## Logitech, Inc.

# ClearChat PC Wireless Dongle M/N: A-00007

March 11, 2008

Report No. LABT0296

Report Prepared By



www.nwemc.com 1-888-EMI-CERT

© 2008Northwest EMC, Inc



22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

## **Certificate of Test**

Issue Date: March 11, 2008 Logitech, Inc.

Model: ClearChat PC Wireless Dongle M/N: A-00007

| Emissions                                   |                                    |                                |           |  |
|---------------------------------------------|------------------------------------|--------------------------------|-----------|--|
| Test Description                            | Specification                      | Test Method                    | Pass/Fail |  |
| Spurious Radiated Emissions                 | FCC 15.247 (DTS):2007              | ANSI C63.4:2003 KDB No. 558074 | Pass      |  |
| Spurious Conducted Emissions                | FCC 15.247 (DTS):2007              | ANSI C63.4:2003 KDB No. 558074 | Pass      |  |
| Peak Output Power                           | FCC 15.247 (DTS):2007              | ANSI C63.4:2003 KDB No. 558074 | Pass      |  |
| Occupied Band Width                         | FCC 15.247 (DTS):2007              | ANSI C63.4:2003 KDB No. 558074 | Pass      |  |
| Band Edge Compliance                        | FCC 15.247 (DTS):2007              | ANSI C63.4:2003 KDB No. 558074 | Pass      |  |
| Power Spectral Density                      | FCC 15.247 (DTS):2007              | ANSI C63.4:2003 KDB No. 558074 | Pass      |  |
| Spurious Radiated Emissions of the Receiver | RSS-Gen:2007                       | RSS-Gen:2007                   | Pass      |  |
| Conducted Emissions                         | FCC 15.207:2007                    | ANSI C63.4:2003                | Pass      |  |
| Radiated Emissions                          | FCC 15.109(g) (CISPR 22:1997):2007 | ANSI C63.4:2003                | Pass      |  |

## Modifications made to the product

See the Modifications section of this report

#### **Test Facility**

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada.

Approved By:

Ethan Schoonover, Sultan Lab Manager

QAIVN

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

## **Revision History**

Revision 05/05/03

| Revision<br>Number | Description | Date | Page Number |
|--------------------|-------------|------|-------------|
|                    |             |      |             |
| 00                 | None        |      |             |

**FCC:** Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.





**NVLAP:** Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.



**Industry Canada:** Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.



**CAB:** Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.



**TÜV Product Service:** Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories, available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0604C.



**TÜV Rheinland:** Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.



**NEMKO:** Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).



**Australia/New Zealand:** The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).



**VCCI:** Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, C-2687, T-289, and R-2318, Irvine: R-1943, C-2766, and T-298, Sultan: R-871, C-1784, and T-294).

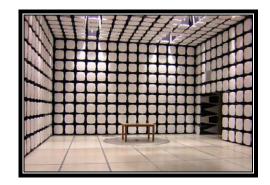


**BSMI:** Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.



**GOST:** Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification




**MIC:** Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157)



#### SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/scope.asp





## California – Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 Fax: (503) 844-3826





## Oregon – Evergreen Facility Labs EV01 – EV11

22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 Fax: (503) 844-3826





## Washington – Sultan Facility Labs SU01 – SU07

14128 339<sup>th</sup> Ave. SE Sultan, WA 98294 (888) 364-2378

Rev 11/17/06

#### Party Requesting the Test

| Company Name:            | Logitech, Inc.                            |
|--------------------------|-------------------------------------------|
| Address:                 | 1499 SE Tech Center Place Suite 350       |
| City, State, Zip:        | Vancouver, WA 98683                       |
| Test Requested By:       | Aaron Cohen                               |
| Model:                   | ClearChat PC Wireless Dongle M/N: A-00007 |
| First Date of Test:      | February 22, 2008                         |
| Last Date of Test:       | March 6, 2008                             |
| Receipt Date of Samples: | February 22, 2008                         |
| Equipment Design Stage:  | Production                                |
| Equipment Condition:     | No Damage                                 |

## **Information Provided by the Party Requesting the Test**

Functional Description of the EUT (Equipment Under Test):
The ClearChat PC Wireless Dongle (A-00007) transmit/receives in pi/4-DQPSK modulation only. It has one antenna. The radio operates in the 2400-2483.5 MHz band.

### **Testing Objective:**

Logitech is seeking a limited modular approval of the radio under FCC 15.247.

Revision 9/21/05

## **CONFIGURATION 2 LABT0296**

| Software/Firmware Running during test |         |  |  |
|---------------------------------------|---------|--|--|
| Description Version                   |         |  |  |
| AWAdeveloper                          | 1.0.076 |  |  |

| EUT                          |                |                   |               |
|------------------------------|----------------|-------------------|---------------|
| Description                  | Manufacturer   | Model/Part Number | Serial Number |
| ClearChat PC Wireless Dongle | Logitech, Inc. | A-00007           | Unknown       |

| Peripherals in test setup boundary                       |                |         |         |  |  |
|----------------------------------------------------------|----------------|---------|---------|--|--|
| Description Manufacturer Model/Part Number Serial Number |                |         |         |  |  |
| USB cradle                                               | Logitech, Inc. | Unknown | Unknown |  |  |

| Remote Equipment Outside of Test Setup Boundary          |  |  |  |  |  |
|----------------------------------------------------------|--|--|--|--|--|
| Description Manufacturer Model/Part Number Serial Number |  |  |  |  |  |
| Laptop Dell PP20L Unknown                                |  |  |  |  |  |

| Cables                                                                                                 |        |            |         |              |              |
|--------------------------------------------------------------------------------------------------------|--------|------------|---------|--------------|--------------|
| Cable Type                                                                                             | Shield | Length (m) | Ferrite | Connection 1 | Connection 2 |
| USB                                                                                                    | Yes    | 1.6m       | No      | USB Cradle   | Laptop       |
| PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown. |        |            |         |              |              |

## **CONFIGURATION 3 LABT0296**

| Software/Firmware Running during test |         |  |
|---------------------------------------|---------|--|
| Description                           | Version |  |
| AWAdeveloper                          | 1.0.076 |  |

| EUT                          |                |                   |               |
|------------------------------|----------------|-------------------|---------------|
| Description                  | Manufacturer   | Model/Part Number | Serial Number |
| ClearChat PC Wireless Dongle | Logitech, Inc. | A-00007           | Unknown       |

| Peripherals in test setup boundary |              |                   |               |  |
|------------------------------------|--------------|-------------------|---------------|--|
| Description                        | Manufacturer | Model/Part Number | Serial Number |  |
| Laptop                             | Dell         | PP20L             | Unknown       |  |

Revision 4/28/03

|      | Equipment modifications |                                                  |                                      |                                                                     |                                                         |
|------|-------------------------|--------------------------------------------------|--------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------|
| Item | Date                    | Test                                             | Modification                         | Note                                                                | Disposition of EUT                                      |
| 1    | 2/22/2008               | Spurious<br>Radiated<br>Emissions<br>of Receiver | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |
| 2    | 2/25/2007               | Radiated<br>Emissions                            | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |
| 3    | 3/27/2007               | Conducted<br>Emissions                           | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |
| 4    | 2/28/2008               | Peak<br>Output<br>Power                          | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |
| 5    | 2/28/2008               | Band Edge<br>Compliance                          | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |
| 6    | 2/28/2008               | Occupied<br>Band Width                           | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |
| 7    | 2/29/2008               | Power<br>Spectral<br>Density                     | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |
| 8    | 2/29/2008               | Spurious<br>Conducted<br>Emissions               | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at<br>Northwest EMC<br>following the test. |
| 9    | 3/6/2008                | Spurious<br>Radiated<br>Emissions                | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | Scheduled testing was completed.                        |

## RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **MODES OF OPERATION**

Pink Noise playing at 50% volume level. Running NWEMC H pattern.

#### MODE USED FOR FINAL DATA

Pink Noise playing at 50% volume level. Running NWEMC H pattern.

#### POWER SETTINGS INVESTIGATED

230VAC/50Hz

120VAC/60Hz

#### **POWER SETTINGS USED FOR FINAL DATA**

120VAC/60Hz

#### FREQUENCY RANGE INVESTIGATED

Start Frequency 30MHz Stop Frequency 1000MHz

#### SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

| TEST EQUIPMENT     |              |                          |     |           |          |
|--------------------|--------------|--------------------------|-----|-----------|----------|
| Description        | Manufacturer | Model                    | ID  | Last Cal. | Interval |
| Antenna, Biconilog | EMCO         | 3142                     | AXB | 1/15/2008 | 24       |
| EV11 Cables        |              | 10m Test Distance Cables | EVL | 5/1/2007  | 13       |
| Pre-Amplifier      | Miteq        | AM-1551                  | AOY | 5/1/2007  | 13       |
| Spectrum Analyzer  | Agilent      | E4443A                   | AAS | 12/7/2007 | 13       |

| Frequency Range | Peak Data | Quasi-Peak Data | Average Data |
|-----------------|-----------|-----------------|--------------|
| (MHz)           | (kHz)     | (kHz)           | (kHz)        |
| 0.01 - 0.15     | 1.0       | 0.2             | 0.2          |
| 0.15 - 30.0     | 10.0      | 9.0             | 9.0          |
| 30.0 - 1000     | 100.0     | 120.0           | 120.0        |
| Above 1000      | 1000.0    | N/A             | 1000.0       |

#### **MEASUREMENT UNCERTAINTY**

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

#### **TEST DESCRIPTION**

Using the mode of operation and configuration noted within this report, a final radiated emissions test was performed. The frequency range investigated (scanned), is also noted in this report. Radiated emissions measurements were made at the EUT azimuth and antenna height such that the maximum radiated emissions level will be detected. This requires the use of a turntable and an antenna positioner. The preferred method of a continuous azimuth search is utilized for frequency scans of the EUT field strength with both polarities of the measuring antenna. A calibrated, linearly polarized antenna was positioned at the specified distance from the periphery of the EUT.

Tests were made with the antenna positioned in both the horizontal and vertical planes of polarization. The antenna was varied in height above the conducting ground plane to obtain the maximum signal strength. Though specified in the report, the measurement distance shall be 3 meters or 10 meters. At any measurement distance, the antenna height was varied from 1 meter to 4 meters. These height scans apply for both horizontal and vertical polarization, except that for vertical polarization the minimum height of the center of the antenna shall be increased so that the lowest point of the bottom of the antenna clears the ground surface by at least 25 cm.

#### NORTHWEST **RADIATED EMISSIONS DATA SHEET EMC** Work Order: LABT0297 EUT: ClearChat PC Wireless Headset and Dongle Serial Number: Unknown Date: 02/25/08 Customer: Logitech, Inc. Temperature: 23 °C Attendees: None Humidity: 31% Project: None Barometric Pres.: 1026.5mb Tested by: David DiVergigelis Power: 120VAC/60Hz Job Site: EV11 **TEST SPECIFICATIONS** Test Method FCC 15.109(g) (CISPR 22:1997):2007 Class B ANSI C63.4:2003 TEST PARAMETERS Test Distance (m) 10 Antenna Height(s) (m) 1 - 4 COMMENTS Dongle plugged into USB Cradle, Headset powered by Direct Plug-in Adaptor. EUT OPERATING MODES Pink Noise playing at 50% volume level. Running NWEMC H pattern. **DEVIATIONS FROM TEST STANDARD** No deviations. Signature & N Su/s &: Run# Configuration # 2 Results Pass 80.0 70.0 60.0 50.0 dBuV/m 40.0 30.0 • 20.0 10.0 0.0 10.000 100.000 1000.000 MHz External Distance compared to Amplitude Factor Azimuth Heiaht Distance Polarity Adjusted Spec. Limit Frea Detector Attenuation Adjustmen Spec. (dBuV) (dB) (meters) (dB) (dB) dBuV/m dBuV/m (dB) (degrees) (meters) (MHz) V-Bilog ΩP 25.0 38.987 45.0 -20.0 21.0 1.0 10.0 0.0 0.0 30.0 -5.0 QΡ 38.992 44.7 -20.0 326.0 1.0 10.0 0.0 V-Bilog 0.0 24.7 30.0 -5.3 39.322 44.7 -20.2 334.0 1.0 10.0 0.0 V-Bilog QP 0.0 24.5 30.0 -5.5 48.320 45.7 -23.5 355.0 1.0 10.0 0.0 V-Bilog QΡ 0.0 22.2 30.0 -7.8 76.576 -27.4 V-Bilog QΡ 46.4 -1.0 2.2 10.0 0.0 0.0 19.0 30.0 -11.0 V-Bilog 431.375 42.1 -16.2 331.0 3.4 10.0 0.0 QΡ 0.0 25.9 37.0 -11.1 H-Bilog ΩP 39.005 36.0 -20.0 292 0 3.1 10.0 0.0 0.0 16.0 30.0 -14 0 H-Bilog QP 977.129 30.4 -7.7 345.0 1.9 10.0 0.0 0.0 22.7 37.0 -14.3592.360 34.9 -12.6 361.0 3.4 10.0 0.0 V-Bilog QP 0.0 22.3 37.0 -14.7 300.279 41.5 -19.4 -1.0 1.2 10.0 0.0 V-Bilog QP 0.0 22.1 37.0 -14.9

