7.3 MAXIMUM PERMISSIBLE EXPOSURE

LIMITS \& RSS-102

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in $\S 1.1307(\mathrm{~b})$, except in the case of portable devices which shall be evaluated according to the provisions of $\S 2.1093$ of this chapter.

TABLE 1-LImits FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density ($\mathrm{mW} / \mathrm{cm}^{2}$)	Averaging time (minutes)
(A) Limits for Occupational/Controlled Exposures				
0.3-3.0	614	1.63	*(100)	6
3.0-30	18427	4.897	${ }^{*}\left(900 \mathrm{fr}^{2}\right)$	6
30-300	61.4	0.163	1.0	6
300-1500		f/300	6
1500-100,000		5	6
(B) Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*(100)	30
1.34-30	824\#	2.197	${ }^{*}\left(180 \pi^{2}\right)$	30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A / m)	Power density ($\mathrm{mW} / \mathrm{cm}^{2}$)	Averaging time (minutes)
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000	1.0	30

$\mathrm{f}=$ frequency in MHz

${ }^{\text {t }}=$ Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for oocupationaVcontrolled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.
NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

LIMITS per RSS-102, Table 1 \& Section 2.5

Table 1: SAR evaluation - Exemption limits for routine evaluation based on frequency and separation distance

Frequency $(\mathbf{M H z})$	Exemption Limits ($\mathbf{m W}$)				
	At separation distance of $\leq \mathbf{5 m m}$	At separation distance of $\mathbf{1 0 ~ \mathbf { ~ m m }}$	At separation distance of $\mathbf{1 5} \mathbf{~ m m}$	At separation distance of $\mathbf{2 0} \mathbf{~ m m}$	At separation distance of $\mathbf{2 5} \mathbf{~ m m}$
≤ 300	71 mW	101 mW	132 mW	162 mW	193 mW
450	52 mW	70 mW	88 mW	106 mW	123 mW
835	17 mW	30 mW	42 mW	55 mW	67 mW
1900	7 mW	10 mW	18 mW	34 mW	60 mW
2450	4 mW	7 mW	15 mW	30 mW	52 mW
3500	2 mW	6 mW	16 mW	32 mW	55 mW
5800	1 mW	6 mW	15 mW	27 mW	41 mW

Frequency $(\mathbf{M H z})$	Exemption Limits (mW)				
	At separation distance of $\mathbf{3 0 ~ m m}$	At separation distance of $\mathbf{3 5 ~ m m}$	At separation distance of $\mathbf{4 0} \mathbf{~ m m}$	At separation distance of $\mathbf{4 5} \mathrm{mm}$	At separation distance of $\geq 50 \mathrm{~mm}$
≤ 300	223 mW	254 mW	284 mW	315 mW	345 mW
450	141 mW	159 mW	177 mW	195 mW	213 mW
835	80 mW	92 mW	105 mW	117 mW	130 mW
1900	99 mW	153 mW	225 mW	316 mW	431 mW
2450	83 mW	123 mW	173 mW	235 mW	309 mW
3500	86 mW	124 mW	170 mW	225 mW	290 mW
5800	56 mW	71 mW	85 mW	97 mW	106 mW

Per 2.5.2 Exemption Limits for Routine Evaluation - RF Exposure Evaluation

RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm , except when the device operates as follows:

- below 20 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance);
- at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $4.49 / f^{0.5} \mathrm{~W}$ (adjusted for tune-up tolerance), where f is in MHz ;
- at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 0.6 W (adjusted for tune-up tolerance);
- at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $1.31 \times 10^{-2} f^{0.6834} \mathrm{~W}$ (adjusted for tune-up tolerance), where f is in MHz ; - at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance).

In these cases, the information contained in the RF exposure technical brief may be limited to information that demonstrates how the e.i.r.p. was derived.

