Logitech, Inc.

ClearChat PC Wireless Headset M/N: A-00006

March 11, 2008

Report No. LABT0296.1

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2008Northwest EMC, Inc

Certificate of Test

Issue Date: March 11, 2008 Logitech, Inc. Model: ClearChat PC Wireless Headset M/N: A-00006

Emissions					
Test Description	Specification	Test Method	Pass/Fail		
Spurious Radiated Emissions	FCC 15.247 (DTS):2007	ANSI C63.4:2003 KDB No. 558074	Pass		
Spurious Conducted Emissions	FCC 15.247 (DTS):2007	ANSI C63.4:2003 KDB No. 558074	Pass		
Peak Output power	FCC 15.247 (DTS):2007	ANSI C63.4:2003 KDB No. 558074	Pass		
Occupied Band Width	FCC 15.247 (DTS):2007	ANSI C63.4:2003 KDB No. 558074	Pass		
Band Edge Compliance	FCC 15.247 (DTS):2007	ANSI C63.4:2003 KDB No. 558074	Pass		
Power Spectral Density	FCC 15.247 (DTS):2007	ANSI C63.4:2003 KDB No. 558074	Pass		
Spurious Radiated Emissions of the Receiver	RSS-Gen:2007	RSS-Gen:2007	Pass		
Conducted Emissions	FCC 15.207:2007	ANSI C63.4:2003	Pass		
Radiated Emissions	FCC 15.109(g) (CISPR 22:1997):2007	ANSI C63.4:2003	Pass		

Modifications made to the product See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada.

Approved By:
The l
Ethan Schoonover, Sultan Lab Manager

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

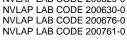
Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision Number	Description	Date	Page Number
00	None		

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.


CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

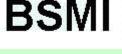
TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories, available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0604C.

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (*Registration Numbers. - Hillsboro: C-1071, R-1025, C-2687, T-289, and R-2318, Irvine: R-1943, C-2766, and T-298, Sultan: R-871, C-1784, and T-294*).


BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

MIC: Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (*Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157*)

SCOPE For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/scope.asp

How important is it to understand performance criteria?

It is the responsibility of the test laboratory to observe the results of the tests that are performed and to accurately report those results. As the responsible party (manufacturer, importer, etc) it is your responsibility to take those results, compare them against the specifications and standards, then, if appropriate make a declaration of conformity. As the responsible party it makes sense that you are fully aware of the requirements, how your device performs when tested to those requirements, and what information is being used to declare conformity.

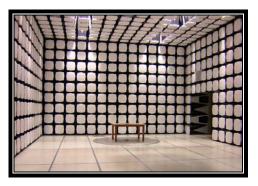
To better assist you in making those conformity decisions, Northwest EMC has adopted a very simple, yet very clear performance assessment procedure. The following criteria is used when performing immunity or susceptibility tests:

Performance Criteria 1:

- □ The EUT exhibited no change in performance when operating as specified by the manufacturer. In this case no changes were observed during the test.
- □ In most cases this would be equivalent to Performance Criteria A. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, no changes were observed. Basically nothing happened.

Performance Criteria 2:

- The EUT exhibited a change in performance when operating as specified by the manufacturer. In this case the equipment recovered without any operator intervention, once the test signal was removed. The data sheets will detail the exact phenomena observed.
- In most cases this would be equivalent to Performance Criteria B. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, changes were observed. The EUT was able to recover from those changes without any operator intervention, once the test signal was removed.


Performance Criteria 3:

- The EUT exhibited a change in performance when operating as specified by the manufacturer. In this case the equipment required some operator intervention in order to recover. This intervention may be in the form of changing EUT settings, or even resetting the system. The data sheets will detail the exact phenomena observed.
- In most cases this would be equivalent to Performance Criteria C. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, changes were observed. The EUT required some sort of operator intervention to recover. There was no permanent damage and the EUT appeared to function normally after completion of test.

Performance Criteria 4:

- The EUT exhibited a change in performance when operating as specified by the manufacturer. In this case the equipment was damaged and would not recover. The data sheets will detail the exact phenomena observed.
- In most cases there is no specific criterion to compare this to; it typically ends the test. When operating the equipment in the modes or configurations specified by the responsible party, monitoring the parameters specified, changes were observed. There was no recovery; the equipment would no longer function as intended.

California – Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 Fax: (503) 844-3826

Oregon – Evergreen Facility Labs EV01 – EV11

22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 Fax: (503) 844-3826

Washington – Sultan Facility Labs SU01 – SU07

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378

Party Requesting the Test

Company Name:	Logitech, Inc.
Address:	1499 SE Tech Center Place Suite 350
City, State, Zip:	Vancouver, WA 98683
Test Requested By:	Aaron Cohen
Model:	ClearChat PC Wireless Headset M/N: A-00006
First Date of Test:	March 4, 2008
Last Date of Test:	March 8, 2008
Receipt Date of Samples:	February 22, 2008
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

The ClearChat PC Wireless Headset (A-00006) transmit/receives in pi/4-DQPSK modulation only. It has two antennas (but only one antenna output port - antennas use a switch). The radio operates in the 2400-2483.5 MHz band.

Testing Objective:

Logitech is seeking a limited modular approval of the radio under FCC 15.247.

Configurations

CONFIGURATION 1 LABT0296

Software/Firmware Running during test			
Description	Version		
AWAdeveloper	1.0.076		

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
ClearChat PC Wireless Headset	Logitech, Inc.	A-00006	Unknown

Peripherals in test setup boundary				
Description Manufacturer Model/Part Number Serial Number				
AC Adapter	Logitech, Inc.	P925BW06042AB50	Unknown	

Remote Equipment Outside of Test Setup Boundary				
Description Manufacturer Model/Part Number Serial Number				
SPI/USB Converter	Avnera	USB to SPI Converter	24	
Connector Board	Logitech, Inc.	210-000247-002	Unknown	
Laptop	Dell	PP20L	Unknown	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
SPI	No	0.3m	No	Headset	SPI/USB converter (during set- up only)
DC	No	1.6m	No	Headset	AC Adapter
SPI	No	0.2m	No	Connector Board	SPI/USB converter
USB	Yes	1.0m	Yes	SPI/USB converter	Laptop
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATION 5 LABT0296

Software/Firmware Running during test		
Description	Version	
AWAdeveloper	1.0.076	

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
ClearChat PC Wireless Headset	Logitech, Inc.	A-00006	210-000226-008

Remote Equipment Outside of Test Setup Boundary					
Description Manufacturer Model/Part Number Serial Number					
SPI/USB Converter	Avnera	USB to SPI Converter	24		
Connector Board	Logitech, Inc.	210-000247-002	Unknown		
Laptop	Dell	PP20L	Unknown		

Cables	Cables							
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2			
SPI	No	0.3m	No	Headset	SPI/USB converter (during set- up only)			
SPI	No	0.2m	No	Connector Board	SPI/USB converter			
USB	Yes	1.0m	Yes	SPI/USB converter	Laptop			
PA = C	able is perm	anently attached	to the device	ce. Shielding and/or preser	nce of ferrite may be unknown.			

Modifications

	Equipment modifications							
Item	Date	Test	Modification	Note	Disposition of EUT			
1	2\25\2008	Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
2	3/4/2008	Peak Output Power	Modified from delivered configuration. Initial or No Modification	Installed C39. 9pF cap between C36 pin 1 and C37 pin 1.Modification done by Aaron Cohen.	EUT remained at Northwest EMC following the test.			
3	3/4/2008	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
4	3/4/2008	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
5	3/4/2008	Spurious conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
6	3/5/2008	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
7	3/8/2008	Occupied Band Width	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.			

EMC

RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Pink Noise playing at 50% volume level. Running NWEMC H pattern

MODE USED FOR FINAL DATA

Pink Noise playing at 50% volume level. Running NWEMC H pattern.

POWER SETTINGS INVESTIGATED

230VAC/50Hz 120VAC/60Hz

POWER SETTINGS USED FOR FINAL DATA

120VAC/60Hz

FREQUENCY RANGE IN	VESTIGATED		
Start Frequency	30MHz	Stop Frequency	1000MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna, Biconilog	EMCO	3142	AXB	1/15/2008	24
EV11 Cables		10m Test Distance Cables	EVL	5/1/2007	13
Pre-Amplifier	Miteq	AM-1551	AOY	5/1/2007	13
Spectrum Analyzer	Agilent	E4443A	AAS	12/7/2007	13

Frequency Range	Peak Data	Quasi-Peak Data	Average Data	
(MHz)	(kHz)	(kHz)	(kHz)	
0.01 - 0.15	1.0	0.2	0.2	
0.15 - 30.0	10.0	9.0	9.0	
30.0 - 1000	100.0	120.0	120.0	
Above 1000	1000.0	N/A	1000.0	

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, a final radiated e frequency range investigated (scanned), is also noted in this report. Radiated emission: EUT azimuth and antenna height such that the maximum radiated emissions level will b a turntable and an antenna positioner. The preferred method of a continuous azimuth s of the EUT field strength with both polarities of the measuring antenna. A calibrated, lin positioned at the specified distance from the periphery of the EUT.

Tests were made with the antenna positioned in both the horizontal and vertical planes varied in height above the conducting ground plane to obtain the maximum signal streng the measurement distance shall be 3 meters or 10 meters. At any measurement distance from 1 meter to 4 meters. These height scans apply for both horizontal and vertical polar polarization the minimum height of the center of the antenna shall be increased so that 1 antenna clears the ground surface by at least 25 cm.