62.905

749.614

38.961

196.608

143.503

40.3

30.8

32.1

34.6

36.0

-26.8

-10.5

-20.0

-23.4

-26.1

207.0

61.0

168.0

134.0

252.0

2.2

3.4

3.6

3.4

2.0

10.0

10.0

10.0

10.0

10.0

0.0

0.0

0.0

0.0

0.0

V-Bilog

V-Bilog

H-Bilog

V-Bilog

V-Bilog

QΡ

QP

QP

QP

ΩP

0.0

0.0

0.0

0.0

0.0

13.5

20.3

12.1

11.2

9.9

30.0

37.0

30.0

30.0

30.0

-16.5

-16.7

-17.9

-18.8

-20.1

## **CONDUCTED EMISSIONS**

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

| MODES OF OPERATION                                  |  |
|-----------------------------------------------------|--|
| Receive mode mid channel 20, low diversity antenna  |  |
| Transmitting high channel 37, low diversity antenna |  |
| Transmitting mid channel 20, low diversity antenna  |  |
| Transmitting low channel 2, low diversity antenna   |  |

#### POWER SETTINGS INVESTIGATED

USB

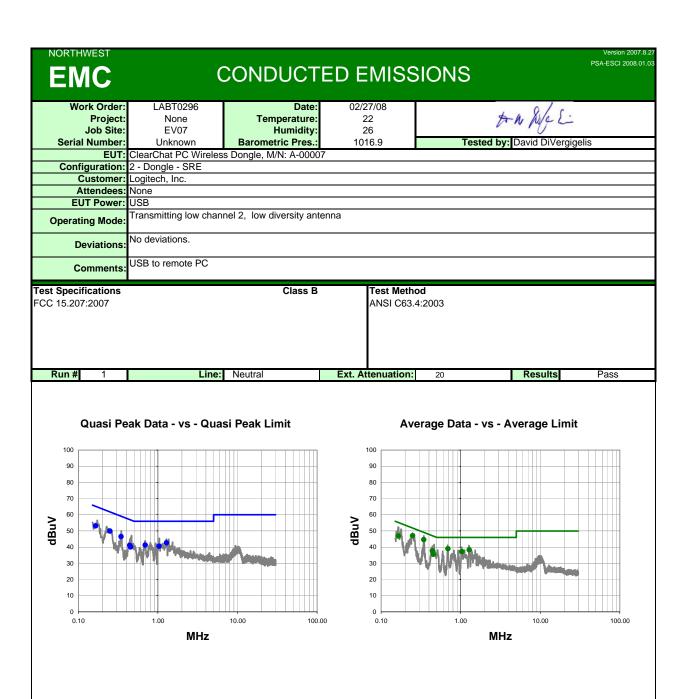
#### **CONFIGURATIONS INVESTIGATED**

2 - Dongle - SRE

#### **SAMPLE CALCULATIONS**

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

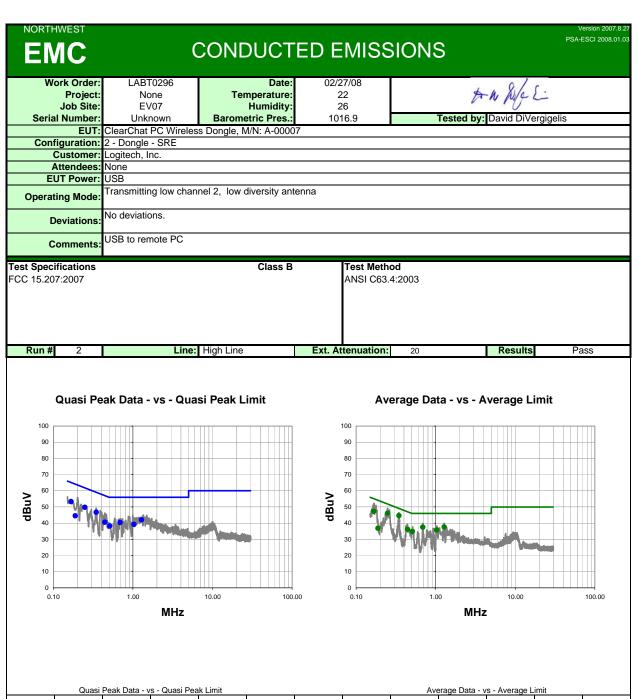
| TEST EQUIPMENT   |                  |                  |     |           |          |
|------------------|------------------|------------------|-----|-----------|----------|
| Description      | Manufacturer     | Model            | ID  | Last Cal. | Interval |
| LISN             | Solar            | 9252-50-R-24-BNC | LIR | 1/4/2008  | 13 mo    |
| EV07 Cables      |                  | Conducted Cables | EVG | 4/17/2007 | 13 mo    |
| Attenuator       | Coaxicom         | 66702 2910-20    | RBR | 5/25/2007 | 13 mo    |
| High Pass Filter | T.T.E.           | 7766             | HFG | 2/5/2008  | 13 mo    |
| Receiver         | Rohde & Schwartz | ESCI             | ARG | 12/7/2007 | 13 mo    |


| <b>MEASUREMEN</b> | T BANDWIDTHS               |                            |                                   |              |
|-------------------|----------------------------|----------------------------|-----------------------------------|--------------|
|                   | Frequency Range            | Peak Data                  | Quasi-Peak Data                   | Average Data |
|                   | (MHz)                      | (kHz)                      | (kHz)                             | (kHz)        |
|                   | 0.01 - 0.15                | 1.0                        | 0.2                               | 0.2          |
|                   | 0.15 - 30.0                | 10.0                       | 9.0                               | 9.0          |
|                   | 30.0 - 1000                | 100.0                      | 120.0                             | 120.0        |
|                   | Above 1000                 | 1000.0                     | N/A                               | 1000.0       |
|                   | Measurements were made usi | ng the bandwidths and dete | ectors specified. No video filter | was used.    |

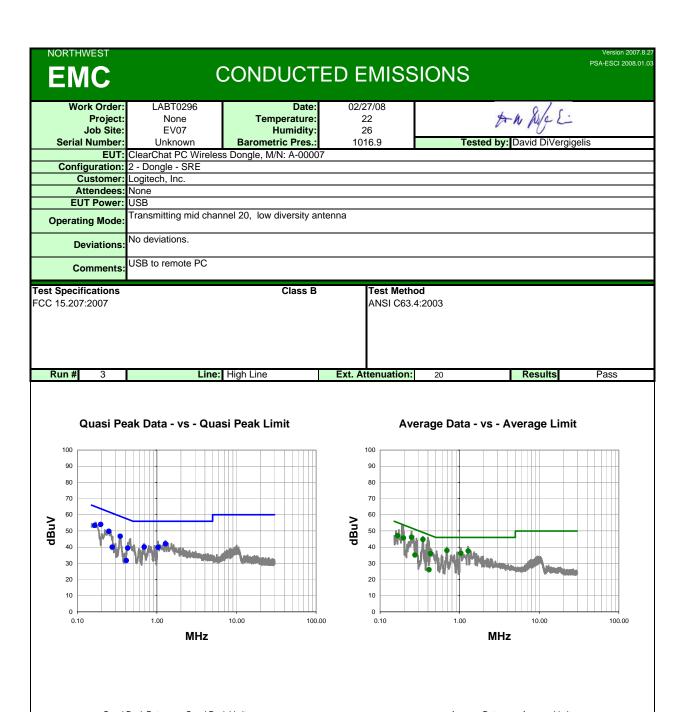
#### **MEASUREMENT UNCERTAINTY**

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

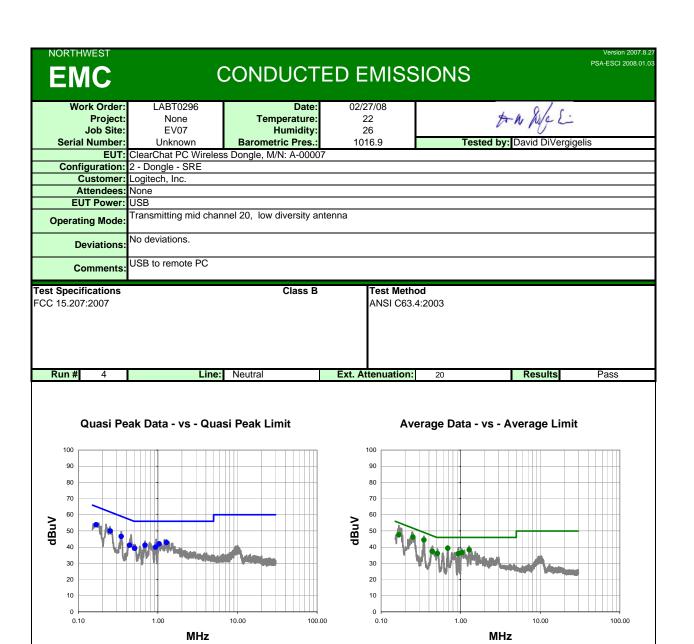
#### **TEST DESCRIPTION**


Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm.




Quasi Peak Data - vs - Quasi Peak Limit

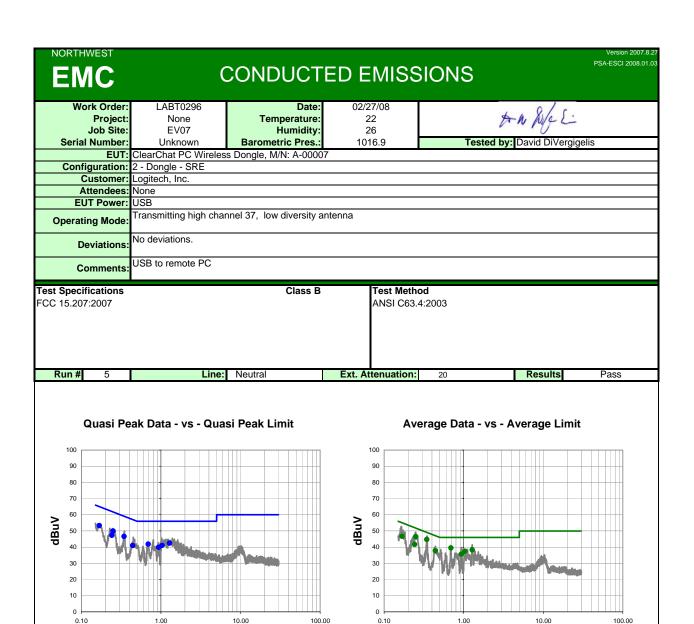
| Ave | erage | Data - | vs - | Average | Limit |
|-----|-------|--------|------|---------|-------|
|     |       |        |      |         |       |


| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>dBuV | Spec. Limit<br>dBuV | Compared to<br>Spec.<br>(dB) | Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>dBuV | Spec. Limit<br>dBuV | Compared to<br>Spec.<br>(dB) |
|---------------|---------------------|----------------|------------------|---------------------|------------------------------|---------------|---------------------|----------------|------------------|---------------------|------------------------------|
| 0.249         | 29.0                | 21.0           | 50.0             | 61.8                | -11.8                        | 0.344         | 23.7                | 20.9           | 44.6             | 49.1                | -4.5                         |
| 0.165         | 31.4                | 21.7           | 53.1             | 65.2                | -12.1                        | 0.249         | 26.0                | 21.0           | 47.0             | 51.8                | -4.8                         |
| 0.344         | 25.6                | 20.9           | 46.5             | 59.1                | -12.6                        | 0.691         | 18.3                | 20.7           | 39.0             | 46.0                | -7.0                         |
| 1.280         | 22.1                | 20.5           | 42.6             | 56.0                | -13.4                        | 1.280         | 17.8                | 20.5           | 38.3             | 46.0                | -7.7                         |
| 0.691         | 20.6                | 20.7           | 41.3             | 56.0                | -14.7                        | 0.165         | 25.2                | 21.7           | 46.9             | 55.2                | -8.3                         |
| 1.036         | 20.1                | 20.5           | 40.6             | 56.0                | -15.4                        | 1.036         | 16.7                | 20.5           | 37.2             | 46.0                | -8.8                         |
| 0.441         | 20.2                | 20.8           | 41.0             | 57.0                | -16.0                        | 0.441         | 16.8                | 20.8           | 37.6             | 47.0                | -9.4                         |
| 0.455         | 19.2                | 20.8           | 40.0             | 56.8                | -16.7                        | 0.455         | 14.7                | 20.8           | 35.5             | 46.8                | -11.2                        |



| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>dBuV | Spec. Limit<br>dBuV | Compared to<br>Spec.<br>(dB) |   | Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>dBuV | Spec. Limit<br>dBuV | Compared to<br>Spec.<br>(dB) |
|---------------|---------------------|----------------|------------------|---------------------|------------------------------|---|---------------|---------------------|----------------|------------------|---------------------|------------------------------|
| 0.167         | 31.7                | 21.7           | 53.4             | 65.1                | -11.7                        | · | 0.346         | 23.7                | 20.9           | 44.6             | 49.1                | -4.4                         |
| 0.249         | 28.8                | 21.0           | 49.8             | 61.8                | -12.0                        |   | 0.249         | 25.1                | 21.0           | 46.1             | 51.8                | -5.7                         |
| 0.346         | 25.8                | 20.9           | 46.7             | 59.1                | -12.3                        |   | 0.167         | 25.6                | 21.7           | 47.3             | 55.1                | -7.8                         |
| 1.280         | 21.5                | 20.5           | 42.0             | 56.0                | -14.0                        |   | 1.280         | 17.1                | 20.5           | 37.6             | 46.0                | -8.4                         |
| 0.688         | 19.7                | 20.7           | 40.4             | 56.0                | -15.6                        |   | 0.688         | 16.8                | 20.7           | 37.5             | 46.0                | -8.5                         |
| 0.445         | 19.7                | 20.8           | 40.5             | 57.0                | -16.4                        |   | 1.032         | 15.2                | 20.5           | 35.7             | 46.0                | -10.3                        |
| 1.032         | 18.7                | 20.5           | 39.2             | 56.0                | -16.8                        |   | 0.445         | 15.4                | 20.8           | 36.2             | 47.0                | -10.7                        |
| 0.510         | 17.4                | 20.8           | 38.2             | 56.0                | -17.8                        |   | 0.510         | 14.0                | 20.8           | 34.8             | 46.0                | -11.2                        |
| 0.189         | 23.3                | 21.2           | 44.5             | 64.1                | -19.6                        |   | 0.189         | 15.6                | 21.2           | 36.8             | 54.1                | -17.3                        |

