

FCC TEST REPORT

REPORT NO.: RF901224R01B

MODEL NO.: R-9800

RECEIVED: Aug. 16, 2002

TESTED: Aug. 20, 2002 ~ Oct. 12, 2002

APPLICANT: JEBSEE ELECTRONICS CO., LTD.

ADDRESS: 24-3, Sin-Lo Road, P.O. Box 57, Tainan Taiwan

ISSUED BY: Advance Data Technology Corporation

LAB LOCATION: 47 14th Lin, Chia Pau Tsuen, Linkou Hsiang,
Taipei, Taiwan, R.O.C.

This test report consists of 24 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by NVLAP or any U.S. government agencies. The test results in the report only apply to the tested sample.

0528
ILAC MRA

Lab Code: 200102-0

Table of Contents

1.	CERTIFICATION	3
2.	SUMMARY OF TEST RESULTS	4
3.	GENERAL INFORMATION	5
3.1	GENERAL DESCRIPTION OF EUT	5
3.2	DESCRIPTION OF TEST MODES	6
3.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	6
3.4	DESCRIPTION OF SUPPORT UNITS	6
4.	TEST PROCEDURE AND RESULT	7
4.1	CONDUCTED EMISSION MEASUREMENT	7
4.1.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	7
4.1.2	TEST INSTRUMENTS	7
4.1.3	TEST PROCEDURES	8
4.1.4	DEVIATION FROM TEST STANDARD	8
4.1.5	TEST SETUP	9
4.1.6	EUT OPERATING CONDITIONS	10
4.1.7	TEST RESULTS	11
4.2	RADIATED EMISSION MEASUREMENT	13
4.2.1	LIMITS OF RADIATED EMISSION MEASUREMENT	13
4.2.2	TEST INSTRUMENT	14
4.2.3	TEST PROCEDURE	15
4.2.4	DEVIATION FROM TEST STANDARD	15
4.2.5	TEST SETUP	16
4.2.6	EUT OPERATING CONDITION	16
4.2.7	TEST RESULT	17
4.3	BAND EDGES MEASUREMENT	23
4.3.1	LIMITS OF BAND EDGES MEASUREMENT	23
4.3.2	TEST INSTRUMENTS	23
4.3.3	TEST PROCEDURES	23
4.3.4	DEVIATION FROM TEST STANDARD	24
4.3.5	TEST SETUP	24
4.3.6	TEST RESULTS	24
5.	PHOTOGRAPHS OF THE TEST CONFIGURATION	26
6.	INFORMATION ON THE TESTING LABORATORIES	28

1. CERTIFICATION

PRODUCT : 433MHz Wireless A/V Sender with infrared extender

BRAND NAME : JEBSEE

MODEL NO : R-9800

APPLICANT : JEBSEE ELECTRONICS CO., LTD.

STANDARDS : 47 CFR Part 15, Subpart C (Section 15.231),
ANSI C63.4-1992

We, **Advance Data Technology Corporation**, hereby certify that one sample of the designation has been tested in our facility from Aug. 20, 2002 to Oct. 12, 2002. The test record, data evaluation and Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions herein specified.

CHECKED BY : Emily Lu, DATE : Nov. 18, 2002
Emily Lu

APPROVED BY : Dr. Alan Lane, DATE : Nov. 18, 2002
Dr. Alan Lane, Manager

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: 47 CFR Part 15, Subpart C			
STANDARD PARAGRAPH	TEST TYPE	RESULT	REMARK
15.207	Conducted Emission Test	PASS	Minimum passing margin is -16.92dBuV at 0.498MHz
15.209	Radiated Emission Test	PASS	Minimum passing margin is -4.5dBuV at 867.00MHz
15.231	Band Edge Measurement Limit: 20 dB less than the peak value of fundamental frequency	PASS	Meet the requirement of limit

NOTE: The receiver part to communicate with the EUT has been verified to comply with FCC Part 15, Subpart B, Class B (DoC). The test report can be provided upon request.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	433MHz Wireless A/V Sender with infrared extender
MODEL NO.	R-9800
POWER SUPPLY	9VDC from power adapter
MODULATION TYPE	ASK
CARRIER FREQUENCY OF EACH CHANNEL	433.92 MHz
BANDWIDTH OF EACH CHANNEL	NA
NUMBER OF CHANNEL	1
ANTENNA TYPE	Detachable antenna
DATA CABLE	1.9m (Nonshielded)
I/O PORTS	AV, VHF/UHF terminal

