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                  |
|       | 6.499                | 9GHz                          | to                                      | 15.0                        | OOGHz                           |                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                  |
|       | ResBW 100kHz         |                               | V:                                      | VidBW 300kHz                |                                 |                                 | SWP                           | 4.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                                  |
|       | LEVEL                |                               | SPAN                                    | Re                          | ⊇f Lv1*20.0                     | dBm                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                  |
|       | KINOB 2              |                               | KNOB 1                                  | KI                          | EYPAD                           | Te                              | ktronix                       | 2784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                                  |

| NORTHWEST            |                                  |                                   |                    |                       |              |          |  |  |
|----------------------|----------------------------------|-----------------------------------|--------------------|-----------------------|--------------|----------|--|--|
| EMC                  | EMISSIONS DATA SHEET             |                                   |                    |                       |              |          |  |  |
| EUT:                 | Z-5450 MN: S-0181A Multimedia S  | peaker System                     |                    |                       | Work Order:  | LABT0140 |  |  |
| Serial Number:       | Unknown                          |                                   |                    |                       | Date:        | 08/03/05 |  |  |
| Customer:            | Logitech, Inc.                   |                                   |                    |                       | Temperature: | 72°F     |  |  |
| Attendees:           | lone Tested by: Rod Peloquin     |                                   |                    | Humidity:             | 45% RH       |          |  |  |
| Customer Ref. No.:   | None                             |                                   | Power:             | 120VAC/60Hz           | Job Site:    | EV06     |  |  |
| TEST SPECIFICATION   | IS                               |                                   |                    |                       |              |          |  |  |
| Specification:       | 47 CFR 15.247(d)                 | Year: 2005-04                     | Method:            | DA 00-705, ANSI C63.4 | Year:        | 2003     |  |  |
| SAMPLE CALCULATIO    | ONS                              |                                   |                    |                       |              |          |  |  |
|                      |                                  |                                   |                    |                       |              |          |  |  |
|                      |                                  |                                   |                    |                       |              |          |  |  |
|                      |                                  |                                   |                    |                       |              |          |  |  |
| COMMENTS             |                                  |                                   |                    |                       |              |          |  |  |
|                      |                                  |                                   |                    |                       |              |          |  |  |
| EUT OPERATING MOD    |                                  |                                   |                    |                       |              |          |  |  |
| Modulated by PRBS a  | t maximum data rate              |                                   |                    |                       |              |          |  |  |
| DEVIATIONS FROM T    | EST STANDARD                     |                                   |                    |                       |              |          |  |  |
| None                 |                                  |                                   |                    |                       |              |          |  |  |
| REQUIREMENTS         |                                  |                                   |                    |                       |              |          |  |  |
| Maximum level of any | spurious emission outside of the | authorized band is 20 dB down fro | om the fundamental |                       |              |          |  |  |
| RESULTS              |                                  |                                   |                    |                       |              |          |  |  |
| Pass                 |                                  |                                   |                    |                       |              |          |  |  |
| SIGNATURE            |                                  |                                   |                    |                       |              |          |  |  |
| Rocky te Pieleng     |                                  |                                   |                    |                       |              |          |  |  |
| DESCRIPTION OF TES   | DESCRIPTION OF TEST              |                                   |                    |                       |              |          |  |  |
|                      | Antenna Conduc                   | ted Spurious Emis                 | sions - Low (      | Channel 15GI          | Hz - 25GHz   |          |  |  |

Antenna Conducted Spurious Emissions - Low Channel 15GHz - 25GHz

|       |                             |          |                   |                       |                                                                                                                 |                                                     |                 |                                           |                    | Tek           |
|-------|-----------------------------|----------|-------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------|-------------------------------------------|--------------------|---------------|
| 20.0  | Ref Lv1*2                   | 20.0dBm  |                   |                       | 1                                                                                                               | .0dB/                                               |                 | Atten 100                                 | цв                 |               |
| _     |                             |          |                   |                       |                                                                                                                 |                                                     |                 |                                           |                    |               |
| 10.0  |                             |          |                   |                       |                                                                                                                 |                                                     |                 |                                           |                    |               |
| 0.0   |                             |          |                   |                       |                                                                                                                 |                                                     |                 |                                           |                    |               |
| -10.0 |                             |          |                   |                       |                                                                                                                 |                                                     |                 |                                           |                    |               |
| -20.Q |                             |          |                   |                       |                                                                                                                 |                                                     |                 |                                           |                    |               |
| -30.Q |                             |          |                   |                       |                                                                                                                 |                                                     |                 |                                           |                    |               |
| -40.Q |                             |          |                   |                       |                                                                                                                 |                                                     |                 |                                           |                    |               |
| -50.0 |                             |          |                   |                       |                                                                                                                 | 4                                                   | Mar March where | fer the big big big the provide a company | h-warder and which | Approximation |
|       | anterio mander and a second | Newsmith | mappensertendance | witherstrates and the | and an or the second | <sup>, , ,</sup> , ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, | 54.1            |                                           |                    |               |
| -60.0 |                             |          |                   |                       |                                                                                                                 |                                                     |                 |                                           |                    |               |
| -70.Q |                             |          |                   |                       |                                                                                                                 |                                                     |                 |                                           |                    |               |
| -80.0 |                             |          |                   |                       |                                                                                                                 |                                                     |                 |                                           |                    |               |
|       | 14.99GH                     | Iz       | to                | 25.                   | OOGHz                                                                                                           |                                                     |                 |                                           |                    |               |
|       | ResBW 100                   | )kHz     |                   | Va                    | idBW 300kH                                                                                                      | z                                                   |                 | SWP                                       | 5.7%               |               |
|       | LEVEL                       |          | SPAN              | Re                    | ≥f Lv1*20.                                                                                                      | OdBm                                                |                 |                                           |                    |               |
|       | KNOB 2                      |          | KNOB 1            | KI                    | EYPAD                                                                                                           | Te                                                  | ktronix         | 2784                                      |                    |               |

| NORTHWEST                |                                  |                                   |                    |                    |                  |                      |  |  |
|--------------------------|----------------------------------|-----------------------------------|--------------------|--------------------|------------------|----------------------|--|--|
| EMC                      |                                  | EMISSIONS I                       | DATA SHE           | ET                 |                  | Rev BETA<br>01/30/01 |  |  |
| EUT:                     | Z-5450 MN: S-0181A Multimedia S  | peaker System                     |                    |                    | Work Order:      | LABT0140             |  |  |
| Serial Number:           | Unknown                          |                                   |                    |                    | Date:            | 08/03/05             |  |  |
| Customer:                | Logitech, Inc.                   |                                   |                    |                    | Temperature:     | 72°F                 |  |  |
| Attendees:               | None                             |                                   |                    |                    | Humidity:        | 45% RH               |  |  |
| Customer Ref. No.:       | : None Power: 120VAC/60Hz        |                                   |                    |                    | Job Site:        | EV06                 |  |  |
| TEST SPECIFICATION       | NS                               |                                   |                    |                    |                  |                      |  |  |
| Specification:           | 47 CFR 15.247(d)                 | Year: 2005-04                     | Method: DA         | 00-705, ANSI C63.4 | Year:            | 2003                 |  |  |
| SAMPLE CALCULATI         | ONS                              |                                   |                    |                    |                  |                      |  |  |
|                          |                                  |                                   |                    |                    |                  |                      |  |  |
|                          |                                  |                                   |                    |                    |                  |                      |  |  |
| COMMENTS                 |                                  |                                   |                    |                    |                  |                      |  |  |
|                          |                                  |                                   |                    |                    |                  |                      |  |  |
| EUT OPERATING MO         | DES                              |                                   |                    |                    |                  |                      |  |  |
| Modulated by PRBS a      | t maximum data rate              |                                   |                    |                    |                  |                      |  |  |
| <b>DEVIATIONS FROM T</b> | EST STANDARD                     |                                   |                    |                    |                  |                      |  |  |
| None                     |                                  |                                   |                    |                    |                  |                      |  |  |
| REQUIREMENTS             |                                  |                                   |                    |                    |                  |                      |  |  |
| Maximum level of any     | spurious emission outside of the | authorized band is 20 dB down fro | om the fundamental |                    |                  |                      |  |  |
| RESULTS                  |                                  |                                   |                    |                    |                  |                      |  |  |
| Pass                     |                                  |                                   |                    |                    |                  |                      |  |  |
| SIGNATURE                |                                  |                                   |                    |                    |                  |                      |  |  |
| Porty to Reling          |                                  |                                   |                    |                    |                  |                      |  |  |
| DESCRIPTION OF TE        |                                  |                                   |                    |                    |                  |                      |  |  |
|                          |                                  | uctod Spurious Em                 | issions - Mid C    | bannol OM          |                  |                      |  |  |
|                          | Antenna Cond                     | ucted Spurious Em                 |                    |                    | nz-30 <b>n</b> z |                      |  |  |

Antenna Conducted Spurious Emissions - Mid Channel 0MHz-3GHz

|       |                                                                          |                 |                 |                              | Tek                                     |
|-------|--------------------------------------------------------------------------|-----------------|-----------------|------------------------------|-----------------------------------------|
| 20.0  | Ref Lv1*20.0dBr                                                          | n               | 10dB/           | Atten                        | 10dB                                    |
| 10.0  |                                                                          |                 |                 |                              |                                         |
|       |                                                                          |                 |                 |                              |                                         |
| 0.0   |                                                                          |                 |                 |                              |                                         |
| -10.0 |                                                                          |                 |                 |                              |                                         |
| -20.Q |                                                                          |                 |                 |                              |                                         |
| -30.Q |                                                                          |                 |                 |                              |                                         |
| -40.Q |                                                                          |                 |                 |                              |                                         |
| -50.Q |                                                                          |                 |                 |                              |                                         |
| -60.0 | halastalana marana ang kana sa mana kang kang kang kang kang kang kang k | www.www.www.and |                 | with the kine own that a def | Miller alland and an an an and a second |
| -70.0 |                                                                          |                 |                 |                              |                                         |
|       |                                                                          |                 |                 |                              |                                         |
| -80.Q | OMHz                                                                     | to              | 3.000GHz        |                              |                                         |
|       | ResBW 100kHz                                                             |                 | VidBW 300kHz    | ទរ                           | IP 1.75                                 |
|       | LEVEL                                                                    | SPAN            | Ref Lv1*20.0dBm |                              |                                         |
|       | KNOB 2                                                                   | KNOB 1          | KEYPAD          | Tektronix 2784               |                                         |

| EMISSIONS DATA SHEET                                                    |                                  |                               |             |                      |  |  |
|-------------------------------------------------------------------------|----------------------------------|-------------------------------|-------------|----------------------|--|--|
| EMC                                                                     | EINI122101121                    | DATA SHEET                    |             | Rev BETA<br>01/30/01 |  |  |
| EUT: Z-5450 MN: S-0181A Multimedia S                                    | peaker System                    |                               | Work Order: | LABT0140             |  |  |
| Serial Number: Unknown                                                  |                                  |                               | Date:       | 08/03/05             |  |  |
| Customer: Logitech, Inc.                                                | Customer: Logitech, Inc.         |                               |             |                      |  |  |
| Attendees: None                                                         |                                  | Tested by: Rod Peloquin       | Humidity:   | 45% RH               |  |  |
| Customer Ref. No.: None                                                 |                                  | Power: 120VAC/60Hz            | Job Site:   | EV06                 |  |  |
| TEST SPECIFICATIONS                                                     |                                  |                               |             | -                    |  |  |
| Specification: 47 CFR 15.247(d)                                         | Year: 2005-04                    | Method: DA 00-705, ANSI C63.4 | Year:       | 2003                 |  |  |
| SAMPLE CALCULATIONS                                                     |                                  |                               |             |                      |  |  |
|                                                                         |                                  |                               |             |                      |  |  |
|                                                                         |                                  |                               |             |                      |  |  |
|                                                                         |                                  |                               |             |                      |  |  |
| COMMENTS                                                                |                                  |                               |             |                      |  |  |
|                                                                         |                                  |                               |             |                      |  |  |
| EUT OPERATING MODES                                                     |                                  |                               |             |                      |  |  |
| Modulated by PRBS at maximum data rate                                  |                                  |                               |             |                      |  |  |
| DEVIATIONS FROM TEST STANDARD                                           |                                  |                               |             |                      |  |  |
| None                                                                    |                                  |                               |             |                      |  |  |
| REQUIREMENTS<br>Maximum level of any spurious emission outside of the a | authorized hand is 20 dB down fr | am the fundamental            |             |                      |  |  |
| RESULTS                                                                 | authorized band is 20 dB down in | om the fundamental            |             |                      |  |  |
|                                                                         |                                  |                               |             |                      |  |  |
| Pass<br>SIGNATURE                                                       |                                  |                               |             |                      |  |  |
| 1                                                                       |                                  |                               |             |                      |  |  |
| Porting ter Reling                                                      |                                  |                               |             |                      |  |  |
|                                                                         | 2                                |                               |             |                      |  |  |
| Tested By:                                                              |                                  |                               |             |                      |  |  |
| DESCRIPTION OF TEST                                                     |                                  |                               |             |                      |  |  |
|                                                                         |                                  |                               |             |                      |  |  |
| Antenna Condu                                                           | icted Spurious Emi               | ssions - Mid Channel 3GH      | 1Z-6.5GHZ   |                      |  |  |

# Antenna Conducted Spurious Emissions - Mid Channel 3GHz-6.5GHz

|       |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        | Tek                                  |
|-------|----------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------|
| 20.0  | Ref Lv1*20.0         | dBm                              | 10dB/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Atten 10dB                             |                                      |
| 20.0  |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                      |
| 10.0  |                      |                                  | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                                      |
| 0.0   |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                      |
| 40.0  |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                      |
| -10.0 |                      |                                  | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                                      |
| -20.Q |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                      |
| -30.Q |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                      |
| -40.Q |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                      |
| -50.0 |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                      |
| -30.0 | waylower, Wyang ward | wandersamburgingeran and the own | where the and the particular and the second and the second se | out was an an an an an an and a second | warman wards warman warder the stand |
| -60.Q |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                      |
| -70.0 |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                      |
| -80.0 |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                      |
|       | 2.990GHz             | to                               | 6.500GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                      |
|       | ResBW 100kHz         |                                  | VidBW 300kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SWP 2                                  | .05                                  |
|       | LEVEL                | SPAN                             | Ref Lv1*20.0dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                      |
|       | KINOB 2              | KNOB 1                           | KEYPAD Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ktronix 2784                           |                                      |

| NORTHWEST                |                                  |                                  |                           |             |                      |  |  |  |  |  |  |  |
|--------------------------|----------------------------------|----------------------------------|---------------------------|-------------|----------------------|--|--|--|--|--|--|--|
| EMC                      |                                  | EMISSIONS I                      | DATA SHEET                |             | Rev BETA<br>01/30/01 |  |  |  |  |  |  |  |
| EUT:                     | Z-5450 MN: S-0181A Multimedia S  | peaker System                    |                           | Work Orde   | r: LABT0140          |  |  |  |  |  |  |  |
| Serial Number:           | Unknown                          |                                  |                           | Date        | : 08/03/05           |  |  |  |  |  |  |  |
| Customer:                | Logitech, Inc.                   |                                  |                           | Temperature | : 72°F               |  |  |  |  |  |  |  |
| Attendees:               | None                             |                                  | Tested by: Rod Peloquin   | Humidity    | /: 45% RH            |  |  |  |  |  |  |  |
| Customer Ref. No.:       | None                             |                                  | Power: 120VAC/60Hz        | Job Site    | : EV06               |  |  |  |  |  |  |  |
| TEST SPECIFICATION       | NS                               |                                  |                           |             |                      |  |  |  |  |  |  |  |
| Specification:           | 47 CFR 15.247(d)                 | Year: 2005-04                    | Method: DA 00-705, ANSI C | 63.4 Yea    | : 2003               |  |  |  |  |  |  |  |
| SAMPLE CALCULATI         | ONS                              |                                  |                           |             |                      |  |  |  |  |  |  |  |
|                          |                                  |                                  |                           |             |                      |  |  |  |  |  |  |  |
|                          |                                  |                                  |                           |             |                      |  |  |  |  |  |  |  |
| COMMENTS                 |                                  |                                  |                           |             |                      |  |  |  |  |  |  |  |
|                          |                                  |                                  |                           |             |                      |  |  |  |  |  |  |  |
| EUT OPERATING MO         | DES                              |                                  |                           |             |                      |  |  |  |  |  |  |  |
| Modulated by PRBS a      | t maximum data rate              |                                  |                           |             |                      |  |  |  |  |  |  |  |
| <b>DEVIATIONS FROM T</b> | EST STANDARD                     |                                  |                           |             |                      |  |  |  |  |  |  |  |
| None                     |                                  |                                  |                           |             |                      |  |  |  |  |  |  |  |
| REQUIREMENTS             |                                  |                                  |                           |             |                      |  |  |  |  |  |  |  |
| Maximum level of any     | spurious emission outside of the | authorized band is 20 dB down fr | om the fundamental        |             |                      |  |  |  |  |  |  |  |
| RESULTS                  |                                  |                                  |                           |             |                      |  |  |  |  |  |  |  |
| Pass                     |                                  |                                  |                           |             |                      |  |  |  |  |  |  |  |
| SIGNATURE                |                                  |                                  |                           |             |                      |  |  |  |  |  |  |  |
| Rocky ter Pielings       |                                  |                                  |                           |             |                      |  |  |  |  |  |  |  |
|                          |                                  |                                  |                           |             |                      |  |  |  |  |  |  |  |
| DESCRIPTION OF TE        | DESCRIPTION OF TEST              |                                  |                           |             |                      |  |  |  |  |  |  |  |
|                          | Antenna Condu                    | cted Spurious Emis               | ssions - Mid Channel 6.   | bGHz-15GHz  |                      |  |  |  |  |  |  |  |

Antenna Conducted Spurious Emissions - Mid Channel 6.5GHz-15GHz

|               |                      |                   |           |                  |                               |                    |                             |                              |               | Tek                   |
|---------------|----------------------|-------------------|-----------|------------------|-------------------------------|--------------------|-----------------------------|------------------------------|---------------|-----------------------|
| 20.0          | Ref Lvl <sup>;</sup> | 20.OdBm           |           |                  | 10                            | dB/                |                             | Atten 100                    | 1B            |                       |
| _             |                      |                   |           |                  | -                             |                    |                             |                              |               |                       |
| 10.0          |                      |                   |           |                  |                               |                    |                             |                              |               |                       |
| 0.0           |                      |                   |           |                  | •                             |                    |                             |                              |               |                       |
| -10.0         |                      |                   |           |                  |                               |                    |                             |                              |               |                       |
| -20.Q         |                      |                   |           |                  | :                             |                    |                             |                              |               |                       |
| -30.Q         |                      |                   |           |                  |                               |                    |                             |                              |               |                       |
| -40.Q         |                      |                   |           |                  |                               |                    |                             |                              |               |                       |
| -50.Q         |                      |                   |           |                  | -                             |                    |                             |                              |               |                       |
| -60.0         |                      | welling algebrach | www.whent | Www.Alexandykart | Karrison dan Arter and a lart | °onoryny helfyrywr | here we have for the second | the alphanest and the second | following the | vylor-maninghanghanni |
|               |                      |                   |           |                  |                               |                    |                             |                              |               |                       |
| -70. <u>0</u> |                      |                   |           |                  | · ·                           |                    |                             |                              |               |                       |
| -80.Q         |                      |                   |           |                  | :                             |                    |                             |                              |               |                       |
|               | 6.499                | 9GHz              | to        | 15.0             | OOGHz                         |                    |                             |                              |               |                       |
|               | ResBW 10             | )0kHz             |           | V:               | idBW 300kHz                   |                    |                             | SWP                          | 4.85          |                       |
|               | LEVEL                |                   | SPAN      | Re               | ≘f Lv1*20.00                  | 1Bm                |                             |                              |               |                       |
|               | KINOB 2              |                   | KNOB 1    | KI               | EYPAD                         | Te                 | ktronix                     | 2784                         |               |                       |

| NORTHWEST                |                                  |                                 |                               |              |                      |  |  |  |  |  |  |
|--------------------------|----------------------------------|---------------------------------|-------------------------------|--------------|----------------------|--|--|--|--|--|--|
| EMC                      |                                  | EMISSIONS                       | DATA SHEET                    |              | Rev BETA<br>01/30/01 |  |  |  |  |  |  |
| EUT:                     | Z-5450 MN: S-0181A Multimedia S  | Speaker System                  |                               | Work Order:  | LABT0140             |  |  |  |  |  |  |
| Serial Number:           | Unknown                          |                                 |                               | Date:        | 08/03/05             |  |  |  |  |  |  |
| Customer:                | Logitech, Inc.                   |                                 |                               | Temperature: | 72°F                 |  |  |  |  |  |  |
| Attendees:               | None                             |                                 | Tested by: Rod Peloquin       | Humidity:    | 45% RH               |  |  |  |  |  |  |
| Customer Ref. No.:       | None                             |                                 | Power: 120VAC/60Hz            | Job Site:    | EV06                 |  |  |  |  |  |  |
| TEST SPECIFICATION       | NS                               |                                 |                               |              |                      |  |  |  |  |  |  |
| Specification:           | 47 CFR 15.247(d)                 | Year: 2005-04                   | Method: DA 00-705, ANSI C63.4 | Year:        | 2003                 |  |  |  |  |  |  |
| SAMPLE CALCULATI         | ONS                              |                                 |                               |              |                      |  |  |  |  |  |  |
|                          |                                  |                                 |                               |              |                      |  |  |  |  |  |  |
|                          |                                  |                                 |                               |              |                      |  |  |  |  |  |  |
| COMMENTS                 |                                  |                                 |                               |              |                      |  |  |  |  |  |  |
|                          |                                  |                                 |                               |              |                      |  |  |  |  |  |  |
| EUT OPERATING MO         | DES                              |                                 |                               |              |                      |  |  |  |  |  |  |
| Modulated by PRBS a      | t maximum data rate              |                                 |                               |              |                      |  |  |  |  |  |  |
| <b>DEVIATIONS FROM T</b> | EST STANDARD                     |                                 |                               |              |                      |  |  |  |  |  |  |
| None                     |                                  |                                 |                               |              |                      |  |  |  |  |  |  |
| REQUIREMENTS             |                                  |                                 |                               |              |                      |  |  |  |  |  |  |
| Maximum level of any     | spurious emission outside of the | authorized band is 20 dB down f | rom the fundamental           |              |                      |  |  |  |  |  |  |
| RESULTS                  |                                  |                                 |                               |              |                      |  |  |  |  |  |  |
| Pass                     |                                  |                                 |                               |              |                      |  |  |  |  |  |  |
| SIGNATURE                |                                  |                                 |                               |              |                      |  |  |  |  |  |  |
| Rochy te Reling          |                                  |                                 |                               |              |                      |  |  |  |  |  |  |
| Tested By:               | Tested By:                       |                                 |                               |              |                      |  |  |  |  |  |  |
| DESCRIPTION OF TE        | DESCRIPTION OF TEST              |                                 |                               |              |                      |  |  |  |  |  |  |
|                          | Antenna Condu                    | cted Spurious Emi               | issions - Mid Channel 15G     | Hz-25GHz     |                      |  |  |  |  |  |  |

Antenna Conducted Spurious Emissions - Mid Channel 15GHz-25GHz

|       |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                          |                  |           |                                       |              | Tek                  |
|-------|----------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------|------------------|-----------|---------------------------------------|--------------|----------------------|
| 20.0  | Ref Lvl' | 20.0dBm         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 10                                       | ldB/             |           | Atten 100                             | iB           |                      |
| 10.0  |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                          |                  |           |                                       |              |                      |
|       |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                          |                  |           |                                       |              |                      |
| 0.0   |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                          |                  |           |                                       |              |                      |
| -10.0 |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | :                                        |                  |           |                                       |              |                      |
| -20.Q |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                          |                  |           |                                       |              |                      |
| -30.0 |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                          |                  |           |                                       |              |                      |
| -40.0 |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | :                                        |                  |           |                                       |              |                      |
| -50.Q |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 4. 4.                                    |                  | hunderson | An and a second a second and a second | white an and | harden of the second |
|       |          | with Manutanian | man and a state with the state of the state | weight a strate of the states | man and the for the states of the states | uler-magenhadent |           |                                       |              |                      |
| -60.0 |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | :                                        |                  |           |                                       |              |                      |
| -70.0 |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | •                                        |                  |           |                                       |              |                      |
| -80.Q |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | :                                        |                  |           |                                       |              |                      |
|       | 14.990   | Hz              | to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.0                          | OOGHz                                    |                  |           |                                       |              |                      |
|       | ResBW 10 | )0kHz           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Vi                            | idBW 300kHz                              |                  |           | SWP                                   | 5.75         |                      |
|       | LEVEL    |                 | SPAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Re                            | ef Lv1*20.0                              | dBm              |           |                                       |              |                      |
|       | KINOB 2  |                 | KNOB 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KE                            | CYPAD                                    | Te               | ktronix   | 2784                                  |              |                      |

| NORTHWEST                |                                  |                                   |                               |              |                      |  |  |  |  |  |  |  |
|--------------------------|----------------------------------|-----------------------------------|-------------------------------|--------------|----------------------|--|--|--|--|--|--|--|
| EMC                      |                                  | EMISSIONS [                       | DATA SHEET                    |              | Rev BETA<br>01/30/01 |  |  |  |  |  |  |  |
| EUT:                     | Z-5450 MN: S-0181A Multimedia S  | Speaker System                    |                               | Work Order:  | LABT0140             |  |  |  |  |  |  |  |
| Serial Number:           | Unknown                          |                                   |                               | Date:        | 08/03/05             |  |  |  |  |  |  |  |
| Customer:                | Logitech, Inc.                   |                                   |                               | Temperature: | 72°F                 |  |  |  |  |  |  |  |
| Attendees:               | None                             |                                   | Tested by: Rod Peloquin       | Humidity:    | 45% RH               |  |  |  |  |  |  |  |
| Customer Ref. No.:       | None                             |                                   | Power: 120VAC/60Hz            | Job Site:    | EV06                 |  |  |  |  |  |  |  |
| TEST SPECIFICATION       | NS                               |                                   |                               |              |                      |  |  |  |  |  |  |  |
| Specification:           | 47 CFR 15.247(d)                 | Year: 2005-04                     | Method: DA 00-705, ANSI C63.4 | Year:        | 2003                 |  |  |  |  |  |  |  |
| SAMPLE CALCULATI         | ONS                              |                                   |                               |              |                      |  |  |  |  |  |  |  |
|                          |                                  |                                   |                               |              |                      |  |  |  |  |  |  |  |
|                          |                                  |                                   |                               |              |                      |  |  |  |  |  |  |  |
| COMMENTS                 |                                  |                                   |                               |              |                      |  |  |  |  |  |  |  |
|                          |                                  |                                   |                               |              |                      |  |  |  |  |  |  |  |
| EUT OPERATING MO         | DES                              |                                   |                               |              |                      |  |  |  |  |  |  |  |
| Modulated by PRBS a      | t maximum data rate              |                                   |                               |              |                      |  |  |  |  |  |  |  |
| <b>DEVIATIONS FROM T</b> | EST STANDARD                     |                                   |                               |              |                      |  |  |  |  |  |  |  |
| None                     |                                  |                                   |                               |              |                      |  |  |  |  |  |  |  |
| REQUIREMENTS             |                                  |                                   |                               |              |                      |  |  |  |  |  |  |  |
| Maximum level of any     | spurious emission outside of the | authorized band is 20 dB down fro | om the fundamental            |              |                      |  |  |  |  |  |  |  |
| RESULTS                  |                                  |                                   |                               |              |                      |  |  |  |  |  |  |  |
| Pass                     |                                  |                                   |                               |              |                      |  |  |  |  |  |  |  |
| SIGNATURE                |                                  |                                   |                               |              |                      |  |  |  |  |  |  |  |
| Porting to Reling        |                                  |                                   |                               |              |                      |  |  |  |  |  |  |  |
| Tested By:               | Tested By:                       |                                   |                               |              |                      |  |  |  |  |  |  |  |
| DESCRIPTION OF TE        | DESCRIPTION OF TEST              |                                   |                               |              |                      |  |  |  |  |  |  |  |
|                          |                                  | ucted Spurious Emi                | ssions - High Channel 0N      | IHz-3GHz     |                      |  |  |  |  |  |  |  |
|                          |                                  |                                   |                               |              |                      |  |  |  |  |  |  |  |