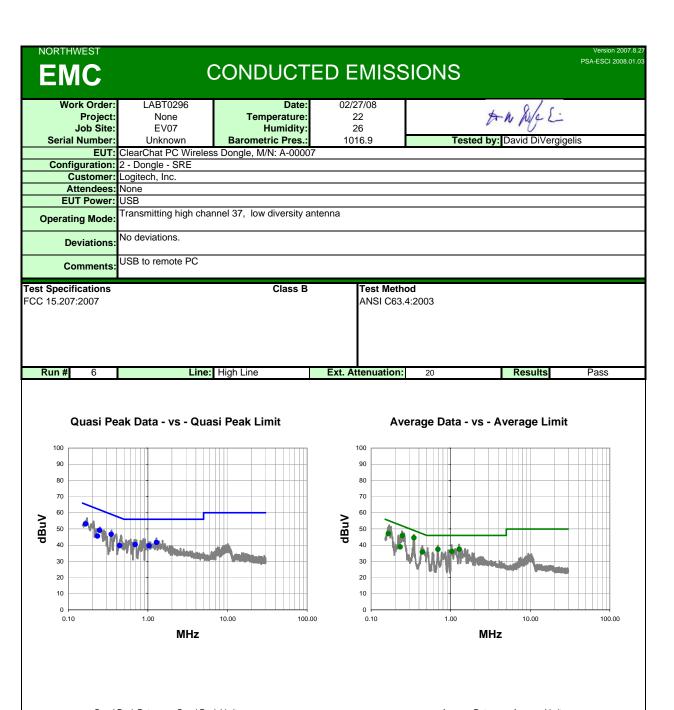



| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>dBuV | Spec. Limit<br>dBuV | Compared to<br>Spec.<br>(dB) | Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>dBuV | Spec. Limit<br>dBuV | Compared to<br>Spec.<br>(dB) |
|---------------|---------------------|----------------|------------------|---------------------|------------------------------|---------------|---------------------|----------------|------------------|---------------------|------------------------------|
| 0.197         | 32.9                | 21.1           | 54.0             | 63.7                | -9.8                         | 0.346         | 23.8                | 20.9           | 44.7             | 49.1                | -4.3                         |
| 0.166         | 31.7                | 21.7           | 53.4             | 65.2                | -11.8                        | 0.249         | 25.1                | 21.0           | 46.1             | 51.8                | -5.7                         |
| 0.249         | 28.8                | 21.0           | 49.8             | 61.8                | -12.0                        | 0.166         | 25.4                | 21.7           | 47.1             | 55.2                | -8.1                         |
| 0.346         | 25.8                | 20.9           | 46.7             | 59.1                | -12.3                        | 0.691         | 17.2                | 20.7           | 37.9             | 46.0                | -8.1                         |
| 1.280         | 21.5                | 20.5           | 42.0             | 56.0                | -14.0                        | 0.197         | 24.5                | 21.1           | 45.6             | 53.7                | -8.2                         |
| 0.691         | 19.4                | 20.7           | 40.1             | 56.0                | -15.9                        | 1.280         | 17.1                | 20.5           | 37.6             | 46.0                | -8.4                         |
| 1.036         | 19.4                | 20.5           | 39.9             | 56.0                | -16.1                        | 1.036         | 15.7                | 20.5           | 36.2             | 46.0                | -9.8                         |
| 0.429         | 18.5                | 20.9           | 39.4             | 57.3                | -17.9                        | 0.429         | 15.1                | 20.9           | 36.0             | 47.3                | -11.3                        |
| 0.274         | 19.0                | 21.0           | 40.0             | 61.0                | -21.0                        | 0.274         | 14.2                | 21.0           | 35.2             | 51.0                | -15.8                        |
| 0.412         | 10.8                | 20.9           | 31.7             | 57.6                | -25.9                        | 0.412         | 5.1                 | 20.9           | 26.0             | 47.6                | -21.6                        |

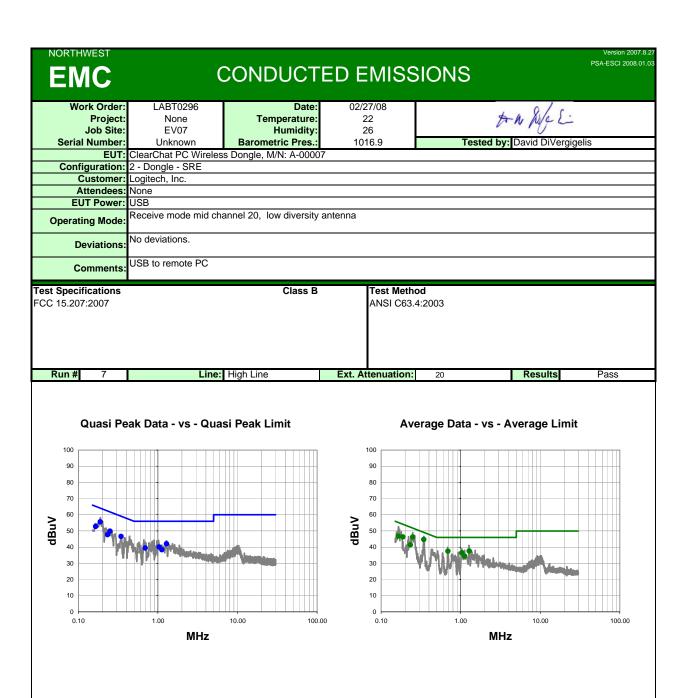


Quasi Peak Data - vs - Quasi Peak Limit

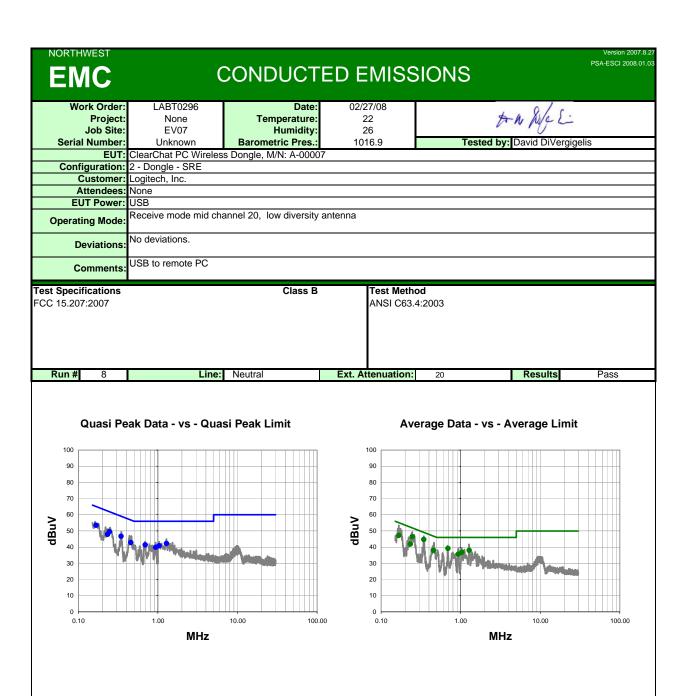
| Average | Data - | vs - | Averag | e Limit |
|---------|--------|------|--------|---------|
|         |        |      |        |         |


| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>dBuV | Spec. Limit<br>dBuV | Compared to<br>Spec.<br>(dB) | Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>dBuV | Spec. Limit<br>dBuV | Compared to<br>Spec.<br>(dB) |
|---------------|---------------------|----------------|------------------|---------------------|------------------------------|---------------|---------------------|----------------|------------------|---------------------|------------------------------|
| 0.167         | 32.1                | 21.7           | 53.8             | 65.1                | -11.3                        | 0.346         | 23.5                | 20.9           | 44.4             | 49.1                | -4.6                         |
| 0.251         | 29.0                | 21.0           | 50.0             | 61.7                | -11.8                        | 0.251         | 25.2                | 21.0           | 46.2             | 51.7                | -5.6                         |
| 0.346         | 25.7                | 20.9           | 46.6             | 59.1                | -12.4                        | 0.689         | 18.6                | 20.7           | 39.3             | 46.0                | -6.7                         |
| 1.280         | 22.3                | 20.5           | 42.8             | 56.0                | -13.2                        | 0.167         | 25.9                | 21.7           | 47.6             | 55.1                | -7.5                         |
| 1.036         | 21.5                | 20.5           | 42.0             | 56.0                | -14.0                        | 1.280         | 17.8                | 20.5           | 38.3             | 46.0                | -7.7                         |
| 0.689         | 20.5                | 20.7           | 41.2             | 56.0                | -14.8                        | 1.036         | 16.1                | 20.5           | 36.6             | 46.0                | -9.4                         |
| 0.439         | 20.3                | 20.9           | 41.2             | 57.1                | -15.9                        | 0.439         | 16.5                | 20.9           | 37.4             | 47.1                | -9.7                         |
| 0.937         | 19.4                | 20.5           | 39.9             | 56.0                | -16.1                        | 0.511         | 15.3                | 20.8           | 36.1             | 46.0                | -9.9                         |
| 0.511         | 18.5                | 20.8           | 39.3             | 56.0                | -16.7                        | 0.937         | 15.4                | 20.5           | 35.9             | 46.0                | -10.1                        |




MHz

MHz


| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>dBuV | Spec. Limit<br>dBuV | Compared to<br>Spec.<br>(dB) |   | Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>dBuV | Spec. Limit<br>dBuV | Compared to<br>Spec.<br>(dB) |
|---------------|---------------------|----------------|------------------|---------------------|------------------------------|---|---------------|---------------------|----------------|------------------|---------------------|------------------------------|
| 0.168         | 31.7                | 21.6           | 53.3             | 65.1                | -11.7                        | · | 0.344         | 23.8                | 20.9           | 44.7             | 49.1                | -4.4                         |
| 0.250         | 29.0                | 21.0           | 50.0             | 61.8                | -11.8                        |   | 0.250         | 25.5                | 21.0           | 46.5             | 51.8                | -5.3                         |
| 0.344         | 25.7                | 20.9           | 46.6             | 59.1                | -12.5                        |   | 0.691         | 18.8                | 20.7           | 39.5             | 46.0                | -6.5                         |
| 1.280         | 21.9                | 20.5           | 42.4             | 56.0                | -13.6                        |   | 1.280         | 17.8                | 20.5           | 38.3             | 46.0                | -7.7                         |
| 0.691         | 21.1                | 20.7           | 41.8             | 56.0                | -14.2                        |   | 0.168         | 25.0                | 21.6           | 46.6             | 55.1                | -8.4                         |
| 0.242         | 26.3                | 21.0           | 47.3             | 62.0                | -14.8                        |   | 1.036         | 16.9                | 20.5           | 37.4             | 46.0                | -8.6                         |
| 1.036         | 20.5                | 20.5           | 41.0             | 56.0                | -15.0                        |   | 0.441         | 16.9                | 20.8           | 37.7             | 47.0                | -9.3                         |
| 0.441         | 20.1                | 20.8           | 40.9             | 57.0                | -16.1                        |   | 0.242         | 20.7                | 21.0           | 41.7             | 52.0                | -10.4                        |
| 0.935         | 19.3                | 20.5           | 39.8             | 56.0                | -16.2                        |   | 0.935         | 15.1                | 20.5           | 35.6             | 46.0                | -10.4                        |



| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>dBuV | Spec. Limit<br>dBuV | Compared to<br>Spec.<br>(dB) |   | Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>dBuV | Spec. Limit<br>dBuV | Compared to<br>Spec.<br>(dB) |
|---------------|---------------------|----------------|------------------|---------------------|------------------------------|---|---------------|---------------------|----------------|------------------|---------------------|------------------------------|
| 0.165         | 31.4                | 21.7           | 53.1             | 65.2                | -12.1                        | - | 0.346         | 23.6                | 20.9           | 44.5             | 49.1                | -4.5                         |
| 0.346         | 25.8                | 20.9           | 46.7             | 59.1                | -12.3                        |   | 0.247         | 24.8                | 21.0           | 45.8             | 51.9                | -6.1                         |
| 0.247         | 28.2                | 21.0           | 49.2             | 61.9                | -12.7                        |   | 0.165         | 25.4                | 21.7           | 47.1             | 55.2                | -8.1                         |
| 1.280         | 21.1                | 20.5           | 41.6             | 56.0                | -14.4                        |   | 1.280         | 17.0                | 20.5           | 37.5             | 46.0                | -8.5                         |
| 0.692         | 19.7                | 20.7           | 40.4             | 56.0                | -15.6                        |   | 0.692         | 16.7                | 20.7           | 37.4             | 46.0                | -8.6                         |
| 1.036         | 19.1                | 20.5           | 39.6             | 56.0                | -16.4                        |   | 1.036         | 15.6                | 20.5           | 36.1             | 46.0                | -9.9                         |
| 0.232         | 24.6                | 21.0           | 45.6             | 62.4                | -16.8                        |   | 0.443         | 14.9                | 20.8           | 35.7             | 47.0                | -11.3                        |
| 0.443         | 18.8                | 20.8           | 39.6             | 57.0                | -17.4                        |   | 0.232         | 17.9                | 21.0           | 38.9             | 52.4                | -13.5                        |



| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>dBuV | Spec. Limit<br>dBuV | Compared to<br>Spec.<br>(dB) | Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>dBuV | Spec. Limit<br>dBuV | Compared to<br>Spec.<br>(dB) |
|---------------|---------------------|----------------|------------------|---------------------|------------------------------|---------------|---------------------|----------------|------------------|---------------------|------------------------------|
| 0.189         | 34.4                | 21.2           | 55.6             | 64.1                | -8.5                         | 0.344         | 23.8                | 20.9           | 44.7             | 49.1                | -4.4                         |
| 0.250         | 28.9                | 21.0           | 49.9             | 61.8                | -11.9                        | 0.250         | 25.2                | 21.0           | 46.2             | 51.8                | -5.6                         |
| 0.344         | 25.7                | 20.9           | 46.6             | 59.1                | -12.5                        | 0.189         | 25.1                | 21.2           | 46.3             | 54.1                | -7.8                         |
| 0.165         | 31.0                | 21.7           | 52.7             | 65.2                | -12.5                        | 1.280         | 17.1                | 20.5           | 37.6             | 46.0                | -8.4                         |
| 1.280         | 21.5                | 20.5           | 42.0             | 56.0                | -14.0                        | 0.165         | 25.1                | 21.7           | 46.8             | 55.2                | -8.4                         |
| 0.233         | 26.7                | 21.0           | 47.7             | 62.3                | -14.7                        | 0.691         | 16.8                | 20.7           | 37.5             | 46.0                | -8.5                         |
| 1.036         | 19.6                | 20.5           | 40.1             | 56.0                | -15.9                        | 1.036         | 16.0                | 20.5           | 36.5             | 46.0                | -9.5                         |
| 0.691         | 18.8                | 20.7           | 39.5             | 56.0                | -16.5                        | 0.233         | 20.4                | 21.0           | 41.4             | 52.3                | -11.0                        |
| 1.120         | 17.9                | 20.5           | 38.4             | 56.0                | -17.6                        | 1.120         | 13.9                | 20.5           | 34.4             | 46.0                | -11.6                        |



Quasi Peak Data - vs - Quasi Peak Limit

| A | verage | Data - | vs - A | Average | Limit |
|---|--------|--------|--------|---------|-------|
|   |        |        |        |         |       |

| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>dBuV | Spec. Limit<br>dBuV | Compared to<br>Spec.<br>(dB) | Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Adjusted<br>dBuV | Spec. Limit<br>dBuV | Compared to<br>Spec.<br>(dB) |
|---------------|---------------------|----------------|------------------|---------------------|------------------------------|---------------|---------------------|----------------|------------------|---------------------|------------------------------|
| 0.167         | 31.9                | 21.7           | 53.6             | 65.1                | -11.5                        | <br>0.344     | 23.8                | 20.9           | 44.7             | 49.1                | -4.4                         |
| 0.247         | 28.6                | 21.0           | 49.6             | 61.9                | -12.3                        | 0.247         | 25.4                | 21.0           | 46.4             | 51.9                | -5.5                         |
| 0.344         | 25.8                | 20.9           | 46.7             | 59.1                | -12.4                        | 0.691         | 18.5                | 20.7           | 39.2             | 46.0                | -6.8                         |
| 1.280         | 21.7                | 20.5           | 42.2             | 56.0                | -13.8                        | 0.167         | 25.5                | 21.7           | 47.2             | 55.1                | -7.9                         |
| 0.457         | 22.0                | 20.8           | 42.8             | 56.7                | -13.9                        | 1.280         | 17.5                | 20.5           | 38.0             | 46.0                | -8.0                         |
| 0.233         | 26.9                | 21.0           | 47.9             | 62.3                | -14.5                        | 0.457         | 17.1                | 20.8           | 37.9             | 46.7                | -8.8                         |
| 0.691         | 20.7                | 20.7           | 41.4             | 56.0                | -14.6                        | 1.036         | 16.3                | 20.5           | 36.8             | 46.0                | -9.2                         |
| 1.036         | 20.4                | 20.5           | 40.9             | 56.0                | -15.1                        | 0.935         | 15.1                | 20.5           | 35.6             | 46.0                | -10.4                        |
| 0.935         | 19.3                | 20.5           | 39.8             | 56.0                | -16.2                        | 0.233         | 20.9                | 21.0           | 41.9             | 52.3                | -10.5                        |

## **RECEIVER SPURIOUS EMISSIONS**

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **MODES OF OPERATION**

Receive mode mid channel 20, low diversity antenna

#### **POWER SETTINGS INVESTIGATED**

USB

| FREQUENCY RANGE INVESTIGATED |       |                |         |  |  |  |  |  |  |
|------------------------------|-------|----------------|---------|--|--|--|--|--|--|
| Start Frequency              | 30MHz | Stop Frequency | 8200MHz |  |  |  |  |  |  |

#### **SAMPLE CALCULATIONS**

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

| TEST EQUIPMENT     |              |                          |     |            |          |
|--------------------|--------------|--------------------------|-----|------------|----------|
| Description        | Manufacturer | Model                    | ID  | Last Cal.  | Interval |
| EV01 Cables        |              | Double Ridge Horn Cables | EVB | 1/3/2008   | 13       |
| EV01 Cables        |              | Bilog Cables             | EVA | 10/23/2007 | 13       |
| Spectrum Analyzer  | Agilent      | E4446A                   | AAT | 12/7/2007  | 13       |
| Pre-Amplifier      | Miteq        | AMF-4D-010100-24-10P     | APW | 1/3/2008   | 13       |
| Antenna, Horn      | EMCO         | 3115                     | AHC | 8/24/2006  | 24       |
| Pre-Amplifier      | Miteq        | AM-1616-1000             | AOL | 12/29/2006 | 16       |
| Antenna, Biconilog | EMCO         | 3141                     | AXE | 1/15/2008  | 24       |

| Frequency Range | Peak Data | Quasi-Peak Data | Average Data |  |
|-----------------|-----------|-----------------|--------------|--|
| (MHz)           | (kHz)     | (kHz)           | (kHz)        |  |
| 0.01 - 0.15     | 1.0       | 0.2             | 0.2          |  |
| 0.15 - 30.0     | 10.0      | 9.0             | 9.0          |  |
| 30.0 - 1000     | 100.0     | 120.0           | 120.0        |  |
| Above 1000      | 1000.0    | N/A             | 1000.0       |  |

#### **MEASUREMENT UNCERTAINTY**

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

#### **TEST DESCRIPTION**

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for mid channel receive frequency. For this configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes.

#### NORTHWEST **RECEIVER SPURIOUS EMISSIONS EMC** EUT: ClearChat PC Wireless Dongle, M/N: A-00007 Work Order: LABT0296 Date: 02/22/08 Serial Number: Unknown Customer: Logitech, Inc. Temperature: 22 Attendees: None Humidity: 26% Project: None Barometric Pres.: 1016.9 Tested by: David DiVergigelis Job Site: EV01 Power: USB **TEST SPECIFICATIONS** Test Method RSS-Gen:2007 RSS-Gen:2007 TEST PARAMETERS Antenna Height(s) (m) 1 - 4 Test Distance (m) 3 COMMENTS USB to remote PC EUT OPERATING MODES Receive mode mid channel 20, low diversity antenna **DEVIATIONS FROM TEST STANDARD** No deviations. Signature & N Sufe & Run# Configuration # 2 Results Pass 80.0 70.0 60.0 50.0 • dBuV/m 40.0 ٠ • 30.0 \$ 20.0 10.0 0.0 1000.000 10000.000 MHz External Distance Compared to Amplitude Factor Azimuth Heiaht Distance Polarity Adjusted Spec. Limit Frea Detector Attenuation Adjustmen Spec. (dBuV) (dB) (meters) (dB) (dB) dBuV/m dBuV/m (dB) (degrees) (meters) (MHz) 17.1 H-Horn PK 53.6 54.0 7323.032 36.5 170.0 1.0 3.0 0.0 0.0 -0.4 7323.645 36.4 17.1 142.0 3.4 3.0 0.0 V-Horn PK 0.0 53.5 54.0 -0.5 4880.118 39.5 10.5 357.0 1.0 3.0 0.0 H-Horn PΚ 0.0 50.0 54.0 -4.0 4880.042 38.6 10.5 169.0 1.0 3.0 0.0 V-Horn PΚ 0.0 49.1 54.0 -4.9 4882.060 240.0 V-Horn PΚ 46.6 54.0 -7.4 36.1 10.5 1.4 3.0 0.0 0.0 -7.7 4881.300 35.8 10.5 284.0 1.0 3.0 0.0 H-Horn PΚ 0.0 46.3 54.0 259.0 V-Horn PK 1332 978 47.3 -3.2 1.4 3.0 0.0 0.0 44 1 54.0 -99 4880.060 32.0 10.5 357.0 1.0 3.0 0.0 H-Horn ΑV 0.0 42.5 54.0 -11.5 7322.655 23.5 17.1 170.0 1.0 3.0 0.0 H-Horn ΑV 0.0 40.6 54.0 -13.4 4880.057 30.0 10.5 169.0 1.0 3.0 0.0 V-Horn ΑV 0.0 40.5 54.0 -13.5 7322.026 23.4 17.1 142.0 3.4 3.0 0.0 V-Horn ΑV 0.0 40.5 54.0 -13.5

H-Horn

V-Horn

H-Horn

V-Horn

H-Horn

ΑV

ΑV

ΑV

ΑV

0.0

0.0

0.0

0.0

0.0

36.9

33.6

33.5

22.7

21.5

54.0

54.0

54.0

54.0

54.0

-17.1

-20.4

-20.5

-31.3

-32.5

227.0

240.0

284.0

259 0

227.0

1.0

1.4

1.0

14

1.0

3.0

3.0

3.0

3.0

3.0

0.0

0.0

0.0

0.0

0.0

1332.626

4880.766

4881.876

1332 359

1331.926

40.1

23.1

23.0

25.9

24.7

-3.2

10.5

10.5

-3.2

-3.2

## **RADIATED SPURIOUS EMISSIONS**

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### MODES OF OPERATION

Transmitting low channel, low diversity antenna

Transmitting mid channel, low diversity antenna

Transmitting high channel, low diversity antenna

#### POWER SETTINGS INVESTIGATED

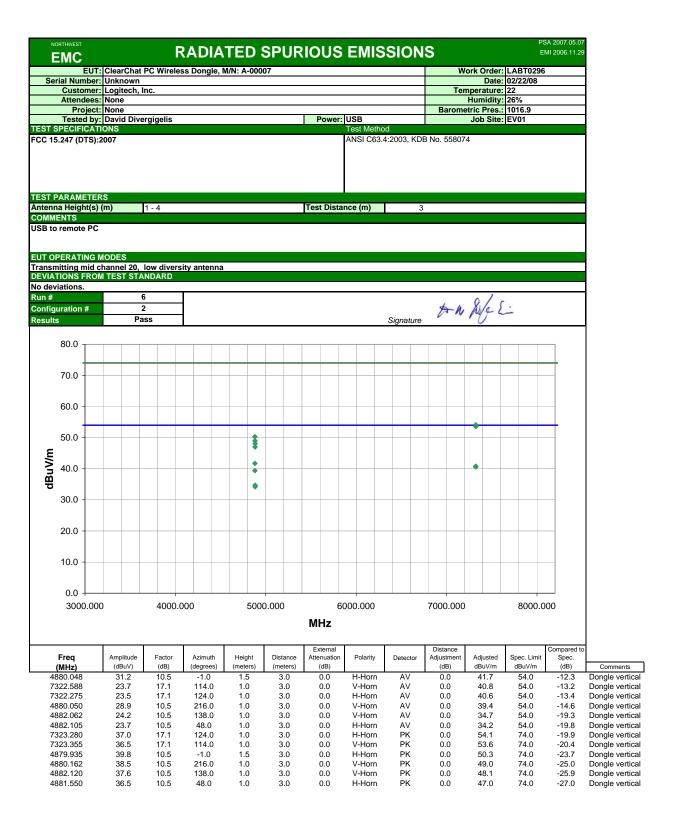
USB

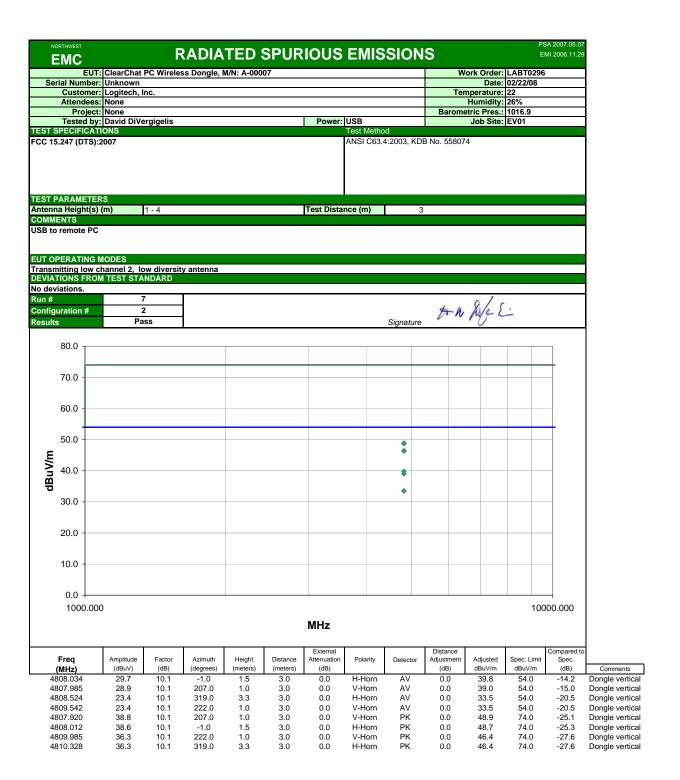
| FREQUENCY RANGE INVESTIGATED |        |                |        |  |  |  |  |  |  |
|------------------------------|--------|----------------|--------|--|--|--|--|--|--|
| Start Frequency              | 30 MHz | Stop Frequency | 25 GHz |  |  |  |  |  |  |