NOTE:

1. The EUT include Transmitter part and Receiver part. The model no.: R-9800 is for transmitter which includes Tx of 433MHz application used for control signal transmitting and Rx of 2.4GHz application used for receive part of video sender and model no.: T-9800 is for receiver which includes Rx of 433MHz application and Tx of 2.4GHz application.
2. Test result of model T-9800 has been presented in DoC report.
3. The EUT was operated with following adapter:

Brand Name :	HON-KWANG
Model No. :	D7500-04
Input Power :	120V, 60Hz
Output Power :	9VDC, 400mA

4. For more detailed features description of the EUT, please refer to the manufacturer's specifications or the User's Manual.

3.2 DESCRIPTION OF TEST MODES

One channels is provided to this EUT:

Channel	Frequency	Channel	Frequency
1	433.92 MHz		

2.

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is the transmitter part of a 433MHz Wireless A/V Sender with infrared extender . According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC CFR 47 Part 15, Subpart C. (15.231)
ANSI C63.4 : 1992

All tests have been performed and recorded as per the above standards.

3.4 DESCRIPTION OF SUPPORT UNITS

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	TV MONITOR	SONY	PVM-1351Q	2006755	VERIFICATION

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	NA

NOTE: All power cords of the above support units are non shielded (1.8m).

4. TEST PROCEDURE AND RESULT

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

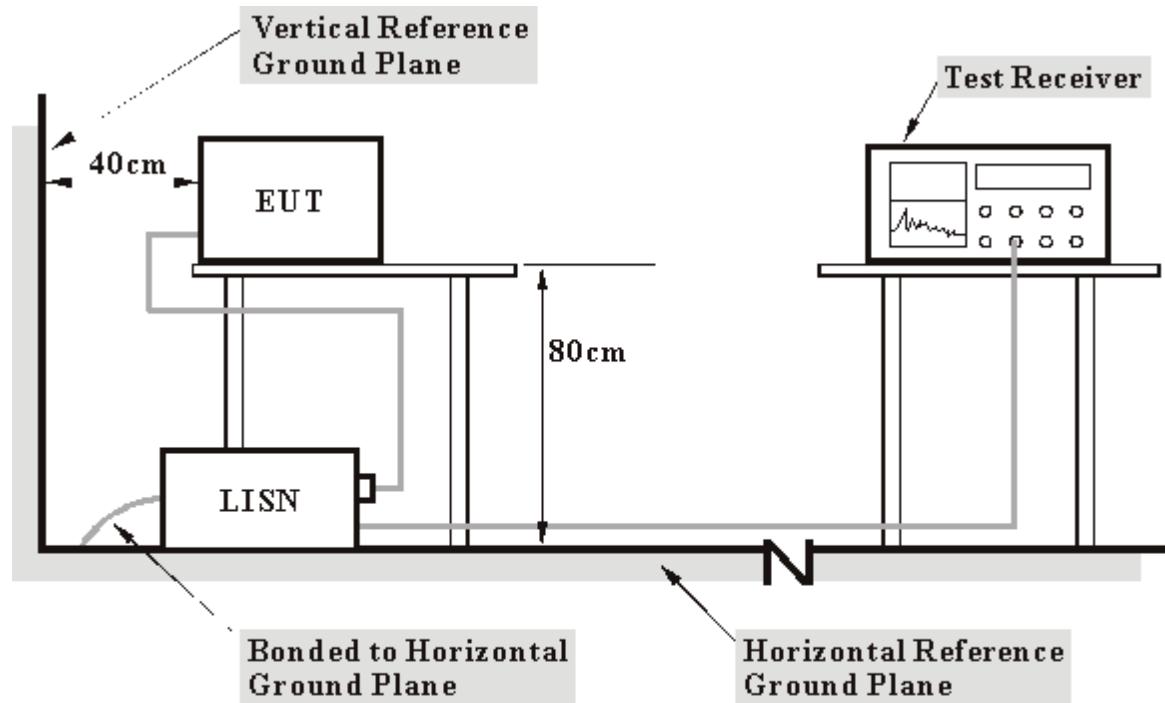
FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56	56 to 46
0.5-5	56	46
5-30	60	50