# Antenna Conducted Spurious Emissions - High Channel 0MHz-3GHz

|       |                   |       |                                         |                         |                                       |          |                |          |                       | Tek             |
|-------|-------------------|-------|-----------------------------------------|-------------------------|---------------------------------------|----------|----------------|----------|-----------------------|-----------------|
| 20.0  | Ref Lv1*20        | .OdBm |                                         |                         | 10dB                                  | 37       |                | Atten 10 | dB                    |                 |
|       |                   |       |                                         |                         | -                                     |          |                |          |                       |                 |
| 10.0  |                   |       |                                         |                         | :                                     |          |                |          |                       |                 |
| 0.0   |                   |       |                                         |                         | :                                     |          |                |          |                       |                 |
| -10.0 |                   |       |                                         |                         | -                                     |          |                |          |                       |                 |
| -20.0 |                   |       |                                         |                         |                                       |          |                |          |                       |                 |
| -30.0 |                   |       |                                         |                         |                                       |          |                |          |                       |                 |
| -40.0 |                   |       |                                         |                         |                                       |          |                |          |                       |                 |
| -50.0 |                   |       |                                         |                         | · · · · · · · · · · · · · · · · · · · |          |                |          |                       |                 |
| -60.0 | market war warden |       | where we apply a fear the second second | and the stranged of the | noffensisharasinarisharasinalansis    | welenhow | wm.tannohnalus | markand  | and a contract of the | www.weensteinet |
| -00.0 |                   |       |                                         |                         |                                       |          |                |          |                       |                 |
| -70.0 |                   |       |                                         |                         |                                       |          |                |          |                       |                 |
| -80.Q |                   |       |                                         |                         |                                       |          |                |          |                       |                 |
|       | OMHz              |       | to                                      | 3.0                     | OOGHz                                 |          |                |          |                       |                 |
|       | ResBW 100k        | Hz    |                                         | v:                      | idBW 300kHz                           |          |                | SWP      | 1.75                  |                 |
|       | LEVEL             |       | SPAN                                    | Re                      | ef Lv1*20.0dB                         | im       |                |          |                       |                 |
|       | KINOB 2           |       | KNOB 1                                  | KI                      | EYPAD                                 | Tel      | ktronix        | 2784     |                       |                 |

|                      |                                  | EMISSIONS                    | DATA SH                | EET                   |              | Rev BETA |  |  |  |  |  |  |
|----------------------|----------------------------------|------------------------------|------------------------|-----------------------|--------------|----------|--|--|--|--|--|--|
| EMC                  |                                  |                              |                        |                       |              | 01/30/01 |  |  |  |  |  |  |
| EUT:                 | Z-5450 MN: S-0181A Multimedia S  | Speaker System               |                        |                       | Work Order   | LABT0140 |  |  |  |  |  |  |
| Serial Number:       | Unknown                          |                              |                        |                       | Date:        | 08/03/05 |  |  |  |  |  |  |
| Customer:            | Logitech, Inc.                   |                              |                        |                       | Temperature: | 72°F     |  |  |  |  |  |  |
| Attendees:           | None                             |                              | Tested by:             | Rod Peloquin          | Humidity     | 45% RH   |  |  |  |  |  |  |
| Customer Ref. No.:   | None                             |                              | Power:                 | 120VAC/60Hz           | Job Site:    | EV06     |  |  |  |  |  |  |
| TEST SPECIFICATIONS  |                                  |                              |                        |                       |              |          |  |  |  |  |  |  |
| Specification:       | 47 CFR 15.247(d)                 | Year: 2005-04                | Method:                | DA 00-705, ANSI C63.4 | Year:        | 2003     |  |  |  |  |  |  |
| SAMPLE CALCULATI     | ONS                              |                              |                        |                       |              |          |  |  |  |  |  |  |
|                      |                                  |                              |                        |                       |              |          |  |  |  |  |  |  |
|                      |                                  |                              |                        |                       |              |          |  |  |  |  |  |  |
| COMMENTS             |                                  |                              |                        |                       |              |          |  |  |  |  |  |  |
|                      |                                  |                              |                        |                       |              |          |  |  |  |  |  |  |
| EUT OPERATING MO     | DES                              |                              |                        |                       |              |          |  |  |  |  |  |  |
| Modulated by PRBS a  | t maximum data rate              |                              |                        |                       |              |          |  |  |  |  |  |  |
| DEVIATIONS FROM T    | EST STANDARD                     |                              |                        |                       |              |          |  |  |  |  |  |  |
| None                 |                                  |                              |                        |                       |              |          |  |  |  |  |  |  |
| REQUIREMENTS         |                                  |                              |                        |                       |              |          |  |  |  |  |  |  |
| Maximum level of any | spurious emission outside of the | authorized band is 20 dB dow | n from the fundamental |                       |              |          |  |  |  |  |  |  |
| RESULTS              | -                                |                              |                        |                       |              |          |  |  |  |  |  |  |
| Pass                 |                                  |                              |                        |                       |              |          |  |  |  |  |  |  |
| SIGNATURE            |                                  |                              |                        |                       |              |          |  |  |  |  |  |  |
| Pooling her Reling   |                                  |                              |                        |                       |              |          |  |  |  |  |  |  |
| Tested By:           | Tested By:                       |                              |                        |                       |              |          |  |  |  |  |  |  |
| DESCRIPTION OF TES   | DESCRIPTION OF TEST              |                              |                        |                       |              |          |  |  |  |  |  |  |
|                      | Antenna Condu                    | cted Spurious Er             | nissions - High        | Channel 3GI           | Hz-6.5GHz    |          |  |  |  |  |  |  |

# Antenna Conducted Spurious Emissions - High Channel 3GHz-6.5GHz

|       |              |                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      | Tek |
|-------|--------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|-----|
| 20.0  | Ref Lv1*20.0 | DdBm                                                      | 10dB/                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Atten 100          | цВ                   |     |
| 10.0  |              |                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      |     |
|       |              |                                                           | · · · · · · · · · · · · · · · · · · ·                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      |     |
| 0.0   |              |                                                           | · · · · · · · · · · · · · · · · · · ·                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      |     |
| -10.0 |              |                                                           | :                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      |     |
| -20.0 |              |                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      |     |
| -30.Q |              |                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      |     |
| -40.0 |              |                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      |     |
| -50.0 |              |                                                           | allionallyprovedingston orthogol and a standard                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a a dawashi waxa a | Noter Martin was the | -   |
| -60.0 |              | ngfpradoranter forwarder and a particular and a solutions | alle and a second se | and a constraint of the state o |                    |                      |     |
| -70.0 |              |                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      |     |
| -80.0 |              |                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      |     |
|       | 2.990GHz     | to                                                        | 6.500GHz                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      |     |
|       | ResBW 100kH: | z                                                         | VidBW 300kHz                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SWP                | 2.05                 |     |
|       | LEVEL        | SPAN                                                      | Ref Lv1*20.0dBm                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      |     |
|       | KNOB 2       | KNOB 1                                                    | KEYPAD                                                                                                          | Tektronix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2784               |                      |     |

| NORTHWEST                                                 |                                    |                                  |                    |                       |              |                      |  |  |  |  |  |  |
|-----------------------------------------------------------|------------------------------------|----------------------------------|--------------------|-----------------------|--------------|----------------------|--|--|--|--|--|--|
| EMC                                                       |                                    | EMISSIONS I                      | DATA SH            | EET                   |              | Rev BETA<br>01/30/01 |  |  |  |  |  |  |
| EUT:                                                      | Z-5450 MN: S-0181A Multimedia S    | peaker System                    |                    |                       | Work Order:  | : LABT0140           |  |  |  |  |  |  |
| Serial Number:                                            | Unknown                            |                                  |                    |                       | Date:        | : 08/03/05           |  |  |  |  |  |  |
| Customer:                                                 | Logitech, Inc.                     |                                  |                    |                       | Temperature: | 72°F                 |  |  |  |  |  |  |
| Attendees:                                                | None                               |                                  | Tested by:         | Rod Peloquin          | Humidity:    | : 45% RH             |  |  |  |  |  |  |
| Customer Ref. No.: None Power: 120VAC/60Hz Job Site: EV06 |                                    |                                  |                    |                       |              |                      |  |  |  |  |  |  |
| TEST SPECIFICATIONS                                       |                                    |                                  |                    |                       |              |                      |  |  |  |  |  |  |
| Specification:                                            | 47 CFR 15.247(d)                   | Year: 2005-04                    | Method:            | DA 00-705, ANSI C63.4 | 4 Year:      | : 2003               |  |  |  |  |  |  |
| SAMPLE CALCULATIONS                                       |                                    |                                  |                    |                       |              |                      |  |  |  |  |  |  |
|                                                           |                                    |                                  |                    |                       |              |                      |  |  |  |  |  |  |
| COMMENTS                                                  |                                    |                                  |                    |                       |              |                      |  |  |  |  |  |  |
| COMMENTS                                                  |                                    |                                  |                    |                       |              |                      |  |  |  |  |  |  |
| EUT OPERATING MOI                                         | DES                                |                                  |                    |                       |              |                      |  |  |  |  |  |  |
| Modulated by PRBS a                                       | it maximum data rate               |                                  |                    |                       |              |                      |  |  |  |  |  |  |
| DEVIATIONS FROM T                                         | EST STANDARD                       |                                  |                    |                       |              |                      |  |  |  |  |  |  |
| None                                                      |                                    |                                  |                    |                       |              |                      |  |  |  |  |  |  |
| REQUIREMENTS                                              |                                    |                                  |                    |                       |              |                      |  |  |  |  |  |  |
| Maximum level of any                                      | y spurious emission outside of the | authorized band is 20 dB down fr | om the fundamental |                       |              |                      |  |  |  |  |  |  |
| RESULTS                                                   |                                    |                                  |                    |                       |              |                      |  |  |  |  |  |  |
| Pass                                                      |                                    |                                  |                    |                       |              |                      |  |  |  |  |  |  |
| SIGNATURE                                                 |                                    |                                  |                    |                       |              |                      |  |  |  |  |  |  |
| Tested By:                                                |                                    |                                  |                    |                       |              |                      |  |  |  |  |  |  |
| DESCRIPTION OF TES                                        | ST                                 |                                  |                    |                       |              |                      |  |  |  |  |  |  |
|                                                           | Antenna Conduc                     | cted Spurious Emis               | sions - High       | Channel 6.50          | Hz-15GHz     |                      |  |  |  |  |  |  |

Antenna Conducted Spurious Emissions - High Channel 6.5GHz-15GHz

|       |                                  |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                    |                        |                          |                                                                                                                | Tek                         |
|-------|----------------------------------|-------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------|------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------|
| 20.0  | Ref Lvl*2                        | 20.0dBm                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                         | IB/                |                        | Atten 100                | iB                                                                                                             |                             |
| _     |                                  |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                           |                    |                        |                          |                                                                                                                |                             |
| 10.0  |                                  |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                    |                        |                          |                                                                                                                |                             |
| 0.0   |                                  |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                    |                        |                          |                                                                                                                |                             |
| -10.0 |                                  |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                           |                    |                        |                          |                                                                                                                |                             |
| -20.Q |                                  |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                    |                        |                          |                                                                                                                |                             |
| -30.Q |                                  |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · ·                 |                    |                        |                          |                                                                                                                |                             |
| -40.Q |                                  |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                           |                    |                        |                          |                                                                                                                |                             |
| -50.0 |                                  |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                    |                        |                          |                                                                                                                |                             |
| -60.0 | where the second subsection with | her water of the second | Hub Marker M | New York Contraction of the Cont | marchedorasted you have the | weberschartenseben | hallend and an indiana | and the second second in | the share and a start and a start and a start and a start a st | were and the second part of |
|       |                                  |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                    |                        |                          |                                                                                                                |                             |
| -70.0 |                                  |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · ·                       |                    |                        |                          |                                                                                                                |                             |
| -80.Q |                                  |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                    |                        |                          |                                                                                                                |                             |
|       | 6.4990                           | GHz                     | to           | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OOGHz                       |                    |                        |                          |                                                                                                                |                             |
|       | ResBW 100                        | )kHz                    |              | V:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | idBW 300kHz                 |                    |                        | SWP                      | 4.85                                                                                                           |                             |
|       | LEVEL                            |                         | SPAN         | Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ≥f Lv1*20.0d                | lBm                |                        |                          |                                                                                                                |                             |
|       | KINOB 2                          |                         | KNOB 1       | KI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EYPAD                       | Te                 | ktronix                | 2784                     |                                                                                                                |                             |

| NORTHWEST                       |                                  |                                   |                         |          | _           |                      |  |  |  |  |  |
|---------------------------------|----------------------------------|-----------------------------------|-------------------------|----------|-------------|----------------------|--|--|--|--|--|
| EMC                             |                                  | EMISSIONS I                       | DATA SHEET              |          |             | Rev BETA<br>01/30/01 |  |  |  |  |  |
| EUT:                            | Z-5450 MN: S-0181A Multimedia S  | peaker System                     |                         | v        | Vork Order: | LABT0140             |  |  |  |  |  |
| Serial Number:                  | Unknown                          |                                   |                         |          | Date:       | 08/03/05             |  |  |  |  |  |
| Customer:                       | Logitech, Inc.                   |                                   |                         | Те       | mperature:  | 72°F                 |  |  |  |  |  |
| Attendees:                      | None                             |                                   | Tested by: Rod Peloquin |          | Humidity:   | 45% RH               |  |  |  |  |  |
| Customer Ref. No.:              | None                             |                                   | Power: 120VAC/60Hz      |          | Job Site:   | EV06                 |  |  |  |  |  |
| TEST SPECIFICATION              | IS                               |                                   |                         |          |             |                      |  |  |  |  |  |
| Specification:                  | 47 CFR 15.247(d)                 | Year: 2005-04                     | Method: DA 00-705, ANS  | C63.4    | Year:       | 2003                 |  |  |  |  |  |
| SAMPLE CALCULATI                | ONS                              |                                   |                         |          |             |                      |  |  |  |  |  |
|                                 |                                  |                                   |                         |          |             |                      |  |  |  |  |  |
|                                 |                                  |                                   |                         |          |             |                      |  |  |  |  |  |
| COMMENTS                        |                                  |                                   |                         |          |             |                      |  |  |  |  |  |
|                                 |                                  |                                   |                         |          |             |                      |  |  |  |  |  |
| EUT OPERATING MO                | DES                              |                                   |                         |          |             |                      |  |  |  |  |  |
| Modulated by PRBS a             | t maximum data rate              |                                   |                         |          |             |                      |  |  |  |  |  |
| <b>DEVIATIONS FROM T</b>        | EST STANDARD                     |                                   |                         |          |             |                      |  |  |  |  |  |
| None                            |                                  |                                   |                         |          |             |                      |  |  |  |  |  |
| REQUIREMENTS                    |                                  |                                   |                         |          |             |                      |  |  |  |  |  |
| Maximum level of any            | spurious emission outside of the | authorized band is 20 dB down fro | om the fundamental      |          |             |                      |  |  |  |  |  |
| RESULTS                         |                                  |                                   |                         |          |             |                      |  |  |  |  |  |
| Pass                            |                                  |                                   |                         |          |             |                      |  |  |  |  |  |
| SIGNATURE                       |                                  |                                   |                         |          |             |                      |  |  |  |  |  |
| Portug la Relings<br>Tested By: |                                  |                                   |                         |          |             |                      |  |  |  |  |  |
| ·······                         |                                  |                                   |                         |          |             |                      |  |  |  |  |  |
| DESCRIPTION OF TEST             |                                  |                                   |                         |          |             |                      |  |  |  |  |  |
|                                 | Antenna Conduc                   | cted Spurious Emis                | sions - High Channel    | 15GHz-25 | GHz         |                      |  |  |  |  |  |

Antenna Conducted Spurious Emissions - High Channel 15GHz-25GHz

|       |                                                                                                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                 |                            |                  |                     |                        | Tek                    |
|-------|------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|----------------------------|------------------|---------------------|------------------------|------------------------|
| 20.0  | Ref Lvl*                                                                                                         | 20.0dBm        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 1               | DdB/                       |                  | Atten 100           | 1B                     |                        |
| _     |                                                                                                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | :               |                            |                  |                     |                        |                        |
| 10.0  |                                                                                                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | :               |                            |                  |                     |                        |                        |
| 0.0   |                                                                                                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | •               |                            |                  |                     |                        |                        |
| -10.0 |                                                                                                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | :               |                            |                  |                     |                        |                        |
| -20.Q |                                                                                                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | :               |                            |                  |                     |                        |                        |
| -30.Q |                                                                                                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | · · · · ·       |                            |                  |                     |                        |                        |
| -40.Q |                                                                                                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                 |                            |                  |                     |                        |                        |
| -50.0 |                                                                                                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | :<br>:<br>:     |                            | j-#144.4.4.4.4.4 | u.M.M. www.www.www. | entropy and the second | in the weather the the |
|       | and the second | and the second | and the second and the second s | ethologicalitics | Annal March and | <b>°</b> ∿∿y¥≈h√∿≪shikiv≫? |                  |                     |                        |                        |
| -60.0 |                                                                                                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | :               |                            |                  |                     |                        |                        |
| -70.0 |                                                                                                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                 |                            |                  |                     |                        |                        |
| -80.Q |                                                                                                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | :               |                            |                  |                     |                        |                        |
|       | 14.990                                                                                                           | Hz             | to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25.              | OOGHz           |                            |                  |                     |                        |                        |
|       | ResBW 10                                                                                                         | OkHz           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Vi               | idBW 300kH:     | 2                          |                  | SWP                 | 5.7%                   |                        |
|       | LEVEL                                                                                                            |                | SPAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Re               | ≥f Lv1*20.(     | )dBm                       |                  |                     |                        |                        |
|       | KNOB 2                                                                                                           |                | KNOB 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | KI               | EYPAD           | Te                         | ktronix          | 2784                |                        |                        |





The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. All of the EUT parameters listed below were investigated. This includes, but may not be limited to, CPU speeds, video resolution settings, operational modes, and input voltages.

| Operating Modes Investigated:       |
|-------------------------------------|
| Playing audio from DVD player       |
| Operating Mode used for Final Test: |
| Playing audio from DVD player       |

| Power Input Settings Investigated:            |
|-----------------------------------------------|
| 120 VAC, 60 Hz on US unit, M/N: S-0118A       |
| 230 VAC, 50 Hz on EU unit, M/N: S-0118A       |
| 230 VAC, 50 Hz on wired EU unit, M/N: S-0118B |
| Input Power Setting used for Final Test:      |
| 120 VAC, 60 Hz on US unit, M/N: S-0118A       |

| Units Investigated:       |
|---------------------------|
| S-0118A                   |
| S-0118B                   |
| Unit used for Final Test: |
| S-0118A                   |

| Frequency Range Inves | tigated |                |       |
|-----------------------|---------|----------------|-------|
| Start Frequency       | 30 MHz  | Stop Frequency | 1 GHz |

| Software\Firmware Applied During Test |                                                |                 |                    |  |  |  |  |  |  |
|---------------------------------------|------------------------------------------------|-----------------|--------------------|--|--|--|--|--|--|
| Operating system                      | N/A                                            | Version         | N/A                |  |  |  |  |  |  |
| Exercise software                     | Standard Production Firmware                   | Version         | Z6DW a0.3.3.1.2.6  |  |  |  |  |  |  |
| Description                           |                                                |                 |                    |  |  |  |  |  |  |
| The system was tested                 | d using standard operating production software | to exercise the | e functions of the |  |  |  |  |  |  |
| device during the testi               | ng.                                            |                 |                    |  |  |  |  |  |  |

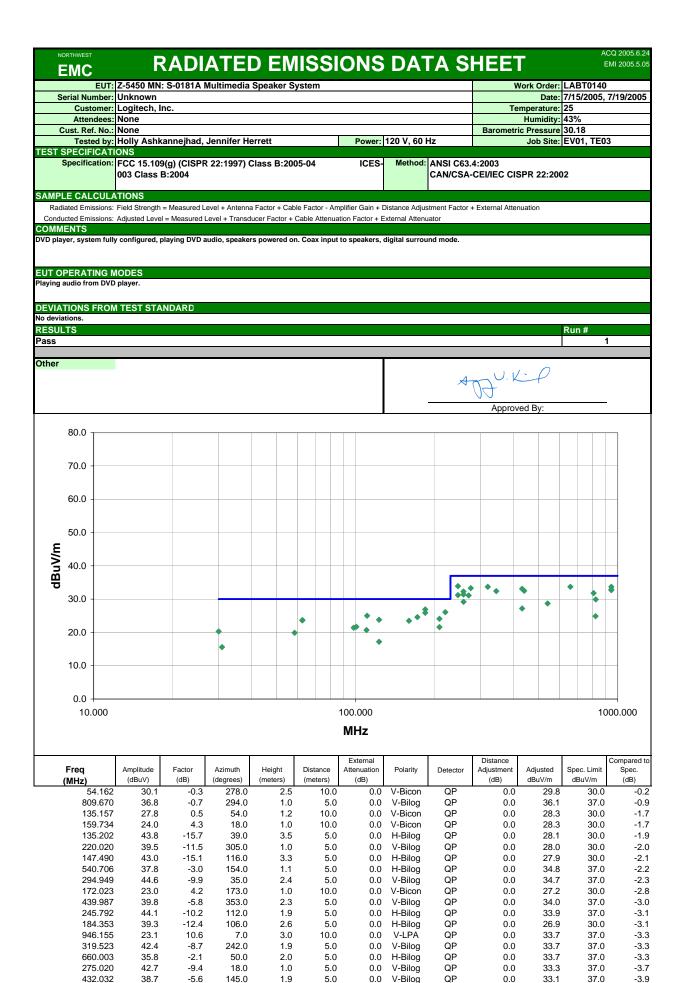
| EUT and Peripherals in | <b>Test Setup Boundary</b> | /                 |                |
|------------------------|----------------------------|-------------------|----------------|
| Description            | Manufacturer               | Model/Part Number | Serial Number  |
| Left front speaker     | Logitech, Inc.             | S-0181A           | Unknown        |
| Right front speaker    | Logitech, Inc.             | S-0181A           | Unknown        |
| Center front speaker   | Logitech, Inc.             | S-0181A           | Unknown        |
| Right rear speaker     | Logitech, Inc.             | S-0181A           | Unknown        |
| Left rear speaker      | Logitech, Inc.             | S-0181A           | Unknown        |
| Subwoofer              | Logitech, Inc.             | S-0181A           | Unknown        |
| Control Pod            | Logitech, Inc.             | S-0181A           | Unknown        |
| DVD Player             | Pioneer                    | DV-578A-S         | DDTE 003395 CC |

| Cables      |                |                       |               |                                 |                        |  |  |  |
|-------------|----------------|-----------------------|---------------|---------------------------------|------------------------|--|--|--|
| Cable Type  | Shield         | Length (m)            | Ferrite       | Connection 1                    | Connection 2           |  |  |  |
| Audio       | No             | 1.5                   | No            | Subwoofer                       | Right front speaker    |  |  |  |
| Audio       | No             | 1.4                   | No            | Subwoofer Center front spea     |                        |  |  |  |
| Audio       | No             | 1.8                   | No            | No Subwoofer Left front speaker |                        |  |  |  |
| AC Power    | No             | 1.4                   | No            | Subwoofer                       | AC Mains               |  |  |  |
| AC Power    | No             | 1.4                   | No            | Left rear speaker AC Mains      |                        |  |  |  |
| AC Power    | No             | 1.4                   | No            | lo Right rear speaker AC Mains  |                        |  |  |  |
| Control     | Yes            | 1.2                   | PA            | PA Control Pod Subwoofer        |                        |  |  |  |
| Audio (x3)  | No             | 1.4                   | No            | Control Pod                     | DVD Player             |  |  |  |
| Fiber optic | No             | 1.2                   | No            | Control Pod                     | DVD Player             |  |  |  |
| Coax        | Yes            | 1.2                   | No            | Control Pod                     | DVD Player             |  |  |  |
| AC Power    | No             | 1.4                   | No            | DVD Player                      | AC Mains               |  |  |  |
| PA = Ca     | ble is permane | ently attached to the | e device. Shi | ielding and/or presence of f    | errite may be unknown. |  |  |  |

| Measurement Equipment     |                    |         |            |            |          |
|---------------------------|--------------------|---------|------------|------------|----------|
| Description               | Manufacturer       | Model   | Identifier | Last Cal   | Interval |
| Quasi-Peak Adapter        | Hewlett-Packard    | 85650A  | AQF        | 12/02/2004 | 13 mo    |
| Spectrum Analyzer         | Hewlett-Packard    | 8566B   | AAL        | 12/02/2004 | 13 mo    |
| Spectrum Analyzer Display | Hewlett Packard    | 85662A  | AALD       | 12/02/2004 | 13 mo    |
| Antenna, Biconilog        | EMCO               | 3141    | AXE        | 12/03/2003 | 24 mo    |
| Pre-Amplifier             | Amplifier Research | LN1000A | APS        | 03/01/2005 | 13 mo    |

The final radiated emissions test was performed using the parameters described above as worst case. That final test was conducted at a facility that meets the ANSI C63.4 NSA requirements. The frequency range noted in the data sheets was scanned/tested at that facility. Emissions were maximized as specified, by maximizing table azimuth, antenna height, and cable manipulation.

Using the mode of operation and configuration noted within this report, a final radiated emissions test was performed. The frequency range investigated (scanned), is also noted in this report. Radiated emissions measurements were made at the EUT azimuth and antenna height such that the maximum radiated emissions level will be detected. This requires the use of a turntable and an antenna positioner. The preferred method of a continuous azimuth search is utilized for frequency scans of the EUT field strength with both polarities of the measuring antenna. A calibrated, linearly polarized antenna was positioned at the specified distance from the periphery of the EUT.


Note: The specified distance is the horizontal separation between the closest periphery of the EUT and the center of the axis of the elements of the receiving antenna. However, if the receiving antenna is a log-periodic array, the specified distance shall be the distance between the closest periphery of the EUT and the front-to-back center of the array of elements.