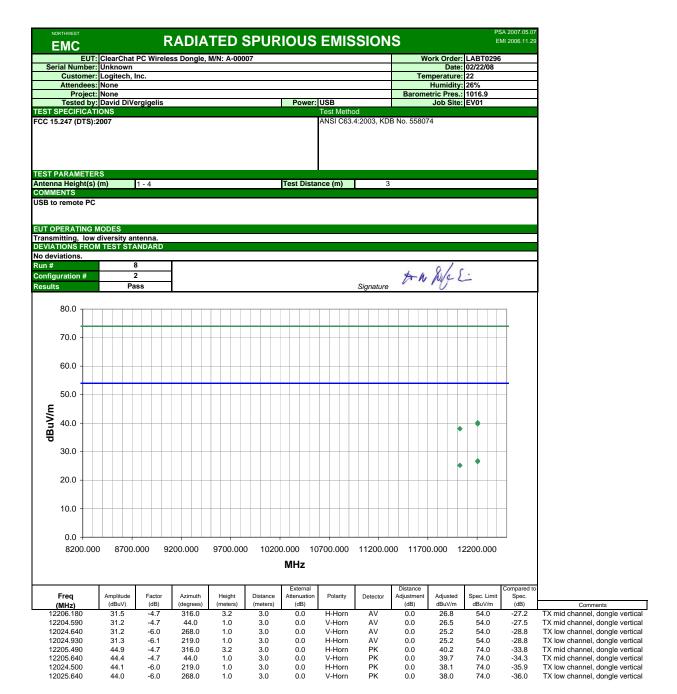
#### SAMPLE CALCULATIONS

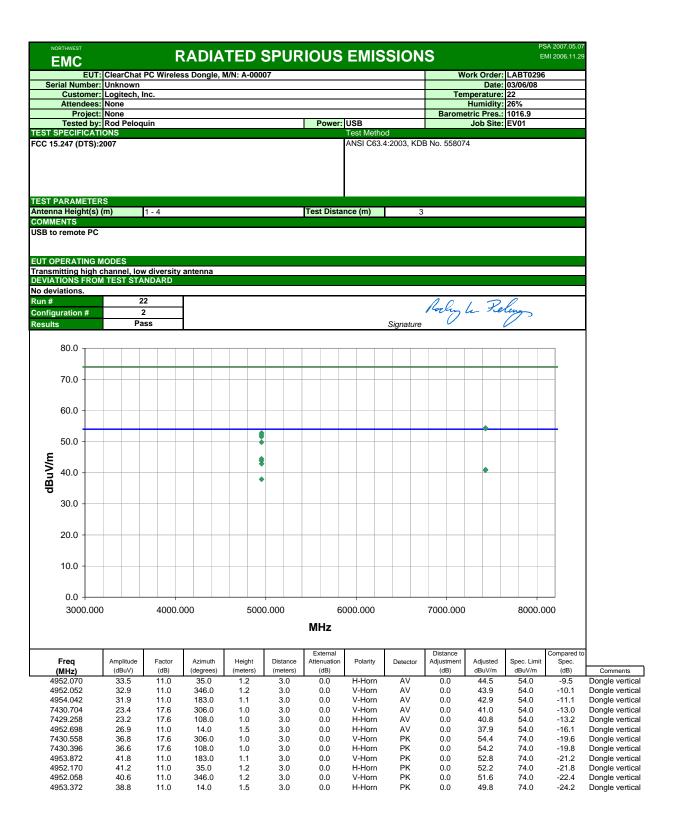
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

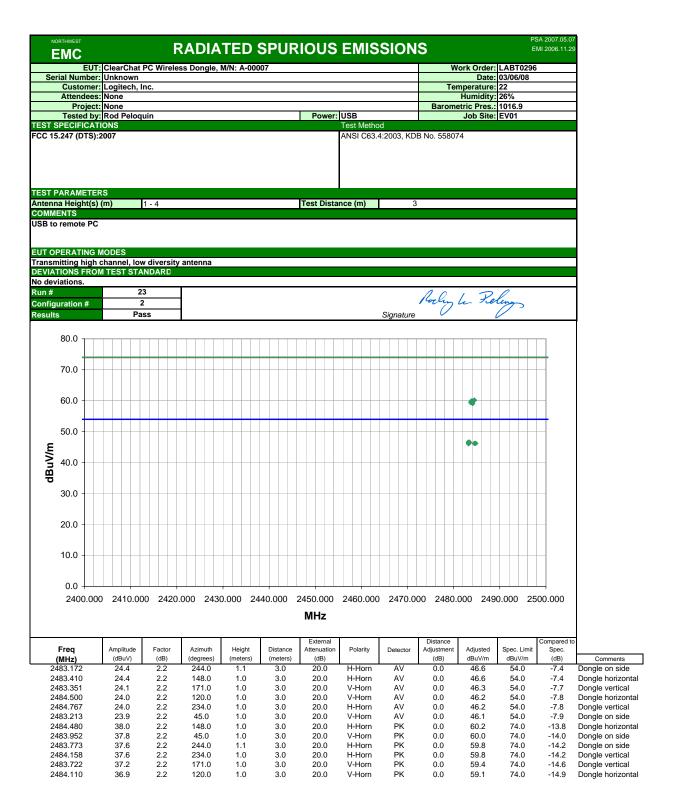
| TEST EQUIPMENT     |               |                            |     |            |          |
|--------------------|---------------|----------------------------|-----|------------|----------|
| Description        | Manufacturer  | Model                      | ID  | Last Cal.  | Interval |
| Spectrum Analyzer  | Agilent       | E4446A                     | AAT | 12/7/2007  | 13       |
| Pre-Amplifier      | Miteq         | AM-1616-1000               | AOL | 12/29/2006 | 16       |
| Antenna, Biconilog | EMCO          | 3141                       | AXE | 1/15/2008  | 24       |
| EV01 Cables        |               | Bilog Cables               | EVA | 10/23/2007 | 13       |
| High Pass Filter   | Micro-Tronics | HPM50111                   | HFO | 1/16/2008  | 13       |
| Pre-Amplifier      | Miteq         | AMF-4D-010100-24-10P       | APW | 1/3/2008   | 13       |
| Antenna, Horn      | EMCO          | 3115                       | AHC | 8/24/2006  | 24       |
| EV01 Cables        |               | Double Ridge Horn Cables   | EVB | 1/3/2008   | 13       |
| Pre-Amplifier      | Miteq         | AMF-6F-08001200-30-10P     | AVC | 6/22/2007  | 13       |
| Antenna, Horn      | ETS           | 3160-07                    | AHU | NCR        | 0        |
| Pre-Amplifier      | Miteq         | AMF-6F-12001800-30-10P     | AVD | 6/22/2007  | 13       |
| Antenna, Horn      | ETS           | 3160-08                    | AHV | NCR        | 0        |
| EV01 Cables        |               | Standard Gain Horns Cables | EVF | 10/23/2007 | 13       |
| Pre-Amplifier      | Miteq         | JSD4-18002600-26-8P        | APU | 7/25/2007  | 13       |
| Antenna, Horn      | EMCO          | 3160-09                    | AHG | NCR        | 0        |
| EV01 Cables        |               | 6GHz Standard Gain Horn C  | EVD | 7/25/2007  | 13       |


| MEASUREMEN | T BANDWIDTHS                |                          |                                  |              |
|------------|-----------------------------|--------------------------|----------------------------------|--------------|
|            | Frequency Range             | Peak Data                | Quasi-Peak Data                  | Average Data |
|            | (MHz)                       | (kHz)                    | (kHz)                            | (kHz)        |
|            | 0.01 - 0.15                 | 1.0                      | 0.2                              | 0.2          |
|            | 0.15 - 30.0                 | 10.0                     | 9.0                              | 9.0          |
|            | 30.0 - 1000                 | 100.0                    | 120.0                            | 120.0        |
|            | Above 1000                  | 1000.0                   | N/A                              | 1000.0       |
|            | Maasuramants ware made usir | ng the handwidths and de | tectors specified No video filte | r was usad   |


#### MEASUREMENT UNCERTAINTY


Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.


#### **TEST DESCRIPTION**


The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.











#### NORTHWEST **RADIATED SPURIOUS EMISSIONS** EMI 2006.11.29 **EMC** EUT: ClearChat PC Wireless Dongle, M/N: A-00007 Serial Number: Unknown Work Order: LABT0296 Date: 03/06/08 Customer: Logitech, Inc. Temperature: 22 Attendees: None Humidity: 26% Project: None Barometric Pres.: 1016.9 Tested by: Rod Peloquin TEST SPECIFICATIONS Power: USB Job Site: EV01 Test Method

FCC 15.247 (DTS):2007

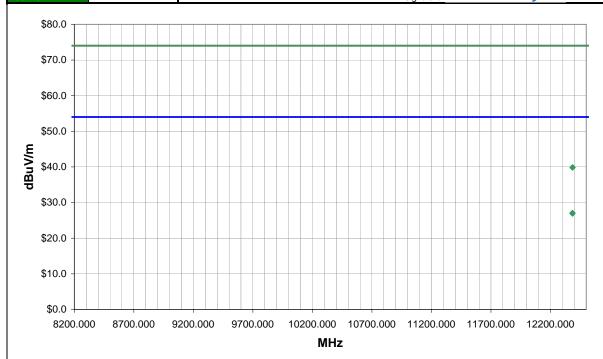
ANSI C63.4:2003, KDB No. 558074

#### TEST PARAMETERS

Antenna Height(s) (m) 1 - 4 Test Distance (m) 3

COMMENTS

USB to remote PC


#### EUT OPERATING MODES

Transmitting high channel, low diversity antenna DEVIATIONS FROM TEST STANDARD

No deviations.

| Run #           | 24   |
|-----------------|------|
| Configuration # | 2    |
| Paculte         | Pass |

Signature



|           |                                |                                                    |                                                                                                                                                                     |                                                                                                                                                                                                                          | External                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                             | Distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Compared to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------|--------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Amplitude | Factor                         | Azimuth                                            | Height                                                                                                                                                              | Distance                                                                                                                                                                                                                 | Attenuation                                                                                                                                                                                                                                                                   | Polarity                                                                                                                                                                                                                                                                                                                                                                            | Detector                                                                                                                                                                                                                                                                                                                                                                    | Adjustment                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Adjusted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Spec. Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Spec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (dBuV)    | (dB)                           | (degrees)                                          | (meters)                                                                                                                                                            | (meters)                                                                                                                                                                                                                 | (dB)                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                             | (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dBuV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dBuV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 30.4      | -3.3                           | 194.0                                              | 1.0                                                                                                                                                                 | 3.0                                                                                                                                                                                                                      | 0.0                                                                                                                                                                                                                                                                           | V-Horn                                                                                                                                                                                                                                                                                                                                                                              | AV                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -26.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 30.2      | -3.3                           | 211.0                                              | 1.0                                                                                                                                                                 | 3.0                                                                                                                                                                                                                      | 0.0                                                                                                                                                                                                                                                                           | H-Horn                                                                                                                                                                                                                                                                                                                                                                              | AV                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -27.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 43.2      | -3.3                           | 211.0                                              | 1.0                                                                                                                                                                 | 3.0                                                                                                                                                                                                                      | 0.0                                                                                                                                                                                                                                                                           | H-Horn                                                                                                                                                                                                                                                                                                                                                                              | PK                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -34.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 43.1      | -3.3                           | 194.0                                              | 1.0                                                                                                                                                                 | 3.0                                                                                                                                                                                                                      | 0.0                                                                                                                                                                                                                                                                           | V-Horn                                                                                                                                                                                                                                                                                                                                                                              | PK                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -34.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           | (dBuV)<br>30.4<br>30.2<br>43.2 | (dBuV) (dB)<br>30.4 -3.3<br>30.2 -3.3<br>43.2 -3.3 | (dBuV)         (dB)         (degrees)           30.4         -3.3         194.0           30.2         -3.3         211.0           43.2         -3.3         211.0 | (dBuV)         (dB)         (degrees)         (meters)           30.4         -3.3         194.0         1.0           30.2         -3.3         211.0         1.0           43.2         -3.3         211.0         1.0 | (dBuV)         (dB)         (degrees)         (meters)         (meters)           30.4         -3.3         194.0         1.0         3.0           30.2         -3.3         211.0         1.0         3.0           43.2         -3.3         211.0         1.0         3.0 | Amplitude (dBuV)         Factor (dB)         Azimuth (degrees)         Height (meters)         Distance (meters)         Attenuation (dB)           30.4         -3.3         194.0         1.0         3.0         0.0           30.2         -3.3         211.0         1.0         3.0         0.0           43.2         -3.3         211.0         1.0         3.0         0.0 | (dBuV)         (dB)         (degrees)         (meters)         (meters)         (dB)           30.4         -3.3         194.0         1.0         3.0         0.0         V-Horn           30.2         -3.3         211.0         1.0         3.0         0.0         H-Horn           43.2         -3.3         211.0         1.0         3.0         0.0         H-Horn | Amplitude (dBuV)         Factor (dB)         Azimuth (degrees)         Height (meters)         Distance (meters)         Attenuation (meters)         Polarity         Detector           30.4         -3.3         194.0         1.0         3.0         0.0         V-Horn AV           30.2         -3.3         211.0         1.0         3.0         0.0         H-Horn AV           43.2         -3.3         211.0         1.0         3.0         0.0         H-Horn PK | Amplitude (dBuV)         Factor (dBu)         Azimuth (degrees)         Height (meters)         Distance (meters)         Attenuation (dB)         Polarity         Detector (dB)         Adjustment (dB)           30.4         -3.3         194.0         1.0         3.0         0.0         V-Horn AV         0.0           30.2         -3.3         211.0         1.0         3.0         0.0         H-Horn AV         0.0           43.2         -3.3         211.0         1.0         3.0         0.0         H-Horn PK         0.0 | Amplitude (dBuV)         Factor (dBu)         Azimuth (degrees)         Height (meters)         Distance (meters)         Attenuation (dB)         Polarity         Detector (dB)         Adjustment (dB)< | Amplitude (dBuV)         Factor (dBu)         Azimuth (degrees)         Height (meters)         Distance (meters)         Attenuation (dB)         Polarity         Detector (dB)         Adjustment (dB)< |