NOTE: 1. The lower limit shall apply at the transition frequencies.
 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
ROHDE & SCHWARZ Test Receiver	ESCS30	834115/016	Mar. 3, 2003
ROHDE & SCHWARZ Artificial Mains Network (For EUT)	ESH3-Z5	847265/023	Jan. 10, 2003
* ROHDE & SCHWARZ 4-wire ISN	ENY41	838119/028	Dec. 10, 2002
* ROHDE & SCHWARZ 2-wire ISN	ENY22	837497/018	Dec. 10, 2002
EMCO L.I.S.N. (For peripherals)	3825/2	9504-2359	July 10, 2003
Software	Cond-V2L	NA	NA
RF cable (JYEBAO)	5D-FB	Cable-C03.01	July 11, 2003
Terminator (For EMCO LISN)	NA	E1-01-300	Feb. 20, 2003
Terminator (For EMCO LISN)	NA	E1-01-301	Feb. 20, 2003
Shielded Room	Site 3	ADT-C03	NA
VCCI Site Registration No.	Site 3	C-274	NA

NOTE: 1. The measurement uncertainty is less than +/- 2.6dB, which is calculated as per the NAMAS document NIS81.
 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
 3. “*”: These equipment are used for conducted telecom port test only (if tested).
 4. The test was performed in ADT Open Site No. 3.


4.1.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits could not be reported.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation

4.1.5 TEST SETUP

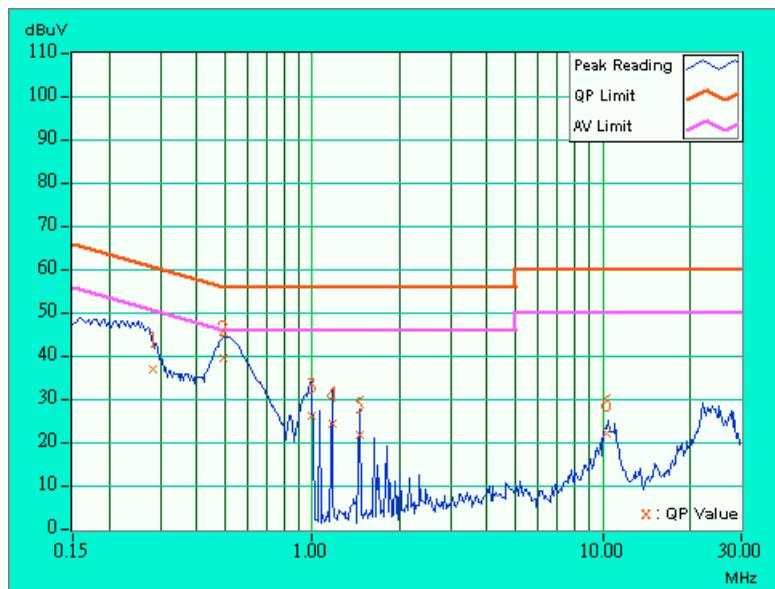
Note:

1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.1.6 EUT OPERATING CONDITIONS

- a. Connected the 433MHz Wireless A/V Sender with infrared extender Receiver Part (IR extender transmitter part) with a TV monitor on the test table via A/V cable.
- b. The IR extender received the IR signal from IR remote controller then continuously transmitting.
- c. The EUT received the signal from IR extender and sent message to IR sensor.

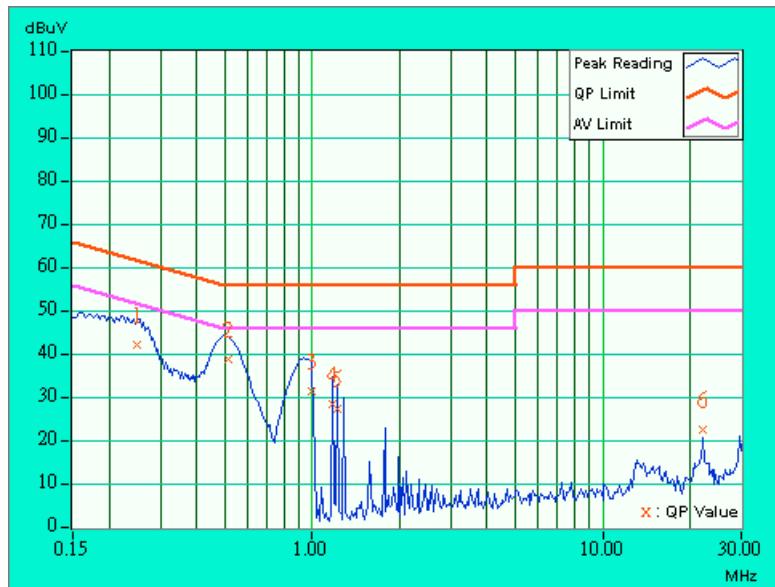

4.1.7 TEST RESULTS

EUT	433MHz Wireless A/V Sender with infrared extender	MODEL	R-9800
MODE	Channel 1	6dB BANDWIDTH	9 kHz
INPUT POWER (SYSTEM)	120Vac, 60 Hz	PHASE	Line (L)
ENVIRONMENTAL CONDITIONS	35deg. C, 50%RH, 1005 hPa	TESTED BY:	Bunny Yao