				R/		ED E	MISS	IONS	DATA		ET		P	PSA 2007.05.07 EMI 2007.7.24
	EMC	1.7										lank Or		7
Sec			ClearChat P Unknown	C Wirele	ss Headset	and Dong	le				N		: LABT029 : 02/25/08	1
Ser			Logitech, In	с.							Te	mperature		
	Attende	es:	none									Humidity	: 31%	
	Proje							D	4001/40/0	<u> </u>	Barom		: 1026.5mb)
TEST S	SPECIFIC		David DiVer DNS	gigelis				Power:	120VAC/6 Test Metho			Job Site	:[EV11	
			PR 22:1997):	2007 Cla	ss B				ANSI C63.					
TEST	PARAME		0											
	a Height			- 4				Test Dista	ince (m)	10				
COMM Dongle	ENTS plugged	l into	OUSB Cradi	e, Heads	et powered	by Direct	Plug-in Ad	aptor.						
	PERATIN		odes at 50% volur	ne level.	Running N	VEMC H n	attern.							
DEVIA [®]	TIONS FF	ROM	TEST STAN	IDARD	rtunning itt		attorn.							
	viations.													
Run #			1								1 .	0/c		
	uration #		2 Pas	_						Signature	ANI	alle L'	-	
Result	S		Fas	5						Signature		V		
	80.0													
	70.0													
	60.0													
E	50.0													
dBuV/m	40.0 -													
	30.0 -											•		
	20.0 -						•							
	10.0 -								•					
	0.0 + 10.0	00						100.000					1(000.000
	10.0	00						MHz						
	Freq (MHz) 38.987		Amplitude (dBuV) 45.0	Factor (dB) -20.0	Azimuth (degrees) 21.0	Height (meters) 1.0	Distance (meters) 10.0	External Attenuation (dB) 0.0	Polarity V-Bilog	Detector	Distance Adjustment (dB) 0.0	Adjusted dBuV/m 25.0	Spec. Limit dBuV/m 30.0	Compared to Spec. (dB) -5.0
	38.992		43.0	-20.0	326.0	1.0	10.0	0.0	V-Bilog V-Bilog	QP	0.0	23.0	30.0	-5.3
3	39.322		44.7	-20.2	334.0	1.0	10.0	0.0	V-Bilog	QP	0.0	24.5	30.0	-5.5
	48.320		45.7	-23.5	355.0	1.0	10.0	0.0	V-Bilog	QP	0.0	22.2	30.0	-7.8
	76.576 31.375		46.4 42.1	-27.4 -16.2	-1.0 331.0	2.2 3.4	10.0 10.0	0.0 0.0	V-Bilog V-Bilog	QP QP	0.0 0.0	19.0 25.9	30.0 37.0	-11.0 -11.1
	39.005		36.0	-20.0	292.0	3.1	10.0	0.0	H-Bilog	QP	0.0	16.0	30.0	-14.0
9	77.129		30.4	-7.7	345.0	1.9	10.0	0.0	H-Bilog	QP	0.0	22.7	37.0	-14.3
	92.360		34.9	-12.6	361.0	3.4	10.0	0.0	V-Bilog	QP	0.0	22.3	37.0	-14.7
	00.279		41.5	-19.4	-1.0	1.2	10.0	0.0	V-Bilog	QP	0.0	22.1	37.0	-14.9
	62.905 49.614		40.3 30.8	-26.8 -10.5	207.0 61.0	2.2 3.4	10.0 10.0	0.0 0.0	V-Bilog V-Bilog	QP QP	0.0 0.0	13.5 20.3	30.0 37.0	-16.5 -16.7
	38.961		30.8	-20.0	168.0	3.4	10.0	0.0	H-Bilog	QP	0.0	12.1	30.0	-17.9
1	96.608		34.6	-23.4	134.0	3.4	10.0	0.0	V-Bilog	QP	0.0	11.2	30.0	-18.8
1	43.503		36.0	-26.1	252.0	2.0	10.0	0.0	V-Bilog	QP	0.0	9.9	30.0	-20.1

EMC

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Receive mode mid channel 20, low diversity antenna Transmitting high channel 37, low diversity antenna Transmitting mid channel 20, low diversity antenna Transmitting low channel 2, low diversity antenna