## **Occupied Bandwidth**

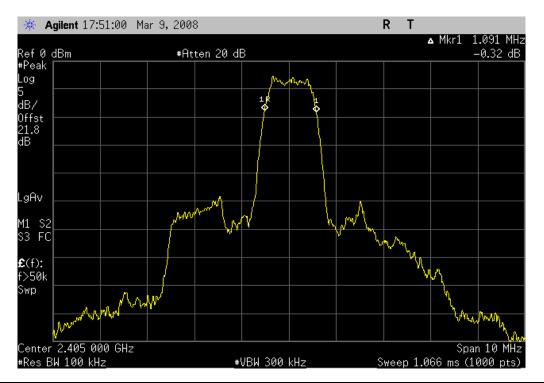
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

| TEST EQUIPMENT                  |                  |          |     |            |          |  |  |  |
|---------------------------------|------------------|----------|-----|------------|----------|--|--|--|
| Description                     | Manufacturer     | Model    | ID  | Last Cal.  | Interval |  |  |  |
| Attenuator 20 dB, SMA M/F 26GHz | S.M. Electronics | SA26B-20 | AUY | 6/8/2007   | 13       |  |  |  |
| Spectrum Analyzer               | Agilent          | E4446A   | AAY | 12/18/2007 | 12       |  |  |  |

#### **MEASUREMENT UNCERTAINTY**

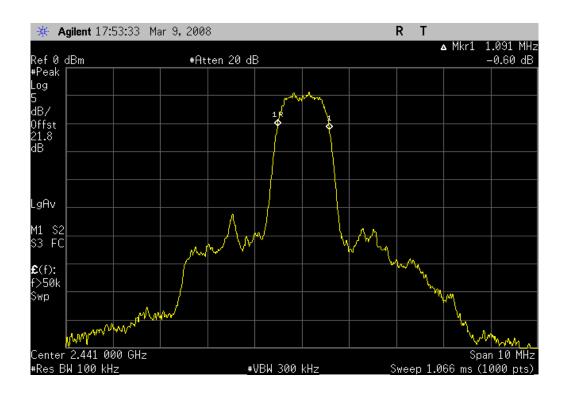
Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

#### **TEST DESCRIPTION**


The occupied bandwidth was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode.

| NORTHWEST<br>EMC                       |                                 | Occupied I          | Bandwidth  |                         |                   | XMit 2007.06.13 |  |  |
|----------------------------------------|---------------------------------|---------------------|------------|-------------------------|-------------------|-----------------|--|--|
| EUT:                                   | ClearChat PC Wireless Do        | onale. M/N: A-00007 |            |                         | Work Order:       | LABT0296        |  |  |
| Serial Number:                         |                                 |                     |            |                         |                   | 02/28/08        |  |  |
| Customer:                              | Logitech, Inc.                  |                     |            |                         | Temperature:      | 22°C            |  |  |
| Attendees:                             | None                            |                     |            |                         | Humidity:         | 28%             |  |  |
| Project:                               | None                            |                     |            |                         | Barometric Pres.: | 1023.3mb        |  |  |
| Tested by:                             | Holly Ashkannejhad              |                     | Power: USB |                         | Job Site:         | EV06            |  |  |
| TEST SPECIFICATION                     | ONS                             |                     | Test Meth  | nod                     |                   |                 |  |  |
| FCC 15.247 (DTS):2                     | 007 ANSI C63.4:2003 KDB No      |                     |            | 3.4:2003 KDB No. 558074 | o. 558074         |                 |  |  |
|                                        |                                 |                     |            |                         |                   |                 |  |  |
| COMMENTS                               |                                 |                     |            |                         |                   |                 |  |  |
| 37 channels, 2MHz  DEVIATIONS FROM     | ·                               |                     |            |                         |                   |                 |  |  |
| No deviations                          |                                 |                     |            |                         |                   |                 |  |  |
| Configuration #                        | 3                               | Signature Holy /    | Slight     |                         |                   |                 |  |  |
|                                        |                                 |                     |            | Value                   | Lir               | mit Results     |  |  |
| Transmit mode, Dong                    | gle, M/N: A-00007<br>pi/4-DQPSK |                     |            |                         |                   |                 |  |  |
|                                        | Low channel,                    | Ch. 2, 2405MHz      |            | 1.091 MHz               | ≥ 500 kHz         | Pass            |  |  |
| Mid channel, Ch. 20, 2441MHz 1.091 MHz |                                 |                     | 1.091 MHz  | ≥ 500 kHz               | Pass              |                 |  |  |
|                                        | High channel,                   | Ch. 38, 2477MHz     |            | 1.121 MHz               | ≥ 500 kHz         | Pass            |  |  |

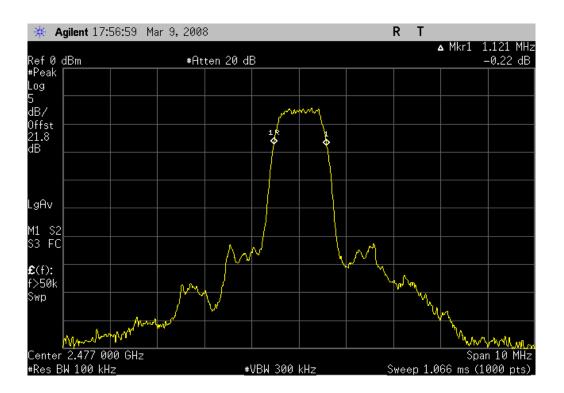
## **Occupied Bandwidth**


Transmit mode, Dongle, M/N: A-00007, pi/4-DQPSK, Low channel, Ch. 2, 2405MHz

Result: Pass Value: 1.091 MHz Limit: ≥ 500 kHz



Transmit mode, Dongle, M/N: A-00007, pi/4-DQPSK, Mid channel, Ch. 20, 2441MHz


Result: Pass Value: 1.091 MHz Limit: ≥ 500 kHz



## **Occupied Bandwidth**

Transmit mode, Dongle, M/N: A-00007, pi/4-DQPSK, High channel, Ch. 38, 2477MHz

Result: Pass Value: 1.121 MHz Limit: ≥ 500 kHz



## **Peak Output Power**

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

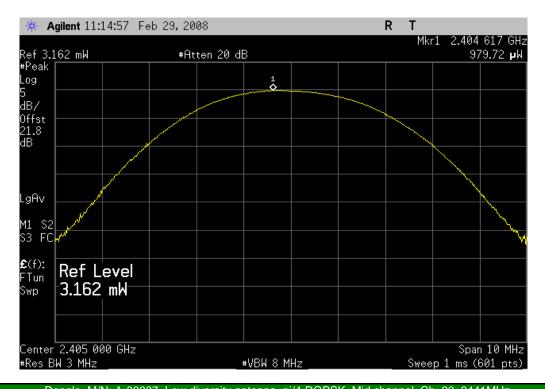
| TEST EQUIPMENT                  |                  |          |     |            |          |  |  |  |
|---------------------------------|------------------|----------|-----|------------|----------|--|--|--|
| Description                     | Manufacturer     | Model    | ID  | Last Cal.  | Interval |  |  |  |
| Attenuator 20 dB, SMA M/F 26GHz | S.M. Electronics | SA26B-20 | AUY | 6/8/2007   | 13       |  |  |  |
| Spectrum Analyzer               | Agilent          | E4446A   | AAY | 12/18/2007 | 12       |  |  |  |

#### **MEASUREMENT UNCERTAINTY**

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

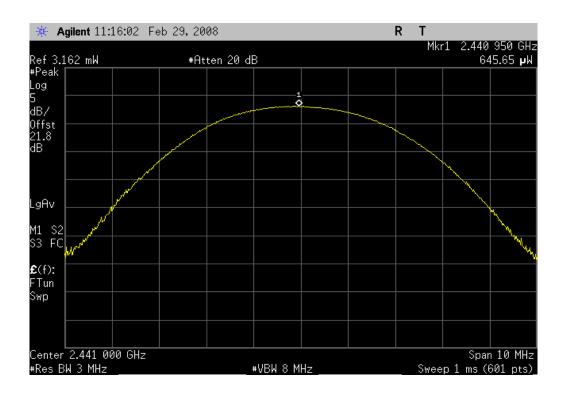
#### **TEST DESCRIPTION**

The peak output power was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode.


De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36dBm.

| NORTHWEST                    |                                      | Darah Orda        | - 1 D    |                         |                   | XMit 2007.06.13 |
|------------------------------|--------------------------------------|-------------------|----------|-------------------------|-------------------|-----------------|
| EMC                          |                                      | Peak Outp         | out Pov  | wer                     |                   |                 |
| EUT:                         | ClearChat PC Wireless Dongl          | e, M/N: A-00007   |          |                         | Work Order:       | LABT0296        |
| Serial Number:               | Unknown                              |                   |          |                         | Date:             | 02/28/08        |
| Customer:                    | Logitech, Inc.                       |                   |          |                         | Temperature:      | 22°C            |
| Attendees:                   |                                      |                   |          |                         | Humidity:         |                 |
| Project:                     |                                      |                   |          |                         | Barometric Pres.: |                 |
|                              | Holly Ashkannejhad                   |                   | Power:   |                         | Job Site:         | EV06            |
| TEST SPECIFICATI             | ONS                                  |                   |          | Test Method             |                   |                 |
| FCC 15.247 (DTS):2           | 47 (DTS):2007 ANSI C63.4:2003, KDB N |                   |          | ANSI C63.4:2003, KDB No | 558074            |                 |
|                              |                                      |                   |          |                         |                   |                 |
| COMMENTS                     |                                      |                   |          |                         |                   |                 |
|                              |                                      |                   |          |                         |                   |                 |
|                              |                                      |                   |          |                         |                   |                 |
|                              |                                      |                   |          |                         |                   |                 |
| DEVIATIONS FROM              | I TEST STANDARD                      |                   |          |                         |                   |                 |
| No Deviations                |                                      |                   |          |                         |                   |                 |
|                              | _                                    | Signature Holy    | 1.1      | 0                       |                   |                 |
| Configuration #              | 3                                    | Holy !            | June 1   |                         |                   |                 |
|                              |                                      | Signature / 1 - 0 | 192      |                         |                   |                 |
|                              |                                      |                   |          | Vai                     | lue Li            | mit Results     |
| Dongle, M/N: A-0000          | 07, Low diversity antenna            |                   |          |                         |                   |                 |
|                              | pi/4-DQPSK                           |                   |          |                         |                   |                 |
|                              | Low channel, Ch.                     |                   |          | 0.980 mW                | 0.125 Watts       | Pass            |
| Mid channel, Ch. 20, 2441MHz |                                      |                   | 0.646 mW | 0.125 Watts             | Pass              |                 |
|                              | High channel, Ch.                    | 38, 2477MHz       |          | 0.365 mW                | 0.125 Watts       | Pass            |

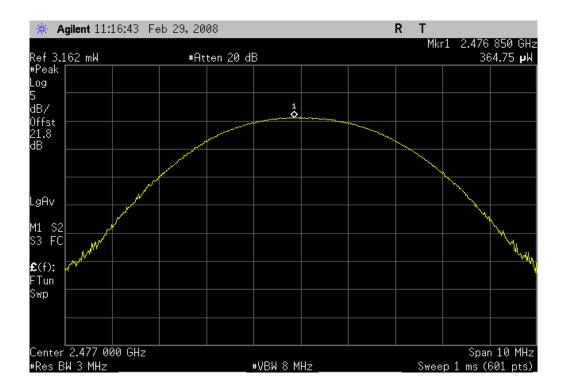
## **Peak Output Power**


Dongle, M/N: A-00007, Low diversity antenna, pi/4-DQPSK, Low channel, Ch. 2, 2405MHz

Result: Pass Value: 0.980 mW Limit: 0.125 Watts



Dongle, M/N: A-00007, Low diversity antenna, pi/4-DQPSK, Mid channel, Ch. 20, 2441MHz