Tests were made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement was varied in height above the conducting ground plane to obtain the maximum signal strength. Though specified in the report, the measurement distance shall be 1 meter, 3 meters, 5 meters, 10 meters, or 30 meters. At any measurement distance, the antenna height was varied from 1 meter to 4 meters. These height scans apply for both horizontal and vertical polarization, except that for vertical polarization the minimum height of the center of the antenna shall be increased so that the lowest point of the bottom of the antenna clears the ground surface by at least 25 cm.



| Measurement Bandwidths                                                                         | 5                  |                          |                       |  |  |  |
|------------------------------------------------------------------------------------------------|--------------------|--------------------------|-----------------------|--|--|--|
| Frequency Range<br>(MHz)                                                                       | Peak Data<br>(kHz) | Quasi-Peak Data<br>(kHz) | Average Data<br>(kHz) |  |  |  |
| 0.01 – 0.15                                                                                    | 1.0                | 0.2                      | 0.2                   |  |  |  |
| 0.15 – 30.0                                                                                    | 10.0               | 9.0                      | 9.0                   |  |  |  |
| 30.0 - 1000                                                                                    | 100.0              | 120.0                    | 120.0                 |  |  |  |
| Above 1000                                                                                     | 1000.0             | N/A                      | 1000.0                |  |  |  |
| Measurements were made using the bandwidths and detectors specified. No video filter was used. |                    |                          |                       |  |  |  |

Completed by: U.K.P



V-LPA

V-Bilog

0.0

0.0

QP

QP

26.1

25.9

0.0

0.0

-3.9

-4.1

30.0

30.0

219,988

184.347

-7.1

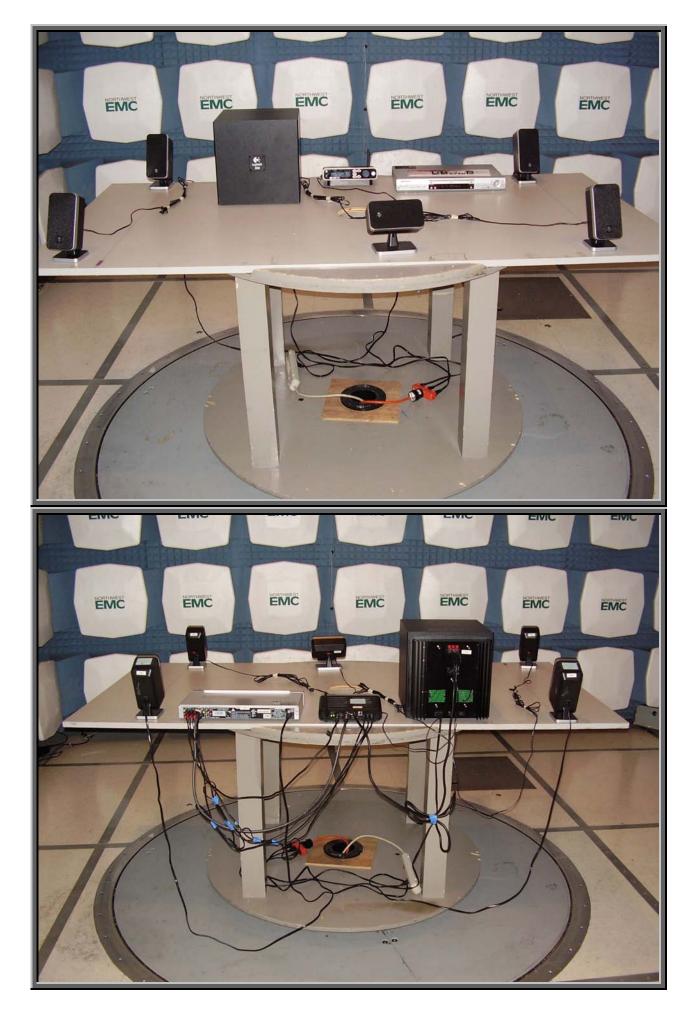
-12.4

24.0

89.0

1.2

1.0


10.0

5.0

33.2

38.3

| _     |      |           | _      |           |          |          | External    |          | _        | Distance   |          |             | Compared to |
|-------|------|-----------|--------|-----------|----------|----------|-------------|----------|----------|------------|----------|-------------|-------------|
| Freq  |      | Amplitude | Factor | Azimuth   | Height   | Distance | Attenuation | Polarity | Detector | Adjustment | Adjusted | Spec. Limit | Spec.       |
| (MHz) |      | (dBuV)    | (dB)   | (degrees) | (meters) | (meters) | (dB)        |          |          | (dB)       | dBuV/m   | dBuV/m      | (dB)        |
|       | .152 | 22.3      | 10.6   | 268.0     | 3.8      | 10.0     |             | H-LPA    | QP       | 0.0        | 32.9     | 37.0        |             |
| 946.  |      | 32.8      | -0.1   | 190.0     | 1.2      | 5.0      | 0.0         | H-Bilog  | QP       | 0.0        | 32.7     | 37.0        |             |
|       | .002 | 38.3      | -5.8   | 134.0     | 1.1      | 5.0      | 0.0         | H-Bilog  | QP       | 0.0        | 32.5     | 37.0        |             |
|       | .097 | 39.6      | -7.2   | 81.0      | 2.3      | 5.0      | 0.0         | V-Bilog  | QP       | 0.0        | 32.4     | 37.0        |             |
|       | .032 | 37.6      | -5.3   | 127.0     | 4.0      | 10.0     | 0.0         | H-LPA    | QP       | 0.0        | 32.3     | 37.0        |             |
|       | .585 | 22.8      | 2.2    | 215.0     | 1.1      | 10.0     | 0.0         | V-Bicon  | QP       | 0.0        | 25.0     | 30.0        | -5.0        |
| 809.  |      | 32.5      | -0.7   | 274.0     | 1.5      | 5.0      | 0.0         | H-Bilog  | QP       | 0.0        | 31.8     | 37.0        |             |
|       | .063 | 37.8      | -13.2  | 106.0     | 2.6      | 5.0      | 0.0         | H-Bilog  | QP       | 0.0        | 24.6     | 30.0        |             |
|       | .034 | 36.7      | -5.3   | 10.0      | 1.0      | 10.0     | 0.0         | V-LPA    | QP       | 0.0        | 31.4     | 37.0        |             |
|       | .792 | 41.4      | -10.2  | 168.0     | 1.2      | 5.0      | 0.0         | V-Bilog  | QP       | 0.0        | 31.2     | 37.0        |             |
|       | .033 | 40.7      | -9.6   | 338.0     | 1.0      | 5.0      | 0.0         | V-Bilog  | QP       | 0.0        | 31.1     | 37.0        |             |
|       | .929 | 36.2      | -12.1  | 26.0      | 3.3      | 5.0      | 0.0         | H-Bilog  | QP       | 0.0        | 24.1     | 30.0        |             |
|       | .882 | 22.6      | 1.2    | 106.0     | 1.5      | 10.0     | 0.0         | V-Bicon  | QP       | 0.0        | 23.8     | 30.0        | -6.2        |
|       | .673 | 39.5      | -15.8  | 249.0     | 3.9      | 5.0      | 0.0         | H-Bilog  | QP       | 0.0        | 23.7     | 30.0        |             |
|       | .549 | 39.4      | -15.8  | 250.0     | 3.4      | 5.0      | 0.0         | H-Bilog  | QP       | 0.0        | 23.6     | 30.0        |             |
|       | .777 | 37.1      | -13.6  | 74.0      | 2.2      | 5.0      | 0.0         | H-Bilog  | QP       | 0.0        | 23.5     | 30.0        |             |
|       | .362 | 31.3      | -1.4   | 79.0      | 1.5      | 5.0      | 0.0         | H-Bilog  | QP       | 0.0        | 29.9     | 37.0        |             |
| 258.  |      | 39.0      | -9.8   | 348.0     | 1.1      | 5.0      | 0.0         | V-Bilog  | QP       | 0.0        | 29.2     | 37.0        |             |
|       | .634 | 36.4      | -14.7  | 149.0     | 1.1      | 5.0      | 0.0         | V-Bilog  | QP       | 0.0        | 21.7     | 30.0        |             |
|       | .704 | 31.7      | -3.0   | 144.0     | 2.0      | 5.0      | 0.0         | V-Bilog  | QP       | 0.0        | 28.7     | 37.0        | -8.3        |
| 208.  |      | 33.7      | -12.1  | 176.0     | 1.2      | 5.0      | 0.0         | V-Bilog  | QP       | 0.0        | 21.6     | 30.0        |             |
|       | .333 | 36.2      | -14.8  | 279.0     | 3.8      | 5.0      | 0.0         | H-Bilog  | QP       | 0.0        | 21.4     | 30.0        |             |
| 110.  | .036 | 35.6      | -14.9  | 209.0     | 2.6      | 5.0      | 0.0         | H-Bilog  | QP       | 0.0        | 20.7     | 30.0        | -9.3        |
|       | .000 | 26.5      | -6.2   | 260.0     | 1.0      | 5.0      | 0.0         | V-Bilog  | QP       | 0.0        | 20.3     | 30.0        | -9.7        |
| 432.  | .032 | 32.8      | -5.6   | 131.0     | 1.4      | 5.0      | 0.0         | H-Bilog  | QP       | 0.0        | 27.2     | 37.0        | -9.8        |
| 58.   | .474 | 35.3      | -15.4  | 233.0     | 4.0      | 5.0      | 0.0         | H-Bilog  | QP       | 0.0        | 19.9     | 30.0        | -10.1       |
| 823.  | .329 | 26.2      | -1.3   | 100.0     | 1.0      | 5.0      | 0.0         | V-Bilog  | QP       | 0.0        | 24.9     | 37.0        | -12.1       |
| 122.  | .915 | 33.0      | -15.8  | 306.0     | 2.6      | 5.0      | 0.0         | H-Bilog  | QP       | 0.0        | 17.2     | 30.0        | -12.8       |
| 30.   | .903 | 22.3      | -6.7   | 266.0     | 1.5      | 5.0      | 0.0         | H-Bilog  | QP       | 0.0        | 15.6     | 30.0        | -14.4       |





The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

| Channels in Specified Band Investigated: |
|------------------------------------------|
| High                                     |
| Mid                                      |
| Low                                      |

**Operating Modes Investigated:** Typical

Data Rates Investigated: Maximum

# Power Input Settings Investigated:

120 VAC, 60 Hz.

| Other Settings Investigated:                                   |
|----------------------------------------------------------------|
| Control pod transmitting only - Rear speakers unplugged        |
| Rear speaker transmitting only – Control pod not transmitting. |

| Frequency Range Invest | igated |                |        |
|------------------------|--------|----------------|--------|
| Start Frequency        | 30 MHz | Stop Frequency | 26 GHz |

| Software/Firmware Applied During Test                                                                                         |                                 |         |                   |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------|-------------------|--|--|--|--|--|--|
| Exercise software                                                                                                             | Standard Production<br>Software | Version | Z6DW a0.3.3.1.2.6 |  |  |  |  |  |  |
| Description                                                                                                                   |                                 |         |                   |  |  |  |  |  |  |
| The system was tested using special test codes on a remote laptop to exercise the functions of the device during the testing. |                                 |         |                   |  |  |  |  |  |  |

| EUT and Peripherals  |                |                   |                |  |  |  |  |  |  |  |
|----------------------|----------------|-------------------|----------------|--|--|--|--|--|--|--|
| Description          | Manufacturer   | Model/Part Number | Serial Number  |  |  |  |  |  |  |  |
| Left front speaker   | Logitech, Inc. | S-0181A           | Unknown        |  |  |  |  |  |  |  |
| Right front speaker  | Logitech, Inc. | S-0181A           | Unknown        |  |  |  |  |  |  |  |
| Center front speaker | Logitech, Inc. | S-0181A           | Unknown        |  |  |  |  |  |  |  |
| Right rear speaker   | Logitech, Inc. | S-0181A           | Unknown        |  |  |  |  |  |  |  |
| Left rear speaker    | Logitech, Inc. | S-0181A           | Unknown        |  |  |  |  |  |  |  |
| Subwoofer            | Logitech, Inc. | S-0181A           | Unknown        |  |  |  |  |  |  |  |
| Control Pod          | Logitech, Inc. | S-0181A           | Unknown        |  |  |  |  |  |  |  |
| DVD Player           | Pioneer        | DV-578A-S         | DDTE 003395 CC |  |  |  |  |  |  |  |

| Cables          |           |                  |            |                        |                                                                                |
|-----------------|-----------|------------------|------------|------------------------|--------------------------------------------------------------------------------|
| Cable Type      | Shield    | Length (m)       | Ferrite    | Connection 1           | Connection 2                                                                   |
| Audio           | No        | 1.5              | No         | Subwoofer              | Right front speaker                                                            |
| Audio           | No        | 1.4              | No         | Subwoofer              | Center front speaker                                                           |
| Audio           | No        | 1.8              | No         | Subwoofer              | Left front speaker                                                             |
| AC Power        | No        | 1.4              | No         | Subwoofer              | AC Mains                                                                       |
| Control         | Yes       | 1.2              | PA         | Control Pod            | Subwoofer                                                                      |
| Audio (x3)      | No        | 1.4              | No         | Control Pod            | DVD Player                                                                     |
| Fiber optic     | No        | 1.2              | No         | Control Pod            | DVD Player                                                                     |
| Coax            | Yes       | 1.2              | No         | Control Pod            | DVD Player                                                                     |
| AC Power        | No        | 1.4              | No         | DVD Player             | AC Mains                                                                       |
| AC Power        | No        | 1.4              | No         | Left rear speaker      | Unterminated, while testing control pod. AC Mains, while testing rear speaker. |
| AC Power        | No        | 1.4              | No         | Right rear speaker     | Unterminated                                                                   |
| PA = Cable is p | permanent | ly attached to t | he device. | Shielding and/or prese | ence of ferrite may be unknown.                                                |

| Measurement Equipment     |                    |                          |            |            |          |
|---------------------------|--------------------|--------------------------|------------|------------|----------|
| Description               | Manufacturer       | Model                    | Identifier | Last Cal   | Interval |
| Antenna, Horn             | EMCO               | 3160-08                  | AHK        | NCR        | NA       |
| Pre-Amplifier             | Miteq              | AMF-4D-<br>005180-24-10P | APC        | 02/17/2005 | 13 mo    |
| Spectrum Analyzer         | Tektronix          | 2784                     | AAO        | 01/02/2005 | 12 mo    |
| Antenna, Horn             | EMCO               | 3115                     | AHC        | 09/07/2004 | 12 mo    |
| Pre-Amplifier             | Miteq              | AMF-4D-<br>005180-24-10P | APJ        | 05/05/2005 | 3 mo     |
| Pre-Amplifier             | Amplifier Research | LN1000A                  | APS        | 03/01/2005 | 13 mo    |
| Antenna, Biconilog        | EMCO               | 3141                     | AXE        | 12/03/2003 | 24 mo    |
| Spectrum Analyzer         | Hewlett-Packard    | 8566B                    | AAL        | 12/02/2004 | 13 mo    |
| Quasi-Peak Adapter        | Hewlett-Packard    | 85650A                   | AQF        | 12/02/2004 | 13 mo    |
| Spectrum Analyzer Display | Hewlett Packard    | 85662A                   | AALD       | 12/02/2004 | 13 mo    |
| Attenuator                | Coaxicom           | 66702 5910-20            | RBJ        | 02/25/2005 | 13 mo    |
| High Pass Filter          | Micro-Tronics      | HPM50111                 | HFO        | 03/09/2005 | 13 mo    |
| Antenna, Horn             | EMCO               | 3160-09                  | AHG        | NCR        | NA       |
| Pre-Amplifier             | Miteq              | JSD4-18002600-<br>26-8P  | APU        | 02/15/2005 | 13 mo    |
| Pre-Amplifier             | Miteq              | AM-1616-1000             | AOL        | 05/03/2005 | 13 mo    |
| Spectrum Analyzer         | Agilent            | E4446A                   | AAQ        | 04/08/2005 | 13 mo    |
| Pre-Amplifier             | Miteq              | AMF-4D-<br>010100-24-10P | APW        | ERR        | 15 mo    |



**<u>Requirement</u>**: The field strength of any spurious emissions or modulation products that fall in a restricted band, as defined in 47 CFR 15.205, is measured. The peak level must comply with the limits specified in 47 CFR 15.35(b). The average level (taken with a 10Hz VBW) must comply with the limits specified in 15.209.

<u>Configuration</u>: The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

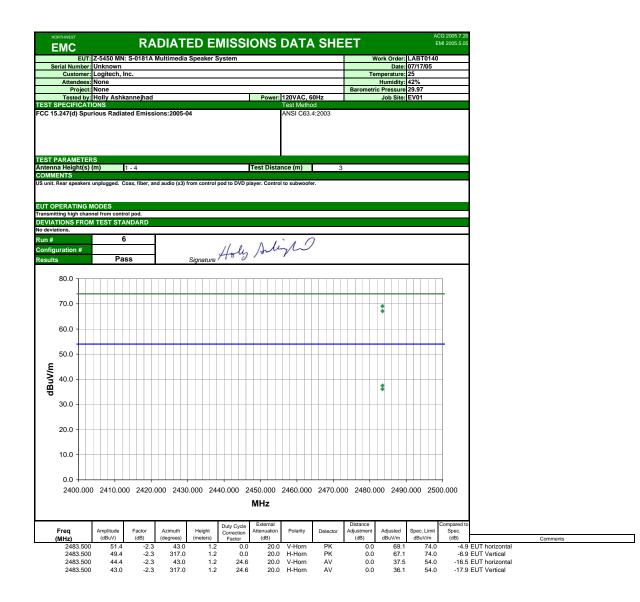
| Bandwidths Used for Meas | surements              |                               |                        |
|--------------------------|------------------------|-------------------------------|------------------------|
| Frequency Range<br>(MHz) | Peak Data<br>(kHz)     | Quasi-Peak Data<br>(kHz)      | Average Data<br>(kHz)  |
| 0.01 - 0.15              | 1.0                    | 0.2                           | 0.2                    |
| 0.15 - 30.0              | 10.0                   | 9.0                           | 9.0                    |
| 30.0 - 1000              | 100.0                  | 120.0                         | 120.0                  |
| Above 1000               | 1000.0                 | N/A                           | 1000.0                 |
| Measurements were ma     | de using the bandwidth | s and detectors specified. No | video filter was used. |

Completed by: Holy Arling

|              | THWEST<br>MC          |                        | RA                 | DIAT                 | ED E               | MISSI                              | ONS                             | DATA                    | SHE      | ET                             |                         |                       | PSA 2005.7.20<br>EMI 2005.8.3 |
|--------------|-----------------------|------------------------|--------------------|----------------------|--------------------|------------------------------------|---------------------------------|-------------------------|----------|--------------------------------|-------------------------|-----------------------|-------------------------------|
|              |                       |                        | : S-0181A          | Multimedia           | a Speaker S        | ystem                              |                                 |                         |          | V                              |                         | LABT0140              | 0                             |
| Ser          | ial Number:           | Unknown<br>Logitech, I | <b>no</b>          |                      |                    |                                    |                                 |                         |          |                                |                         | 08/04/05              |                               |
|              | Attendees:            |                        | nç.                |                      |                    |                                    |                                 |                         |          | le                             | mperature:<br>Humidity: |                       |                               |
|              | Project:              | None                   |                    |                      |                    |                                    |                                 |                         |          | Barometr                       | ic Pressure             | 29.94                 |                               |
|              |                       | Holly Ash              | annejhad           |                      |                    |                                    | Power:                          | 120VAC, 6               |          |                                | Job Site:               | EV01                  |                               |
|              |                       |                        | tod Emile -        | 00005                | 04                 |                                    |                                 | Test Metho<br>ANSI C63. |          |                                |                         |                       |                               |
|              | 247(d) Spur           |                        | ieu Emissi         | uns:2003-            | U4                 |                                    |                                 | ANOI U03.               | 4.2003   |                                |                         |                       |                               |
|              | ARAMETER<br>Height(s) |                        | 1 - 4              |                      |                    |                                    | Test Dista                      | nce (m)                 | 3        |                                |                         |                       |                               |
| COMME        |                       | ,                      | , - <del>-</del> - |                      |                    |                                    |                                 |                         |          |                                |                         |                       |                               |
|              |                       |                        |                    |                      |                    |                                    |                                 |                         |          |                                |                         |                       |                               |
|              | ERATING N             |                        | neaker             |                      |                    |                                    |                                 |                         |          |                                |                         |                       |                               |
|              | ng high chanr         |                        |                    |                      |                    |                                    |                                 |                         |          |                                |                         |                       |                               |
| No deviation |                       |                        | MDAND              |                      |                    |                                    |                                 |                         |          |                                |                         |                       |                               |
| Run #        |                       | 1                      | 0                  |                      |                    | 57                                 |                                 | in                      | 7        |                                |                         |                       |                               |
| Configu      | ration #              |                        |                    |                      |                    | 11. 1.                             | Ale                             | mi                      |          |                                |                         |                       |                               |
| Results      |                       | Pa                     | SS                 |                      | Signature          | How                                | /                               | /                       |          |                                |                         |                       |                               |
|              |                       |                        |                    |                      |                    |                                    |                                 |                         |          |                                |                         |                       |                               |
| 8            | 80.0                  |                        |                    |                      |                    |                                    |                                 |                         |          |                                |                         |                       |                               |
| -            | 70.0                  |                        |                    |                      |                    |                                    |                                 |                         |          |                                |                         |                       |                               |
| e            | 60.0                  | •                      |                    |                      |                    |                                    |                                 |                         |          |                                |                         |                       | *                             |
|              | 50.0                  |                        |                    |                      |                    |                                    |                                 |                         |          |                                |                         |                       |                               |
| dBuV/m       | 40.0                  |                        |                    |                      |                    |                                    |                                 |                         |          |                                |                         |                       |                               |
| _            | 30.0                  | *                      |                    |                      |                    |                                    |                                 |                         |          |                                |                         |                       |                               |
| 2            | 20.0                  |                        |                    |                      |                    |                                    |                                 |                         |          |                                |                         |                       |                               |
|              | 10.0                  |                        |                    |                      |                    |                                    |                                 |                         |          |                                |                         |                       |                               |
|              | 0.0                   |                        |                    |                      |                    |                                    |                                 |                         |          |                                |                         |                       |                               |
|              | 1600.000              | 1700.0                 | 000 180            | 00.000               | 1900.000           | 2000.0                             | 00 2100<br>MHz                  | 0.000 2                 | 200.000  | 2300.000                       | ) 2400                  | .000 25               | 500.000                       |
|              | req<br>MHz)           | Amplitude<br>(dBuV)    | Factor<br>(dB)     | Azimuth<br>(degrees) | Height<br>(meters) | Duty Cycle<br>Correction<br>Factor | External<br>Attenuation<br>(dB) | Polarity                | Detector | Distance<br>Adjustment<br>(dB) | Adjusted<br>dBuV/m      | Spec. Limit<br>dBuV/m | Compared to<br>Spec.<br>(dB)  |
| 248          | 33.500                | 41.5                   | 0.5                | 145.0                | 1.1                | 0.0                                | 20.0                            | V-Horn                  | PK       | 0.0                            | 62.0                    | 74.0                  | -12.0                         |
|              | 33.500                | 40.5                   | 0.5                | 223.0                | 1.1                | 0.0                                | 20.0                            | V-Horn                  | PK       | 0.0                            | 61.0                    | 74.0                  | -13.0                         |
|              | 52.451<br>52.415      | 41.6<br>41.4           | -2.6<br>-2.6       | 218.0<br>343.0       | 1.1<br>1.3         | 0.0<br>0.0                         | 20.0<br>20.0                    | V-Horn<br>H-Horn        | PK<br>PK | 0.0<br>0.0                     | 59.0<br>58.8            | 74.0<br>74.0          | -15.0<br>-15.2                |
|              | 52.793                | 34.8                   | -2.6               | 343.0<br>343.0       | 1.3                | 24.6                               | 20.0                            | H-Horn                  | AV       | 0.0                            | 27.6                    | 54.0                  | -15.2                         |
| 165          | 52.858                | 33.5                   | -2.6               | 218.0                | 1.1                | 24.6                               | 20.0                            | V-Horn                  | AV       | 0.0                            | 26.3                    | 54.0                  | -27.7                         |
|              | 33.500                | 28.5                   | 0.5                | 223.0                | 1.1                | 24.6                               | 20.0                            | V-Horn                  | AV       | 0.0                            | 24.4                    | 54.0                  | -29.6                         |
| 248          | 33.500                | 28.3                   | 0.5                | 145.0                | 1.1                | 24.6                               | 20.0                            | V-Horn                  | AV       | 0.0                            | 24.2                    | 54.0                  | -29.8                         |

|         | THWEST<br>MC            |                               | R              | ADIAT                | ED E               | MISS                            | SIONS       | DATA                    | SHE      | ET                             |                          | Ρ                     | SA 2005.7.20<br>EMI 2005.8.3 |
|---------|-------------------------|-------------------------------|----------------|----------------------|--------------------|---------------------------------|-------------|-------------------------|----------|--------------------------------|--------------------------|-----------------------|------------------------------|
|         | EUT:                    |                               | : S-0181/      | Multimedia           | Speaker S          | System                          |             |                         |          | ١                              |                          | LABT0140              |                              |
| Ser     |                         | Unknown                       |                |                      |                    |                                 |             |                         |          | T                              |                          | 08/04/05              |                              |
|         | Attendees:              | Logitech, I<br>None           | nc.            |                      |                    |                                 |             |                         |          | 10                             | emperature:<br>Humidity: |                       |                              |
|         | Project:                | None                          |                |                      |                    |                                 |             |                         |          | Baromete                       | ric Pressure             | 29.94                 |                              |
| TEST SP | Tested by:<br>PECIFICAT | Holly Ashk                    | annejhao       | ł                    |                    |                                 | Power:      | 120VAC, 6<br>Test Metho |          |                                | Job Site:                | EV01                  |                              |
|         |                         |                               | ted Emis       | sions:2005-0         | 4                  |                                 |             | ANSI C63.4              |          |                                |                          |                       |                              |
| TESTDA  | ARAMETER                | 26                            |                |                      |                    |                                 |             |                         |          |                                |                          |                       |                              |
|         | Height(s)               |                               | 1 - 4          |                      |                    |                                 | Test Dista  | ince (m)                | 3        | }                              |                          |                       |                              |
| СОММЕ   |                         | 、 <i>,</i>                    |                |                      |                    |                                 |             | . ,                     |          | -                              |                          |                       |                              |
|         | ERATING N               |                               |                |                      |                    |                                 |             |                         |          |                                |                          |                       |                              |
|         | ONS FROM                | el from rear sp<br>N TEST STA |                |                      |                    |                                 |             |                         |          |                                |                          |                       |                              |
| Run #   |                         | 1                             | 1              |                      |                    |                                 |             | ×                       | 2        |                                |                          |                       |                              |
| Configu | ration #                |                               |                | 1                    |                    | 11                              | le Al       | inti                    |          |                                |                          |                       |                              |
| Results |                         | Pa                            | SS             | 1                    | Signature          | Ho                              | ly Al       | /                       |          |                                |                          |                       |                              |
|         |                         |                               |                |                      |                    |                                 |             |                         |          |                                |                          |                       |                              |
| 8       | 80.0                    |                               |                |                      |                    |                                 |             |                         |          |                                |                          |                       |                              |
| 7       | 70.0                    |                               |                |                      |                    |                                 |             |                         |          |                                |                          |                       |                              |
| 6       | 60.0                    |                               |                |                      |                    |                                 |             |                         |          |                                |                          |                       |                              |
| Ę       | 50.0                    |                               |                |                      |                    |                                 |             |                         |          |                                |                          | 4                     |                              |
| dBuV/m  | 40.0                    | *                             |                |                      |                    |                                 |             |                         |          |                                |                          |                       |                              |
|         | 30.0                    |                               |                |                      |                    |                                 |             |                         |          |                                |                          |                       |                              |
|         | 20.0                    |                               |                |                      |                    |                                 |             |                         |          |                                |                          |                       |                              |
|         |                         |                               |                |                      |                    |                                 |             |                         |          |                                |                          |                       | •                            |
|         | 10.0                    | •                             |                |                      |                    |                                 |             |                         |          |                                |                          |                       |                              |
|         | 0.0                     |                               |                |                      |                    |                                 |             |                         |          |                                |                          |                       | ļ                            |
|         | 4000.000                | 5000                          | .000           | 6000.000             | 7000.              | 000                             | 8000.000    | 9000.00                 | 00 100   | 000.000                        | 11000.00                 | 0 1200                | 0.000                        |
|         |                         |                               |                |                      |                    |                                 | MHz         |                         |          |                                |                          |                       |                              |
|         | req<br>/Hz)             | Amplitude<br>(dBuV)           | Factor<br>(dB) | Azimuth<br>(degrees) | Height<br>(meters) | Duty Cyc<br>Correctio<br>Factor | Attenuation | Polarity                | Detector | Distance<br>Adjustment<br>(dB) | Adjusted<br>dBuV/m       | Spec. Limit<br>dBuV/m | Compared to<br>Spec.<br>(dB) |
| 400     | 06.401                  | 48.8                          | 5.7            | 70.0                 | 1.0                | 0.0                             | 0.0         | H-Horn                  | PK       | 0.0                            | 54.5                     | 74.0                  | -19.5                        |
|         | 12.700<br>11.810        | 36.0<br>35.3                  | 16.0<br>16.0   | 162.0<br>144.0       | 1.3<br>1.0         | 0.0<br>0.0                      | 0.0<br>0.0  | H-Horn<br>V-Horn        | PK<br>PK | 0.0<br>0.0                     | 52.0<br>51.3             | 74.0<br>74.0          | -22.0<br>-22.7               |
|         | )4.558                  | 45.1                          | 5.7            | 90.0                 | 1.3                | 0.0                             | 0.0         | V-Horn                  | PK       | 0.0                            | 50.8                     | 74.0                  | -23.2                        |
| 480     | 6.849                   | 38.1                          | 6.4            | 49.0                 | 1.3                | 0.0                             | 0.0         | H-Horn                  | PK       | 0.0                            | 44.5                     | 74.0                  | -29.5                        |