POWER SETTINGS INVESTIGATED

USB

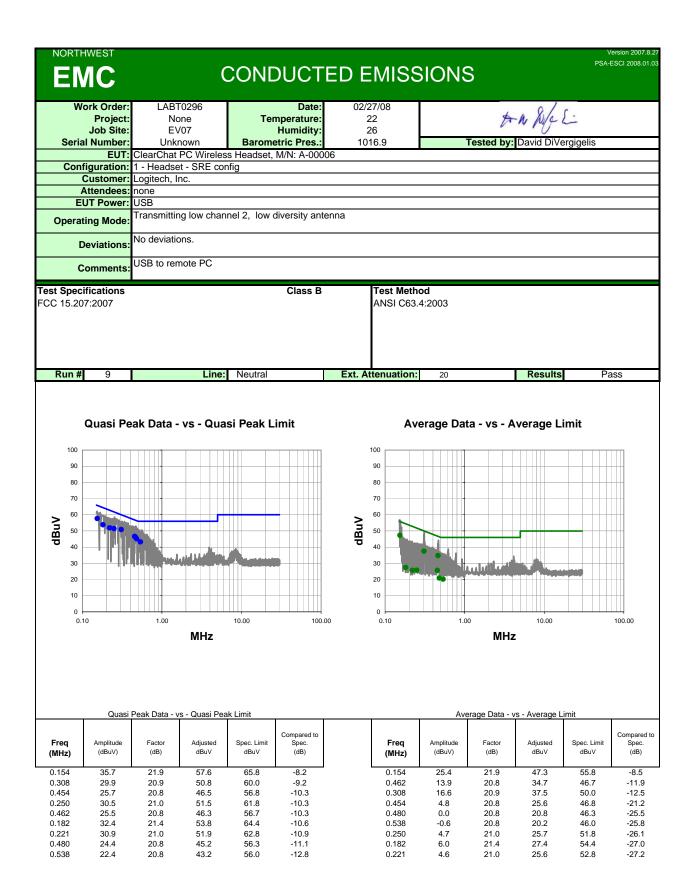
CONFIGURATIONS INVESTIGATED

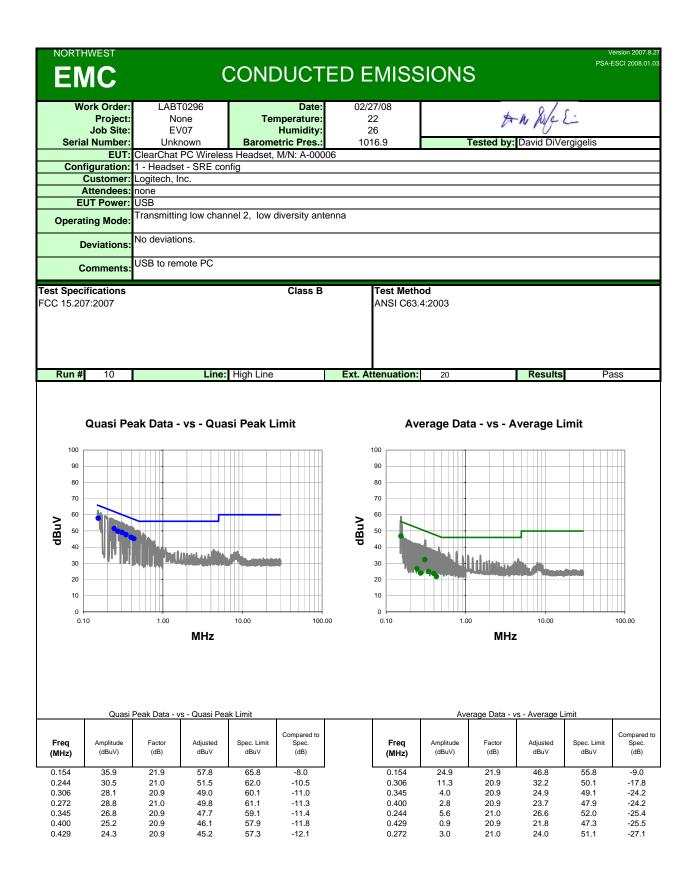
1 - Headset - SRE config

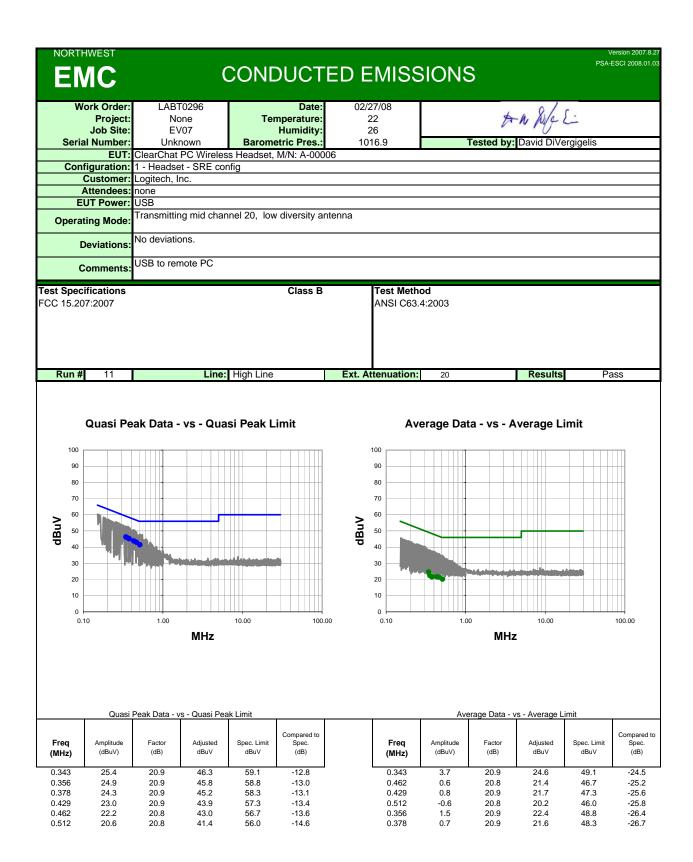
SAMPLE CALCULATIONS

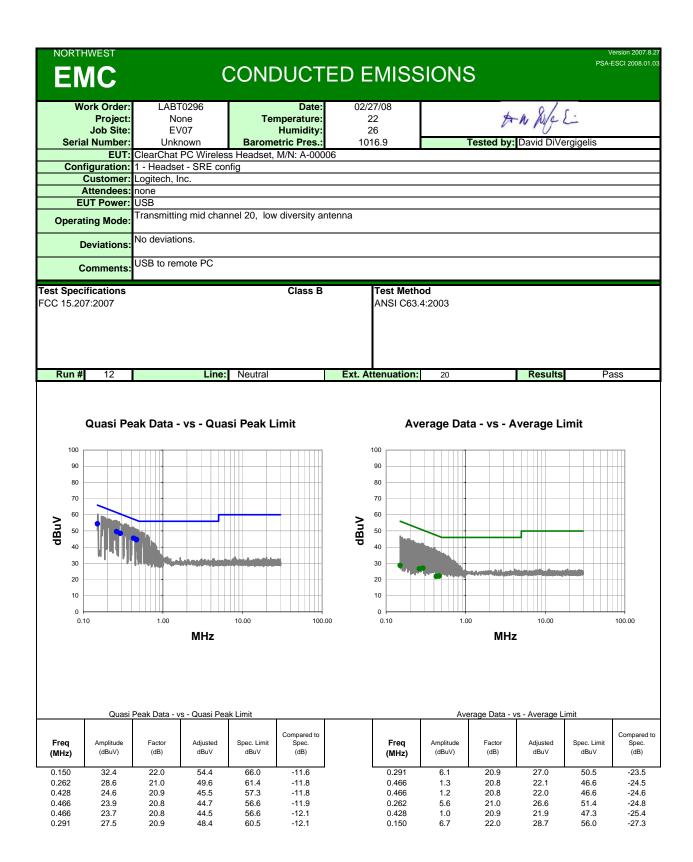
Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

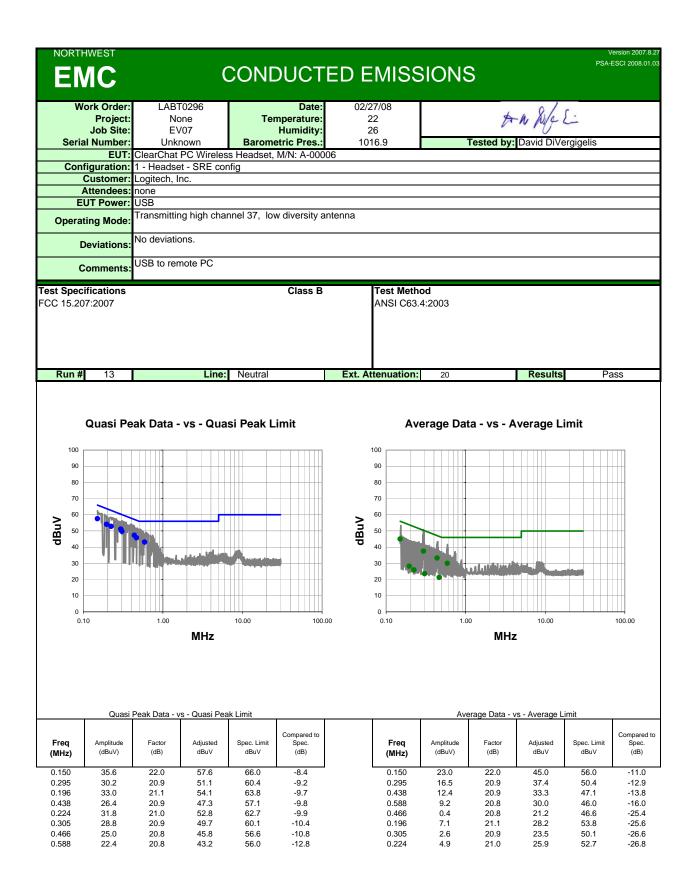
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
LISN	Solar	9252-50-R-24-BNC	LIR	1/4/2008	13 mo
Attenuator	Coaxicom	66702 2910-20	RBR	5/25/2007	13 mo
High Pass Filter	T.T.E.	7766	HFG	2/5/2008	13 mo
EV07 Cables		Conducted Cables	EVG	4/17/2007	13 mo
Receiver	Rohde & Schwartz	ESCI	ARG	12/7/2007	13 mo

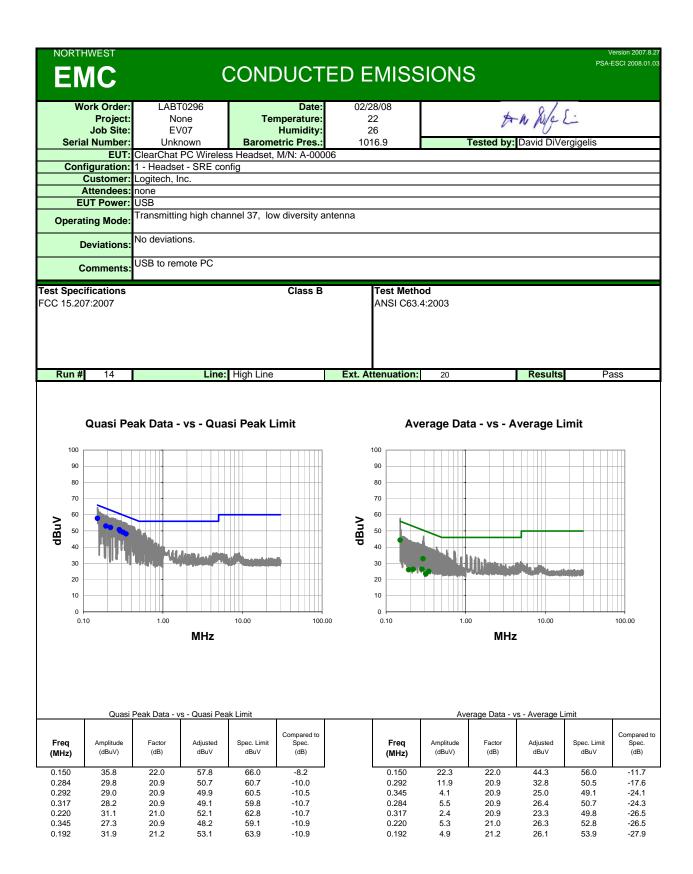

MEASUREMENT BANDWIDTHS Frequency Range Peak Data Quasi-Peak Data Average Data (MHz) (kHz) (kHz) (kHz) 0.01 - 0.15 0.2 1.0 0.2 0.15 - 30.0 10.0 9.0 9.0 30.0 - 1000 100.0 120.0 120.0 Above 1000 1000.0 N/A 1000.0 Measurements were made using the bandwidths and detectors specified. No video filter was used.