Result: Pass Value: 0.646 mW Limit: 0.125 Watts



# **Peak Output Power**

Dongle, M/N: A-00007, Low diversity antenna, pi/4-DQPSK, High channel, Ch. 38, 2477MHz

Result: Pass Value: 0.365 mW Limit: 0.125 Watts



# **Bandedge Compliance**

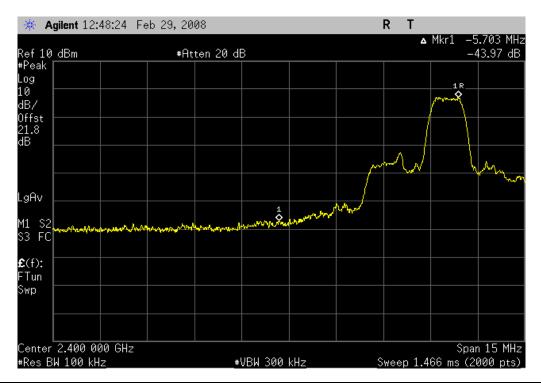
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

| TEST EQUIPMENT                  |                  |          |     |            |          |  |  |
|---------------------------------|------------------|----------|-----|------------|----------|--|--|
| Description                     | Manufacturer     | Model    | ID  | Last Cal.  | Interval |  |  |
| Attenuator 20 dB, SMA M/F 26GHz | S.M. Electronics | SA26B-20 | AUY | 6/8/2007   | 13       |  |  |
| Spectrum Analyzer               | Agilent          | E4446A   | AAY | 12/18/2007 | 12       |  |  |

#### **MEASUREMENT UNCERTAINTY**

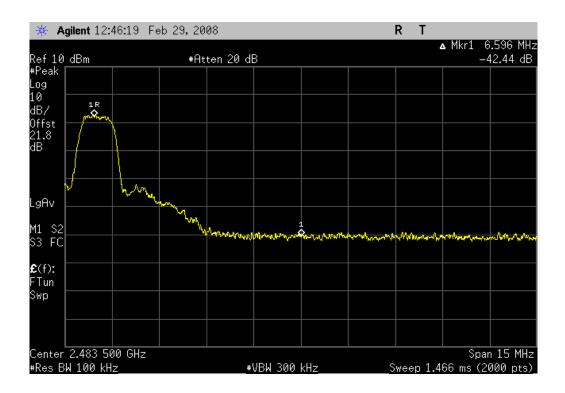
Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

#### **TEST DESCRIPTION**


The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to low and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode. The channels closest to the band edges were selected. The spectrum was scanned across each band edge from 5 MHz below the band edge to 5 MHz above the band edge.

| NORTHWEST          |                                  |                  |         |                     |              |                   | XMit 2007.06 |
|--------------------|----------------------------------|------------------|---------|---------------------|--------------|-------------------|--------------|
| EMC                |                                  | Bandedge (       | compi   | ance                |              |                   |              |
| EUT:               | ClearChat PC Wireless Dongle, M/ | N: A-00007       |         |                     |              | Work Order:       | LABT0296     |
| Serial Number:     | Unknown                          |                  |         |                     |              | Date:             | 02/28/08     |
| Customer:          | Logitech, Inc. Temperature: 22°C |                  |         |                     |              |                   |              |
| Attendees:         |                                  |                  |         |                     |              | Humidity:         | 28%          |
| Project:           | None                             |                  |         |                     | E            | Barometric Pres.: | 1023.3mb     |
|                    | Holly Ashkannejhad               |                  | Power:  |                     |              | Job Site:         | EV06         |
| TEST SPECIFICATI   | IONS                             |                  |         | Test Method         |              |                   |              |
| FCC 15.247 (DTS):2 | 2007                             |                  |         | ANSI C63.4:2003 KDI | 3 No. 558074 |                   |              |
|                    |                                  |                  |         |                     |              |                   |              |
| COMMENTS           |                                  |                  |         |                     |              |                   |              |
|                    |                                  |                  |         |                     |              |                   |              |
|                    |                                  |                  |         |                     |              |                   |              |
|                    |                                  |                  |         |                     |              |                   |              |
| DEVIATIONS FROM    | I TEST STANDARD                  |                  |         |                     |              |                   |              |
| No Deviations      |                                  |                  |         |                     |              |                   |              |
| Configuration #    | 3                                | Signature Holy / | Solings | 9                   |              |                   |              |
|                    |                                  |                  |         |                     | Value        | Lir               | nit Results  |
| Transmit mode, Don | gle, M/N: A-00007<br>pi/4-DQPSK  |                  |         |                     |              |                   |              |
|                    | Low channel, Ch. 2, 24           | 05 MHz           |         | ≤ - 40 dE           | Вс           | ≤ - 20 dBc        | Pass         |
|                    | High channel, Ch. 38, 2          | 2477MHz          |         | ≤ - 40 dE           | Вс           | ≤ - 20 dBc        | Pass         |

#### **Bandedge Compliance**


Transmit mode, Dongle, M/N: A-00007, pi/4-DQPSK, Low channel, Ch. 2, 2405 MHz

Result: Pass Value: ≤ - 40 dBc Limit: ≤ - 20 dBc



Transmit mode, Dongle, M/N: A-00007, pi/4-DQPSK, High channel, Ch. 38, 2477MHz

Result: Pass Value: ≤ - 40 dBc Limit: ≤ - 20 dBc

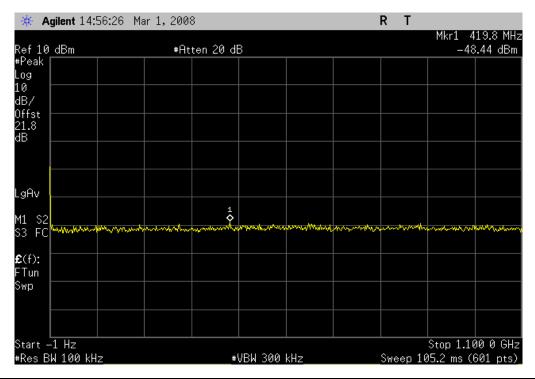


Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

| TEST EQUIPMENT                  |                  |          |     |            |          |  |  |  |  |
|---------------------------------|------------------|----------|-----|------------|----------|--|--|--|--|
| Description                     | Manufacturer     | Model    | ID  | Last Cal.  | Interval |  |  |  |  |
| Attenuator 20 dB, SMA M/F 26GHz | S.M. Electronics | SA26B-20 | AUY | 6/8/2007   | 13       |  |  |  |  |
| Spectrum Analyzer               | Agilent          | E4446A   | AAY | 12/18/2007 | 12       |  |  |  |  |

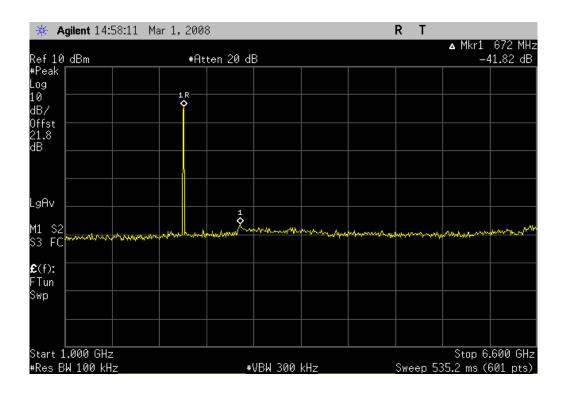
#### **MEASUREMENT UNCERTAINTY**

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.


#### **TEST DESCRIPTION**

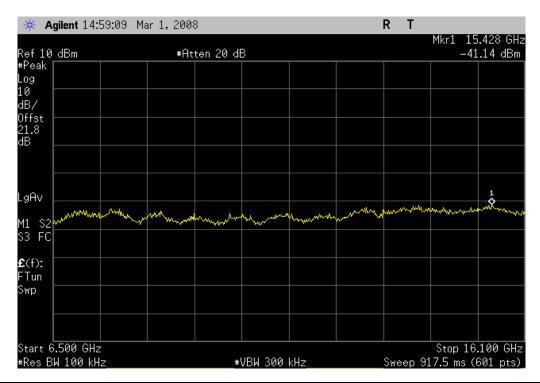
The spurious RF conducted emissions were measured with the EUT set to low, medium, and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode. For each transmit frequency, the spectrum was scanned throughout the specified frequency.

| NORTHWEST<br>EMC    |                             | <b>Spurious Conducted</b> | Emissions              |                        | XMit 2007.06.13 |  |  |  |
|---------------------|-----------------------------|---------------------------|------------------------|------------------------|-----------------|--|--|--|
|                     | ClearChat PC Wireless Dongl | •                         |                        | Work Order: LAB        | T0206           |  |  |  |
| Serial Number:      |                             | e, W/N. A-00007           |                        | Date: 02/29            |                 |  |  |  |
|                     | Logitech, Inc.              |                           |                        | Temperature: 22°C      |                 |  |  |  |
| Attendees:          |                             |                           |                        | Humidity: 30%          |                 |  |  |  |
| Project:            |                             |                           |                        | Barometric Pres.: 1011 | .8mb            |  |  |  |
|                     | Holly Ashkannejhad          | Powe                      | r: USB                 | Job Site: EV06         |                 |  |  |  |
| TEST SPECIFICAT     |                             |                           | Test Method            |                        |                 |  |  |  |
| FCC 15.247 (DTS):2  | 2007                        |                           | ANSI C63.4:2003 KDB No | . 558074               |                 |  |  |  |
| , , ,               |                             |                           |                        |                        |                 |  |  |  |
| COMMENTS            |                             |                           | •                      |                        |                 |  |  |  |
| DEVIATIONS FROM     | W TEST STANDARD             |                           |                        |                        |                 |  |  |  |
| No Deviations       |                             |                           |                        |                        |                 |  |  |  |
| Configuration #     | 3                           | Signature Holy Aling      | w                      |                        |                 |  |  |  |
|                     |                             |                           | Va                     | lue Limit              | Results         |  |  |  |
| Transmit mode, no h | hop, pi/4-DQPSK modulation  |                           |                        |                        |                 |  |  |  |
|                     | Low channel, 2405MHz        |                           |                        |                        |                 |  |  |  |
|                     | 0 Hz - 1.1 GHz              |                           | ≤ - 40 dBc             | ≤ - 20 dBc             | Pass            |  |  |  |
|                     | 1 GHz - 6.6 GHz             |                           | ≤ - 40 dBc             | ≤ - 20 dBc             | Pass            |  |  |  |
|                     | 6.5 GHz - 16.1 GH           | łz                        | ≤ - 30 dBc             | ≤ - 20 dBc             | Pass            |  |  |  |
|                     | 16 GHz - 26 GHz             |                           | ≤ - 30 dBc             | ≤ - 20 dBc             | Pass            |  |  |  |
|                     | Mid channel, 2441MHz        |                           |                        |                        |                 |  |  |  |
|                     | 0 Hz - 1.1 GHz              |                           | ≤ - 40 dBc             | ≤ - 20 dBc             | Pass            |  |  |  |
|                     | 1 GHz - 6.6 GHz             |                           | ≤ - 40 dBc             | ≤ - 20 dBc             | Pass            |  |  |  |
|                     | 6.5 GHz - 16.1 GH           | łz                        | ≤ - 30 dBc             | ≤ - 20 dBc             | Pass            |  |  |  |
|                     | 16 GHz - 26 GHz             |                           | ≤ - 30 dBc             | ≤ - 20 dBc             | Pass            |  |  |  |
|                     | High channel, 2477MHz       |                           |                        |                        |                 |  |  |  |
|                     | 0 Hz - 1.1 GHz              |                           | ≤ - 30 dBc             | ≤ - 20 dBc             | Pass            |  |  |  |
|                     | 1 GHz - 6.6 GHz             |                           | ≤ - 30 dBc             | ≤ - 20 dBc             | Pass            |  |  |  |
|                     | 6.5 GHz - 16.1 GH           | łz                        | ≤ - 30 dBc             | ≤ - 20 dBc             | Pass            |  |  |  |
|                     | 16 GHz - 26 GHz             |                           | ≤ - 30 dBc             | ≤ - 20 dBc             | Pass            |  |  |  |


Transmit mode, pi/4-DQPSK modulation, Low channel, 2405MHz, 0 Hz - 1.1 GHz

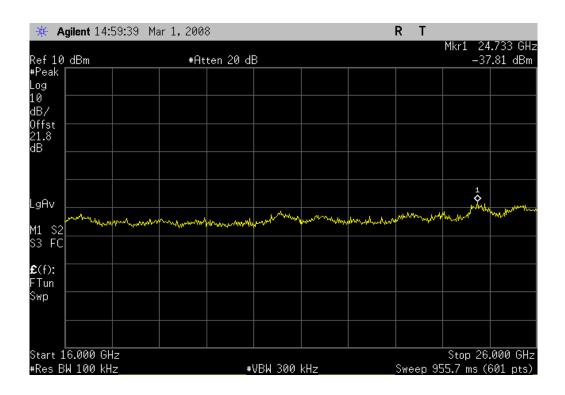
Result: Pass Value: ≤ - 40 dBc Limit: ≤ - 20 dBc