| 12011.010 | 55.5 | 10.0 | 144.0 | 1.0 | 0.0  | 0.0 | v-110111 |    | 0.0 | 51.5 | 74.0 | -22.1 |
|-----------|------|------|-------|-----|------|-----|----------|----|-----|------|------|-------|
| 4004.558  | 45.1 | 5.7  | 90.0  | 1.3 | 0.0  | 0.0 | V-Horn   | PK | 0.0 | 50.8 | 74.0 | -23.2 |
| 4806.849  | 38.1 | 6.4  | 49.0  | 1.3 | 0.0  | 0.0 | H-Horn   | PK | 0.0 | 44.5 | 74.0 | -29.5 |
| 4004.708  | 42.0 | 5.7  | 70.0  | 1.0 | 24.6 | 0.0 | H-Horn   | AV | 0.0 | 23.1 | 54.0 | -30.9 |
| 4807.476  | 36.1 | 6.4  | 87.0  | 1.0 | 0.0  | 0.0 | V-Horn   | PK | 0.0 | 42.5 | 74.0 | -31.5 |
| 4004.680  | 38.4 | 5.7  | 90.0  | 1.3 | 24.6 | 0.0 | V-Horn   | AV | 0.0 | 19.5 | 54.0 | -34.5 |
| 12015.070 | 22.0 | 16.0 | 162.0 | 1.3 | 24.6 | 0.0 | H-Horn   | AV | 0.0 | 13.4 | 54.0 | -40.6 |
| 12011.880 | 21.9 | 16.0 | 144.0 | 1.0 | 24.6 | 0.0 | V-Horn   | AV | 0.0 | 13.3 | 54.0 | -40.7 |
| 4805.850  | 25.2 | 6.4  | 49.0  | 1.3 | 24.6 | 0.0 | H-Horn   | AV | 0.0 | 7.0  | 54.0 | -47.0 |
| 4807.527  | 24.5 | 6.4  | 87.0  | 1.0 | 24.6 | 0.0 | V-Horn   | AV | 0.0 | 6.3  | 54.0 | -47.7 |
|           |      |      |       |     |      |     |          |    |     |      |      |       |


| NORTHWEST<br>EMC                                                                |                              | RA        |            | ED E      | MISS                 | IONS                    | DATA       | SHE      | ET                     |             | F           | PSA 2005.7.20<br>EMI 2005.8.3 |
|---------------------------------------------------------------------------------|------------------------------|-----------|------------|-----------|----------------------|-------------------------|------------|----------|------------------------|-------------|-------------|-------------------------------|
|                                                                                 | Z-5450 MN:                   | S-0191A   | Multimodia | Speaker   | Svetom               |                         |            |          |                        | Vork Order: |             |                               |
| Serial Number:                                                                  |                              | 3-0101A   | wuitimeula | эреакег   | System               |                         |            |          |                        |             | 08/04/05    |                               |
|                                                                                 | Logitech, In                 | c.        |            |           |                      |                         |            |          | Te                     | mperature:  |             |                               |
| Attendees:                                                                      |                              |           |            |           |                      |                         |            |          |                        | Humidity:   |             |                               |
| Project:                                                                        |                              |           |            |           |                      |                         |            |          | Barometr               | ic Pressure |             |                               |
|                                                                                 | Holly Ashka                  | nnejhad   |            |           |                      | Power:                  | 120VAC, 6  |          |                        | Job Site:   | EV01        |                               |
| TEST SPECIFICATIO                                                               |                              |           |            |           |                      |                         | Test Metho |          |                        |             |             |                               |
| FCC 15.247(d) Spuri                                                             |                              | ed Emissi | ons:2005-( | )4        |                      |                         | ANSI C63.4 | 1:2003   |                        |             |             |                               |
| Antenna Height(s) (i                                                            |                              | - 4       |            |           |                      | Test Dista              | nce (m)    | 3        |                        |             |             |                               |
| COMMENTS                                                                        |                              | - 4       |            |           |                      | Test Dista              | nce (m)    | 3        |                        |             |             |                               |
| EUT OPERATING M<br>Transmitting low channe<br>DEVIATIONS FROM<br>No deviations. | I from rear spe<br>TEST STAN | IDARD     |            |           |                      |                         |            |          |                        |             |             |                               |
| Run #                                                                           | 12                           |           |            |           | 1 .                  | , Ale                   | 10         | )        |                        |             |             |                               |
| Configuration #                                                                 |                              |           |            |           | Ille                 | Au                      | m          |          |                        |             |             |                               |
| Results                                                                         | Pas                          | S         |            | Sianature | 400                  | / / ·                   | /          |          |                        |             |             |                               |
|                                                                                 |                              |           |            | - 5       |                      |                         |            |          |                        |             |             |                               |
| 80.0                                                                            |                              |           |            |           |                      |                         |            |          |                        |             |             |                               |
|                                                                                 |                              |           |            |           |                      |                         |            |          |                        |             |             |                               |
| 70.0                                                                            |                              |           |            |           |                      |                         |            |          |                        |             |             |                               |
| 70.0                                                                            |                              |           |            |           |                      |                         |            |          |                        |             |             |                               |
| 60.0                                                                            |                              |           |            |           |                      |                         |            |          |                        |             |             |                               |
|                                                                                 |                              |           |            |           |                      |                         |            |          |                        |             |             |                               |
| 50.0                                                                            |                              |           |            |           |                      |                         |            |          |                        |             |             |                               |
| #/Angp 40.0                                                                     |                              |           |            |           |                      |                         |            |          |                        |             |             |                               |
| 30.0                                                                            |                              |           |            |           |                      |                         |            |          |                        |             |             |                               |
| 20.0                                                                            |                              |           |            |           |                      |                         |            |          |                        |             |             |                               |
| 10.0                                                                            |                              |           |            |           |                      |                         |            |          |                        |             |             |                               |
| 0.0                                                                             |                              |           |            |           |                      |                         |            |          |                        |             |             |                               |
|                                                                                 |                              |           |            |           |                      |                         | 1005       | 10-1     |                        |             |             |                               |
| 1600.000                                                                        | 1610.000                     | 1620.     | 000 163    | 0.000 16  | 640.000              | 1650.000                | 1660.000   | 1670.00  | 00 1680.               | JUU 169     | 0.000 17    | 00.000                        |
|                                                                                 |                              |           |            |           |                      | MHz                     |            |          |                        |             |             |                               |
| r                                                                               |                              |           |            |           | 1                    |                         | ,          |          | Dist                   |             |             | 0                             |
| Freq                                                                            | Amplitude                    | Factor    | Azimuth    | Height    | Duty Cycle           | External<br>Attenuation | Polarity   | Detector | Distance<br>Adjustment | Adjusted    | Spec. Limit | Compared to<br>Spec.          |
| (MHz)                                                                           | (dBuV)                       | (dB)      | (degrees)  | (meters)  | Correction<br>Factor | (dB)                    | roiding    | Delector | (dB)                   | dBuV/m      | dBuV/m      | (dB)                          |
| 1602.119                                                                        | 45.8                         | -2.8      | 159.0      | 1.2       | 0.0                  | 20.0                    | V-Horn     | PK       | 0.0                    | 63.0        | 74.0        | -11.0                         |
| 1601.857                                                                        | 43.2                         | -2.8      | 181.0      | 2.0       | 0.0                  | 20.0                    | H-Horn     | PK       | 0.0                    | 60.4        | 74.0        | -13.6                         |
| 1602.263                                                                        | 42.1                         | -2.8      | 159.0      | 1.2       | 24.6                 | 20.0                    | V-Horn     | AV       | 0.0                    | 34.7        | 54.0        | -19.3                         |
| 1602.187                                                                        | 38.8                         | -2.8      | 181.0      | 2.0       | 24.6                 | 20.0                    | H-Horn     | AV       | 0.0                    | 31.4        | 54.0        | -22.6                         |

| NORTHWEST<br>EMC                   |                     | R/             | ADIAT                | ED E               | MISSI                              | ONS                             | DATA             | SHE      | ET                             |                    | F                     | PSA 2005.7.20<br>EMI 2005.8.3 |
|------------------------------------|---------------------|----------------|----------------------|--------------------|------------------------------------|---------------------------------|------------------|----------|--------------------------------|--------------------|-----------------------|-------------------------------|
| EUT                                | : Z-5450 N          | N: S-0181A     | Multimedia           | a Speaker S        | ystem                              |                                 |                  |          | V                              | Vork Order:        | LABT0140              | )                             |
| Serial Number                      |                     |                |                      |                    |                                    |                                 |                  |          |                                |                    | 08/04/05              |                               |
|                                    | : Logitech          | , Inc.         |                      |                    |                                    |                                 |                  |          | Те                             | mperature:         |                       |                               |
| Attendees                          |                     |                |                      |                    |                                    |                                 |                  |          | Day                            | Humidity:          |                       |                               |
|                                    | None                | hkannejhad     |                      |                    |                                    | Douro                           | 120VAC, 6        | 047      | Barometr                       | ic Pressure        |                       |                               |
| TEST SPECIFICA                     |                     | пкаппејпай     |                      |                    |                                    | Power:                          | Test Metho       |          |                                | Job Site:          |                       |                               |
| FCC 15.247(d) Sp                   |                     | iated Emiss    | ions:2005-           | 04                 |                                    |                                 | ANSI C63.        |          |                                |                    |                       |                               |
|                                    |                     |                |                      |                    |                                    |                                 |                  |          |                                |                    |                       |                               |
| TEST PARAMETE<br>Antenna Height(s) |                     | 1 - 4          |                      |                    |                                    | Test Dista                      | nce (m)          | 3        | 6                              |                    |                       |                               |
| COMMENTS                           | MODES               |                |                      |                    |                                    |                                 |                  |          |                                |                    |                       |                               |
| Transmitting high cha              |                     | r speaker.     |                      |                    |                                    |                                 |                  |          |                                |                    |                       |                               |
| DEVIATIONS FRO                     |                     |                |                      |                    |                                    |                                 |                  |          |                                |                    |                       |                               |
| No deviations.                     | M TEOLO             | ANDARD         |                      |                    |                                    |                                 |                  |          |                                |                    |                       |                               |
| Run #                              |                     | 13             | I                    |                    |                                    |                                 |                  | 2        |                                |                    |                       |                               |
|                                    |                     |                | -                    |                    | 1/ 0                               | A L                             | -1-1             | /        |                                |                    |                       |                               |
| Configuration #                    | -                   |                | -                    | 0                  | Holy                               | Jon                             | in               |          |                                |                    |                       |                               |
| Results                            | F                   | ass            | ]                    | Signature          |                                    |                                 |                  |          |                                |                    |                       |                               |
| 80.0                               |                     |                |                      |                    |                                    |                                 |                  |          |                                |                    |                       |                               |
| 70.0                               |                     |                |                      |                    |                                    |                                 |                  |          |                                |                    |                       |                               |
| 60.0                               |                     |                |                      |                    |                                    |                                 |                  |          |                                |                    |                       |                               |
| 50.0                               | •                   |                |                      |                    |                                    |                                 |                  |          |                                |                    |                       | _                             |
| 40.0                               | •                   |                |                      |                    |                                    |                                 |                  |          |                                |                    |                       |                               |
| 30.0                               |                     |                |                      |                    |                                    |                                 |                  |          |                                |                    |                       | _                             |
| 20.0                               | •                   |                |                      |                    |                                    |                                 |                  |          |                                |                    |                       | _                             |
| 10.0                               | •                   |                |                      |                    |                                    |                                 |                  |          |                                |                    | *                     |                               |
| 0.0                                |                     |                |                      |                    |                                    |                                 |                  |          |                                |                    |                       |                               |
| 4100.00                            | 0 4200              | .000 43        | 00.000               | 4400.000           | 4500.0                             | 00 460<br>MHz                   | 0.000 4          | 700.000  | 4800.000                       | 0 4900             | .000 50               | 00.000                        |
| Freq<br>(MHz)                      | Amplitude<br>(dBuV) | Factor<br>(dB) | Azimuth<br>(degrees) | Height<br>(meters) | Duty Cycle<br>Correction<br>Factor | External<br>Attenuation<br>(dB) | Polarity         | Detector | Distance<br>Adjustment<br>(dB) | Adjusted<br>dBuV/m | Spec. Limit<br>dBuV/m | Compared to<br>Spec.<br>(dB)  |
| 4132.814                           | 45.7                | 5.7            | 42.0                 | 1.0                | 0.0                                | 0.0                             | H-Horn           | PK       | 0.0                            | 51.4               | 74.0                  | -22.6                         |
| 4959.439                           | 41.1                | 6.8            | 42.0                 | 1.0                | 0.0                                | 0.0                             | H-Horn           | PK       | 0.0                            | 47.9               | 74.0                  | -26.1                         |
| 4959.201                           | 40.5                | 6.8            | 327.0                | 1.1                | 0.0                                | 0.0                             | V-Horn           | PK       | 0.0                            | 47.3               | 74.0                  | -26.7                         |
| 4132.891                           | 39.8                | 5.7            | 120.0                | 1.3                | 0.0                                | 0.0                             | V-Horn           | PK       | 0.0                            | 45.5               | 74.0                  | -28.5                         |
| 4132.677                           | 38.3                | 5.7            | 42.0                 | 1.0                | 24.6                               | 0.0                             | H-Horn           | AV       | 0.0                            | 19.4               | 54.0                  | -34.6                         |
| 4959.223<br>4959.219               | 31.7<br>31.0        | 6.8            | 42.0<br>327.0        | 1.0<br>1.1         | 24.6<br>24.6                       | 0.0<br>0.0                      | H-Horn<br>V-Horn | AV<br>AV | 0.0                            | 13.9               | 54.0                  | -40.1<br>-40.8                |
| 4959.219<br>4132.781               | 31.0<br>30.5        | 6.8<br>5.7     | 327.0<br>120.0       | 1.1                | 24.6<br>24.6                       | 0.0                             | V-Horn<br>V-Horn | AV       | 0.0<br>0.0                     | 13.2<br>11.6       | 54.0<br>54.0          | -40.8<br>-42.4                |
| -                                  |                     | -              |                      | -                  | -                                  | -                               | -                |          | -                              | -                  | -                     |                               |

| NORTHWEST<br>EMC                             |                     | RA             | ADIAT                | ED E               | MISSI                              | ONS                             | DATA             | SHE      | ET                             |                          |                       | SA 2005.7.20<br>EMI 2005.8.3 |
|----------------------------------------------|---------------------|----------------|----------------------|--------------------|------------------------------------|---------------------------------|------------------|----------|--------------------------------|--------------------------|-----------------------|------------------------------|
|                                              | Z-5450 MN           | : S-0181A      | Multimedia           | Speaker S          | System                             |                                 |                  |          | ١                              |                          | LABT0140              |                              |
| Serial Number:                               |                     |                |                      |                    |                                    |                                 |                  |          | _                              |                          | 08/07/05              |                              |
| Customer:<br>Attendees:                      | Logitech, I         | nC.            |                      |                    |                                    |                                 |                  |          | Те                             | emperature:<br>Humidity: |                       |                              |
| Project:                                     |                     |                |                      |                    |                                    |                                 |                  |          | Barometr                       | ric Pressure             |                       |                              |
| Tested by:                                   | Greg Kiem           | el             |                      |                    |                                    | Power:                          | 120 VAC, 0       |          |                                | Job Site:                |                       |                              |
| TEST SPECIFICAT                              |                     |                |                      |                    |                                    |                                 | Test Metho       |          |                                |                          |                       |                              |
| FCC 15.247(d) Spu<br>TEST PARAMETER          |                     | ted Emiss      | ions:2005-(          | )4                 |                                    |                                 | ANSI C63.        | 4:2003   |                                |                          |                       |                              |
| Antenna Height(s)                            |                     | 1 - 4          |                      |                    |                                    | Test Dista                      | nce (m)          | 3        |                                |                          |                       |                              |
| COMMENTS                                     | MODES               |                |                      |                    |                                    |                                 |                  |          |                                |                          |                       |                              |
| Transmitting mid channers<br>DEVIATIONS FROM | nel from rear s     |                |                      |                    |                                    |                                 |                  |          |                                |                          |                       |                              |
| No deviations.                               |                     |                |                      |                    |                                    |                                 |                  |          |                                |                          |                       |                              |
| Run #                                        | 1                   | 4              |                      |                    |                                    | 11/2                            | 0                |          |                                |                          |                       |                              |
| Configuration #                              |                     |                | ]                    |                    | Am                                 | J. Kit                          |                  |          |                                |                          |                       |                              |
| Results                                      | Pa                  | ss             |                      | Signature          | VJ                                 |                                 |                  |          |                                |                          |                       |                              |
| 80.0                                         |                     |                |                      |                    |                                    |                                 |                  |          |                                |                          |                       | 1                            |
|                                              |                     |                |                      |                    |                                    |                                 |                  |          |                                |                          |                       | +                            |
| 70.0                                         |                     |                |                      |                    |                                    |                                 |                  |          |                                |                          |                       | _                            |
| 60.0                                         |                     |                |                      |                    |                                    |                                 |                  |          |                                |                          |                       | _                            |
| 50.0                                         | •                   |                |                      |                    | •                                  |                                 |                  |          |                                |                          |                       | _                            |
| • ء ا                                        |                     |                |                      |                    |                                    |                                 |                  |          |                                |                          |                       |                              |
| 40.0                                         |                     |                |                      |                    |                                    |                                 |                  |          |                                |                          |                       | _                            |
| 30.0                                         |                     |                |                      |                    |                                    |                                 |                  |          |                                |                          |                       | _                            |
| 20.0                                         | •                   |                |                      |                    |                                    |                                 |                  |          |                                |                          |                       |                              |
| 20.0                                         |                     |                |                      |                    | *                                  |                                 |                  |          |                                |                          |                       |                              |
| 10.0                                         |                     |                |                      |                    |                                    |                                 |                  |          |                                |                          |                       | _                            |
| 0.0                                          |                     |                |                      |                    |                                    |                                 |                  |          |                                |                          |                       |                              |
| 3000.000                                     | 4000.0              | 00 5000        | ).000 60             | 00.000             | 7000.000                           | 8000.00                         | 0 9000.          | 000 1000 | 00.000 11                      | 000.000                  | 12000.000             |                              |
|                                              |                     |                |                      |                    |                                    | MHz                             |                  |          |                                |                          |                       |                              |
| Freq<br>(MHz)                                | Amplitude<br>(dBuV) | Factor<br>(dB) | Azimuth<br>(degrees) | Height<br>(meters) | Duty Cycle<br>Correction<br>Factor | External<br>Attenuation<br>(dB) | Polarity         | Detector | Distance<br>Adjustment<br>(dB) | Adjusted<br>dBuV/m       | Spec. Limit<br>dBuV/m | Compared to<br>Spec.<br>(dB) |
| 7325.520                                     | (dDuV)<br>40.6      | 13.5           | 28.0                 | 1.6                | 0.0                                | 0.0                             | H-Horn           | PK       | 0.0                            | 54.1                     | 74.0                  | -19.9                        |
| 4069.490                                     | 47.9                | 5.8            | 14.0                 | 1.3                | 0.0                                | 0.0                             | H-Horn           | PK       | 0.0                            | 53.7                     | 74.0                  | -20.3                        |
| 7325.130                                     | 38.4                | 13.5           | 171.0                | 1.2                | 0.0                                | 0.0                             | V-Horn           | PK       | 0.0                            | 51.9                     | 74.0                  | -22.1                        |
| 4069.670                                     | 45.2                | 5.8            | 111.0                | 1.1                | 0.0                                | 0.0                             | V-Horn           | PK       | 0.0                            | 51.0                     | 74.0                  | -23.0                        |
| 3255.560<br>3257.035                         | 46.6<br>42.9        | 3.3<br>3.3     | 99.0<br>268.0        | 1.3<br>1.2         | 0.0<br>0.0                         | 0.0<br>0.0                      | H-Horn<br>V-Horn | PK<br>PK | 0.0<br>0.0                     | 49.9<br>46.2             | 74.0<br>74.0          | -24.1<br>-27.8               |
| 4069.790                                     | 42.9                | 5.8            | 14.0                 | 1.2                | 24.6                               | 0.0                             | H-Horn           | AV       | 0.0                            | 21.3                     | 74.0<br>54.0          | -32.7                        |
| 4069.810                                     | 37.9                | 5.8            | 111.0                | 1.1                | 24.6                               | 0.0                             | V-Horn           | AV       | 0.0                            | 19.1                     | 54.0                  | -34.9                        |
| 3255.780                                     | 39.5                | 3.3            | 99.0                 | 1.3                | 24.6                               | 0.0                             | H-Horn           | AV       | 0.0                            | 18.2                     | 54.0                  | -35.8                        |
| 7324.900                                     | 28.7                | 13.5           | 28.0                 | 1.6                | 24.6                               | 0.0                             | H-Horn           | AV       | 0.0                            | 17.6                     | 54.0                  | -36.4                        |

| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Azimuth<br>(degrees) | Height<br>(meters) | Duty Cycle<br>Correction<br>Factor | External<br>Attenuation<br>(dB) | Polarity | Detector | Distance<br>Adjustment<br>(dB) | Adjusted<br>dBuV/m | Spec. Limit<br>dBuV/m | Compared to<br>Spec.<br>(dB) |
|---------------|---------------------|----------------|----------------------|--------------------|------------------------------------|---------------------------------|----------|----------|--------------------------------|--------------------|-----------------------|------------------------------|
| 7325.520      | 40.6                | 13.5           | 28.0                 | 1.6                | 0.0                                | 0.0                             | H-Horn   | PK       | 0.0                            | 54.1               | 74.0                  | -19.9                        |
| 4069.490      | 47.9                | 5.8            | 14.0                 | 1.3                | 0.0                                | 0.0                             | H-Horn   | PK       | 0.0                            | 53.7               | 74.0                  | -20.3                        |
| 7325.130      | 38.4                | 13.5           | 171.0                | 1.2                | 0.0                                | 0.0                             | V-Horn   | PK       | 0.0                            | 51.9               | 74.0                  | -22.1                        |
| 4069.670      | 45.2                | 5.8            | 111.0                | 1.1                | 0.0                                | 0.0                             | V-Horn   | PK       | 0.0                            | 51.0               | 74.0                  | -23.0                        |
| 3255.560      | 46.6                | 3.3            | 99.0                 | 1.3                | 0.0                                | 0.0                             | H-Horn   | PK       | 0.0                            | 49.9               | 74.0                  | -24.1                        |
| 3257.035      | 42.9                | 3.3            | 268.0                | 1.2                | 0.0                                | 0.0                             | V-Horn   | PK       | 0.0                            | 46.2               | 74.0                  | -27.8                        |
| 4069.790      | 40.1                | 5.8            | 14.0                 | 1.3                | 24.6                               | 0.0                             | H-Horn   | AV       | 0.0                            | 21.3               | 54.0                  | -32.7                        |
| 4069.810      | 37.9                | 5.8            | 111.0                | 1.1                | 24.6                               | 0.0                             | V-Horn   | AV       | 0.0                            | 19.1               | 54.0                  | -34.9                        |
| 3255.780      | 39.5                | 3.3            | 99.0                 | 1.3                | 24.6                               | 0.0                             | H-Horn   | AV       | 0.0                            | 18.2               | 54.0                  | -35.8                        |
| 7324.900      | 28.7                | 13.5           | 28.0                 | 1.6                | 24.6                               | 0.0                             | H-Horn   | AV       | 0.0                            | 17.6               | 54.0                  | -36.4                        |
| 7328.260      | 27.9                | 13.5           | 171.0                | 1.2                | 24.6                               | 0.0                             | V-Horn   | AV       | 0.0                            | 16.8               | 54.0                  | -37.2                        |
| 3256.705      | 34.9                | 3.3            | 268.0                | 1.2                | 24.6                               | 0.0                             | V-Horn   | AV       | 0.0                            | 13.6               | 54.0                  | -40.4                        |