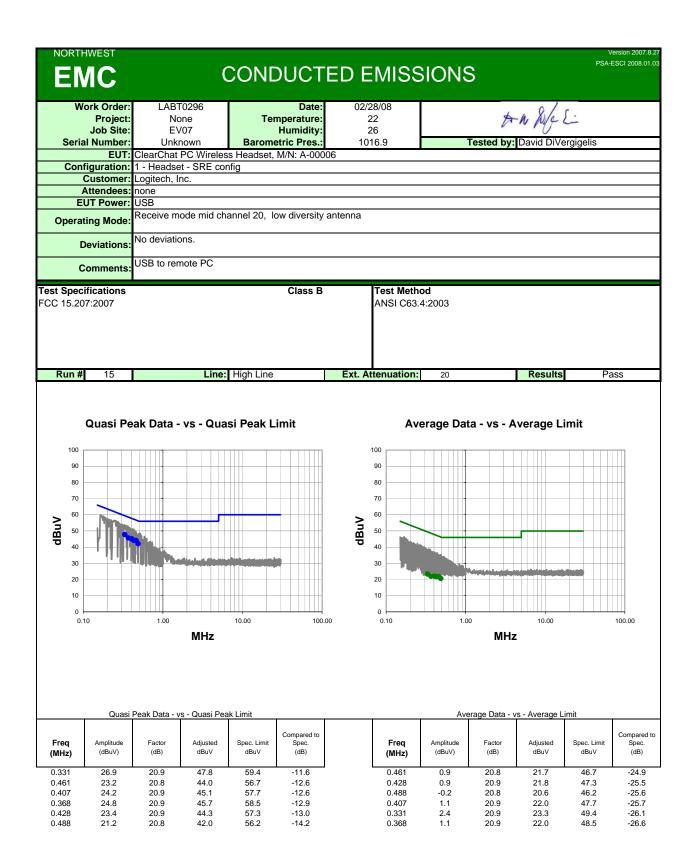

MEASUREMENT UNCERTAINTY

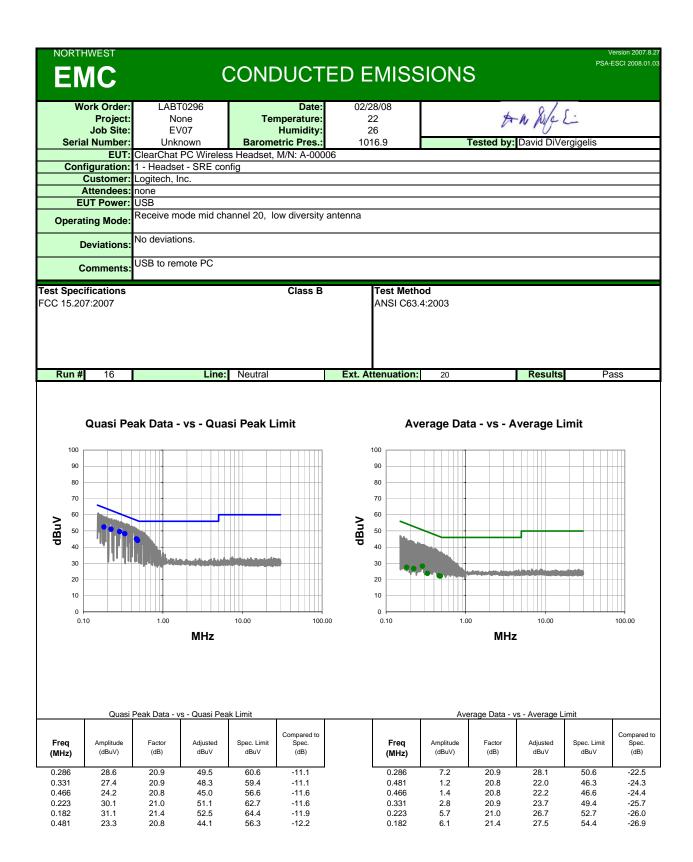

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.


TEST DESCRIPTION


Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 500hm resistive load. All 500hm measuring ports of the LISN are terminated by 500hm.







NORTHWEST EMC

RECIEVER SPURIOUS EMISSIONS

PSA 2007.05.07

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION	
Receive mode mid channel 20, low diversity antenna	
Receive mode mid channel 20, High diversity antenna	
POWER SETTINGS INVESTIGATED	

120VAC/60Hz

FREQUENCY RANGE INVESTIGATED 30 MHz

Start Frequency

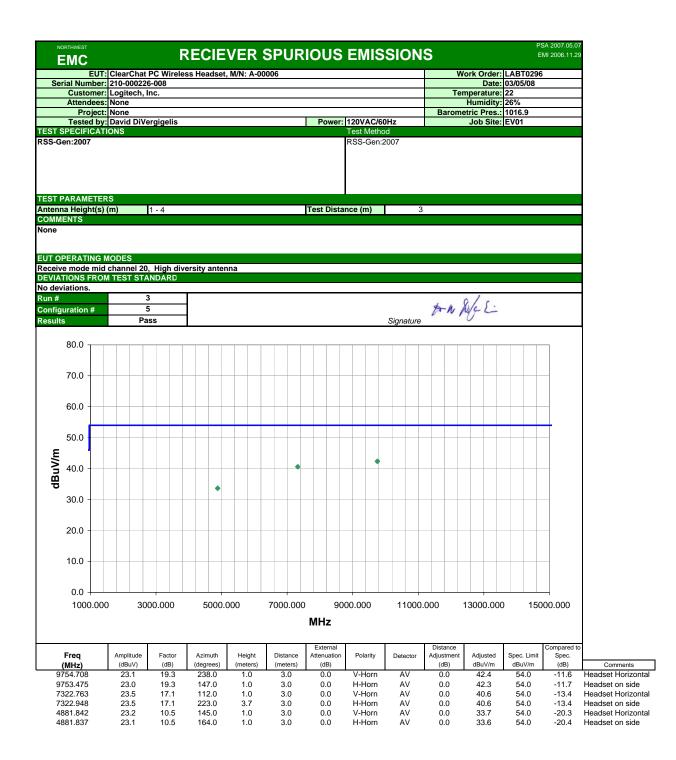
Stop Frequency

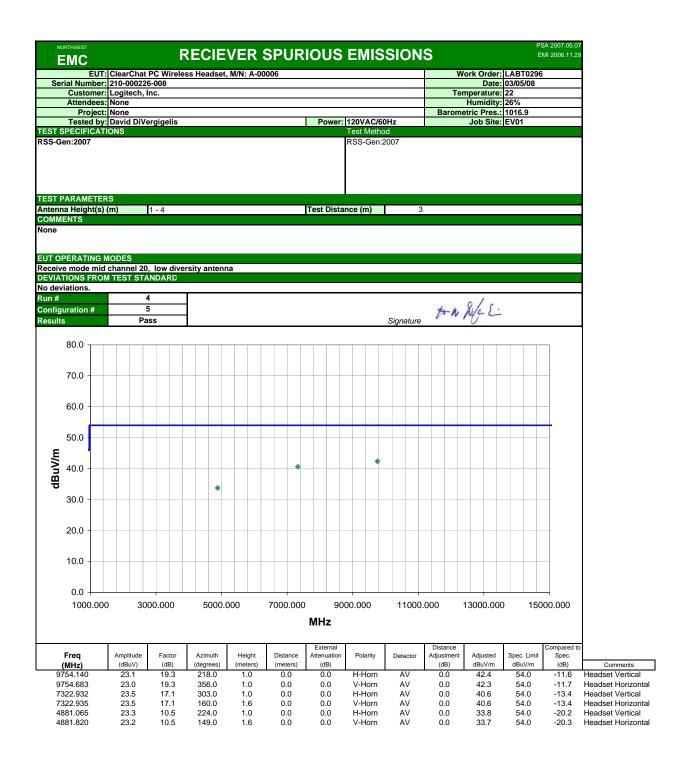
15 GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

EST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAT	12/7/2007	13
Pre-Amplifier	Miteq	AM-1616-1000	AOL	12/29/2006	16
Antenna, Biconilog	EMCO	3141	AXE	1/15/2008	24
EV01 Cables		Bilog Cables	EVA	10/23/2007	13
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	1/3/2008	13
Antenna, Horn	EMCO	3115	AHC	8/24/2006	24
EV01 Cables		Double Ridge Horn Cables	EVB	1/3/2008	13
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVC	6/22/2007	13
Antenna, Horn	ETS	3160-07	AHU	NCR	0
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	6/22/2007	13
Antenna, Horn	ETS	3160-08	AHV	NCR	0
EV01 Cables		Standard Gain Horns Cables	EVF	10/23/2007	13


I BANDWIDTHS			
Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0
Measurements were made us	sing the bandwidths and de	tectors specified. No video filto	er was used.


MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for mid channel receive frequency. For this configuration, the spectrum was scanned throughout the specified range. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes.

RADIATED SPURIOUS EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION
Transmit mode, Low channel
Transmit mode, mid channel
Transmit mode, high channel

POWER SETTINGS INVESTIGATED

	120	VAC/	/60HZ	
--	-----	------	-------	--

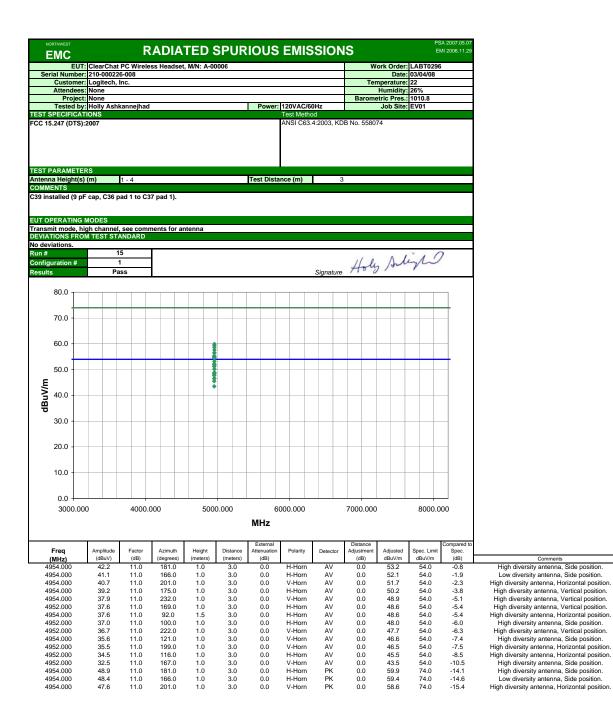
EMC

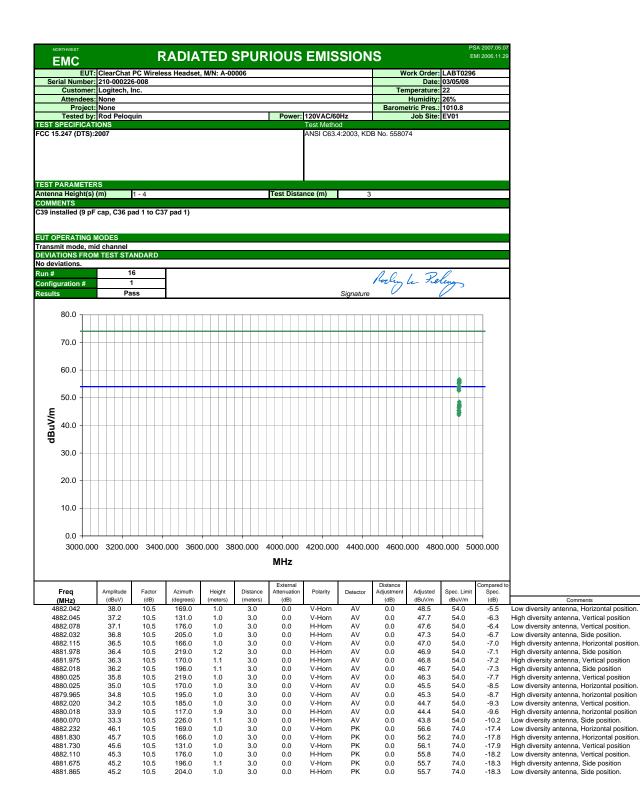
FREQUENCY RANGE INVESTIGATED					
Start Frequency	30 MHz	Stop Frequency	25 GHz		
etait i requeitey	00 11112	Clop I Toquolloy	20 0112		

