# 1 GENERAL INFORMATION

# 1.1 Product Description

The EUT is a desk-top bubble ink-jet printer intended to be connected to Personal Computers in a system configuration; it is equipped with two printing heads respectively fitted with color and black ink-cartidges, being capable of driving one or the other according to the instructions received from the Computer.

FCC ID: DYKJP883

It is supplied by a Switched Mode Power Supply Unit and includes a Controller (Printed Wiring Board with standard electronic components) and low voltage d.c. stepping motors for paper feeding and the printing heads movements.

# 1.2 Related Submittal(s)/Grant(s)

None

olivetti 3/17

# 1.3 Tested System Details

The FCC IDs for all equipment, plus descriptions of all cables used in the tested system (including inserted cards, which have grants) are:

FCC ID: DYKJP883

| Model &<br>Serial No.                  | FCC ID       | Description         | Cable Descriptions                               |
|----------------------------------------|--------------|---------------------|--------------------------------------------------|
| JP 883 ( 1 )<br>s/n EMC-98-0366        | DYKJP883     | Printer, parallel   | Shielded parallel cable<br>Unshielded power cord |
| PC PRO SX16<br>s/n EMI-96-0942         | EP8BU386SX16 | Personal Computer   | Unshielded power cord                            |
| DSM 25-314/P<br>MDU1441<br>s/n 0003518 | A3K9Q2M003   | Monitor             | Shielded video cable<br>Unshielded power cord    |
| ANK27-101<br>s/n 106                   | DYKANK       | Keyboard            | Shielded keyboard cable                          |
| M-SE9-6MD<br>s/n MAI149301395          | DZLMSE9      | Mouse               | Shielded mouse cable                             |
| HP 7440A<br>s/n 2539A94878             | BSD8537440   | Plotter, serial I/F | Shielded serial cable<br>Unshielded power cord   |

<sup>(1)</sup> EUT submitted for grant.

olivetti 4/17

# 1.4 Test Methodology

Both conducted and radiated testing were performed according to the ANSI C63.4-1992 test procedures. Radiated testing was performed at an antenna to EUT distance of 3 meters.

FCC ID: DYKJP883

# 1.5 Test Facility

#### Olivetti test site No. 2

The open area test site and conducted measurement facility used to collect the radiated data are located at Via Montalenghe 8, Scarmagno and Via Jervis 11, Ivrea, Italy. This site has been fully described in a report dated March 25, 1997 submitted to your office, and accepted in a letter dated June 13, 1997 (31040/SIT-1300F2).

# 1.6 Test equipment used:

| Test receiver        | Rohde & Schwarz ESH3 | s/n 881364/012 |
|----------------------|----------------------|----------------|
| LISN                 | Schwarzbeck NNLA8120 | s/n 8120399    |
| Test receiver        | Rohde & Schwarz ESVP | s/n 879783/029 |
| Biconical antenna    | EMCO 3110            | s/n 1735       |
| Log-periodic antenna | EMCO 3146            | s/n 3678       |

olivetti 5/17

# 3 SYSTEM TEST CONFIGURATION

#### 3.1 Justification

The EUT was configured for testing in a typical fashion (as a customer would normally use it). It was connected to the parallel port of a personal computer and operated in standard mode.

FCC ID: DYKJP883

#### 3.2 EUT Exercise Software

The EUT exercise program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. The software, (EMI\_DIA) contained on a 3-1/2 inch disc, was inserted into drive A and is auto-starting on power-up. Once loaded, the program sequentially exercises each system component in turn. The sequence used is: an H is printed on the monitor, speaker beep, mass storage devices exercised, plotter and printer prints an "H" pattern. The complete cycle takes about 2 seconds and is repeated continously. As the keyboard and mouse are strictly input devices, no data is transmitted to them during test. They are, however, continuously scanned for data input activity.

olivetti 8/17

# 3.3 Special Accessories

# Line Filter on the Power Supply Unit:

Capacitors:

C2 0.1μF-250V .....Arcotronics or Roederstein or

Siemens or Philips

FCC ID: DYKJP883

**C3, C4, C5, C6** 2200 pF - 250V ......Roederstein

Inductors:

LF1 Filter coil 2x41 mH - 0.8A ....Moelettra 209428G-XX

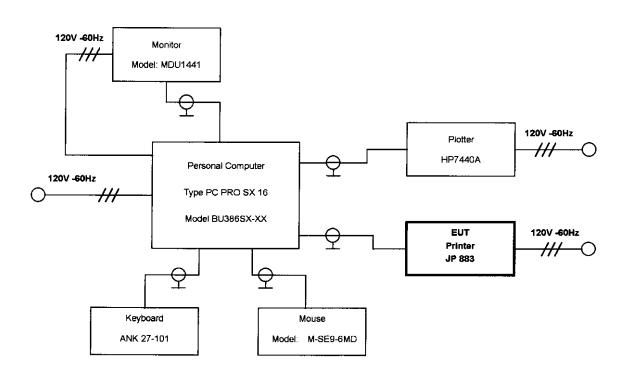
#### Metal shieldings:

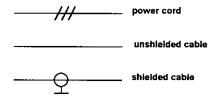
Sheet steel plate underneath the Power Supply Unit (see picture attached as Figure 8.4;

Spring type contact connecting the above mentioned plate to the metal frame of the EUT (see picture attached as Figure 8.9);

Sheet steel plate secured by screws over the Controller P.W.A (see picture attached as Figure 8.10).