Transmit mode, pi/4-DQPSK modulation, Low channel, 2405MHz, 1 GHz - 6.6 GHz

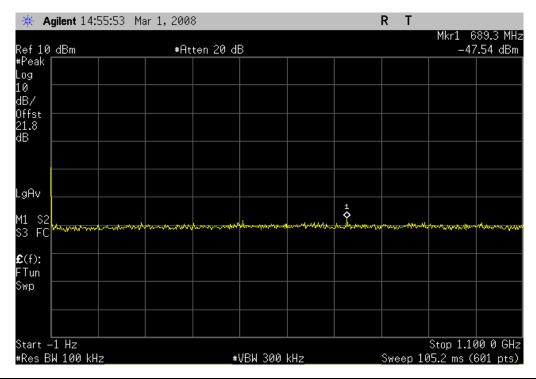
Result: Pass Value: ≤ - 40 dBc Limit: ≤ - 20 dBc




Transmit mode, pi/4-DQPSK modulation, Low channel, 2405MHz, 6.5 GHz - 16.1 GHz

Result: Pass Value: ≤ - 30 dBc Limit: ≤ - 20 dBc




Transmit mode, pi/4-DQPSK modulation, Low channel, 2405MHz, 16 GHz - 26 GHz

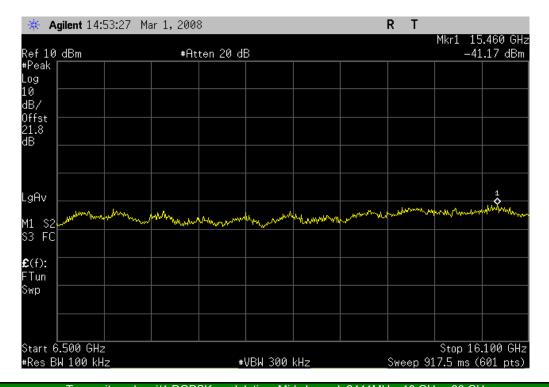
Result: Pass Value: ≤ - 30 dBc Limit: ≤ - 20 dBc




Transmit mode, pi/4-DQPSK modulation, Mid channel, 2441MHz, 0 Hz - 1.1 GHz

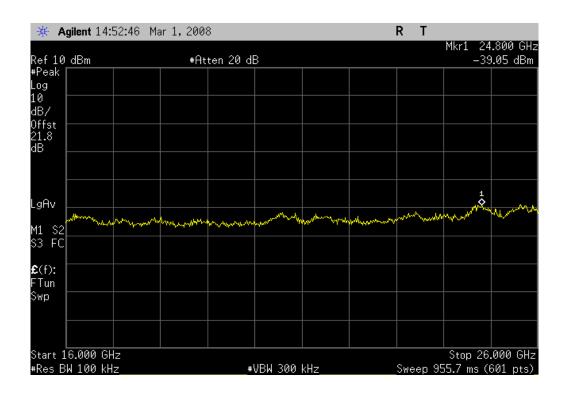
Result: Pass Value: ≤ - 40 dBc Limit: ≤ - 20 dBc




Transmit mode, pi/4-DQPSK modulation, Mid channel, 2441MHz, 1 GHz - 6.6 GHz

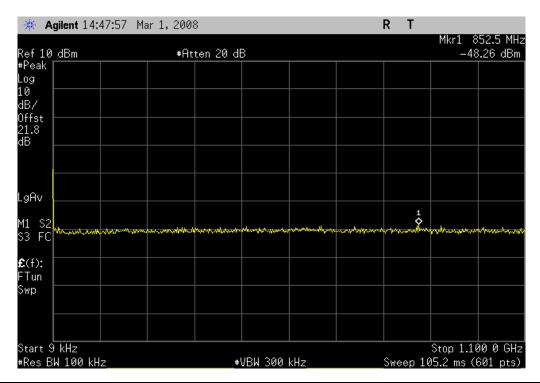
Result: Pass Value: ≤ - 40 dBc Limit: ≤ - 20 dBc




Transmit mode, pi/4-DQPSK modulation, Mid channel, 2441MHz, 6.5 GHz - 16.1 GHz

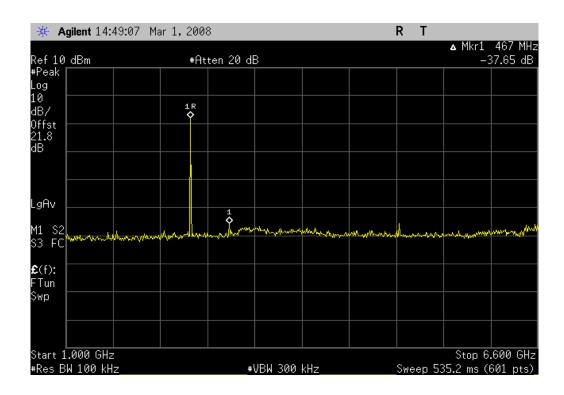
Result: Pass Value: ≤ - 30 dBc Limit: ≤ - 20 dBc




Transmit mode, pi/4-DQPSK modulation, Mid channel, 2441MHz, 16 GHz - 26 GHz

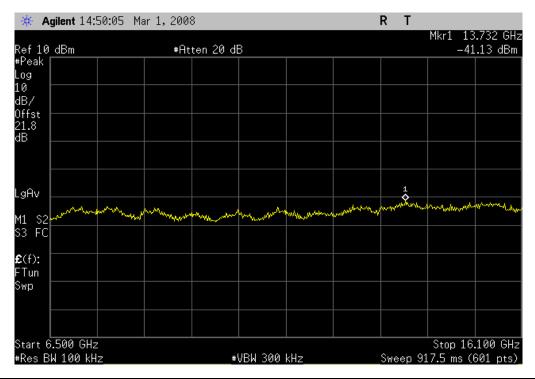
Result: Pass Value: ≤ - 30 dBc Limit: ≤ - 20 dBc




Transmit mode, pi/4-DQPSK modulation, High channel, 2477MHz, 0 Hz - 1.1 GHz

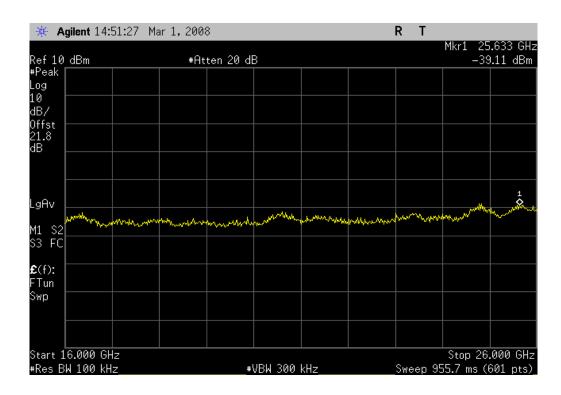
Result: Pass Value: ≤ - 30 dBc Limit: ≤ - 20 dBc




Transmit mode, pi/4-DQPSK modulation, High channel, 2477MHz, 1 GHz - 6.6 GHz

Result: Pass Value: ≤ - 30 dBc Limit: ≤ - 20 dBc




Transmit mode, pi/4-DQPSK modulation, High channel, 2477MHz, 6.5 GHz - 16.1 GHz

Result: Pass Value: ≤ - 30 dBc Limit: ≤ - 20 dBc



Transmit mode, pi/4-DQPSK modulation, High channel, 2477MHz, 16 GHz - 26 GHz

Result: Pass Value: ≤ - 30 dBc Limit: ≤ - 20 dBc



## **Power Spectral Density**

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

| TEST EQUIPMENT |                                 |                  |          |     |            |          |  |
|----------------|---------------------------------|------------------|----------|-----|------------|----------|--|
|                | Description                     | Manufacturer     | Model    | ID  | Last Cal.  | Interval |  |
|                | Attenuator 20 dB, SMA M/F 26GHz | S.M. Electronics | SA26B-20 | AUY | 6/8/2007   | 13       |  |
|                | Spectrum Analyzer               | Agilent          | E4446A   | AAY | 12/18/2007 | 12       |  |

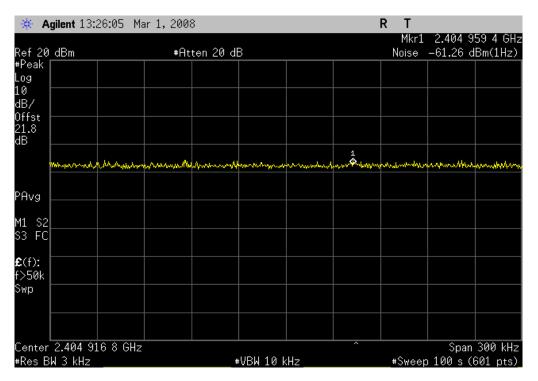
#### **MEASUREMENT UNCERTAINTY**

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

#### **TEST DESCRIPTION**

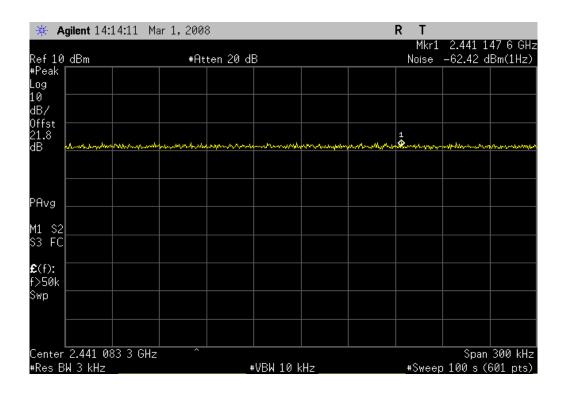
The peak power spectral density measurements were measured with the EUT set to low, mid, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate. Per the procedure outlined in FCC 97-114, the spectrum analyzer was used as follows:

The emission peak(s) were located and zoom in on within the passband. The resolution bandwidth was set to 3 kHz, the video bandwidth was set to greater than or equal to the resolution bandwidth. The sweep speed was set equal to the span divided by 3 kHz (sweep = (SPAN/3 kHz)). For example, given a span of 1.5 MHz, the sweep should be 1.5 x  $10^6 \div 3$  x  $10^3 = 500$  seconds. External attenuation was used and added to the reading. The following FCC procedure was used for modifying the power spectral density measurements:


"If the spectrum line spacing cannot be resolved on the available spectrum analyzer, the noise density function on most modern conventional spectrum analyzers will directly measure the noise power density normalized to a 1 Hz noise power bandwidth. Add 35 dB for correction to 3 kHz."

| NORTHWEST<br>EMC       |                          | Power Spe           | ctral De | nsity                 |                    | XMit 2007.06.13 |
|------------------------|--------------------------|---------------------|----------|-----------------------|--------------------|-----------------|
| EUT:                   | ClearChat PC Wireless Do | ongle, M/N: A-00007 |          |                       | Work Order:        | LABT0296        |
| Serial Number:         |                          | <u> </u>            |          |                       | Date               | 02/29/08        |
| Customer:              | Logitech, Inc.           |                     |          |                       | Temperature:       | 22°C            |
| Attendees:             | None                     |                     |          |                       | Humidity           | 30%             |
| Project:               | None                     |                     |          |                       | Barometric Pres.   | 1011.8mb        |
| Tested by:             | Holly Ashkannejhad       |                     | Power: U | SB                    | Job Site:          | EV06            |
| TEST SPECIFICATI       | ONS                      |                     | T        | est Method            |                    |                 |
| FCC 15.247 (DTS):2     | 2007                     |                     | Α        | NSI C63.4:2003 KDB No | 558074             |                 |
|                        |                          |                     |          |                       |                    |                 |
| COMMENTS               |                          |                     |          |                       |                    |                 |
|                        |                          |                     |          |                       |                    |                 |
| DEVIATIONS FROM        | M TEST STANDARD          |                     |          |                       |                    |                 |
| No Deviations          |                          |                     |          |                       |                    |                 |
| Configuration #        | 3                        | Signature Holy      | Aligh    | 0                     |                    |                 |
|                        |                          |                     |          | Va                    | ue Li              | mit Results     |
| Transmitting with pi/4 | 4-DQPSK modulatio        |                     |          |                       |                    |                 |
|                        | Low channel, 2405MHz     |                     |          | -26.26 dBm /          | 3 kHz 8 dBm / 3 kH | lz Pass         |
|                        | Mid channel, 2441MHz     |                     |          | -27.52 dBm /          |                    |                 |
|                        | High channel, 2477MHz    |                     |          | -30.28 dBm /          | 3 kHz 8 dBm / 3 kH | Hz Pass         |

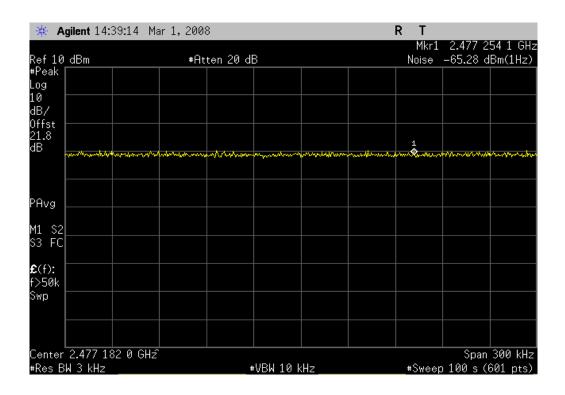
## **Power Spectral Density**


Transmitting with pi/4-DQPSK modulatio, Low channel, 2405MHz

Result: Pass Value: -26.26 dBm / 3 kHz Limit: 8 dBm / 3 kHz



#### Transmitting with pi/4-DQPSK modulatio, Mid channel, 2441MHz


Result: Pass Value: -27.52 dBm/3 kHz Limit: 8 dBm/3 kHz



# **Power Spectral Density**

Transmitting with pi/4-DQPSK modulatio, High channel, 2477MHz

Result: Pass Value: -30.28 dBm / 3 kHz Limit: 8 dBm / 3 kHz