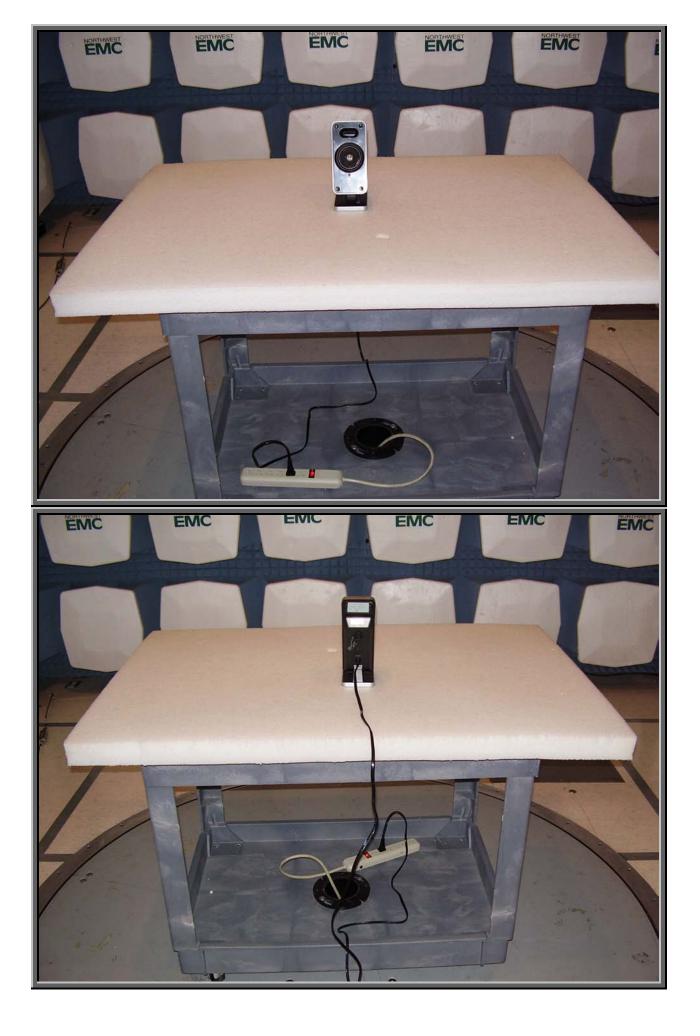
|                   | orthwest               |         |              |              | R/             |              | ED E           | MIS              | SI           | ONS                  | 5 [        |                  | <b>SHE</b> | ET                     |                           |              | CQ 2005.7.20<br>EMI 2005.5.05 |
|-------------------|------------------------|---------|--------------|--------------|----------------|--------------|----------------|------------------|--------------|----------------------|------------|------------------|------------|------------------------|---------------------------|--------------|-------------------------------|
|                   | -                      | EUT-    | 7-545        | 0 MN         | S-0181A        | Multimedi    | a Speaker S    | System           |              |                      |            |                  |            |                        | Work Order:               |              | )                             |
| s                 | erial Nun              |         |              |              | . 0-0101A      | Mantinical   |                | ystem            |              |                      |            |                  |            |                        |                           | 07/17/05     |                               |
|                   |                        |         | Logite       |              | nc.            |              |                |                  |              |                      |            |                  |            | Т                      | emperature:               |              |                               |
|                   | Attend                 |         | None<br>None |              |                |              |                |                  |              |                      |            |                  |            | Deveryor               | Humidity:                 |              |                               |
|                   |                        |         |              |              | annejhad       |              |                |                  |              | Pow                  | ver:       | 120VAC, 6        | 50Hz       | Baromet                | ric Pressure<br>Job Site: |              |                               |
| TEST S            | SPECIFI                |         |              | -            |                |              |                |                  |              |                      |            | Test Metho       |            |                        |                           |              |                               |
| FCC 1             | 5.247(d)               | Spur    | ious F       | Radiat       | ted Emiss      | ions:2005    | 04             |                  |              |                      | ,          | ANSI C63.        | 4:2003     |                        |                           |              |                               |
|                   |                        |         |              |              |                |              |                |                  |              |                      |            |                  |            |                        |                           |              |                               |
|                   | PARAME                 |         |              |              | 1 - 4          |              |                |                  |              | Test Di              | stan       | ce (m)           | 3          | 2                      |                           |              |                               |
| COMM              |                        |         | ,            |              | 1 7            |              |                |                  |              | 100121               | oran       |                  |            | ,                      |                           |              |                               |
| US unit.          | Rear spea              | akers ι | unplugg      | ged. Co      | oax, fiber, an | d audio (x3) | from control p | ood to D\        | /D pla       | yer. Cont            | rol to     | subwoofer.       |            |                        |                           |              |                               |
|                   | PERATI<br>tting low of |         |              |              | l pod.         |              |                |                  |              |                      |            |                  |            |                        |                           |              |                               |
| DEVIA<br>No devia | TIONS F                | ROM     | I TESI       | T STA        | NDARD          |              |                |                  |              |                      |            |                  |            |                        |                           |              |                               |
| Run #             |                        |         |              | 5            |                |              |                | 54               |              | 23                   |            | /                | 7          |                        |                           |              |                               |
|                   | uration                | #       |              |              |                |              |                | 11               | li           | A                    | le         | N                | /          |                        |                           |              |                               |
| Result            | s                      |         |              | Pas          | SS             |              | Signature      | 40               | 9            | 1.                   |            | <i>r</i>         |            |                        |                           |              |                               |
|                   | 80.0 -                 |         |              |              |                |              |                |                  |              |                      |            |                  |            |                        |                           |              |                               |
|                   |                        |         |              |              |                |              |                |                  |              |                      |            |                  |            |                        |                           |              | +                             |
|                   | 70.0 -                 |         |              |              |                |              |                |                  |              |                      |            |                  |            |                        |                           |              | _                             |
|                   |                        |         |              |              |                |              |                |                  |              |                      |            |                  |            |                        |                           |              |                               |
|                   | 60.0 -                 |         |              |              |                |              |                |                  |              |                      | _          |                  |            |                        |                           |              | •                             |
|                   |                        |         |              |              |                | •            |                | *                |              |                      |            |                  | •          |                        |                           |              | •                             |
|                   | 50.0                   |         |              |              |                |              |                |                  |              |                      |            |                  |            |                        |                           |              | 1                             |
|                   | 50.0 -                 |         |              |              |                |              |                |                  |              |                      |            |                  |            |                        |                           |              |                               |
| dBuV/m            |                        |         |              |              |                |              |                |                  |              |                      |            |                  |            |                        |                           |              |                               |
|                   | 40.0 -                 |         |              |              |                |              |                |                  |              |                      | _          |                  |            |                        |                           |              | _                             |
| ā                 |                        |         |              |              |                |              |                |                  |              |                      |            |                  |            |                        |                           |              |                               |
| Ŭ                 | 30.0 -                 |         |              |              |                |              |                |                  |              |                      |            |                  |            |                        |                           |              |                               |
|                   | 30.0 -                 |         |              |              |                | •            |                |                  |              |                      |            |                  |            |                        |                           |              |                               |
|                   |                        |         |              |              |                |              |                | •                |              |                      |            |                  | •          |                        |                           |              | •                             |
|                   | 20.0 -                 |         |              |              |                |              |                | •                |              |                      |            |                  |            |                        |                           |              | -                             |
|                   |                        |         |              |              |                |              |                |                  |              |                      |            |                  |            |                        |                           |              |                               |
|                   | 10.0 -                 |         |              |              |                |              |                |                  |              |                      |            |                  |            |                        |                           |              |                               |
|                   | 10.0                   |         |              |              |                |              |                |                  |              |                      |            |                  |            |                        |                           |              |                               |
|                   |                        |         |              |              |                |              |                |                  |              |                      |            |                  |            |                        |                           |              |                               |
|                   | 0.0 -                  |         |              |              |                |              |                |                  |              |                      |            |                  |            |                        |                           |              |                               |
|                   | 1100                   | 0.000   |              | 120          | 00.000         | 1300         | .000           | 1400.            | .000         |                      | 150        | 0.000            | 1600.      | 000                    | 1700.000                  | 180          | 00.000                        |
|                   |                        |         |              |              |                |              |                |                  |              | MHz                  |            |                  |            |                        |                           |              |                               |
|                   |                        |         |              |              |                |              |                |                  |              |                      |            |                  |            |                        |                           |              |                               |
|                   | Freq                   |         | Ampli        | tude         | Factor         | Azimuth      | Height         | Duty C<br>Correc |              | Externa<br>Attenuati |            | Polarity         | Detector   | Distance<br>Adjustment | Adjusted                  | Spec. Limit  | Compared to<br>Spec.          |
|                   | (MHz)                  |         | (dBu         |              | (dB)           | (degrees)    | (meters)       | Fact             |              | (dB)                 | .0         | 1 oldiny         | Detector   | (dB)                   | dBuV/m                    | dBuV/m       | (dB)                          |
|                   | 1795                   |         |              | 44.4         | -5.0           |              |                |                  | 0.0          |                      | 0.0        | H-Horn           | PK         | 0.0                    |                           | 74.0         | -14.6                         |
|                   | 1795<br>1290           |         |              | 43.2<br>44.7 | -5.0<br>-7.6   |              |                |                  | 0.0<br>0.0   |                      | 0.0<br>0.0 | V-Horn<br>V-Horn | PK<br>PK   | 0.0<br>0.0             |                           | 74.0<br>74.0 | -15.8<br>-16.9                |
|                   | 1290                   |         |              | 44.6         | -7.6           |              |                |                  | 0.0          |                      | 0.0        | H-Horn           | PK         | 0.0                    |                           | 74.0         | -17.0                         |
|                   | 1602                   | 2.231   |              | 42.9         | -6.1           | 360.0        | ) 1.4          |                  | 0.0          | 20                   | 0.0        | H-Horn           | PK         | 0.0                    | 56.8                      | 74.0         | -17.2                         |
|                   | 1602                   |         |              | 42.7         | -6.1           | 330.0        |                |                  | 0.0          |                      | 0.0        | V-Horn           | PK         | 0.0                    |                           | 74.0         | -17.4                         |
|                   | 1376<br>1376           |         |              | 43.3<br>42.2 | -7.2<br>-7.2   |              |                |                  | 0.0<br>0.0   |                      | 0.0<br>0.0 | V-Horn<br>H-Horn | PK<br>PK   | 0.0<br>0.0             |                           | 74.0<br>74.0 | -17.9<br>-19.0                |
|                   | 1117                   |         |              | 42.7         | -8.4           |              |                |                  | 0.0          |                      | 0.0        | V-Horn           | PK         | 0.0                    |                           | 74.0         | -19.7                         |
|                   | 1117                   |         |              | 41.4         | -8.4           |              |                |                  | 0.0          |                      | 0.0        | H-Horn           | PK         | 0.0                    |                           | 74.0         | -21.0                         |
|                   | 1290<br>1290           |         |              | 38.6         | -7.6           |              |                |                  | 24.6         |                      | 0.0        | V-Horn<br>H-Horn | AV         | 0.0<br>0.0             |                           | 54.0         | -27.6<br>-27.7                |
|                   | 1290                   |         |              | 38.5<br>35.9 | -7.6<br>-6.1   | 351.0        |                |                  | 24.6<br>24.6 |                      | 0.0<br>0.0 | H-Horn<br>V-Horn | AV<br>AV   | 0.0                    |                           | 54.0<br>54.0 | -27.7<br>-28.8                |
|                   | 1795                   |         |              | 34.6         | -5.0           |              |                |                  | 24.6         |                      | 0.0        | H-Horn           | AV         | 0.0                    |                           | 54.0         | -20.0                         |
|                   | 1602                   | 2.231   |              | 35.2         | -6.1           | 360.0        | ) 1.4          |                  | 24.6         | 20                   | 0.0        | H-Horn           | AV         | 0.0                    | 24.5                      | 54.0         | -29.5                         |
|                   | 1376                   |         |              | 34.9         | -7.2           |              |                |                  | 24.6         |                      | 0.0        | V-Horn           | AV         | 0.0                    |                           | 54.0         | -30.9                         |
|                   | 1795<br>1376           |         |              | 32.7<br>32.6 | -5.0<br>-7.2   |              |                |                  | 24.6<br>24.6 |                      | 0.0<br>0.0 | V-Horn<br>H-Horn | AV<br>AV   | 0.0<br>0.0             |                           | 54.0<br>54.0 | -30.9<br>-33.2                |
|                   | 1117                   |         |              | 32.0<br>33.7 | -7.2           |              |                |                  | 24.6<br>24.6 |                      | 0.0        | V-Horn           | AV         | 0.0                    |                           | 54.0<br>54.0 | -33.2                         |
|                   | 1117                   |         |              | 29.9         | -8.4           |              |                |                  | 24.6         |                      | 0.0        | H-Horn           | AV         | 0.0                    |                           | 54.0         | -37.1                         |

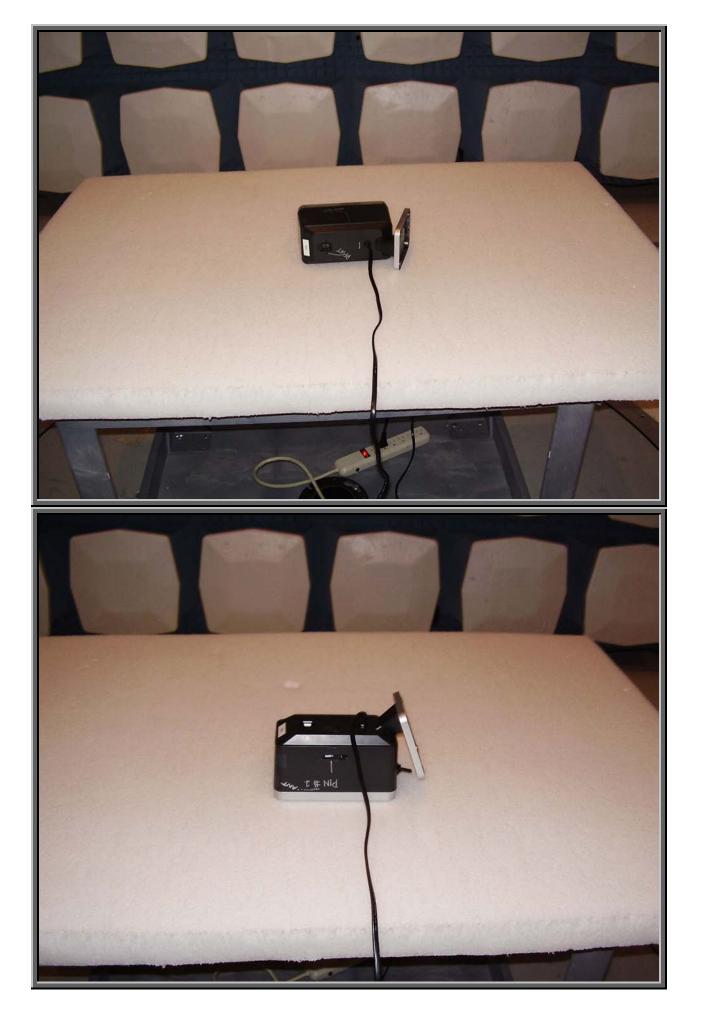


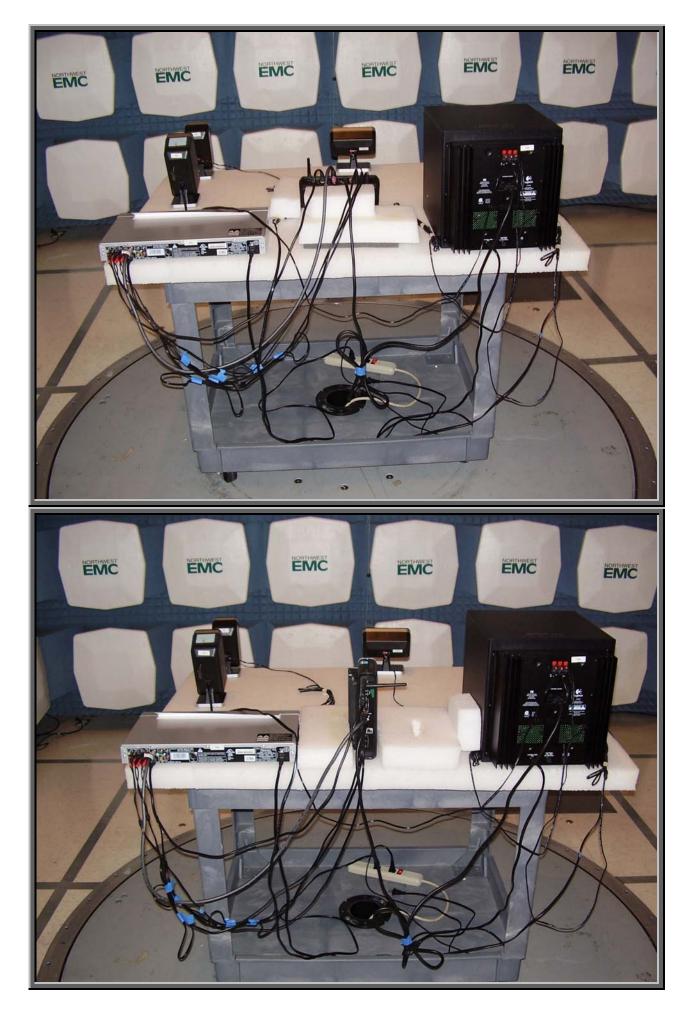
|                  | orthwest<br>EMC                                                               |                         | RA             | DIAT                 | ED E               | MISS                               | ONS                             | DAT              | A SHE    | ET                             |                          |                       | CQ 2005.7.20<br>EMI 2005.5.05 |
|------------------|-------------------------------------------------------------------------------|-------------------------|----------------|----------------------|--------------------|------------------------------------|---------------------------------|------------------|----------|--------------------------------|--------------------------|-----------------------|-------------------------------|
|                  |                                                                               | Z-5450 MN               | : S-0181A      | Multimedia           | Speaker S          | ystem                              |                                 |                  |          | V                              | Nork Order:              |                       |                               |
| S                | erial Number:                                                                 |                         |                |                      |                    |                                    |                                 |                  |          | _                              |                          | 07/17/05              |                               |
| <u> </u>         | Customer:<br>Attendees:                                                       | Logitech, I<br>None     | NC.            |                      |                    |                                    |                                 |                  |          | Te                             | emperature:<br>Humidity: |                       |                               |
|                  | Project:                                                                      |                         |                |                      |                    |                                    |                                 |                  |          | Barometr                       | ic Pressure              |                       |                               |
|                  | Tested by:                                                                    | Holly Ash               | annejhad       |                      |                    |                                    | Power:                          | 120VAC,          |          |                                | Job Site:                |                       |                               |
|                  | SPECIFICATI                                                                   |                         |                |                      |                    |                                    |                                 | Test Meth        |          |                                |                          |                       |                               |
|                  | 5.247(d) Spur                                                                 |                         | ted Emissi     | ons:2005-0           | 14                 |                                    |                                 | ANSI C63         | .4:2003  |                                |                          |                       |                               |
|                  | PARAMETER<br>na Height(s) (                                                   |                         | 1 - 4          |                      |                    |                                    | Test Dista                      | nce (m)          | 3        | 2                              |                          |                       |                               |
| COMM             |                                                                               | ,                       | 1 - 4          |                      |                    |                                    | Test Dista                      |                  |          |                                |                          |                       |                               |
| EUT O<br>Transmi | Rear speakers of<br>PERATING M<br>tting high channer<br>TIONS FROM<br>ations. | IODES<br>nel from contr | ol pod.        | d audio (x3) fi      | rom control p      | od to DVD pla                      | ayer. Control t                 | o subwoofe       | r.       |                                |                          |                       |                               |
| Run #            |                                                                               | 7                       | 7              |                      |                    | 52                                 |                                 | · . /            | 2        |                                |                          |                       |                               |
|                  | uration #                                                                     |                         |                |                      |                    | 11. 21                             | , sile                          | mi               |          |                                |                          |                       |                               |
| Result           | s                                                                             | Pa                      | SS             |                      | Signature          | Hory                               |                                 | r                |          |                                |                          |                       |                               |
|                  |                                                                               |                         |                |                      |                    |                                    |                                 |                  |          |                                |                          |                       |                               |
|                  | 80.0                                                                          |                         |                |                      |                    |                                    |                                 |                  |          |                                |                          |                       |                               |
|                  | 70.0                                                                          |                         |                |                      |                    |                                    |                                 |                  |          |                                |                          | *                     |                               |
|                  | 60.0                                                                          |                         |                |                      |                    |                                    |                                 |                  |          |                                |                          | •                     |                               |
| Ę                | 50.0                                                                          |                         |                | •                    |                    |                                    |                                 |                  |          |                                |                          |                       |                               |
| dBuV/m           | 40.0                                                                          |                         |                |                      |                    |                                    |                                 |                  |          |                                |                          |                       | _                             |
|                  | 30.0                                                                          |                         |                |                      |                    |                                    |                                 |                  |          |                                |                          | •                     |                               |
|                  | 20.0                                                                          |                         |                | •                    |                    |                                    |                                 |                  |          |                                |                          |                       | _                             |
|                  | 10.0                                                                          |                         |                |                      |                    |                                    |                                 |                  |          |                                |                          |                       | _                             |
|                  | 0.0                                                                           |                         |                |                      |                    |                                    |                                 |                  |          |                                |                          |                       |                               |
|                  | 4100.000                                                                      | 46                      | 00.000         | 5100                 | .000               | 5600.00                            | 00 6                            | 100.000          | 660      | 00.000                         | 7100.0                   | 00                    |                               |
|                  |                                                                               |                         |                |                      |                    |                                    | MHz                             |                  | 1        |                                | 1                        |                       |                               |
|                  | Freq<br>(MHz)                                                                 | Amplitude<br>(dBuV)     | Factor<br>(dB) | Azimuth<br>(degrees) | Height<br>(meters) | Duty Cycle<br>Correction<br>Factor | External<br>Attenuation<br>(dB) | Polarity         | Detector | Distance<br>Adjustment<br>(dB) | Adjusted<br>dBuV/m       | Spec. Limit<br>dBuV/m | Compared to<br>Spec.<br>(dB)  |
|                  | 7437.374<br>7437.374                                                          | 51.6<br>50.8            | 12.0<br>12.0   | 56.0<br>144.0        | 1.1<br>1.2         | 0.0<br>0.0                         |                                 | V-Horn<br>H-Horn | PK<br>PK | 0.0<br>0.0                     | 63.6<br>62.8             | 74.0<br>74.0          | -10.4<br>-11.2                |
|                  | 4131.740                                                                      | 50.6                    | 4.1            | 338.0                | 1.2                | 0.0                                |                                 | V-Horn           | PK       | 0.0                            | 54.7                     | 74.0                  | -19.3                         |
|                  | 4958.197                                                                      | 46.2                    | 6.4            | 205.0                | 1.1                | 0.0                                | 0.0                             | V-Horn           | PK       | 0.0                            | 52.6                     | 74.0                  | -21.4                         |
|                  | 4958.197                                                                      | 45.9                    | 6.4            | 304.0                | 1.2                | 0.0                                |                                 | H-Horn           | PK       | 0.0                            | 52.3                     | 74.0                  | -21.7                         |
|                  | 4131.740                                                                      | 47.9                    | 4.1            | 178.0                | 1.1                | 0.0                                |                                 | H-Horn           | PK       | 0.0                            | 52.0                     | 74.0                  | -22.0                         |
|                  | 7437.374<br>7437.374                                                          | 41.5                    | 12.0           | 144.0                | 1.2                | 24.6                               |                                 | H-Horn<br>V-Horn | AV<br>AV | 0.0<br>0.0                     | 28.9                     | 54.0                  | -25.1<br>-25.3                |
|                  | 4131.740                                                                      | 41.3<br>43.8            | 12.0<br>4.1    | 56.0<br>338.0        | 1.1<br>1.2         | 24.6<br>24.6                       |                                 | V-Horn<br>V-Horn | AV<br>AV | 0.0                            | 28.7<br>23.3             | 54.0<br>54.0          | -25.3<br>-30.7                |
|                  | 4958.197                                                                      | 38.9                    | 6.4            | 205.0                | 1.2                | 24.0                               |                                 | V-Hom<br>V-Horn  | AV       | 0.0                            | 20.7                     | 54.0                  | -33.3                         |
|                  | 4131.740                                                                      | 40.1                    | 4.1            | 178.0                | 1.1                | 24.6                               |                                 | H-Horn           | AV       | 0.0                            | 19.6                     | 54.0                  | -34.4                         |
|                  | 4958.197                                                                      | 36.7                    | 6.4            | 304.0                | 1.2                | 24.6                               | 0.0                             | H-Horn           | AV       | 0.0                            | 18.5                     | 54.0                  | -35.5                         |

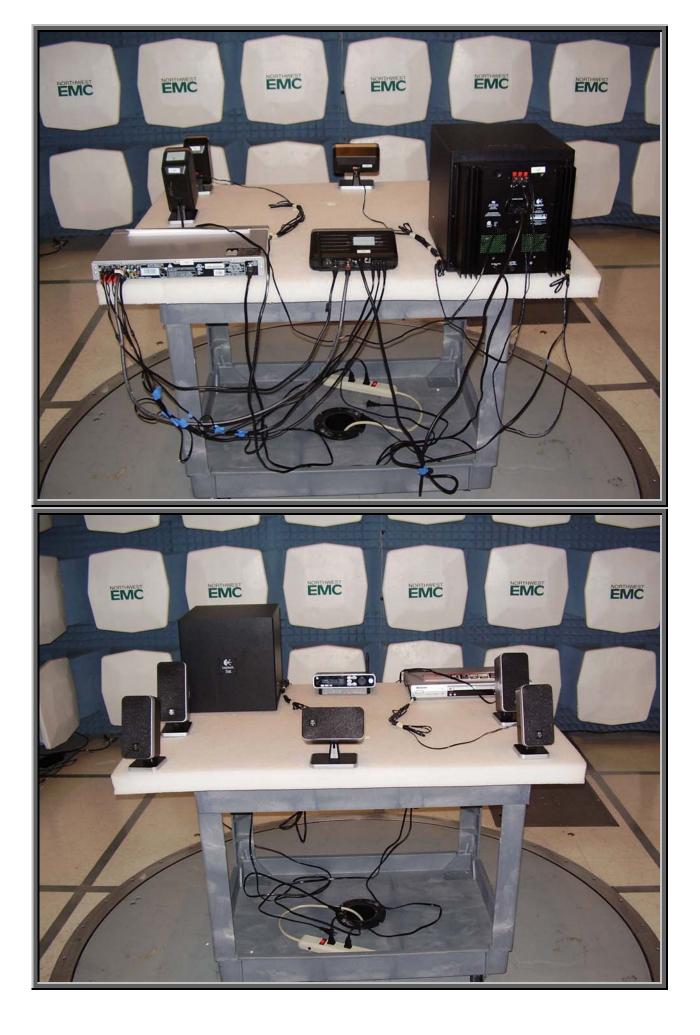
|                  | orthwest            |                |                      | RA             | DIAT                 | ED E               | MISS                               | IONS                            | DAT              | A SHE    | ET                             |                      |                       | CQ 2005.7.20<br>EMI 2005.5.05 |
|------------------|---------------------|----------------|----------------------|----------------|----------------------|--------------------|------------------------------------|---------------------------------|------------------|----------|--------------------------------|----------------------|-----------------------|-------------------------------|
|                  |                     |                |                      | N: S-0181A     | Multimedia           | Speaker S          | ystem                              |                                 |                  |          | ٧                              |                      | LABT0140              |                               |
| S                |                     |                | Unknown<br>Logitech, | Inc            |                      |                    |                                    |                                 |                  |          | -                              | Date:<br>emperature: | 07/17/05              |                               |
|                  |                     |                | None                 |                |                      |                    |                                    |                                 |                  |          | 16                             | Humidity:            |                       |                               |
|                  |                     |                | None                 |                |                      |                    |                                    |                                 |                  |          | Barometr                       | ric Pressure         |                       |                               |
|                  |                     |                |                      | kannejhad      |                      |                    |                                    | Power:                          | 120VAC,          |          |                                | Job Site:            | EV01                  |                               |
|                  | SPECIFI             |                |                      |                | 0005 0               |                    |                                    |                                 | Test Meth        |          |                                |                      |                       |                               |
|                  |                     |                |                      | ated Emissi    | ions:2005-0          | 14                 |                                    |                                 | ANSI C63         | 3.4:2003 |                                |                      |                       |                               |
|                  | PARAM<br>na Heigl   |                |                      | 1 - 4          |                      |                    |                                    | Test Dista                      | nce (m)          | 3        | 2                              |                      |                       |                               |
| COMM             | _                   | 11(3) (        | ,                    | - 4            |                      |                    |                                    | Test Dista                      |                  |          | )                              |                      |                       |                               |
| EUT O<br>Transmi | PERATI<br>tting mid | NG N<br>chann  |                      | ol pod.        | d audio (x3) fi      | rom control p      | od to DVD pl                       | ayer. Control t                 | o subwoofe       | r.       |                                |                      |                       |                               |
| Run #            | ations.             |                |                      | 8              |                      |                    |                                    |                                 |                  | 0        |                                |                      |                       |                               |
|                  | uration             | #              |                      |                |                      |                    | 11 0.                              | Ale                             | mi               |          |                                |                      |                       |                               |
| Result           |                     |                | Pa                   | ass            |                      | Signature          | Hory                               | , Ale                           | P                |          |                                |                      |                       |                               |
|                  |                     |                |                      |                |                      | <b>J</b>           |                                    |                                 |                  |          |                                |                      |                       |                               |
|                  | 80.0 -              |                |                      |                |                      |                    |                                    |                                 |                  |          |                                |                      |                       | 7                             |
|                  |                     |                |                      |                |                      |                    |                                    |                                 |                  |          |                                |                      |                       | +                             |
|                  | 70.0                |                |                      |                |                      |                    |                                    |                                 |                  |          |                                |                      |                       | -                             |
|                  |                     |                |                      |                |                      |                    |                                    |                                 |                  |          |                                |                      |                       |                               |
|                  | 60.0 -              |                |                      |                |                      |                    |                                    |                                 |                  |          |                                |                      |                       | _                             |
|                  | 50.0 -              | •              |                      |                | •                    |                    |                                    |                                 |                  |          |                                |                      |                       |                               |
| Ę                | 00.0                |                |                      |                |                      |                    |                                    |                                 |                  |          |                                |                      |                       |                               |
| dBuV/m           | 40.0 -              |                |                      |                |                      |                    |                                    |                                 |                  |          |                                |                      |                       | _                             |
| <del>م</del> ا   | 30 0                |                |                      |                |                      |                    |                                    |                                 |                  |          |                                |                      |                       |                               |
|                  | 30.0 -              |                |                      |                |                      |                    |                                    |                                 |                  |          |                                |                      | *                     |                               |
|                  |                     |                |                      |                | •                    |                    |                                    |                                 |                  |          |                                |                      |                       |                               |
|                  | 20.0                |                |                      |                |                      |                    |                                    |                                 |                  |          |                                |                      |                       | -                             |
|                  |                     |                |                      |                |                      |                    |                                    |                                 |                  |          |                                |                      |                       |                               |
|                  | 10.0 -              |                |                      |                |                      |                    |                                    |                                 |                  |          |                                |                      |                       | _                             |
|                  |                     |                |                      |                |                      |                    |                                    |                                 |                  |          |                                |                      |                       |                               |
|                  | 0.0 -               |                |                      |                |                      |                    |                                    |                                 |                  |          |                                |                      |                       |                               |
|                  |                     | 0.000          | 45                   | 500.000        | 5000                 | .000               | 5500.00                            | 00 6                            | 000.000          | 650      | 00.000                         | 7000.0               | 00                    |                               |
|                  |                     |                |                      |                |                      |                    |                                    | MHz                             |                  |          |                                |                      |                       |                               |
|                  | Freq<br>(MHz)       |                | Amplitude<br>(dBuV)  | Factor<br>(dB) | Azimuth<br>(degrees) | Height<br>(meters) | Duty Cycle<br>Correction<br>Factor | External<br>Attenuation<br>(dB) | Polarity         | Detector | Distance<br>Adjustment<br>(dB) | Adjusted<br>dBuV/m   | Spec. Limit<br>dBuV/m | Compared to<br>Spec.<br>(dB)  |
|                  |                     | 5.827<br>5.827 | 51.6<br>51.5         |                | 322.0<br>145.0       | 1.8<br>1.1         | 0.0<br>0.0                         |                                 | V-Horn<br>H-Horn | PK<br>PK | 0.0<br>0.0                     |                      | 74.0<br>74.0          | -10.6<br>-10.7                |
|                  |                     | 1.290          | 49.7                 |                |                      | 1.1                | 0.0                                |                                 | H-Horn           | PK       | 0.0                            |                      | 74.0                  | -10.7                         |
|                  |                     | ).471          | 49.8                 |                | 348.0                | 1.2                | 0.0                                |                                 |                  | PK       | 0.0                            |                      | 74.0                  | -20.1                         |
|                  |                     | 4.290          | 45.5                 |                |                      | 1.2                | 0.0                                |                                 |                  | PK       | 0.0                            |                      | 74.0                  | -22.3                         |
|                  |                     | ).471          | 47.1                 |                | 181.0                | 1.1                | 0.0                                |                                 | H-Horn           | PK       | 0.0                            |                      | 74.0                  | -22.8                         |
|                  |                     | 5.827          | 40.2                 |                | 322.0                | 1.8                | 24.6                               |                                 |                  | AV       | 0.0                            |                      | 54.0                  | -26.6                         |
|                  |                     | 5.827<br>4.290 | 39.3<br>43.2         |                | 145.0<br>186.0       | 1.1<br>1.3         | 24.6<br>24.6                       |                                 |                  | AV<br>AV | 0.0<br>0.0                     |                      | 54.0<br>54.0          | -27.5<br>-29.2                |
|                  |                     | +.290<br>).471 | 43.2                 |                | 348.0                | 1.3                | 24.6                               |                                 | V-Horn           | AV       | 0.0                            |                      | 54.0<br>54.0          | -29.2                         |
|                  |                     | 1.290          | 37.7                 |                |                      | 1.2                | 24.6                               |                                 |                  | AV       | 0.0                            |                      | 54.0                  | -34.7                         |
|                  |                     | ).471          | 38.2                 |                | 181.0                | 1.1                | 24.6                               |                                 |                  | AV       | 0.0                            |                      | 54.0                  | -36.3                         |