As shown in Figure 3.1 all interface cables used for compliance testing are shielded as normally supplied by Olivetti Company. These cable model and part numbers are marketed with the Olivetti Company peripherals to the end user, and appear on the related product price list supplied to our customers. All cable connectors feature integral metal hoods for shielding.


# 3.4 Equipment Modifications


To achieve compliance to Class B levels, no changes were made during compliance testing.

olivetti 9/17

# 3.5 Configuration of the Tested System

Figure 3.1 Configuration of the Tested System





olivetti 10/17

# **6 CONDUCTED EMISSION DATA**

6.1 The conducted tests are performed with a receiver in quasi-peak mode.

FCC ID: DYKJP883

|         | Frequency<br>(MHz)                       | Measured*<br>(dBμV)              | Limit<br>(dBμV) |
|---------|------------------------------------------|----------------------------------|-----------------|
| neutral | 0.45<br>2.4<br>2.7<br>3.2<br>3.9<br>21.6 | 35<br>36<br>36<br>35<br>35<br>36 | 48              |
| line    | 0.45<br>2.4<br>2.7<br>3.2<br>3.9<br>21.6 | 34<br>35<br>35<br>34<br>34<br>35 | 48              |

<sup>\*</sup> All readings are quasi-peak

Test Personnel:

olivetti 14/17

#### 7 RADIATED EMISSION DATA

7.1 The following data list the significant emission frequencies, measured levels, correction factors (including cable and antenna corrections), the corrected reading, plus the limit. Field strenght calculation is given in paragraph 7.2.

FCC ID: DYKJP883

Judgement: Passed by 6.5 dB

| Frequency<br>(MHz) | Polarity<br>(V/H) | Receiver*<br>Reading<br>(dB <sub>µ</sub> V) | Correction<br>Factor<br>(dB/m) | Corrected<br>Reading<br>(dB <sub>µ</sub> V/m) | 3 Meter<br>Limit<br>(dBμV/m) |
|--------------------|-------------------|---------------------------------------------|--------------------------------|-----------------------------------------------|------------------------------|
| 74.4               | V                 | 19.9                                        | 11.8                           | 31.7                                          | 40                           |
| 127.9              | Н                 | 18.3                                        | 14.4                           | 32.7                                          | 43.5                         |
| 159.9              | Н                 | 17.5                                        | 15.7                           | 33.2                                          | 43.5                         |
| 591.7              | Н                 | 9.3                                         | 25.8                           | 35.1                                          | 46                           |
| 687.7              | V                 | 11.3                                        | 28.2                           | 39.5                                          | 46                           |
| 719.6              | V                 | 10.4                                        | 28.4                           | 38.8                                          | 46                           |

<sup>\*</sup> All readings are quasi-peak, with an IF bandwith of 120 kHz.

Test Personnel:

olivetti 15/17

# 7.2 Field Strength Calculation

7.2.1 The field strength is calculated by adding the Antenna and Cable Factor to the measured reading. The basic equation with a sample calculation is as follows:

FCC ID: DYKJP883

$$FS = RA + AF + CF$$

where

FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

Assume a receiver reading of 11.3 dB $\mu$ V is obtained. The Antenna and Cable Factor of 28.2 is added, giving a field strength of 39.5 dB $\mu$ V/m. The 39.5 dB $\mu$ V/m value was mathematically converted to its corresponding level in  $\mu$ V/m.

$$FS = 11.3 + 28.2 = 39.5 dB\mu V/m$$

Level in  $\mu$ V/m = Common Antilogarithm [(39.5 dB $\mu$ V/m)/20]= 94.1  $\mu$ V/m

olivetti 16/17

# **8 PHOTOS OF THE EUT**

| Fig. 8.1  | Overall front view                                                 |
|-----------|--------------------------------------------------------------------|
| Fig. 8.2  | Overall rear view                                                  |
| Fig. 8.3  | Internal view with upper cover removed                             |
| Fig. 8.4  | Power Supply Unit - Overall view with enclosure in place           |
| Fig. 8.5  | Power Supply Unit P.W.A Components side                            |
| Fig. 8.6  | Power Supply Unit P.W.A Foil side                                  |
| Fig. 8.7  | Controller Board - Components side                                 |
| Fig. 8.8  | Controller Board - Foil side                                       |
| Fig. 8.9  | Metal spring contact connecting PSU bottom plate and machine frame |
| Fig. 8.10 | Sheet steel shield over the Controller Board                       |

FCC ID: DYKJP883

olivetti 17/17