No	Freq. [MHz]	Corr. Factor (dB)	Reading Value [dB (uV)]		Emission Level [dB (uV)]		Limit [dB (uV)]		Margin (dB)	
			Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.283	0.10	36.53	-	36.63	-	60.74	50.74	-24.11	-
2	0.498	0.12	39.00	-	39.12	-	56.04	46.04	-16.92	-
3	0.998	0.20	25.76	-	25.96	-	56.00	46.00	-30.04	-
4	1.168	0.20	23.96	-	24.16	-	56.00	46.00	-31.84	-
5	1.453	0.20	21.34	-	21.54	-	56.00	46.00	-34.46	-
6	10.301	0.51	21.60	-	22.11	-	60.00	50.00	-37.89	-

NOTE:

1. QP. and AV. are abbreviations of quasi-peak and average individually.
2. "-": NA
3. The emission levels of other frequencies were very low against the limit.
4. Margin value = Emission level - Limit value
5. Emission Level = Reading Value + Correction Factor.



EUT	433MHz Wireless A/V Sender with infrared extender	MODEL	R-9800
MODE	Channel 1	6dB BANDWIDTH	9 kHz
INPUT POWER (SYSTEM)	120Vac, 60 Hz	PHASE	Neutral (N)
ENVIRONMENTAL CONDITIONS	35deg. C, 50%RH, 1005 hPa	TESTED BY:	Bunny Yao

No	Freq.	Corr. Factor	Reading Value [dB (uV)]		Emission Level [dB (uV)]		Limit [dB (uV)]		Margin (dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.249	0.10	41.65	-	41.75	-	61.80	51.80	-20.05	-
2	0.517	0.12	38.29	-	38.41	-	56.00	46.00	-17.59	-
3	0.998	0.20	30.81	-	31.01	-	56.00	46.00	-24.99	-
4	1.180	0.20	28.05	-	28.25	-	56.00	46.00	-27.75	-
5	1.219	0.20	26.67	-	26.87	-	56.00	46.00	-29.13	-
6	22.121	0.60	21.97	-	22.57	-	60.00	50.00	-37.43	-

NOTE:

1. QP. and AV. are abbreviations of quasi-peak and average individually.
2. "-": NA
3. The emission levels of other frequencies were very low against the limit.
4. Margin value = Emission level - Limit value
5. Emission Level = Reading Value + Correction Factor.

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

According to 15.231 the field strength of emissions from intentional radiators operated under these frequencies bands shall not exceed the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental		Field Strength of Spurious	
	uV/meter	dBuV/meter	uV/meter	dBuV/meter
40.66 – 40.70	2250	67.04	225	48.04
70 – 130	1250	61.94	125	41.94
130 – 174	1250 to 3750	61.94 to 71.48	125 to 375	41.94 to 51.48
174 – 260	3750	71.48	75	37.50
260 – 470	3750 to 12500	71.48 to 81.94	375 to 1250	51.48 to 61.94
Above 470	12500	81.94	1250	61.94

NOTE:

- (1) Where F is the frequency in MHz, the formula for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, uV/m at 3 meters = $56.81818(F)-6136.3636$; for the band 260-470 MHz, uV/m at 3 meters = $41.6667(F)-7083.3333$. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.
- (2) The above field strength limits are specified at a distance of 3meters. The tighter limits apply at the band edges.