|          | IORTHWEST                      |                        | RA             |                      | ED EI              | MISSI                              | ONS                             | DATA                 | A SHE    | ET                             |                      |                       | CQ 2005.7.20<br>MI 2005.5.05 |
|----------|--------------------------------|------------------------|----------------|----------------------|--------------------|------------------------------------|---------------------------------|----------------------|----------|--------------------------------|----------------------|-----------------------|------------------------------|
|          |                                |                        | : S-0181A      | Multimedia           | Speaker S          | ystem                              |                                 |                      |          | 1                              |                      | LABT0140              |                              |
| S        | Serial Number:<br>Customer:    | Unknown<br>Logitech, I | nc.            |                      |                    |                                    |                                 |                      |          | T                              | Date:<br>emperature: | 07/17/05<br>25        |                              |
|          | Attendees:                     |                        |                |                      |                    |                                    |                                 |                      |          |                                | Humidity:            |                       |                              |
|          | Project:                       |                        |                |                      |                    |                                    |                                 |                      |          | Barometr                       | ric Pressure         |                       |                              |
| TEST     | Tested by:<br>SPECIFICATI      | Holly Ash              | cannejhad      |                      |                    |                                    | Power:                          | 120VAC,<br>Test Meth |          |                                | Job Site:            | EV01                  |                              |
|          | 5.247(d) Spu                   |                        | ted Emissi     | ons:2005-0           | 4                  |                                    |                                 | ANSI C63             |          |                                |                      |                       |                              |
|          | PARAMETER                      |                        |                |                      |                    |                                    |                                 |                      |          |                                |                      |                       |                              |
|          | na Height(s)                   |                        | 1 - 4          |                      |                    |                                    | Test Dista                      | nce (m)              | 3        |                                |                      |                       |                              |
| COMM     | IENTS                          |                        |                |                      |                    |                                    | <u>n</u>                        | . ,                  |          |                                |                      |                       |                              |
| US unit. | . Rear speakers                | unplugged. C           | oax, fiber, an | d audio (x3) fr      | om control po      | od to DVD pla                      | ayer. Control t                 | o subwoofe           | r.       |                                |                      |                       |                              |
| Transmi  | PERATING M<br>itting low chann | el from contro         |                |                      |                    |                                    |                                 |                      |          |                                |                      |                       |                              |
| No devia |                                |                        |                |                      |                    |                                    |                                 |                      |          |                                |                      |                       |                              |
| Run #    |                                | ę                      | 9              |                      |                    | . / .                              | Ale                             | 11                   | 2        |                                |                      |                       |                              |
|          | guration #                     |                        |                |                      |                    | Holy                               | Au                              | yn                   |          |                                |                      |                       |                              |
| Result   | ts                             | Pa                     | SS             |                      | Signature          | 1-0                                |                                 | 10.1                 |          |                                |                      |                       |                              |
|          | 80.0                           |                        |                |                      |                    |                                    |                                 |                      |          |                                |                      |                       | ]                            |
|          | 70.0                           |                        |                |                      |                    |                                    |                                 |                      |          |                                |                      |                       | -                            |
|          | 60.0                           |                        |                |                      |                    |                                    |                                 |                      |          |                                |                      | •                     | _                            |
| _        | 50.0                           |                        |                |                      |                    |                                    |                                 |                      |          |                                |                      |                       | -                            |
| dBuV/m   | 40.0                           |                        |                |                      |                    |                                    |                                 |                      |          |                                |                      |                       | _                            |
|          | 30.0                           |                        |                |                      |                    |                                    |                                 |                      |          |                                |                      | *                     |                              |
|          | 20.0                           |                        |                |                      |                    |                                    |                                 |                      |          |                                |                      |                       | -                            |
|          | 10.0                           |                        |                |                      |                    |                                    |                                 |                      |          |                                |                      |                       | -                            |
|          | 0.0                            |                        |                |                      |                    |                                    |                                 |                      |          |                                |                      |                       |                              |
|          | 4800.000                       | ) 580                  | 0.000          | 6800.00              | 0 78               | 00.000                             | 8800.0                          | 000                  | 9800.000 | 1080                           | 0.000                | 11800.00              | 0                            |
|          |                                |                        |                |                      |                    |                                    | MHz                             |                      |          |                                |                      |                       |                              |
|          | Freq<br>(MHz)                  | Amplitude<br>(dBuV)    | Factor<br>(dB) | Azimuth<br>(degrees) | Height<br>(meters) | Duty Cycle<br>Correction<br>Factor | External<br>Attenuation<br>(dB) | Polarity             | Detector | Distance<br>Adjustment<br>(dB) | Adjusted<br>dBuV/m   | Spec. Limit<br>dBuV/m | Compared to<br>Spec.<br>(dB) |
|          | 12016.880<br>12016.880         | 47.0<br>46.3           | 17.3<br>17.3   | 347.0<br>133.0       | 1.2<br>2.1         | 0.0<br>0.0                         |                                 | V-Horn<br>H-Horn     | PK<br>PK | 0.0<br>0.0                     |                      | 74.0<br>74.0          | -9.7<br>-10.4                |
|          | 4806.550                       | 46.3<br>56.1           | 5.8            | 133.0                | 1.1                | 0.0                                |                                 | H-Hom<br>H-Hom       | PK       | 0.0                            |                      | 74.0                  | -10.4                        |
|          | 4806.550                       | 55.4                   | 5.8            | 293.0                | 1.8                | 0.0                                | 0.0                             | V-Horn               | PK       | 0.0                            | 61.2                 | 74.0                  | -12.8                        |
|          | 4806.550<br>12016.880          | 49.2<br>35.6           | 5.8<br>17.3    | 178.0<br>133.0       | 1.1<br>2.1         | 24.6<br>24.6                       |                                 | H-Horn<br>H-Horn     | AV<br>AV | 0.0<br>0.0                     |                      | 54.0                  | -23.6<br>-25.7               |
|          | 4806.550                       | 35.6<br>46.9           | 17.3<br>5.8    | 133.0<br>293.0       | 2.1                | 24.6<br>24.6                       |                                 |                      | AV<br>AV | 0.0                            |                      | 54.0<br>54.0          | -25.7<br>-25.9               |
|          | 12016.880                      | 34.8                   | 17.3           | 347.0                | 1.2                | 24.6                               |                                 |                      | AV       | 0.0                            |                      | 54.0                  | -26.5                        |


| NORTHWEST                           |                     | R/             |                      | ED E               | MISSI                              | ONS                             | DATA             | SHE      | ET                             |                          |                       | PSA 2005.7.20<br>EMI 2005.8.3 |
|-------------------------------------|---------------------|----------------|----------------------|--------------------|------------------------------------|---------------------------------|------------------|----------|--------------------------------|--------------------------|-----------------------|-------------------------------|
|                                     |                     | N: S-0181A     | Multimedia           | a Speaker S        | ystem                              |                                 |                  |          | v                              |                          | LABT014               | )                             |
| Serial Number                       |                     | lue            |                      |                    |                                    |                                 |                  |          | T                              |                          | 08/04/05              |                               |
| Customer<br>Attendees               | Logitech,           | IIIC.          |                      |                    |                                    |                                 |                  |          | Te                             | emperature:<br>Humidity: |                       |                               |
| Project                             |                     |                |                      |                    |                                    |                                 |                  |          | Barometr                       | ic Pressure              |                       |                               |
| Tested by                           | Holly Ash           | kannejhad      |                      |                    |                                    | Power:                          | 120VAC, 6        | 60Hz     |                                | Job Site:                |                       |                               |
| TEST SPECIFICAT                     |                     |                |                      |                    |                                    |                                 | Test Metho       |          |                                |                          |                       |                               |
| FCC 15.247(d) Spu                   | irious Radia        | ated Emiss     | ions:2005-           | 04                 |                                    |                                 | ANSI C63.        | 4:2003   |                                |                          |                       |                               |
| TEST PARAMETER<br>Antenna Height(s) |                     | 1 - 4          |                      |                    |                                    | Test Dista                      | ince (m)         | 3        |                                |                          |                       |                               |
| COMMENTS                            |                     |                |                      |                    |                                    |                                 |                  |          |                                |                          |                       |                               |
| EUT OPERATING                       |                     | speaker.       |                      |                    |                                    |                                 |                  |          |                                |                          |                       |                               |
| DEVIATIONS FROM<br>No deviations.   | M TEST ST.          | ANDARD         |                      |                    |                                    |                                 |                  |          |                                |                          |                       |                               |
| Run #                               | 1                   | 0              |                      |                    |                                    | · · /                           | inf              | 2        |                                |                          |                       |                               |
| Configuration #                     |                     |                |                      |                    | 11 . l.                            | All                             | mi               | /        |                                |                          |                       |                               |
| Results                             | Pa                  | ass            |                      | Signature          | Hoy                                | 1.                              | r                |          |                                |                          |                       |                               |
| 80.0                                |                     |                |                      |                    |                                    |                                 |                  |          |                                |                          |                       |                               |
| 70.0                                |                     |                |                      |                    |                                    |                                 |                  |          |                                |                          |                       |                               |
| 60.0                                | •                   |                |                      |                    |                                    |                                 |                  |          |                                |                          |                       |                               |
| 50.0                                |                     |                |                      |                    |                                    |                                 |                  |          |                                |                          |                       |                               |
| 40.0<br><b>BD</b>                   |                     |                |                      |                    |                                    |                                 |                  |          |                                |                          |                       |                               |
| 30.0                                | *                   |                |                      |                    |                                    |                                 |                  |          |                                |                          |                       |                               |
| 20.0                                |                     |                |                      |                    |                                    |                                 |                  |          |                                |                          |                       |                               |
| 10.0                                |                     |                |                      |                    |                                    |                                 |                  |          |                                |                          |                       |                               |
| 0.0                                 |                     |                |                      |                    |                                    |                                 |                  |          |                                |                          |                       |                               |
| 1600.00                             | 0 1700.             | 000 18         | 00.000               | 1900.000           | 2000.0                             |                                 | 0.000 2          | 200.000  | 2300.000                       | 0 2400                   | .000 25               | 500.000                       |
|                                     |                     |                |                      |                    |                                    | MHz                             |                  |          |                                |                          |                       |                               |
| Freq<br>(MHz)                       | Amplitude<br>(dBuV) | Factor<br>(dB) | Azimuth<br>(degrees) | Height<br>(meters) | Duty Cycle<br>Correction<br>Factor | External<br>Attenuation<br>(dB) | Polarity         | Detector | Distance<br>Adjustment<br>(dB) | Adjusted<br>dBuV/m       | Spec. Limit<br>dBuV/m | Compared to<br>Spec.<br>(dB)  |
| 2483.500                            | 41.5                | 0.5            | 145.0                | 1.1                | 0.0                                | 20.0                            | V-Horn           | PK       | 0.0                            | 62.0                     | 74.0                  | -12.0                         |
| 2483.500                            | 40.5                | 0.5            | 223.0                | 1.1                | 0.0                                | 20.0                            | V-Horn           | PK       | 0.0                            | 61.0                     | 74.0                  | -13.0                         |
| 1652.451<br>1652.415                | 41.6<br>41.4        | -2.6<br>-2.6   | 218.0<br>343.0       | 1.1<br>1.3         | 0.0<br>0.0                         | 20.0<br>20.0                    | V-Horn<br>H-Horn | PK<br>PK | 0.0<br>0.0                     | 59.0<br>58.8             | 74.0<br>74.0          | -15.0<br>-15.2                |
| 1652.793                            | 34.8                | -2.6           | 343.0<br>343.0       | 1.3                | 24.6                               | 20.0                            | H-Horn           | AV       | 0.0                            | 56.6<br>27.6             | 74.0<br>54.0          | -15.2                         |
| 1652.858                            | 33.5                | -2.6           | 218.0                | 1.1                | 24.6                               | 20.0                            | V-Horn           | AV       | 0.0                            | 26.3                     | 54.0                  | -27.7                         |
| 2483.500                            | 28.5                | 0.5            | 223.0                | 1.1                | 24.6                               | 20.0                            | V-Horn           | AV       | 0.0                            | 24.4                     | 54.0                  | -29.6                         |
| 2483.500                            | 28.3                | 0.5            | 145.0                | 1.1                | 24.6                               | 20.0                            | V-Horn           | AV       | 0.0                            | 24.2                     | 54.0                  | -29.8                         |


| NORTHWEST<br>EMC                             |                     | R              | ADIAT                | ED E               | MISS                               |                 | DATA             | SHE      | ET                             |                      |                       | PSA 2005.7.20<br>EMI 2005.8.3 |
|----------------------------------------------|---------------------|----------------|----------------------|--------------------|------------------------------------|-----------------|------------------|----------|--------------------------------|----------------------|-----------------------|-------------------------------|
|                                              |                     | : S-0181A      | Multimedia           | Speaker S          | System                             |                 |                  |          | ٧                              |                      | LABT0140              | )                             |
| Serial Number:                               |                     | nc             |                      |                    |                                    |                 |                  |          | т.                             | Date:<br>emperature: | 08/04/05              |                               |
| Attendees                                    | Logitech, I         |                |                      |                    |                                    |                 |                  |          | 16                             | Humidity:            |                       |                               |
| Project                                      | None                |                |                      |                    |                                    |                 |                  |          | Barometr                       | ic Pressure          |                       | _                             |
| Tested by:                                   | Holly Ashk          | kannejhad      |                      |                    |                                    | Power:          | 120VAC, 6        |          |                                | Job Site:            |                       |                               |
| TEST SPECIFICAT                              |                     | ted Ford       | lana.0005 0          |                    |                                    |                 | Test Metho       |          |                                |                      |                       |                               |
| FCC 15.247(d) Spu<br>TEST PARAMETER          |                     |                | 1011S.2005-0         | 4                  |                                    |                 | ANSI C63.        | 4.2003   |                                |                      |                       |                               |
| Antenna Height(s)                            |                     | 1 - 4          |                      |                    |                                    | Test Dista      | nce (m)          | 3        | 3                              |                      |                       |                               |
| COMMENTS<br>EUT OPERATING I                  |                     |                |                      |                    |                                    |                 |                  |          |                                |                      |                       |                               |
| Transmitting low channers<br>DEVIATIONS FROM |                     |                |                      |                    |                                    |                 |                  |          |                                |                      |                       |                               |
| No deviations.                               | 1                   | 1              |                      |                    |                                    |                 |                  | 2        |                                |                      |                       |                               |
| Run #                                        | I                   | •              | -                    |                    | 1/ 1                               | A L             | 10               | )        |                                |                      |                       |                               |
| Configuration #<br>Results                   | Pa                  | SS             |                      | Signature          | Holy                               | , Ale           | $\gamma \sim$    |          |                                |                      |                       |                               |
| 00.0                                         |                     |                |                      |                    |                                    |                 |                  |          |                                |                      |                       |                               |
| 80.0                                         |                     |                |                      |                    |                                    |                 |                  |          |                                |                      |                       |                               |
| 70.0                                         |                     |                |                      |                    |                                    |                 |                  |          |                                |                      |                       |                               |
| 60.0                                         |                     |                |                      |                    |                                    |                 |                  |          |                                |                      |                       |                               |
| 50.0                                         |                     |                |                      |                    |                                    |                 |                  |          |                                |                      |                       | •                             |
| <b>W/N gp</b> 40.0                           | *                   |                |                      |                    |                                    |                 |                  |          |                                |                      |                       |                               |
| 30.0                                         |                     |                |                      |                    |                                    |                 |                  |          |                                |                      |                       |                               |
| 20.0                                         |                     |                |                      |                    |                                    |                 |                  |          |                                |                      |                       |                               |
| 10.0                                         | •                   |                |                      |                    |                                    |                 |                  |          |                                |                      |                       | •                             |
| 0.0                                          |                     |                |                      |                    |                                    |                 |                  |          |                                |                      |                       |                               |
| 4000.000                                     | 0 5000              | .000           | 6000.000             | 7000.              | 000                                | 8000.000<br>MHz | 9000.00          | JU 100   | 000.000                        | 11000.00             | 1200                  | 0.000                         |
| Freq<br>(MHz)                                | Amplitude<br>(dBuV) | Factor<br>(dB) | Azimuth<br>(degrees) | Height<br>(meters) | Duty Cycle<br>Correction<br>Factor |                 | Polarity         | Detector | Distance<br>Adjustment<br>(dB) | Adjusted<br>dBuV/m   | Spec. Limit<br>dBuV/m | Compared to<br>Spec.<br>(dB)  |
| 4006.401                                     | 48.8                | 5.7            | 70.0                 | 1.0                | 0.0                                | 0.0             | H-Horn           | PK       | 0.0                            | 54.5                 | 74.0                  | -19.5                         |
| 12012.700                                    | 36.0                | 16.0           | 162.0                | 1.3                | 0.0                                | 0.0             | H-Horn           | PK       | 0.0                            | 52.0                 | 74.0                  | -22.0                         |
| 12011.810                                    | 35.3                | 16.0           | 144.0                | 1.0                | 0.0                                | 0.0             | V-Horn           | PK       | 0.0                            | 51.3                 | 74.0                  | -22.7                         |
| 4004.558<br>4806.849                         | 45.1<br>38.1        | 5.7<br>6.4     | 90.0<br>49.0         | 1.3<br>1.3         | 0.0<br>0.0                         | 0.0<br>0.0      | V-Horn<br>H-Horn | PK<br>PK | 0.0<br>0.0                     | 50.8<br>44.5         | 74.0<br>74.0          | -23.2<br>-29.5                |
| 4806.849                                     | 38.1<br>42.0        | 6.4<br>5.7     | 49.0<br>70.0         | 1.3                | 24.6                               | 0.0             | H-Hom<br>H-Hom   |          | 0.0                            | 44.5<br>23.1         | 74.0<br>54.0          | -29.5                         |


| 4004.558  | 45.1 | 5.7  | 90.0  | 1.3 | 0.0  | 0.0 | V-Horn | PK | 0.0 | 50.8 | 74.0 | -23.2 |
|-----------|------|------|-------|-----|------|-----|--------|----|-----|------|------|-------|
| 4806.849  | 38.1 | 6.4  | 49.0  | 1.3 | 0.0  | 0.0 | H-Horn | PK | 0.0 | 44.5 | 74.0 | -29.5 |
| 4004.708  | 42.0 | 5.7  | 70.0  | 1.0 | 24.6 | 0.0 | H-Horn | AV | 0.0 | 23.1 | 54.0 | -30.9 |
| 4807.476  | 36.1 | 6.4  | 87.0  | 1.0 | 0.0  | 0.0 | V-Horn | PK | 0.0 | 42.5 | 74.0 | -31.5 |
| 4004.680  | 38.4 | 5.7  | 90.0  | 1.3 | 24.6 | 0.0 | V-Horn | AV | 0.0 | 19.5 | 54.0 | -34.5 |
| 12015.070 | 22.0 | 16.0 | 162.0 | 1.3 | 24.6 | 0.0 | H-Horn | AV | 0.0 | 13.4 | 54.0 | -40.6 |
| 12011.880 | 21.9 | 16.0 | 144.0 | 1.0 | 24.6 | 0.0 | V-Horn | AV | 0.0 | 13.3 | 54.0 | -40.7 |
| 4805.850  | 25.2 | 6.4  | 49.0  | 1.3 | 24.6 | 0.0 | H-Horn | AV | 0.0 | 7.0  | 54.0 | -47.0 |
| 4807.527  | 24.5 | 6.4  | 87.0  | 1.0 | 24.6 | 0.0 | V-Horn | AV | 0.0 | 6.3  | 54.0 | -47.7 |
|           |      |      |       |     |      |     |        |    |     |      |      |       |


| NORTHWEST<br>EMC                                                               |                                | R/        |                    | ED E       | MISS                 | IONS                    | DATA       | SHE      | ET                     |             | F           | PSA 2005.7.20<br>EMI 2005.8.3 |
|--------------------------------------------------------------------------------|--------------------------------|-----------|--------------------|------------|----------------------|-------------------------|------------|----------|------------------------|-------------|-------------|-------------------------------|
|                                                                                | 7 5450 141                     | 6 04 04 4 | Multime            | - Cno-les- | Sustan               |                         |            |          |                        | Verla Carda | LABT0140    |                               |
| Serial Number:                                                                 | Z-5450 MN:                     | 5-0181A   | Multimedi          | a Speaker  | System               |                         |            |          | V                      |             | 08/04/05    | )                             |
|                                                                                | Logitech, Ir                   | 10        |                    |            |                      |                         |            |          | Те                     | mperature:  |             |                               |
| Attendees:                                                                     |                                | 10.       |                    |            |                      |                         |            |          | 10                     | Humidity:   |             |                               |
| Project:                                                                       |                                |           |                    |            |                      |                         |            |          | Barometr               | ic Pressure |             |                               |
|                                                                                | Holly Ashk                     | annejhad  |                    |            |                      | Power:                  | 120VAC, 6  | OHz      |                        | Job Site:   |             |                               |
| TEST SPECIFICAT                                                                | IONS                           |           |                    |            |                      |                         | Test Metho | d        |                        |             |             |                               |
| FCC 15.247(d) Spu<br>TEST PARAMETER                                            |                                | ed Emiss  | ions:2005-         | 04         |                      |                         | ANSI C63.4 | 1:2003   |                        |             |             |                               |
| Antenna Height(s)                                                              |                                | 1 - 4     |                    |            |                      | Test Dista              | nce (m)    | 3        |                        |             |             |                               |
| COMMENTS                                                                       | (III)                          | 1 - 4     |                    |            |                      | Test Dista              | nce (m)    | 3        |                        |             |             |                               |
| EUT OPERATING M<br>Transmitting low chann<br>DEVIATIONS FROM<br>No deviations. | el from rear sp<br>// TEST STA | NDARD     |                    |            |                      |                         |            |          |                        |             |             |                               |
| Run #                                                                          | 12                             | 2         |                    |            |                      | , Ale                   | . , ()     | )        |                        |             |             |                               |
| Configuration #                                                                |                                |           |                    |            | 11 81                | All                     | mi         |          |                        |             |             |                               |
| Results                                                                        | Pas                            | SS        |                    | Signature  | How                  | , , , ,                 | 1          |          |                        |             |             |                               |
| Roouno                                                                         |                                |           |                    | orginataro |                      |                         |            |          |                        |             |             |                               |
| 80.0                                                                           |                                |           |                    |            |                      |                         |            |          |                        |             |             |                               |
|                                                                                |                                |           |                    |            |                      |                         |            |          |                        |             |             | <b></b>                       |
| 70.0                                                                           |                                |           |                    |            |                      |                         |            |          |                        |             |             |                               |
| 70.0                                                                           |                                |           |                    |            |                      |                         |            |          |                        |             |             |                               |
| 60.0                                                                           |                                |           |                    |            |                      |                         |            |          |                        |             |             |                               |
| 50.0                                                                           |                                |           |                    |            |                      |                         |            |          |                        |             |             |                               |
| 50.0                                                                           |                                |           |                    |            |                      |                         |            |          |                        |             |             |                               |
| 40.0 +                                                                         |                                |           |                    |            |                      |                         |            |          |                        |             |             |                               |
| 30.0                                                                           |                                |           |                    |            |                      |                         |            |          |                        |             |             |                               |
| 20.0                                                                           |                                |           |                    |            |                      |                         |            |          |                        |             |             |                               |
| 10.0                                                                           |                                |           |                    |            |                      |                         |            |          |                        |             |             |                               |
|                                                                                |                                |           |                    |            |                      |                         |            |          |                        |             |             |                               |
| 0.0 +                                                                          |                                |           |                    |            |                      |                         |            |          |                        |             | +           |                               |
| 1600.000                                                                       | ) 1610.00                      | 0 1620    | .000 163           | 0.000 10   | 640.000              | 1650.000                | 1660.000   | 1670.00  | 00 1680.0              | 000 169     | 0.000 17    | 00.000                        |
|                                                                                |                                |           |                    |            |                      | MHz                     |            |          |                        |             |             |                               |
|                                                                                | ,                              |           |                    |            |                      |                         |            |          |                        |             |             |                               |
| Freq                                                                           | Amplitude                      | Factor    | Azimuth            | Height     | Duty Cycle           | External<br>Attenuation | Polarity   | Detector | Distance<br>Adjustment | Adjusted    | Spec. Limit | Compared to<br>Spec.          |
| (MHz)                                                                          | (dBuV)                         | (dB)      | (degrees)          | (meters)   | Correction<br>Factor | (dB)                    | rolanty    | Derector | (dB)                   | dBuV/m      | dBuV/m      | (dB)                          |
| 1602.119                                                                       | 45.8                           | -2.8      | (degrees)<br>159.0 | 1.2        | 0.0                  | 20.0                    | V-Horn     | PK       | 0.0                    | 63.0        | 74.0        | -11.0                         |
| 1601.857                                                                       | 43.2                           | -2.8      | 181.0              | 2.0        | 0.0                  | 20.0                    | H-Horn     | PK       | 0.0                    | 60.4        | 74.0        | -13.6                         |
| 1602.263                                                                       | 42.1                           | -2.8      | 159.0              | 1.2        | 24.6                 | 20.0                    | V-Horn     | AV       | 0.0                    | 34.7        | 54.0        | -19.3                         |
| 1602.187                                                                       | 38.8                           | -2.8      | 181.0              | 2.0        | 24.6                 | 20.0                    | H-Horn     | AV       | 0.0                    | 31.4        | 54.0        | -22.6                         |