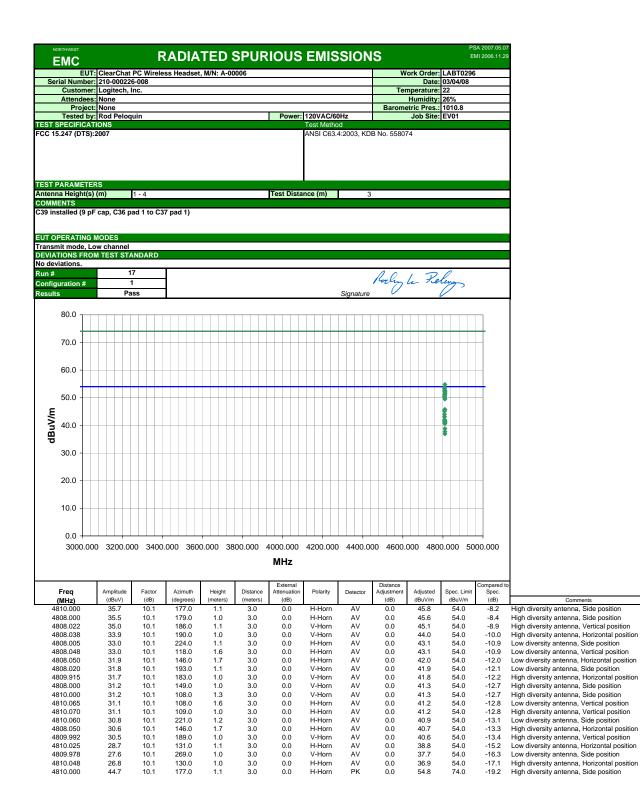
SAMPLE CALCULATIONS

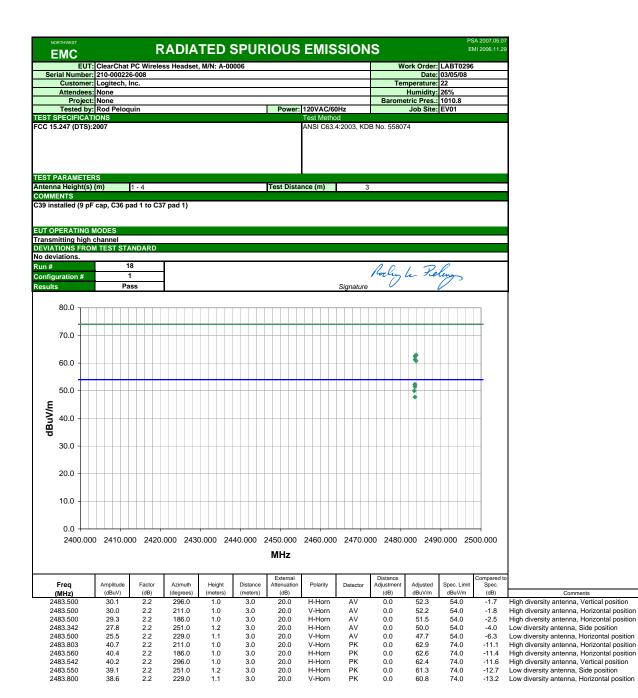
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

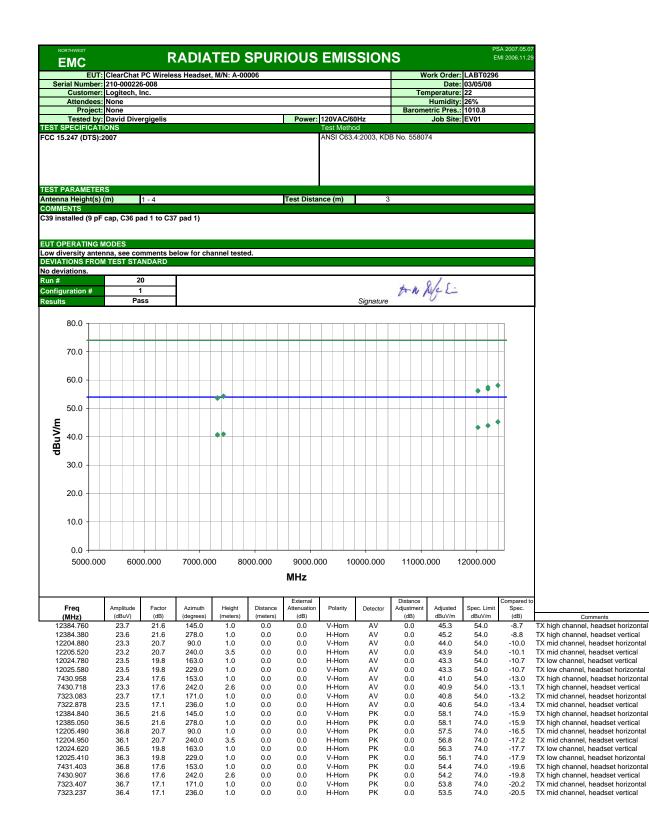
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAT	12/7/2007	13
Pre-Amplifier	Miteq	AM-1616-1000	AOL	12/29/2006	16
Antenna, Biconilog	EMCO	3141	AXE	1/15/2008	24
EV01 Cables		Bilog Cables	EVA	10/23/2007	13
High Pass Filter	Micro-Tronics	HPM50111	HFO	1/16/2008	13
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	1/3/2008	13
Antenna, Horn	EMCO	3115	AHC	8/24/2006	24
EV01 Cables		Double Ridge Horn Cables	EVB	1/3/2008	13
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVC	6/22/2007	13
Antenna, Horn	ETS	3160-07	AHU	NCR	0
EV01 Cables		Standard Gain Horns Cables	EVF	10/23/2007	13
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	6/22/2007	13
Antenna, Horn	ETS	3160-08	AHV	NCR	0
EV01 Cables		Standard Gain Horns Cables	EVF	10/23/2007	13
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	7/25/2007	13
Antenna, Horn	EMCO	3160-09	AHG	NCR	0
EV01 Cables		6GHz Standard Gain Horn C	EVD	7/25/2007	13

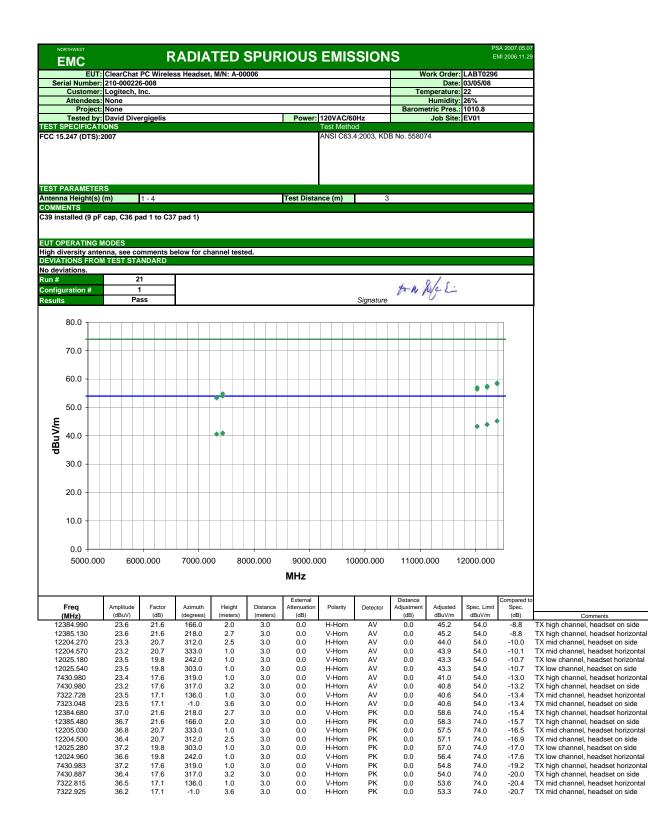

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0


MEASUREMENT UNCERTAINTY


Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.


TEST DESCRIPTION


The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

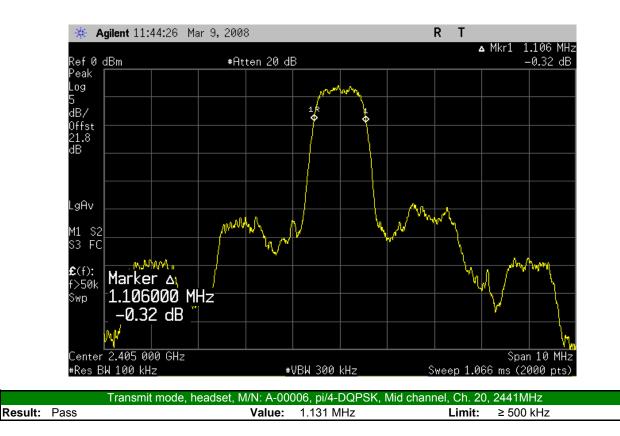


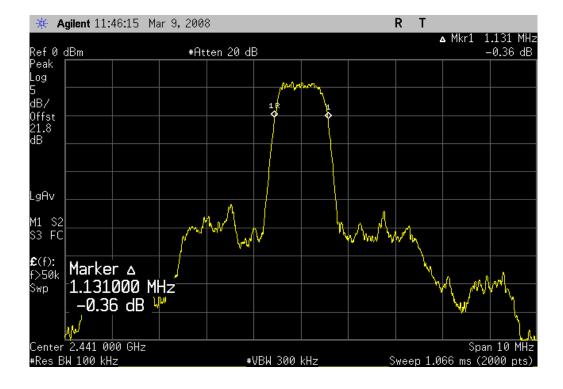
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT							
Description	Manufacturer	Model	ID	Last Cal.	Interval		
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/8/2007	13		
Spectrum Analyzer	Agilent	E4446A	AAY	12/18/2007	12		

MEASUREMENT UNCERTAINTY

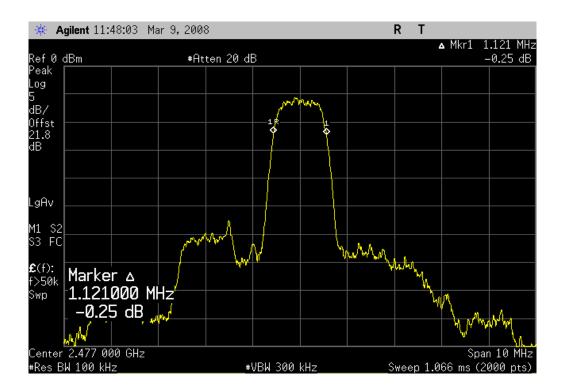
Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.