CALCULATIONS

Given
$E=\sqrt{ }(30 * P * G) / d$
and
$\mathrm{S}=\mathrm{E}^{\wedge} 2 / 3770$
where
E = Field Strength in Volts/meter
$\mathrm{P}=$ Power in Watts
$\mathrm{G}=$ Numeric antenna gain
d = Distance in meters
S = Power Density in milliwatts/square centimeter
Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

$$
\mathrm{d}=\sqrt{ }((30 * \mathrm{P} * \mathrm{G}) /(3770 * \mathrm{~S}))
$$

Changing to units of Power to mW and Distance to cm , using:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~mW})=\mathrm{P}(\mathrm{~W}) / 1000 \text { and } \\
& \mathrm{d}(\mathrm{~cm})=100 * \mathrm{~d}(\mathrm{~m})
\end{aligned}
$$

yields
$\mathrm{d}=100 * \sqrt{ }((30 *(\mathrm{P} / 1000) * \mathrm{G}) /(3770 * \mathrm{~S}))$
$\mathrm{d}=0.282 * \sqrt{ }(\mathrm{P} * \mathrm{G} / \mathrm{S})$
where
$\mathrm{d}=$ distance in cm
$\mathrm{P}=$ Power in mW
$\mathrm{G}=$ Numeric antenna gain
$\mathrm{S}=$ Power Density in $\mathrm{mW} / \mathrm{cm}^{\wedge} 2$
Substituting the logarithmic form of power and gain using: P

$$
\begin{aligned}
& (\mathrm{mW})=10^{\wedge}(\mathrm{P}(\mathrm{dBm}) / 10) \text { and } \\
& \mathrm{G}(\text { numeric })=10^{\wedge}(\mathrm{G}(\mathrm{dBi}) / 10)
\end{aligned}
$$

yields
$\mathrm{d}=0.282 * 10^{\wedge}((\mathrm{P}+\mathrm{G}) / 20) / \sqrt{ } \quad \quad$ Equation (1)
$\mathrm{S}=0.0795 * 10^{\wedge}((\mathrm{P}+\mathrm{G}) / 10) / \mathrm{d}^{\wedge} 2$
Equation (2)
where
$\mathrm{d}=$ MPE distance in cm
$\mathrm{P}=$ Power in dBm
$\mathrm{G}=$ Antenna Gain in dBi
$\mathrm{S}=$ Power Density Limit in $\mathrm{mW} / \mathrm{cm}^{\wedge} 2$

Equation (1) and the measured peak power is used to calculate the MPE distance.
Equation (2) and the measured peak power is used to calculate the Power density.

APPLICABLE LIMITS for separation $>=20 \mathrm{~cm}$

FCC: From §1.1310 Table $1(B)$, for Public $S=1.0 \mathrm{~mW} / \mathrm{cm}^{2}$; for Professional, $\mathrm{S}=5.0 \mathrm{~mW} / \mathrm{cm}^{2}$
IC: With formula of $1.31 \times 10^{-2} f^{0.6834} \mathrm{~W}$, more restricted EIRP limit value are 1.37 W at 902 MHz , 2.67 W at 2400 MHz .

RESULTS

No non-compliance noted:
---For FCC, the worst case for this EUT, $\mathrm{P}+\mathrm{G}=7.37+2=9.37 \mathrm{dBm}$, and $\mathrm{d}=20 \mathrm{~cm}$

Plug all three items into equation (2), yielding,

Power Density Limit $\left(\mathbf{m V} / \mathbf{c m}^{\mathbf{2}}\right)$	Output Power $(\mathbf{d B m})$	Antenna] Gain $(\mathbf{d B i})$	Power Density $(\mathbf{m W /} /$ $\left.\mathbf{c m}^{2}\right)$	Meet min. PD Limit
$1.0 / 5.0$	7.37	2	0.0017	Yes

---For ISED, EUT max. e.r.i.p $=0.009 \mathrm{~W}(9.37 \mathrm{dBm})<$ limit 2.67 W

Therefore, all of results are below the FCC/ISED limit.

NOTE: For mobile or fixed location transmitters, the minimum separation distance between the antenna \& radiating structures of the device and nearby persons is 20 cm , even if calculations indicate that the MPE distance would be less.