| Work Order: Date: 6091:00           Series None         Work Order: Date: 6091:00           Temperature: 28           None         Burometric Managhad           Project: None         Burometric Managhad           Project: None         Burometric Managhad           Test Markate Emissions: 2005-04         None         Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"           Colspan="2"         Colspan="2"           Colspan="2"         Colspan="2"           Colspan="2"         Colspan="2"           Colspan="2"          Colspan="2"           Colspan= 10 <t< th=""><th>NORTHWEST<br/>EMC</th><th></th><th>R/</th><th></th><th>ED E</th><th>MISSI</th><th>ONS</th><th>DATA</th><th>SHE</th><th>ET</th><th></th><th>F</th><th>PSA 2005.7.20<br/>EMI 2005.8.3</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NORTHWEST<br>EMC |           | R/         |             | ED E       | MISSI      | ONS         | DATA             | SHE        | ET         |             | F        | PSA 2005.7.20<br>EMI 2005.8.3 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|------------|-------------|------------|------------|-------------|------------------|------------|------------|-------------|----------|-------------------------------|
| Custome:         Continue:         Tempet:         23           Project:         None         Barometric Pressure [25]         Barometric Pressure [25]           Project:         None         Barometric Pressure [25]         Barometric Pressure [25]           Project:         None         Barometric Pressure [25]         Barometric Pressure [25]           PEGC 15:247(0)         Supress         Supressure [25]         Missions: 2005-04         Missions: 2005           MSI (C5):4:2003         MSI (C5):4:2003         MSI (C5):4:2003         MSI (C5):4:2003           Contents Relight(c) (m)         1:.4         [est Distance (m)]         3           COMUNITY:         Pass         Signature         Mathematic Pressure [25]           Supressure Pass         Signature         Mathematic Pressure [25]         Mathematic Pressure [25]           Supressure Pass         Signature         Mathematic Pressure [25]         Mathematic Pressure [25]           Supressure Pass         Signature         Mathematic Pressure [25]         Mathematic Pressure [25]           Supressure Pass         Signature         Mathematic Pressure [25]         Mathematic Pressure [25]           Supressure Pass         Signature         Mathematic Pressure [25]         Mathematic Pressure [25]         Mathmatic Pressure [25]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | Z-5450 MN | I: S-0181A | Multimedia  | Speaker S  | ystem      |             |                  |            | V          | Vork Order: | LABT0140 | )                             |
| Attendese:         None         Humanity:         Barometic Pressure [23:64]           Traded by Holly Akhannejhad         Power; [20VAC; 60Hz         Job Site; [EV01]           Traded by Holly Akhannejhad         Test Bool         Job Site; [EV01]           File Scientic Anosa         Test Bool         Job Site; [EV01]           Scientic Matter Scientic Anosa         Scientic Matter Scientic Anosa         Job Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |           |            |             |            |            |             |                  |            |            |             |          |                               |
| Project None         Biometic Pressure (28.94)           Test Bredoric Anolysis         Biometic Pressure (28.94)           Test SeldoricAnolysis         Test Metricos           Advisor         Test Metricos           Test PARAMETERS         Test Metricos           Advisor         Test Metricos           Configuration #         Test Metricos           Parametic Press         Signature           More Test STANDARD         Signature           Gonfiguration #         Test Metricos           70.0         Gonfiguration           60.0         Gonfiguration           70.0         Gonfiguration           70.0 <td></td> <td></td> <td>Inc.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Te</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |           | Inc.       |             |            |            |             |                  |            | Te         |             |          |                               |
| Tested by Holy Ashtannejhad         Power 120VAC, 60Hz         Job Site.         EV01           FCC 15.247(d) Spurious Radiated Emissions:2005-04         Aklin C63.4 2003         Aklin C63.4 2003           TEST PARAMETERS         1 - 4         Test Distance (m)         3           COMMENTS         Pass         Signature         Add Minor (m)           Signature         Signature         Add Minor (m)         1           Signature         Signature         Add Minor (m)         1         1           Signature         Signature         Minor (m)         1         1         1           Signature         Signature         Signature         Minor (m)         1         1         1           Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |           |            |             |            |            |             |                  |            |            |             |          |                               |
| Test specific Ations         Test Method           FCC 15.347(d) Spurious Radiated Emissions:2005-04         ANSI C63.4.2003           Test PARAMETERS         ANSI C63.4.2003           Test PARAMETERS         Test Distance (m) 3           COMMENTS         3           EUT OFERATING MODES         BOOMESTS           Pass         Signature           Poly Attoms from res speaker.         BOOMESTS           Poly Attoms from res speaker.         BOOMESTS           Signature         Add Add Add Add Add Add Add Add Add Ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |           | annaihad   |             |            |            | Deuren      | 1201/40 6        | <u>0U-</u> | Barometr   |             |          |                               |
| FCC 15.247(d) Spurious Radiated Emissions:2005-04       ANSI C63.4:2003         TEST PARAMIETERS         Anterna Height(s)(m) [:-4         Test Distance (m) ] 3         EUT OPERATING MODES         EUT OPERATING MODES         EUTOPERATING MODES         EUTOPERATING MODES         Coll Anter Status engelace:         OPERATING MODES         Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"         Colspan="2">Colspan="2"         Colspan="2"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |           | kannejnad  |             |            |            | Power:      |                  |            |            | Job Site:   | EVUI     |                               |
| TEST PARAMETERS         1-4         Test Distance (m)         3           COMMENTS         COMMENTS         Commention (m)         3           CUT OPERATING MODES         Transmitting high channel from rar speake.         Commention (m)         3           Cervitations         13         Configuration (m)         3         Configuration (m)         Configuration (m) <t< td=""><td></td><td></td><td>ted Emiss</td><td>ions:2005-0</td><td>N4</td><td></td><td></td><td>ā</td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |           | ted Emiss  | ions:2005-0 | N4         |            |             | ā                |            |            |             |          |                               |
| Antenna Height(s) (m)         1 - 4         Test Distance (m)         3           EUT OPERATING MODES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |           |            |             |            |            |             |                  |            |            |             |          |                               |
| EUT OPERATING MODES           Transmitting high channel from rest spacks.           DEVIATIONS FROM TEST STANDAD           No division in the space of the                                                                                                                       |                  |           | 1 - 4      |             |            |            | Test Dista  | nce (m)          | 3          |            |             |          |                               |
| Transmitting high channel form rar speaker.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | COMMENTS         |           |            |             |            |            |             |                  |            |            |             |          |                               |
| BEVATIONS FROM TEST STANDARD           Run #         13           Configuration #         Run #         13           Good deviations         Run #         143         Good deviations           Good deviations         Run #         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |           |            |             |            |            |             |                  |            |            |             |          |                               |
| No devisions.           Run #         13           Configuration #         Pass           Signature         Additional Mathematical Mathmatematical Matematical Mathematical Matematical Matematical Mate                                                                                                  |                  |           | speaker.   |             |            |            |             |                  |            |            |             |          |                               |
| Ron #         13         Add M Ministry           Configuration #         Pass         Signature         Add M Ministry           Signature         Add M Ministry         Signature         Add M Ministry           80.0         70.0         60.0         60.0         60.0         60.0           50.0         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9 <td></td> <td>I TEST ST</td> <td>NDARD</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | I TEST ST | NDARD      |             |            |            |             |                  |            |            |             |          |                               |
| 80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No deviations.   |           |            |             |            |            |             |                  |            |            |             |          |                               |
| 80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Run #            | 1         | 3          |             |            | 10         | . /         | /                | 2          |            |             |          |                               |
| 80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Configuration #  |           |            |             |            | 11 %       | Al          | inti             | /          |            |             |          |                               |
| 80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | Pa        | ISS        |             | Sianature  | How        | 1.          | 1                |            |            |             |          |                               |
| Tree         Amplitude         Factor         Adjusted         Spec. Imilia         Compared to<br>Conserved on<br>the sec.           M122.814         45.7         5.7         42.0         1.0         0.0         0.0         Height<br>Conserved on<br>the sec.         Adjusted         Spec. Imilia         Spec. Im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Robuito          |           |            |             | orginataro |            |             |                  |            |            |             |          |                               |
| 60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0         60.0 <th< td=""><td>80.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80.0             |           |            |             |            |            |             |                  |            |            |             |          |                               |
| So.0         Image: Solo of the sector o | 70.0             |           |            |             |            |            |             |                  |            |            |             |          |                               |
| SU.0         All         All<         All         All         All </td <td>60.0</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60.0             |           |            |             |            |            |             |                  |            |            |             |          |                               |
| 30.0       20.0       30.0       20.0       30.0       20.0       30.0       20.0       30.0       20.0       30.0       20.0       30.0       20.0       30.0       20.0       30.0       20.0       30.0       20.0       30.0       20.0       30.0       20.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50.0             |           |            |             |            |            |             |                  |            |            |             |          |                               |
| 30.0       20.0       30.0       20.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0       40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |           |            |             |            |            |             |                  |            |            |             |          |                               |
| Inc.0       Inc.0 <th< td=""><td>30.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.0             |           |            |             |            |            |             |                  |            |            |             |          |                               |
| Freq<br>(MHz)         Amplitude<br>(dBuV)         Factor<br>(dB)         Azimuth<br>(degrees)         Height<br>(meters)         Duty Cycle<br>Correction<br>Factor         External<br>Attenuation<br>(dB)         Polarity<br>Detector         Distance<br>Adjustment<br>(dB)         Adjusted<br>dBUV/m         Spec. Limit<br>dBUV/m         Compared to<br>Spec.<br>(dB)           4132.814         45.7         5.7         42.0         1.0         0.0         0.0         H-Horn<br>Horn         PK         0.0         51.4         74.0         -22.6           4959.439         41.1         6.8         42.0         1.0         0.0         0.0         H-Horn<br>Horn         PK         0.0         47.3         74.0         -26.7           4132.811         39.8         5.7         120.0         1.3         0.0         0.0         V-Horn         PK         0.0         47.3         74.0         -26.7           4132.811         39.8         5.7         120.0         1.3         0.0         0.0         V-Horn         PK         0.0         47.3         74.0         -26.7           4132.871         39.8         5.7         120.0         1.3         0.0         V-Horn         PK         0.0         45.5         74.0         -28.5           4132.677         38.3         5.7 </td <td>20.0</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20.0             |           |            |             |            |            |             |                  |            |            |             |          |                               |
| 4100.000       4200.000       4300.000       4400.000       4500.000       4600.000       4700.000       4800.000       4900.000       5000.000         MHz       MHz       MHz       MHz       MHz       Distance       Adjusted       Spec. Limit       Compared to Spec.         MHz       MHz       Meight (degrees)       Duty Cycle (meters)       External Attenuation (dB)       Polarity       Detector       Adjustment (dB)       Adjusted       Spec. Limit       Compared to Spec.         4132.814       45.7       5.7       42.0       1.0       0.0       0.0       H-Horn       PK       0.0       51.4       74.0       -22.6         4959.439       41.1       6.8       42.0       1.0       0.0       0.0       V-Horn       PK       0.0       47.3       74.0       -22.6         4959.201       40.5       6.8       327.0       1.1       0.0       0.0       V-Horn       PK       0.0       47.3       74.0       -26.7         4132.877       38.3       5.7       120.0       1.3       0.0       0.0       V-Horn       PK       0.0       45.5       74.0       -28.5         4132.871       39.8       5.7       120.0       24.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.0             |           |            |             |            |            |             |                  |            |            |             | *        |                               |
| Freq<br>(MHz)         Amplitude<br>(dB)         Factor<br>(dB)         Azimuth<br>(degrees)         Height<br>(meters)         Duty Cycle<br>Correction<br>Factor         External<br>Attenuation<br>(dB)         Polarity         Detector         Adjustment<br>(dB)         Adjusted<br>dBuV/m         Spec. Limit<br>(dB)         Compared to<br>Spec.<br>(dB)           4132.814         45.7         5.7         42.0         1.0         0.0         0.0         H-Horn<br>Horn         PK         0.0         51.4         74.0         -22.6           4959.439         41.1         6.8         42.0         1.0         0.0         0.0         H-Horn<br>Horn         PK         0.0         47.9         74.0         -26.1           4959.201         40.5         6.8         327.0         1.1         0.0         0.0         V-Horn         PK         0.0         47.3         74.0         -26.7           4132.891         39.8         5.7         120.0         1.3         0.0         0.0         V-Horn         PK         0.0         45.5         74.0         -28.5           4132.677         38.3         5.7         42.0         1.0         24.6         0.0         H-Horn         AV         0.0         13.2         54.0         -40.1           4959.219         31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0              |           |            |             |            |            |             |                  |            |            |             |          |                               |
| Freq<br>(MHz)         Amplitude<br>(dBW)         Factor<br>(dB)         Azimuth<br>(degrees)         Height<br>(meters)         Orrection<br>Factor         Attenuation<br>(dB)         Polarity         Detector         Adjustment<br>(dB)         Adjusted<br>dBW/m         Spec. Limit<br>dBW/m         Spec. Limit<br>(dB)         Spec. Limit<br>(dB)         Spec. Limit<br>(dB)         Spec. Limit<br>dBW/m         Spe                                                                                                                                                                                                                                                                                                                                                                | 4100.000         | ) 4200.0  | 000 43     | 00.000      | 4400.000   | 4500.0     |             | 0.000 4          | 700.000    | 4800.000   | ) 4900      | .000 50  | 00.000                        |
| 4132.814         45.7         5.7         42.0         1.0         0.0         0.0         H-Horn         PK         0.0         51.4         74.0         -22.6           4959.439         41.1         6.8         42.0         1.0         0.0         0.0         H-Horn         PK         0.0         47.9         74.0         -22.6           4959.439         41.1         6.8         42.0         1.0         0.0         0.0         H-Horn         PK         0.0         47.9         74.0         -26.1           4959.201         40.5         6.8         327.0         1.1         0.0         0.0         V-Horn         PK         0.0         47.3         74.0         -26.7           4132.891         39.8         5.7         120.0         1.3         0.0         0.0         V-Horn         PK         0.0         45.5         74.0         -28.5           4132.677         38.3         5.7         42.0         1.0         24.6         0.0         H-Horn         AV         0.0         13.9         54.0         -34.6           4959.223         31.7         6.8         42.0         1.0         24.6         0.0         H-Horn         AV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |           |            |             |            | Correction | Attenuation | Polarity         | Detector   | Adjustment |             |          | Spec.                         |
| 4959.20140.56.8327.01.10.00.0V-HornPK0.047.374.0-26.74132.89139.85.7120.01.30.00.0V-HornPK0.045.574.0-28.54132.67738.35.742.01.024.60.0H-HornAV0.019.454.0-34.64959.22331.76.842.01.024.60.0H-HornAV0.013.954.0-40.14959.21931.06.8327.01.124.60.0V-HornAV0.013.254.0-40.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4132.814         |           | 5.7        |             |            | 0.0        |             |                  |            | 0.0        |             |          |                               |
| 4132.89139.85.7120.01.30.00.0V-HornPK0.045.574.0-28.54132.67738.35.742.01.024.60.0H-HornAV0.019.454.0-34.64959.22331.76.842.01.024.60.0H-HornAV0.013.954.0-40.14959.21931.06.8327.01.124.60.0V-HornAV0.013.254.0-40.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |           |            |             |            |            |             |                  |            |            |             |          |                               |
| 4132.677         38.3         5.7         42.0         1.0         24.6         0.0         H-Horn         AV         0.0         19.4         54.0         -34.6           4959.223         31.7         6.8         42.0         1.0         24.6         0.0         H-Horn         AV         0.0         13.9         54.0         -40.1           4959.219         31.0         6.8         327.0         1.1         24.6         0.0         V-Horn         AV         0.0         13.2         54.0         -40.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |           |            |             |            |            |             |                  |            |            |             |          |                               |
| 4959.223         31.7         6.8         42.0         1.0         24.6         0.0         H-Horn         AV         0.0         13.9         54.0         -40.1           4959.219         31.0         6.8         327.0         1.1         24.6         0.0         V-Horn         AV         0.0         13.2         54.0         -40.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |           |            |             |            |            |             |                  |            |            |             |          |                               |
| 4959.219 31.0 6.8 327.0 1.1 24.6 0.0 V-Horn AV 0.0 13.2 54.0 -40.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |           |            |             |            |            |             |                  |            |            |             |          |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |            |             |            |            |             |                  |            |            |             |          |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |            |             |            |            |             | V-Horn<br>V-Horn |            |            |             |          |                               |











## Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

| Channels in Specified Band Investigated: |
|------------------------------------------|
| Low                                      |
| Mid                                      |
| High                                     |

**Operating Modes Investigated:** No Hop

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

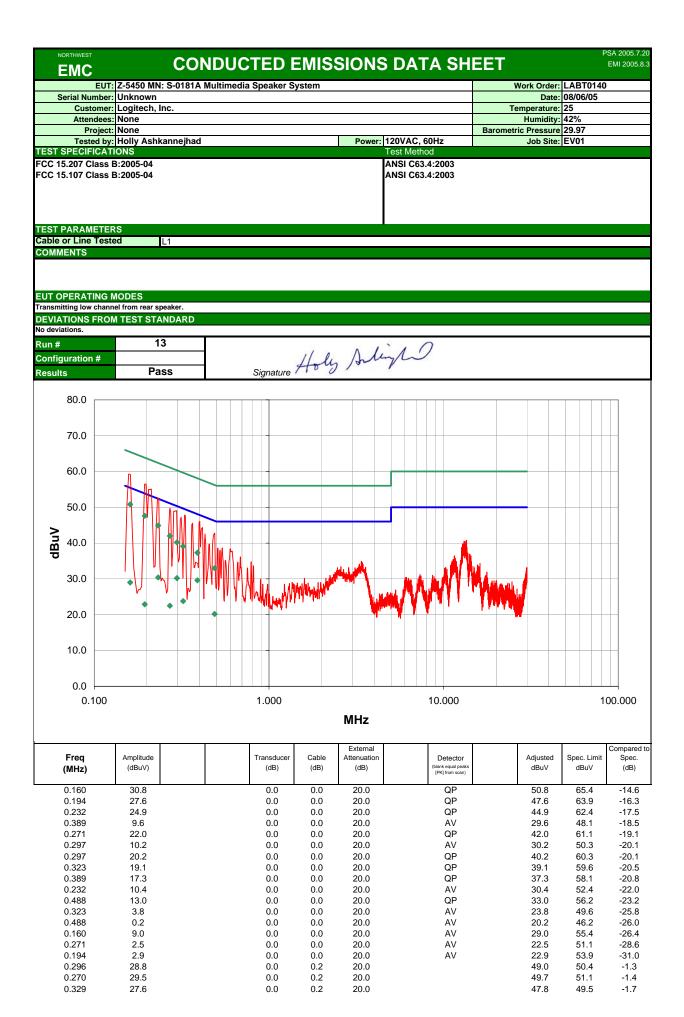
Power Input Settings Investigated: 120 VAC/60 Hz 230 VAC, 50 Hz.

| Software\Firmware Applied During Test        |                             |                             |                            |  |  |  |  |  |
|----------------------------------------------|-----------------------------|-----------------------------|----------------------------|--|--|--|--|--|
| Exercise software                            | Special Test Software       | Version                     | Z6DW a0.3.3.1.2.6          |  |  |  |  |  |
| Description                                  |                             |                             |                            |  |  |  |  |  |
| The system was tested us during the testing. | ing special test codes on a | remote laptop to exercise t | he functions of the device |  |  |  |  |  |

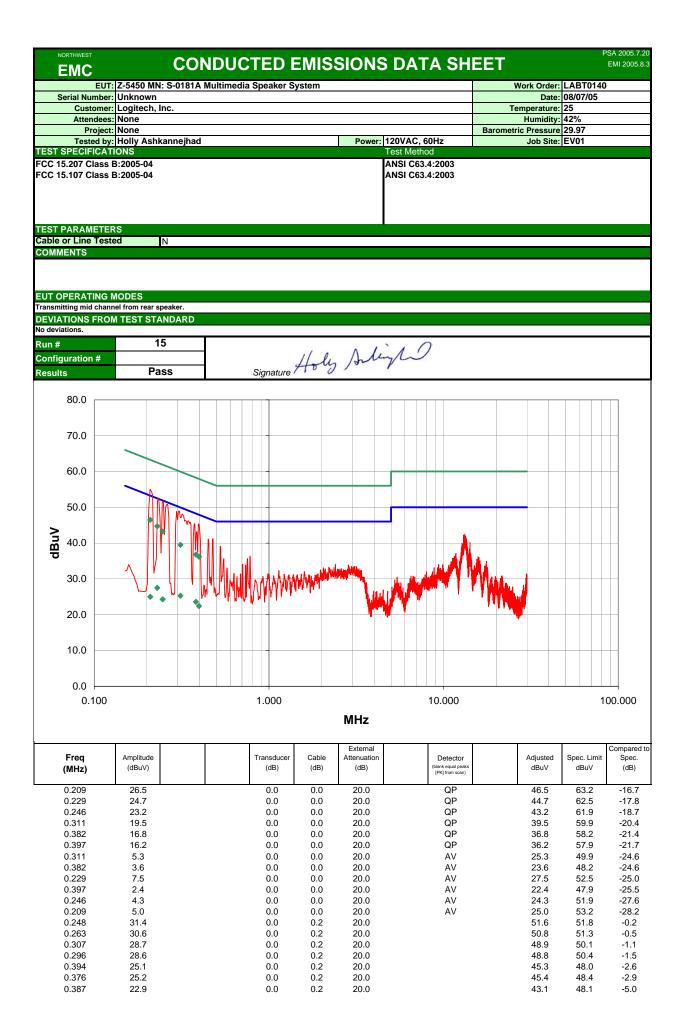
| EUT and Peripherals in Test Setup Boundary |                |                   |                |  |  |  |  |  |
|--------------------------------------------|----------------|-------------------|----------------|--|--|--|--|--|
| Description                                | Manufacturer   | Model/Part Number | Serial Number  |  |  |  |  |  |
| Left front speaker                         | Logitech, Inc. | S-0181A           | Unknown        |  |  |  |  |  |
| Right front speaker                        | Logitech, Inc. | S-0181A           | Unknown        |  |  |  |  |  |
| Center front speaker                       | Logitech, Inc. | S-0181A           | Unknown        |  |  |  |  |  |
| Right rear speaker                         | Logitech, Inc. | S-0181A           | Unknown        |  |  |  |  |  |
| Left rear speaker                          | Logitech, Inc. | S-0181A           | Unknown        |  |  |  |  |  |
| Subwoofer – US Unit                        | Logitech, Inc. | S-0181A           | Unknown        |  |  |  |  |  |
| Subwoofer – EU Unit                        | Logitech, Inc. | S-0181A           | Unknown        |  |  |  |  |  |
| DVD Player                                 | Pioneer        | DV-578A-S         | DDTE 003395 CC |  |  |  |  |  |
| Control Pod                                | Logitech, Inc. | S-0181A           | Unknown        |  |  |  |  |  |

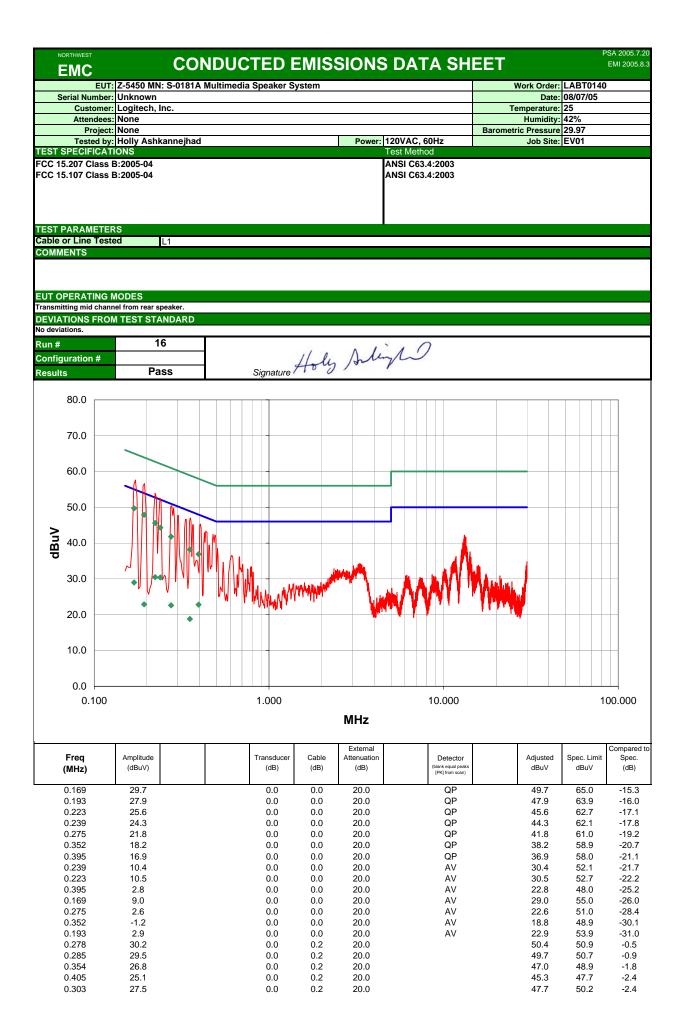
| Remote Equipment Outside of Test Setup Boundary                                                                                       |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Description Manufacturer Model/Part Number Serial Number                                                                              |  |  |  |  |  |  |  |
| Notebook PC Dell, Inc. Latitude D600 99XL661                                                                                          |  |  |  |  |  |  |  |
| Equipment isolated from the EUT so as not to contribute to the measurement result is considered to be outside the test setup boundary |  |  |  |  |  |  |  |

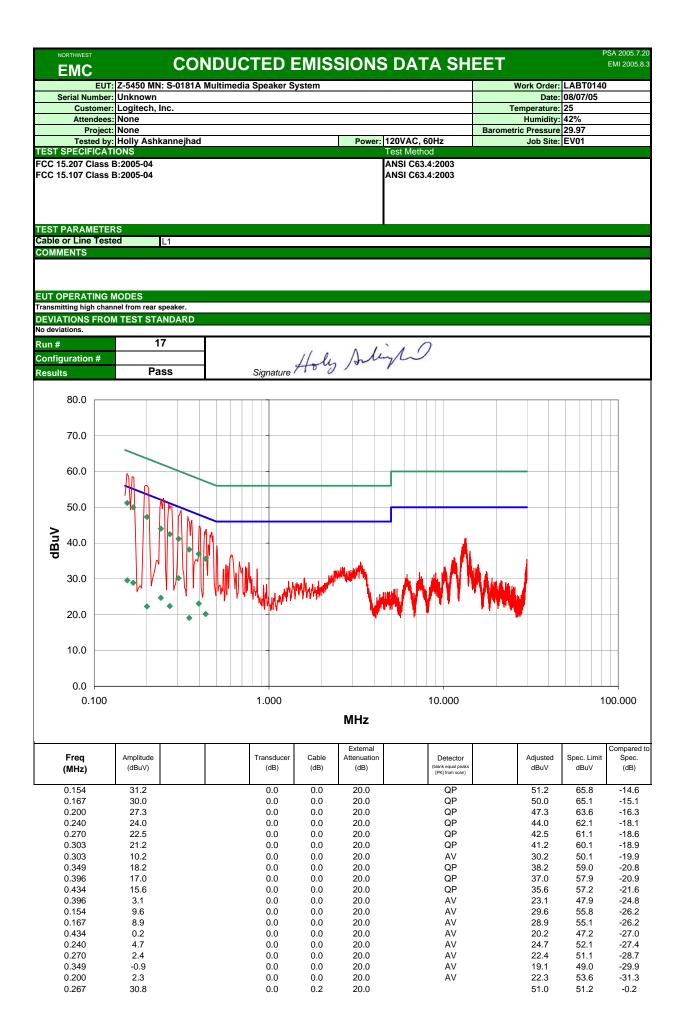
| Cables      |                                                                                                        |            |         |                    |                      |  |  |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------------|------------|---------|--------------------|----------------------|--|--|--|--|--|
| Cable Type  | Shield                                                                                                 | Length (m) | Ferrite | Connection 1       | Connection 2         |  |  |  |  |  |
| Audio       | No                                                                                                     | 1.5        | No      | Subwoofer          | Right front speaker  |  |  |  |  |  |
| Audio       | No                                                                                                     | 1.4        | No      | Subwoofer          | Center front speaker |  |  |  |  |  |
| Audio       | No                                                                                                     | 1.8        | No      | Subwoofer          | Left front speaker   |  |  |  |  |  |
| AC Power    | No                                                                                                     | 1.4        | No      | Subwoofer          | AC Mains             |  |  |  |  |  |
| AC Power    | No                                                                                                     | 1.4        | No      | Left rear speaker  | AC Mains             |  |  |  |  |  |
| AC Power    | No                                                                                                     | 1.4        | No      | Right rear speaker | AC Mains             |  |  |  |  |  |
| Control     | Yes                                                                                                    | 1.2        | PA      | Control Pod        | Subwoofer            |  |  |  |  |  |
| Audio (x3)  | No                                                                                                     | 1.4        | No      | Control Pod        | DVD Player           |  |  |  |  |  |
| Fiber optic | No                                                                                                     | 1.2        | No      | Control Pod        | DVD Player           |  |  |  |  |  |
| Coax        | Yes                                                                                                    | 1.2        | No      | Control Pod        | DVD Player           |  |  |  |  |  |
| AC Power    | No                                                                                                     | 1.4        | No      | DVD Player         | AC Mains             |  |  |  |  |  |
| PA          | PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown. |            |         |                    |                      |  |  |  |  |  |


| Measurement Equipment |              |                  |            |            |          |  |  |  |  |
|-----------------------|--------------|------------------|------------|------------|----------|--|--|--|--|
| Description           | Manufacturer | Model            | Identifier | Last Cal   | Interval |  |  |  |  |
| LISN                  | Solar        | 9252-50-R-24-BNC | LIN        | 12/29/2004 | 13 mo    |  |  |  |  |
| LISN                  | Solar        | 9252-50-R-24-BNC | LIP        | 12/29/2004 | 13 mo    |  |  |  |  |
| High Pass Filter      | TTE          | H97-100k-50-720B | HFC        | 12/29/2004 | 13 mo    |  |  |  |  |
| Attenuator            | Tektronix    | 011-0059-02      | ATH        | 12/29/2004 | 13 mo    |  |  |  |  |
| Spectrum Analyzer     | Agilent      | E4446A           | AAQ        | 04/08/2005 | 13 mo    |  |  |  |  |

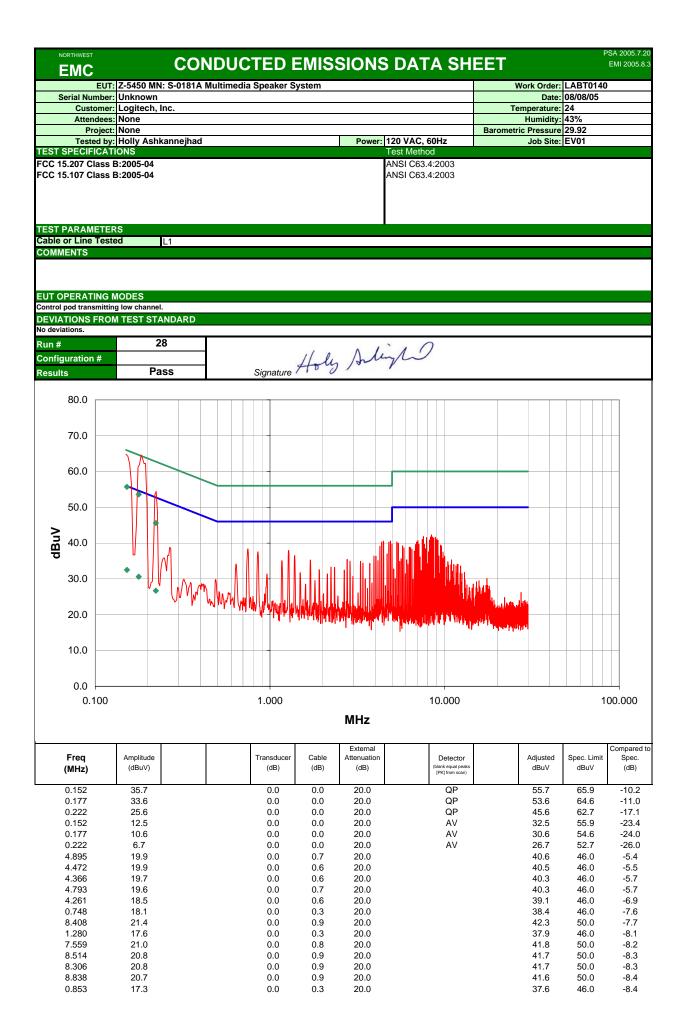
## **Test Description**

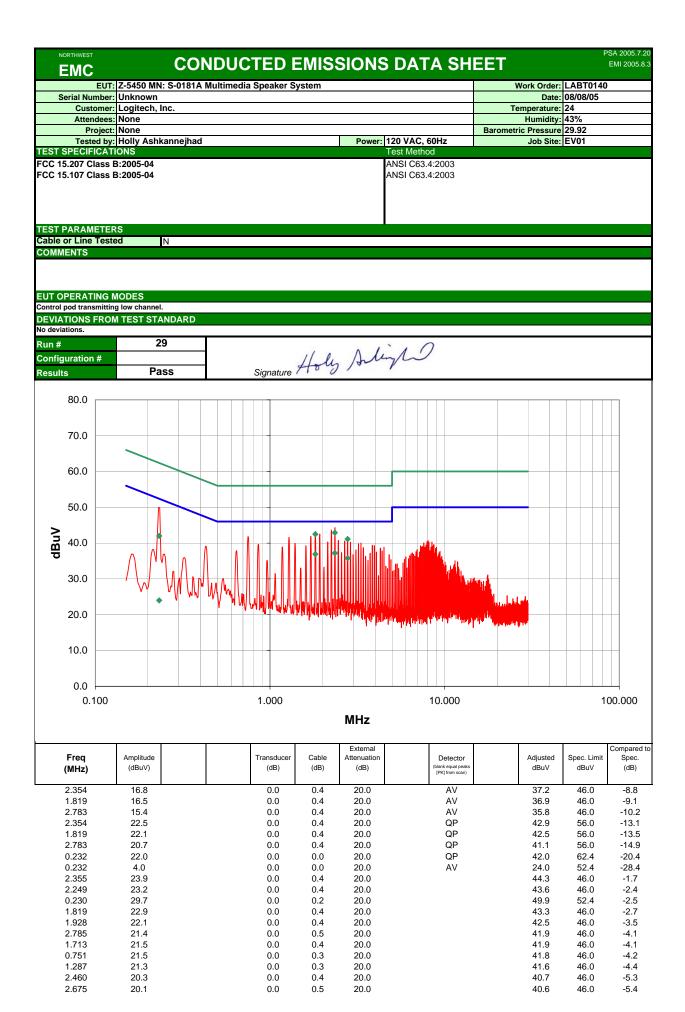

**<u>Requirement:</u>** EN 301 489-1, clause 8.4. If the EUT is connected to the AC power line indirectly, obtaining its power from another device that is connected to the AC power line, then it should be tested to demonstrate compliance with the conducted limits or EN 55022 Class B.