TEST DESCRIPTION


The occupied bandwidth was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode.

NORTHWEST EMC		Occupied I	Bandwidth			XMit 2007.06.13
EUT	ClearChat PC Wireless He	adset, M/N: A-00006			Work Order: LABT02	296
Serial Number:	210-000226-008				Date: 03/08/0	8
Customer:	: Logitech, Inc.				Temperature: 23°C	
Attendees					Humidity: 25%	
Project:	None			E	Barometric Pres.: 1010.8r	nb
	: Holly Ashkannejhad		Power: 3.7VDC		Job Site: EV06	
TEST SPECIFICAT	IONS		Test Meth	od		
FCC 15.247 (DTS):	2007		ANSI C63	.4:2003 KDB No. 558074	-	
COMMENTS						
	M TEST STANDARD	ıstalled (9pF cap, C36 pin1 to C37 pir				
No Deviations						
Configuration #	5	Signature Holy)	stight			
				Value	Limit	Results
Transmit mode, Hea	adset, M/N: A-00006 pi/4-DQPSK					
	Low channel, 0	Ch. 2, 2405MHz		1.106 MHz	≥ 500 kHz	Pass
	Mid channel, C	Ch. 20, 2441MHz		1.131 MHz	≥ 500 kHz	Pass
	High channel,	Ch. 38, 2477MHz		1.121 MHz	≥ 500 kHz	Pass

Occupied Bandwidth


	Transmit mode, Headset, M/N: A-00	006, pi/4-DQPSK, L	ow channel, Ch. 2,	2405MHz	
Result: Pass	Value:	1.106 MHz	Limit:	≥ 500 kHz	

Occupied Bandwidth

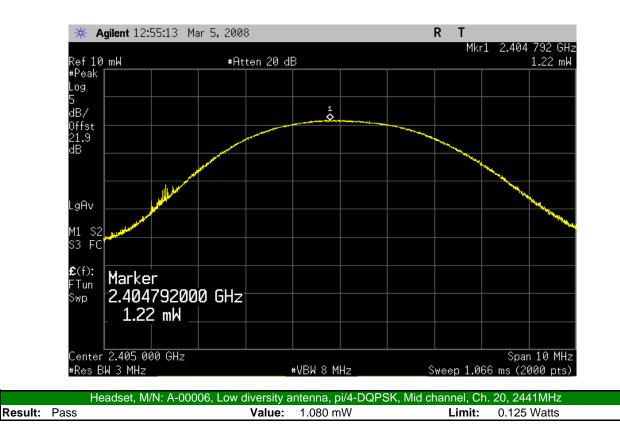
	Transmit mode, Headset, M/N: A-0	0006, pi/4-DQPSK, High channe	el, Ch. 38, 2	477MHz
Result: Pas	ss Value	: 1.121 MHz	Limit: ≥	≥ 500 kHz

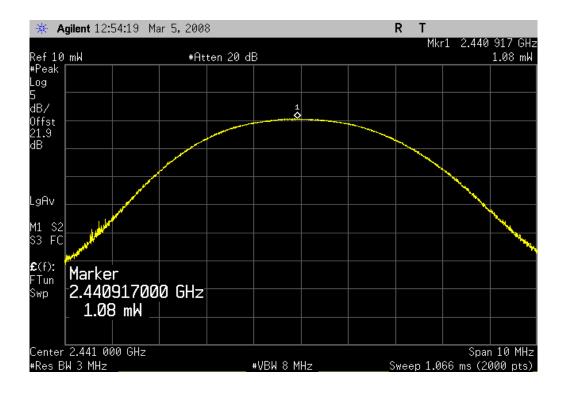
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/8/2007	13
Spectrum Analyzer	Agilent	E4446A	AAY	12/18/2007	12

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

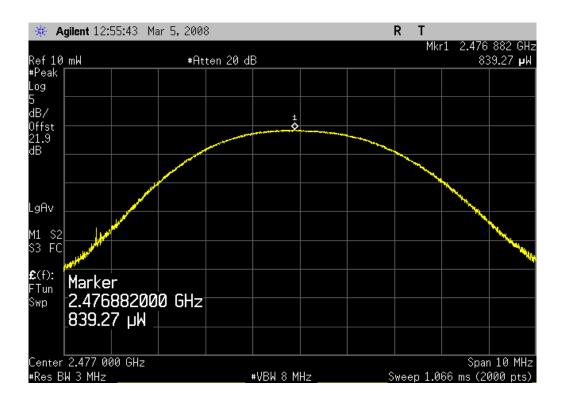
TEST DESCRIPTION


The peak output power was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode.


De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36dBm.

	Peak	Output Power			XMit 2007.06.13
EUT:	ClearChat PC Wireless Headset, M/N: A-00006			Work Order:	LABT0296
Serial Number:	210-000226-008			Date:	03/04/08
Customer:	Logitech, Inc.			Temperature:	23ºC
Attendees:	None			Humidity:	25%
Project:	None		Ba	arometric Pres.:	1010.8mb
Tested by:	Holly Ashkannejhad	Power: 3.7VDC		Job Site:	EV06
TEST SPECIFICAT	IONS	Test Met	hod		
FCC 15.247 (DTS):2	2007	ANSI C6	3.4:2003 KDB No. 558074		
COMMENTS					
	cap, C36 pin1 to C37 pin 1) M TEST STANDARD				
DEVIATIONS FROM					
Configuration #	5 Signature	foly soligh			
			Value	Lir	nit Results
Headset, M/N: A-00	006, Low diversity antenna pi/4-DQPSK				
	Low channel, Ch. 2, 2405MHz		1.220 mW	0.125 Watts	Pass
	Mid channel, Ch. 20, 2441MHz		1.080 mW	0.125 Watts	Pass
	High channel, Ch. 38, 2477MHz		0.839 mW	0.125 Watts	Pass

Peak Output Power


	Headset, M/N: A-00006, L	_ow diversity a	intenna, pi/4-DQI	PSK, Low channel, Ch	. 2, 2405MHz	
Result: Pa	ass	Value:	1.220 mW	Limit:	0.125 Watts	

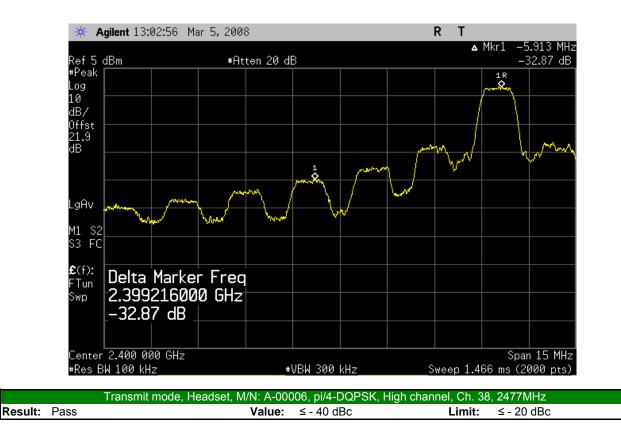
Peak Output Power

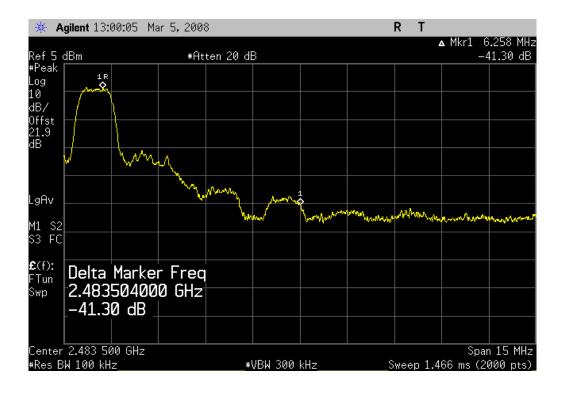
	He	eadset, M/N: A-00006, Low diversity an	itenna, pi/4-DQPSK	, High channel, Ch.	38, 2477MHz
Result:	Pass	Value:	0.839 mW	Limit:	0.125 Watts

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/8/2007	13
Spectrum Analyzer	Agilent	E4446A	AAY	12/18/2007	12

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.


TEST DESCRIPTION


The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to low and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode. The channels closest to the band edges were selected. The spectrum was scanned across each band edge from 5 MHz below the band edge to 5 MHz above the band edge.

	Band Edge Co	mpliance		XMit 2007.06.13
-	ClearChat PC Wireless Headset, M/N: A-00006		Work Order: LABT02	296
Serial Number:	210-000226-008		Date: 03/04/08	В
Customer:	Logitech, Inc.		Temperature: 23°C	
Attendees:	None		Humidity: 25%	
Project:	None		Barometric Pres.: 1010.8n	nb
Tested by:	Holly Ashkannejhad	Power: 3.7VDC	Job Site: EV06	
TEST SPECIFICAT	IONS	Test Method		
FCC 15.247 (DTS):2	2007	ANSI C63.4:2003 KDB No. 5580	74	
COMMENTS				
	9 installed (9pF, C35 pin1 to C37 pin 1) A TEST STANDARD			
No Deviations	I LEST STANDARD			
Configuration #	5 Signature Holy An	light		
		Value	Limit	Results
Transmit mode, Hea	adset, M/N: A-00006 pi/4-DQPSK			
	Low channel, Ch. 2, 2405 MHz High channel, Ch. 38, 2477MHz	≤ - 30 dBc ≤ - 40 dBc	≤ - 20 dBc ≤ - 20 dBc	Pass Pass

Band Edge Compliance

	Transmit mode, Headset, M/N: A-000	006, pi/4-DQPSK, Low chann	el, Ch. 2,	2405 MHz
Result: Pass	Value:	≤ - 30 dBc	Limit:	≤ - 20 dBc

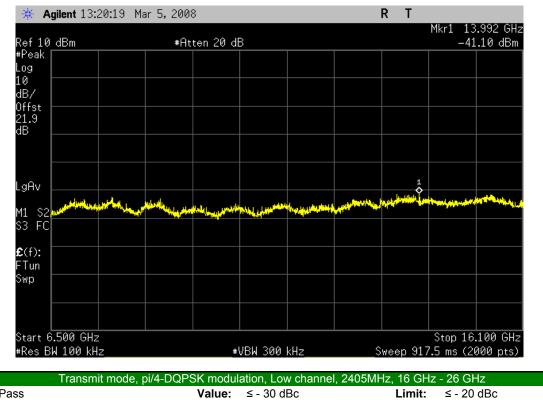
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/8/2007	13
Spectrum Analyzer	Agilent	E4446A	AAY	12/18/2007	12

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The spurious RF conducted emissions were measured with the EUT set to low, medium, and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode. For each transmit frequency, the spectrum was scanned throughout the specified frequency.

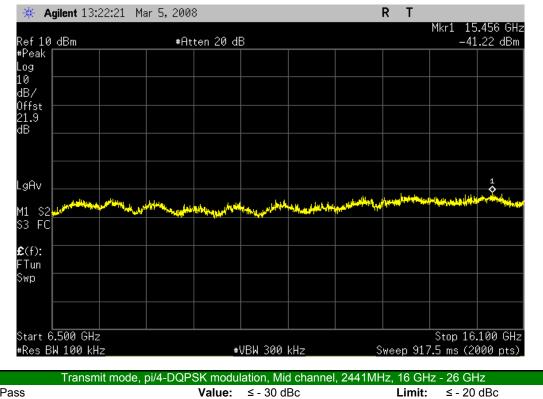

NORTHWEST EMC		Spurious Conducted En	nissions		XMit 2007.06.13
	earChat PC Wireless Heads	set, M/N: A-00006		Work Order: LABT02	
Serial Number: 210				Date: 03/04/0	8
Customer: Log				Temperature: 23°C	
Attendees: No				Humidity: 25%	-
Project: No				Barometric Pres.: 1010.8r	nb
	Ily Ashkannejhad	Power: 3.7		Job Site: EV06	
TEST SPECIFICATION			st Method		
FCC 15.247 (DTS):2007	7	AN	SI C63.4:2003 KDB No. 55807	74	
COMMENTS					
C39 installed: 9pF cap.	. C36 pin1 to C37 pin1.				
DEVIATIONS FROM TE	ST STANDARD				
No Deviations					
Configuration #	5	Signature Holy Arlingh	7		
			Value	Limit	Results
Transmit mode, no hop,					
Lov	v channel, 2405MHz				
	0 Hz - 1.1 GHz		≤ - 40 dBc	≤ - 20 dBc	Pass
	1 GHz - 6.6 GHz		≤ - 40 dBc	≤ - 20 dBc	Pass
	6.5 GHz - 16.1 GH	łz	≤ - 30 dBc	≤ - 20 dBc	Pass
_	16 GHz - 26 GHz		≤ - 30 dBc	≤ - 20 dBc	Pass
Mid	d channel, 2441MHz				
	0 Hz - 1.1 GHz		≤ - 40 dBc	≤ - 20 dBc	Pass
	1 GHz - 6.6 GHz		≤ - 30 dBc	≤ - 20 dBc	Pass
	6.5 GHz - 16.1 GH	lz	≤ - 30 dBc	≤ - 20 dBc	Pass
	16 GHz - 26 GHz		≤ - 30 dBc	≤ - 20 dBc	Pass
Hig	h channel, 2477MHz				
	0 Hz - 1.1 GHz		≤ - 40 dBc	≤ - 20 dBc	Pass
	1 GHz - 6.6 GHz		≤ - 30 dBc	≤ - 20 dBc	Pass
	6.5 GHz - 16.1 GH	łz	≤ - 30 dBc	≤ - 20 dBc	Pass
	16 GHz - 26 GHz		≤ - 30 dBc	≤ - 20 dBc	Pass

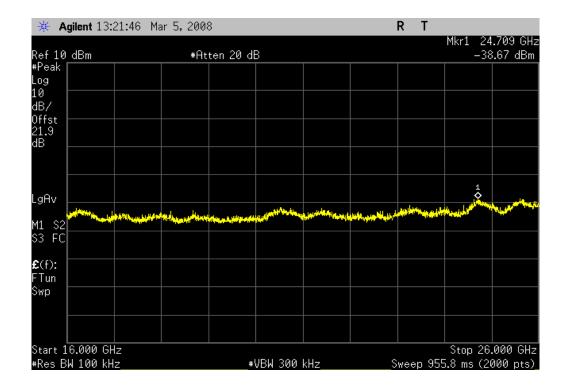
	Transmit mode, pi/4-DQPSK modu	llation, Low channel, 2405N	/Hz, 0 Hz -	1.1 GHz
Result: Pass	Value:	≤ - 40 dBc	Limit:	≤ - 20 dBc

∦¥ Aļ	gilent 13:14	4:37 Mar	· 5,200≀	3				RT	Mkr1 3	378.0 MHz
Ref 10	dBm		#At	ten 20 di	3				-48	3.59 dBm
#Peak										
Log 10										
dB/										
Offst										
21.9 dB										
LgAv .										
M1 S2	told, astropy that gov									
S3 FC	hud a conference theory	the the second second	an and the second	uptuby a phintere	an an dia ang	t delater a state base	den des Ares Managerte	e Alley de la Charles de la	and the second states of	والعوالي فألمانه فبوا
£ (f):										
FTun										
Swp										
Start Ø										00 0 GHz
# Res Bl	√100 kHz			#	VBW 300	kHz	S	weep 105	5.1 ms (2	000 pts)
	Tranamit	mada n		CIC modul	lation I o	u obonno				1-
sult: Pass	Transmit	mode, p	174-DQP	Value:	ation, Lo $\leq -40 \text{ d}$		I, 2405MI	Limit:	2 - 6.6 Gr 2 - 20	

╈ Agilent 13:15:3					Δ		103 6 GI
ef 10_dBm	#Att	en 20 dB					40.47 dl
Peak							
og Ø	1R						
в́/	🔶						
ffst							
1.9 B							
в							
gAv							
3.1.2							
1 \$2		and a start of the second starting of the	-	. 4	-	الأوالير أخريه والا	Link line has
3 FC	for a state of the		and the second se		la presidenti da espera		
:(f): Tun							
wp							
tart 1.000 0 GHz						Stop 6.6	00 0 GI
Res BW 100 kHz		#VBW 30	αL⊔⇒	0	weep 53		

	Transmit mode, pi/4-DQPSK modulat	tion, Low channel, 2405MHz,	6.5 GHz ·	- 16.1 GHz
Result: Pass	Value:	≤ - 30 dBc	Limit:	≤ - 20 dBc

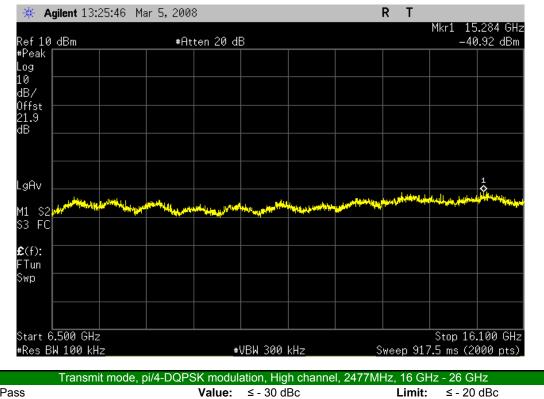

🔆 Agilent 13:20:5	51 Mar 5, 2008	3				RT	Mkr1 24	654 CU
ef 10 dBm	#At	ten 20 dB	3					.54 dBm
Peak og								
0								
B/ ffst								
1.9								
B								
gAv			مانامهاد ^{(الا} مريكان	. Latting and	La la constanza da	والمعالية المعالية ال		West Provide
1 \$2		an an air an			e and a second constant of			
3 FC								
(f):								
Tun kapan ka								
							Stop 26	രരവ
tart 16.000 GHz Res BW 100 kHz		#1	/BW 300 I		· · ·		Stop 26. 5.8 ms (20	