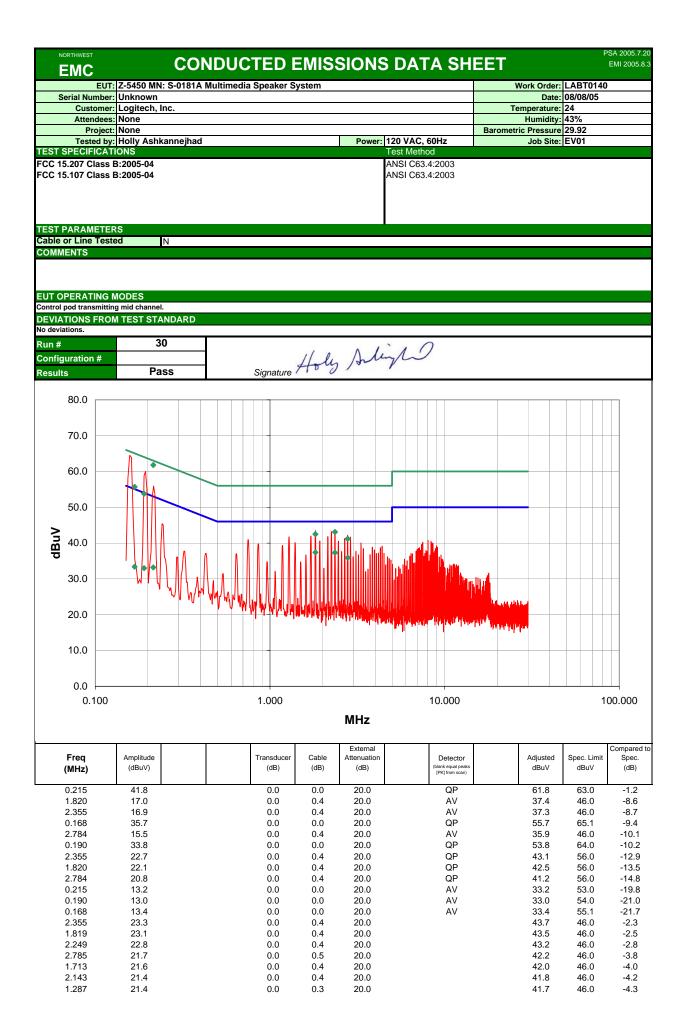

**<u>Configuration</u>**: The EUT will be powered from a device that could be connected to the AC power line. Therefore, the measurements were made on the device used to power the EUT. The AC power line conducted emissions were measured with the EUT operating at the lowest, the highest, and a middle channel in the operational band. The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with EN 55022.

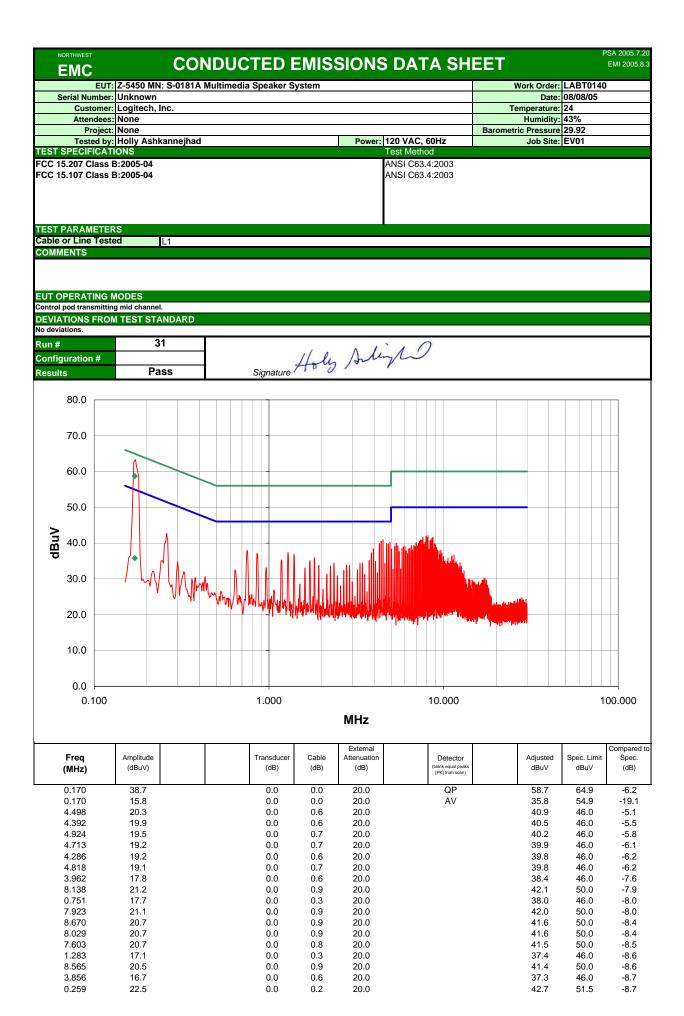

| Completed by: |      |  |  |  |  |  |  |
|---------------|------|--|--|--|--|--|--|
| Holy          | Sigh |  |  |  |  |  |  |

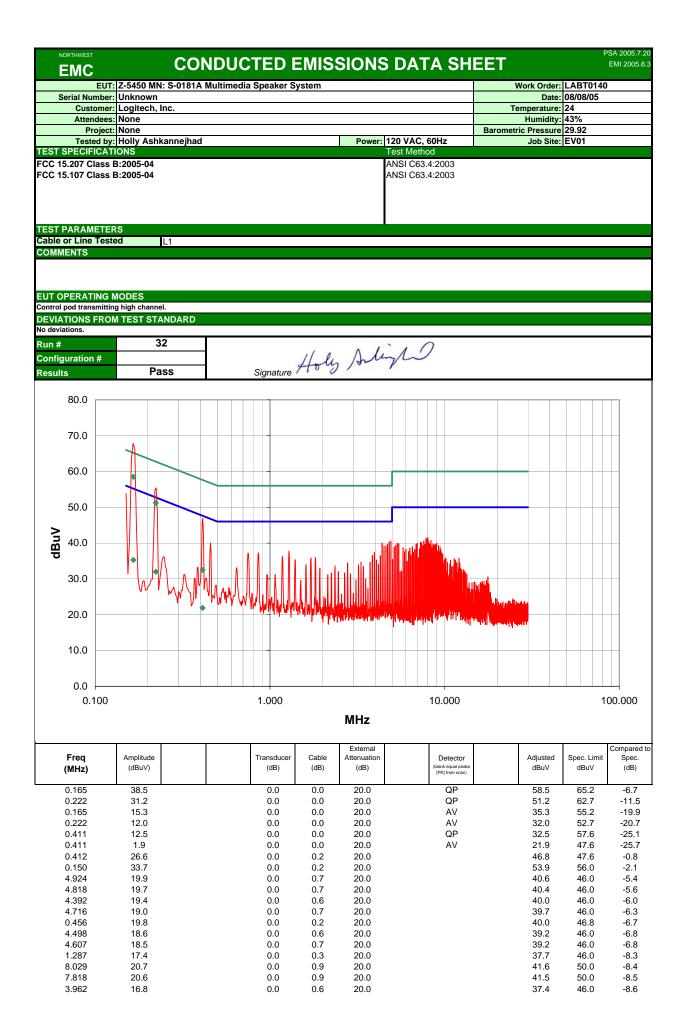



| NORTHWEST                       |                                 | CON              | DUC         | TED E              | MIS           | SION                | S DATA SH                      | IEET      |                                               | F                   | PSA 2005.7.20<br>EMI 2005.8.3 |
|---------------------------------|---------------------------------|------------------|-------------|--------------------|---------------|---------------------|--------------------------------|-----------|-----------------------------------------------|---------------------|-------------------------------|
|                                 | EUT: Z-5450 MN:                 | S-0181A Mu       | Itimedia    | Speaker S          | /stem         |                     |                                | W         | ork Order:                                    | LABT0140            | )                             |
| Serial Num                      | nber: Unknown                   |                  |             |                    |               |                     |                                |           | Date:                                         | 08/06/05            |                               |
|                                 | mer: Logitech, Ir<br>dees: None | 1C.              |             |                    |               |                     |                                | Tei       | nperature:<br>Humidity:                       |                     |                               |
| Pro                             | ject: None                      |                  |             |                    |               |                     |                                | Barometri |                                               |                     |                               |
|                                 | d by: Holly Ashk                | annejhad         |             |                    |               | Power:              | 120VAC, 60Hz                   |           | Job Site:                                     | EV01                |                               |
| TEST SPECIFIC<br>FCC 15.207 Cla |                                 |                  |             |                    |               |                     | Test Method<br>ANSI C63.4:2003 |           |                                               |                     |                               |
| FCC 15.107 Cla                  |                                 |                  |             |                    |               |                     | ANSI C63.4:2003                |           |                                               |                     |                               |
|                                 |                                 |                  |             |                    |               |                     |                                |           |                                               |                     |                               |
|                                 |                                 |                  |             |                    |               |                     |                                |           |                                               |                     |                               |
|                                 |                                 |                  |             |                    |               |                     |                                |           |                                               |                     |                               |
| TEST PARAME<br>Cable or Line 1  |                                 |                  |             |                    |               |                     |                                |           |                                               |                     |                               |
| Cable of Line                   | lested                          | N                |             |                    |               |                     |                                |           |                                               |                     |                               |
| COMMENTO                        |                                 |                  |             |                    |               |                     |                                |           |                                               |                     |                               |
|                                 |                                 |                  |             |                    |               |                     |                                |           |                                               |                     |                               |
| EUT OPERATI                     | NG MODES                        |                  |             |                    |               |                     |                                |           |                                               |                     |                               |
|                                 | channel from rear sp            | eaker.           |             |                    |               |                     |                                |           |                                               |                     |                               |
| DEVIATIONS F<br>No deviations.  | ROM TEST STA                    | NDARD            |             |                    |               |                     |                                |           |                                               |                     |                               |
|                                 | 14                              | 1                |             |                    |               |                     | -                              |           |                                               |                     |                               |
| Run #<br>Configuration          |                                 | •                |             |                    | 11 0          | A le                | 1.2                            |           |                                               |                     |                               |
| Results                         | # Pas                           | ss               |             |                    | Holy          | Jour                | in                             |           |                                               |                     |                               |
| Results                         |                                 |                  |             | olghatale          |               |                     |                                |           |                                               |                     |                               |
| 80.0                            |                                 |                  |             |                    |               |                     |                                |           |                                               |                     |                               |
|                                 |                                 |                  |             |                    |               |                     |                                |           |                                               |                     |                               |
|                                 |                                 |                  |             |                    |               |                     |                                |           |                                               |                     |                               |
| 70.0                            |                                 |                  |             |                    |               |                     |                                |           |                                               |                     |                               |
|                                 |                                 |                  |             |                    |               |                     |                                |           |                                               |                     |                               |
| 60.0                            |                                 |                  |             |                    |               |                     |                                |           |                                               |                     |                               |
|                                 | LIM.                            |                  |             |                    |               |                     |                                |           |                                               |                     |                               |
|                                 |                                 |                  |             |                    |               |                     |                                |           |                                               |                     |                               |
| 50.0                            |                                 | (MA.             |             |                    |               |                     |                                |           |                                               |                     |                               |
| >                               |                                 |                  |             |                    |               |                     |                                |           |                                               |                     |                               |
| <b>Angp</b> 40.0                |                                 | ╊ <u>╏╢</u> ┝╷╢╟ | A1          | _                  |               |                     |                                |           |                                               |                     |                               |
| B                               |                                 |                  |             |                    |               |                     |                                |           |                                               |                     |                               |
| 20.0                            | U                               |                  | W. u. H.    | lik                | والفرين الم   |                     | a shut a                       | MA L.     |                                               |                     |                               |
| 30.0                            | ** * <sup>1</sup>               |                  | I'INA.IA    | MIANIWA            | WYW           | <b>"</b> \.         |                                | Y VIII.   |                                               |                     |                               |
|                                 | •                               | V V V            | . 11. JAN / |                    | •             |                     |                                |           |                                               |                     |                               |
| 20.0                            |                                 | •                |             |                    |               | <b>1</b> ,1         |                                |           | <u>,                                     </u> |                     |                               |
|                                 |                                 |                  |             |                    |               |                     |                                |           |                                               |                     |                               |
| 10.0                            |                                 |                  |             |                    |               |                     |                                |           |                                               |                     |                               |
| 10.0                            |                                 |                  |             |                    |               |                     |                                |           |                                               |                     |                               |
|                                 |                                 |                  |             |                    |               |                     |                                |           |                                               |                     |                               |
| 0.0                             |                                 |                  |             |                    |               |                     |                                |           |                                               |                     |                               |
| 0.1                             | 00                              |                  |             | 1.000              |               |                     | 10.000                         |           |                                               | 1                   | 00.000                        |
|                                 |                                 |                  |             |                    |               | MHz                 |                                |           |                                               |                     |                               |
|                                 |                                 |                  |             |                    |               |                     |                                |           |                                               |                     |                               |
| Erre                            | American                        |                  |             | Tropeducer         | Cabl          | External            |                                |           | المراقب                                       | Spee Limit          | Compared to                   |
| Freq<br>(MHz)                   | Amplitude<br>(dBuV)             |                  |             | Transducer<br>(dB) | Cable<br>(dB) | Attenuation<br>(dB) | (blank equal peak              | IS .      | Adjusted<br>dBuV                              | Spec. Limit<br>dBuV | Spec.<br>(dB)                 |
|                                 |                                 |                  |             |                    |               |                     | [PK] from scan)                |           |                                               |                     |                               |
| 0.153<br>0.173                  | 31.8<br>29.6                    |                  |             | 0.0<br>0.0         | 0.0<br>0.0    | 20.0<br>20.0        | QP<br>QP                       |           | 51.8<br>49.6                                  | 65.8<br>64.8        | -14.0<br>-15.2                |
| 0.173                           | 29.6                            |                  |             | 0.0                | 0.0           | 20.0                | QP                             |           | 49.6<br>47.7                                  | 63.7                | -15.2                         |
| 0.229                           | 25.1                            |                  |             | 0.0                | 0.0           | 20.0                | QP                             |           | 45.1                                          | 62.5                | -17.4                         |
| 0.252                           | 23.1                            |                  |             | 0.0                | 0.0           | 20.0                | QP                             |           | 43.1                                          | 61.7                | -18.6                         |
| 0.274<br>0.317                  | 21.2<br>19.2                    |                  |             | 0.0<br>0.0         | 0.0<br>0.0    | 20.0<br>20.0        | QP<br>QP                       |           | 41.2<br>39.2                                  | 61.0<br>59.8        | -19.8<br>-20.6                |
| 0.312                           | 19.2                            |                  |             | 0.0                | 0.0           | 20.0                | QP                             |           | 39.2<br>39.0                                  | 59.9                | -20.0                         |
| 0.229                           | 7.5                             |                  |             | 0.0                | 0.0           | 20.0                | AV                             |           | 27.5                                          | 52.5                | -25.0                         |
| 0.173<br>0.312                  | 8.5<br>3.6                      |                  |             | 0.0<br>0.0         | 0.0<br>0.0    | 20.0<br>20.0        | AV<br>AV                       |           | 28.5<br>23.6                                  | 54.8<br>49.9        | -26.3<br>-26.3                |
| 0.312                           | 3.6<br>9.0                      |                  |             | 0.0                | 0.0           | 20.0                | AV<br>AV                       |           | 23.6<br>29.0                                  | 49.9<br>55.8        | -26.3<br>-26.8                |
| 0.252                           | 4.4                             |                  |             | 0.0                | 0.0           | 20.0                | AV                             |           | 24.4                                          | 51.7                | -27.3                         |
| 0.274                           | 2.4                             |                  |             | 0.0                | 0.0           | 20.0                | AV                             |           | 22.4                                          | 51.0                | -28.6                         |
| 0.197<br>0.252                  | 2.9<br>31.2                     |                  |             | 0.0<br>0.0         | 0.0<br>0.2    | 20.0<br>20.0        | AV                             |           | 22.9<br>51.4                                  | 53.7<br>51.7        | -30.8<br>-0.3                 |
| 0.278                           | 30.1                            |                  |             | 0.0                | 0.2           | 20.0                |                                |           | 50.3                                          | 50.9                | -0.6                          |
| 0.314                           | 28.8                            |                  |             | 0.0                | 0.2           | 20.0                |                                |           | 49.0                                          | 49.9                | -0.8                          |
| 0.288                           | 29.4                            |                  |             | 0.0                | 0.2           | 20.0                |                                |           | 49.6                                          | 50.6                | -0.9                          |





|                                | CO                                 | NDUCTED E                             | MIS        | SIONS                   | DATA SHEET                             |                        | F            | PSA 2005.7.20<br>EMI 2005.8.3 |
|--------------------------------|------------------------------------|---------------------------------------|------------|-------------------------|----------------------------------------|------------------------|--------------|-------------------------------|
|                                | EUT: Z-5450 MN: S-0181A            | Multimedia Speaker S                  | /stem      |                         |                                        | Work Order             | LABT0140     | )                             |
|                                | nber: Unknown                      |                                       |            |                         |                                        | Date                   | 08/07/05     |                               |
|                                | omer: Logitech, Inc.<br>dees: None |                                       |            |                         | т                                      | emperature<br>Humidity |              |                               |
|                                | oject: None                        |                                       |            |                         | Baromet                                | ric Pressure           |              |                               |
|                                | d by: Holly Ashkannejhad           | ł                                     |            |                         | 120VAC, 60Hz                           | Job Site:              | EV01         |                               |
| TEST SPECIFI<br>FCC 15.207 CI  |                                    |                                       |            |                         | Test Method ANSI C63.4:2003            |                        |              |                               |
| FCC 15.207 C                   |                                    |                                       |            |                         | ANSI C63.4:2003                        |                        |              |                               |
|                                |                                    |                                       |            |                         |                                        |                        |              |                               |
|                                |                                    |                                       |            |                         |                                        |                        |              |                               |
|                                |                                    |                                       |            |                         |                                        |                        |              |                               |
| TEST PARAM<br>Cable or Line    |                                    |                                       |            |                         |                                        |                        |              |                               |
| Cable of Line                  | Tested N                           |                                       |            |                         |                                        |                        |              |                               |
|                                |                                    |                                       |            |                         |                                        |                        |              |                               |
|                                |                                    |                                       |            |                         |                                        |                        |              |                               |
| EUT OPERAT                     |                                    |                                       |            |                         |                                        |                        |              |                               |
|                                | channel from rear speaker.         |                                       |            |                         |                                        |                        |              |                               |
| DEVIATIONS I<br>No deviations. | FROM TEST STANDARD                 |                                       |            |                         |                                        |                        |              |                               |
|                                | 18                                 | 1                                     |            |                         |                                        |                        |              |                               |
| Run #<br>Configuration         | -                                  | -                                     | 11 0       | A Li                    | 1.0                                    |                        |              |                               |
| Results                        | # Pass                             | Signature                             | Holi       | , Arti                  | $\gamma \sim$                          |                        |              |                               |
| Results                        | 1 400                              | Gignature                             |            |                         |                                        |                        |              |                               |
| 80.0                           |                                    |                                       |            |                         |                                        |                        |              |                               |
|                                |                                    |                                       |            |                         |                                        |                        |              |                               |
| 70.0                           |                                    |                                       |            |                         |                                        |                        |              |                               |
| 70.0                           |                                    |                                       |            |                         |                                        |                        |              |                               |
|                                |                                    |                                       |            |                         |                                        |                        |              |                               |
| 60.0                           |                                    |                                       |            |                         |                                        |                        |              |                               |
|                                |                                    |                                       |            |                         |                                        |                        |              |                               |
| 50.0                           |                                    |                                       |            |                         |                                        |                        |              |                               |
| 50.0                           |                                    |                                       |            |                         |                                        |                        |              |                               |
| >                              |                                    |                                       |            |                         |                                        |                        |              |                               |
| <b>Angp</b> 40.0               |                                    |                                       |            |                         |                                        |                        |              |                               |
| q                              |                                    |                                       |            |                         |                                        |                        |              |                               |
| 30.0                           |                                    | III III N AND A                       |            |                         | I. I. MANY MALL                        |                        |              |                               |
| 50.0                           | · ••₩ ' <u>  </u> ∿/'              | I INTE AMPRIMAN ANTERVITY             | THIT       |                         | A APPT I TYMAL                         |                        |              |                               |
|                                |                                    | to a fill hith hit                    |            |                         | NA A A A A A A A A A A A A A A A A A A |                        |              |                               |
| 20.0                           |                                    | •                                     |            |                         |                                        |                        |              |                               |
|                                |                                    |                                       |            |                         |                                        |                        |              |                               |
| 10.0                           |                                    |                                       |            |                         |                                        |                        |              |                               |
|                                |                                    |                                       |            |                         |                                        |                        |              |                               |
|                                |                                    |                                       |            |                         |                                        |                        |              |                               |
| 0.0                            |                                    | · · · · · · · · · · · · · · · · · · · |            |                         | 40.000                                 |                        |              | <br>                          |
| 0.1                            | 00                                 | 1.000                                 |            |                         | 10.000                                 |                        | 1            | 00.000                        |
|                                |                                    |                                       |            | MHz                     |                                        |                        |              |                               |
|                                |                                    |                                       |            |                         |                                        |                        |              |                               |
| Freq                           | Amplitude                          | Transducer                            | Cable      | External<br>Attenuation | Detector                               | Adjusted               | Spec. Limit  | Compared to<br>Spec.          |
| (MHz)                          | (dBuV)                             | (dB)                                  | (dB)       | (dB)                    | (blank equal peaks<br>[PK] from scan)  | dBuV                   | dBuV         | (dB)                          |
|                                |                                    |                                       | 0.0        | 00.0                    |                                        | E0.1                   | 05.0         | 10.0                          |
| 0.152<br>0.169                 | 32.1<br>30.2                       | 0.0<br>0.0                            | 0.0<br>0.0 | 20.0<br>20.0            | QP<br>QP                               | 52.1<br>50.2           | 65.9<br>65.0 | -13.8<br>-14.8                |
| 0.244                          | 23.6                               | 0.0                                   | 0.0        | 20.0                    | QP                                     | 43.6                   | 62.0         | -18.4                         |
| 0.275                          | 21.6                               | 0.0                                   | 0.0        | 20.0                    | QP                                     | 41.6                   | 61.0         | -19.4                         |
| 0.304<br>0.402                 | 19.9<br>15.6                       | 0.0<br>0.0                            | 0.0<br>0.0 | 20.0<br>20.0            | QP<br>QP                               | 39.9<br>35.6           | 60.1<br>57.8 | -20.2<br>-22.2                |
| 0.402                          | 14.5                               | 0.0                                   | 0.0        | 20.0                    | QP                                     | 34.5                   | 57.2         | -22.2                         |
| 0.304                          | 5.4                                | 0.0                                   | 0.0        | 20.0                    | AV                                     | 25.4                   | 50.1         | -24.7                         |
| 0.402<br>0.169                 | 2.8<br>9.2                         | 0.0<br>0.0                            | 0.0<br>0.0 | 20.0<br>20.0            | AV<br>AV                               | 22.8<br>29.2           | 47.8<br>55.0 | -25.0<br>-25.8                |
| 0.169                          | 9.2<br>9.0                         | 0.0                                   | 0.0        | 20.0                    | AV<br>AV                               | 29.2<br>29.0           | 55.0<br>55.9 | -25.8<br>-26.9                |
| 0.244                          | 4.6                                | 0.0                                   | 0.0        | 20.0                    | AV                                     | 24.6                   | 52.0         | -27.4                         |
| 0.433                          | -0.2                               | 0.0                                   | 0.0        | 20.0                    | AV                                     | 19.8                   | 47.2         | -27.4                         |
| 0.275<br>0.237                 | 2.5<br>31.9                        | 0.0<br>0.0                            | 0.0<br>0.2 | 20.0<br>20.0            | AV                                     | 22.5<br>52.1           | 51.0<br>52.2 | -28.5<br>-0.1                 |
| 0.259                          | 30.9                               | 0.0                                   | 0.2        | 20.0                    |                                        | 51.1                   | 51.5         | -0.3                          |
| 0.274                          | 28.8                               | 0.0                                   | 0.2        | 20.0                    |                                        | 49.0                   | 51.0         | -2.0                          |
| 0.303<br>0.434                 | 27.1<br>23.6                       | 0.0<br>0.0                            | 0.2<br>0.2 | 20.0<br>20.0            |                                        | 47.3<br>43.8           | 50.2<br>47.2 | -2.8<br>-3.3                  |
| 0.101                          |                                    | 0.0                                   | 0.2        | _0.0                    |                                        |                        |              | 0.0                           |