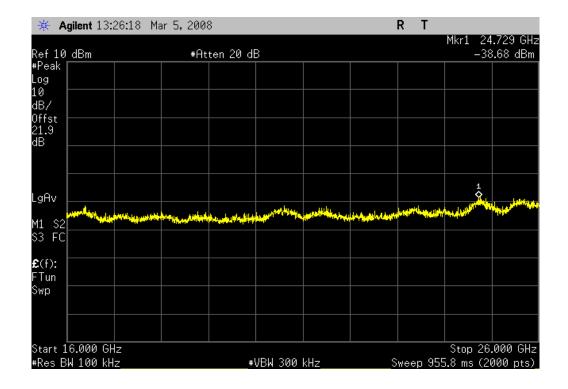

	Transmit mode, pi/4-DQPSK modu	ulation, Mid channel	l, 2441MHz, 0 Hz - 1	1.1 GHz	
Result: Pass	Value:	≤ - 40 dBc	Limit:	≤ - 20 dBc	

							9.9 MHz
	Atten 20 d	В				-48	8.57 dBm
#Peak							
Log 10							
dB/							
Offst							
21.9							
:/B							
_gAv							
11 S2 <mark>\$</mark>				<u>ab ab </u>		u dukan sensa tat	
S3 FC		te en plan et la servicia a de	and a stand of the state		A LEADER AND A LEADER	Company and a featured	
E (f):							
Tun							
Start 0 Hz						Stop 1.10	00 0 GHz
+Res BW 100 kHz	#	VBW 300	kHz	S	weep 105	5.1 ms (20	000 pts)_
Transmit mode, pi/4-DC							

🔆 Agilent 13:22:5	7 Mar 5, 2008		RT	
Ref 10 dBm	#Atten 20	dB	▲ Mkr1	472.8 MHz -38.48 dB
#Peak	#HILLEH ZU			-30.40 GD
Log	1R			
10	<u>→</u>			
dB/				
Offst				
21.9 dB				
LgAv				
M1 S2 S3 FC	فليجال وبالاستانية أتتنعان الاسادان والا	Manufactoria de la contra de la c	الالتهامية الذاري فلابهما الأجذاء والمارة أوالا المؤاليل وبال	الملجل فالملاحية المساحدة
S3 FC				
e /(),				
£(f): F⊤un				
Swp				
Start 1.000 0 GHz			Stop F	6.660 0 GHz
#Res BW 100 kHz		#VBW 300 kHz	Sweep 540.9 ms	

	Transmit mode, pi/4-DQPSK modula	tion, Mid channel	, 2441MHz, 6.5 GHz -	· 16.1 GHz	
Result: Pass	Value:	≤ - 30 dBc	Limit:	≤ - 20 dBc	




	Transmit mode, pi/4-DQPSK modu	llation, High chan	nel, 2477MHz, 0 Hz -	1.1 GHz	
Result: Pass	Value:	≤ - 40 dBc	Limit:	≤ - 20 dBc	

🔆 Agilent 13:24:34 Mar 5, 2	008		RT	
Ref 10 dBm	ŧAtten 20 dB			Mkr1 1.1 MHz -47.75 dBm
#Peak				
Log 10				
dB/				
Offst 21.9				
dB				
LgAv				
1				
M1 S2 2 S2 CC Market Market Market Market	Harden and the street	the second state of the second	and the state of a state of the	an the second start in the second starts
S3 FC				
£ (f):				
FTun				
Swp				
Start 0 Hz				Stop 1.100 0 GHz
#Res BW 100 kHz	#V[BW 300 kHz	Sweep 10	5.1 ms (2000 pts)_
Transmit mode, pi/4-D0	DSK modula	tion High channe		
ISS		≤ - 30 dBc	Limit:	

✤ Agilent 13:25:	07 Mar 5,200	8				RT	▲ Mkr1 4	165 0 MH
ef 10 dBm	#At	ten 20 di	3					37.72 dE
Peak								
og Ø	1_R							
B/								
ffst 1.9								
B								
~ <u>~</u>		1						
gAv		- Ā						
1 \$2		HALL BURNER	· intelligence in the	-	MARK STREET		والفاقين وعناوليه	A set places
3 FC	in the second	Hallinger, der				de allestations		
:(f):								
Tun								
мр 👘								
tart 1.000 0 GHz							 Stop 6.6	00000
Res BW 100 kHz_			VBW 300	LU-	0	LAAR E2	5.2 ms (2	

	Transmit mode, pi/4-DQPSK modulat	ion, High channel	, 2477MHz, 6.5 GHz -	16.1 GHz	
Result: Pass	Value:	≤ - 30 dBc	Limit:	≤ - 20 dBc	

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/8/2007	13
Spectrum Analyzer	Agilent	E4446A	AAY	12/18/2007	12

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The peak power spectral density measurements were measured with the EUT set to low, mid, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate. Per the procedure outlined in FCC 97-114, the spectrum analyzer was used as follows:

The emission peak(s) were located and zoom in on within the passband. The resolution bandwidth was set to 3 kHz, the video bandwidth was set to greater than or equal to the resolution bandwidth. The sweep speed was set equal to the span divided by 3 kHz (sweep = (SPAN/3 kHz)). For example, given a span of 1.5 MHz, the sweep should be 1.5 x $10^6 \div 3 \times 10^3 = 500$ seconds. External attenuation was used and added to the reading. The following FCC procedure was used for modifying the power spectral density measurements:

"If the spectrum line spacing cannot be resolved on the available spectrum analyzer, the noise density function on most modern conventional spectrum analyzers will directly measure the noise power density normalized to a 1 Hz noise power bandwidth. Add 35 dB for correction to 3 kHz."

NORTHWEST		Power Spectral	Doneit			XMit 2007.06.1
EMC		Fower Spectral	Densit	y		
EU.	T: ClearChat PC Wireless Headset,	M/N: A-00006			Work Order:	LABT0296
	er: 210-000226-008					03/04/08
Custome	er: Logitech, Inc.				Temperature:	23ºC
Attendee	s: None				Humidity:	25%
Projec	ct: None			Ba	arometric Pres.:	1010.8mb
	y: Holly Ashkannejhad	Po	ower: 3.7VDC		Job Site:	EV06
TEST SPECIFICA	TIONS		Test Meth	nod		
FCC 15.247 (DTS):2007		ANSI C63	3.4:2003 KDB No. 558074		
	•					
COMMENTS						
C39 installed (9)	pF cap. C36 pin1 to C37 pin1).					
DEVIATIONS FRO	OM TEST STANDARD					
No Deviations						
Configuration #	5	Signature Holy Ale	in			
				Value	Liı	nit Results
Transmitting with p	pi/4-DQPSK modulatio					
	Low channel, 2405MHz			-26.04 dBm / 3 kHz	8 dBm / 3 kH	z Pass
	Mid channel, 2441MHz			-26.94 dBm / 3 kHz	8 dBm / 3 kH	z Pass
	High channel, 2477MHz			-27.29 dBm / 3 kHz	8 dBm / 3 kH	z Pass

Power Spectral Density

Transmitting with pi/4-DQPSK modulatio, Low channel, 2405MHz									
Result: Pass	Value: -26.04 dBm / 3 kHz	Limit: 8 dBm / 3 kHz							

🔆 Agilent 13:5	57:52 Mar 5, 200	8				RT		
Ref 10 dBm	#At	ten 20 di	3					091 6 GHz dBm(1Hz)
#Peak								
Log 10								
dB/								
Offst 21.9					1	1		
dB Manana	handermania	nummun	yhn aphrony gody	mmmhan	warmen der son der bester	anthorn	hter the work of the	www.web.com/ha
PAvg								
W1 S2								
S3 FC								
£ (f):								
f>50k								
Swp								
Center 2.405 03	1 0 GHz						Sna	n 300 kHz
#Res BW 3 kHz		#	VBW 10 k	:Hz		#Sweep		(601 pts)_
	Transmitting wit							
SS		Value:	-26.94 c	lBm / 3 kl	Ηz	Limit:	8 dB	m / 3 kHz

Result: Pass

🔆 Agilent 13:54:27	4ar 5, 2008		RT	
Ref 10 dBm	#Atten 20 dł	3		1 2.440 655 6 GHz -61.94 dBm(1Hz)
#Peak Log				
10 dB/				
Offst 21.9 1 dB manual and an and a start and a start	March march March March March	www.www.	howwww.	un wanter and
PAvg				
M1 S2				
\$3 FC				
£ (f): f>50k				
Swp				
Center 2.440 796 1 GH #Res BW 3 kHz		VBW 10 kHz	#Swe	Span 300 kHz ep 100 s (601 pts)

Power Spectral Density

Transmitting with pi/4-DQPSK modulatio, High channel, 2477MHz									
Result: Pass	Value:	-27.29 dBm / 3 kHz	Limit:	8 dBm / 3 kHz					

🔆 Agilent 13	3:41:53 Ma	ar 5,2000	8				RT		
		. 0.		5					'83 9 GHz
Ref 10 dBm #Peak		#Ht	ten 20 di	5			Noise	-62.23 C	Bm(1Hz)
Log									
10 dB/									
0ffst1									
21.9 1 dB 1	Marton and	mproprint	mann	wallow Antology	Munder Marine	hannyaphayah	W. Musha	mahartin	Amoran
PAvg									
M1 S2									
S3 FC									
£ (f): f>50k									
Swp									
Center 2.476 S		z		<u></u>					300 kHz
#Res BW 3 kHz			#	∙VBW 10 k	:Hz		#Sweep	o 100 s (601 pts)_