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

Frequencies (MHz)	Field Strength of Fundamental	
	uV/m	dBuV/m
30-88	100	40.0
88-216	150	43.5
216-960	200	46.0
Above 960	500	54.0

NOTE:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.2.2 TEST INSTRUMENT

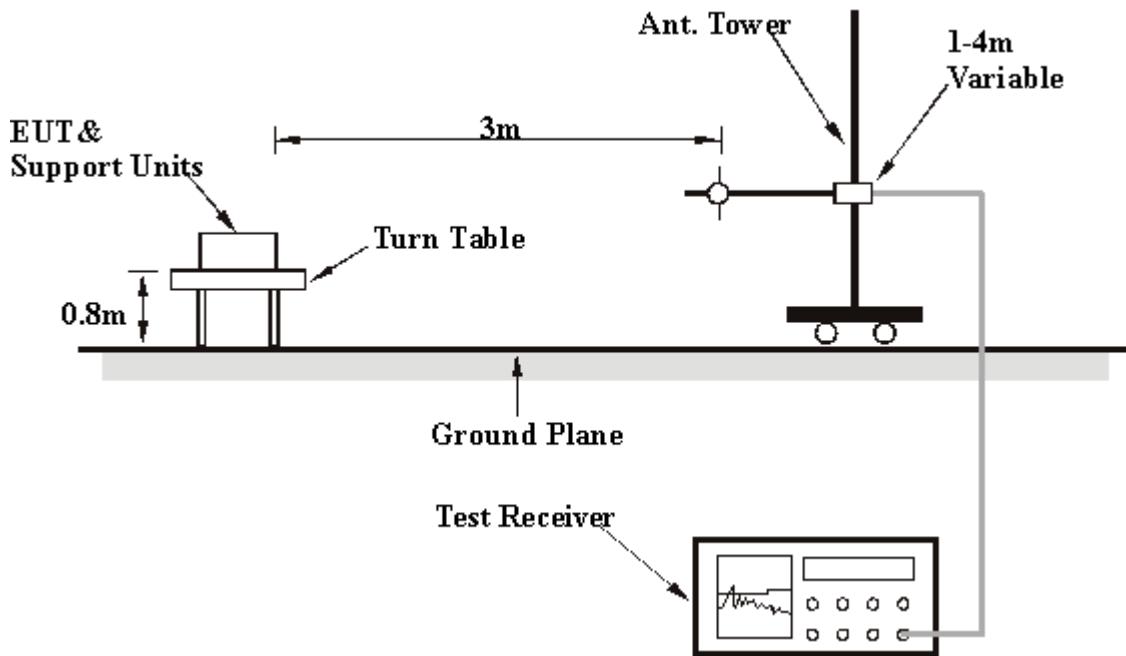
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
* HP Spectrum Analyzer	8590L	3544A01176	May 13, 2003
* HP Preamplifier	8447D	2944A08485	Apr. 29, 2003
* HP Preamplifier	8449B	3008A01201	Dec. 06, 2002
* HP Preamplifier	8449B	3008A01292	Aug. 07, 2003
* ROHDE & SCHWARZ TEST RECEIVER	ESMI	839013/007 839379/002	Jan. 27, 2003
SCHWARZBECK Tunable Dipole Antenna	VHA 9103 UHA 9105	E101051 E101055	Nov. 23, 2002
ANTENNA (Large Biconical)	VHBA9123	449	Dec. 10, 2002
* CHASE BILOG Antenna	CBL6112A	2221	Aug. 02, 2003
* SCHWARZBECK Horn Antenna	BBHA9120-D1	D130	Jul. 03, 2003
* EMCO Horn Antenna	3115	9312-4192	Apr. 09, 2003
* EMCO Turn Table	1060	1115	NA
* SHOSHIN Tower	AP-4701	A6Y005	NA
* Software	AS61D4	NA	NA
* ANRITSU RF Switches	MP59B	M35046	Jan. 25, 2003
* TIMES RF cable	LMR-600	CABLE-ST5-01	Jul. 12, 2003
Open Field Test Site	Site 5	ADT-R05	Jul. 19, 2003
VCCI Site Registration No.	Site 5	R-1039	NA

NOTE:

1. The measurement uncertainty is less than +/- 3.0dB, which is calculated as per the NAMAS document NIS81.
2. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.
3. “*” = These equipment are used for the final measurement.
4. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
5. The test was performed in ADT Open Site No. 5.

4.2.3 TEST PROCEDURE

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using the quasi-peak method or average method as specified and then reported in Data sheet peak mode and QP mode.


NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection at frequency above 1GHz.
3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 300 Hz for Average detection (AV) at frequency above 1GHz.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation

4.2.5 TEST SETUP

For the actual test configuration, please refer to the related item in this test report - Photographs of the Test Configuration.

4.2.6 EUT OPERATING CONDITION

Same as item 4.1.6

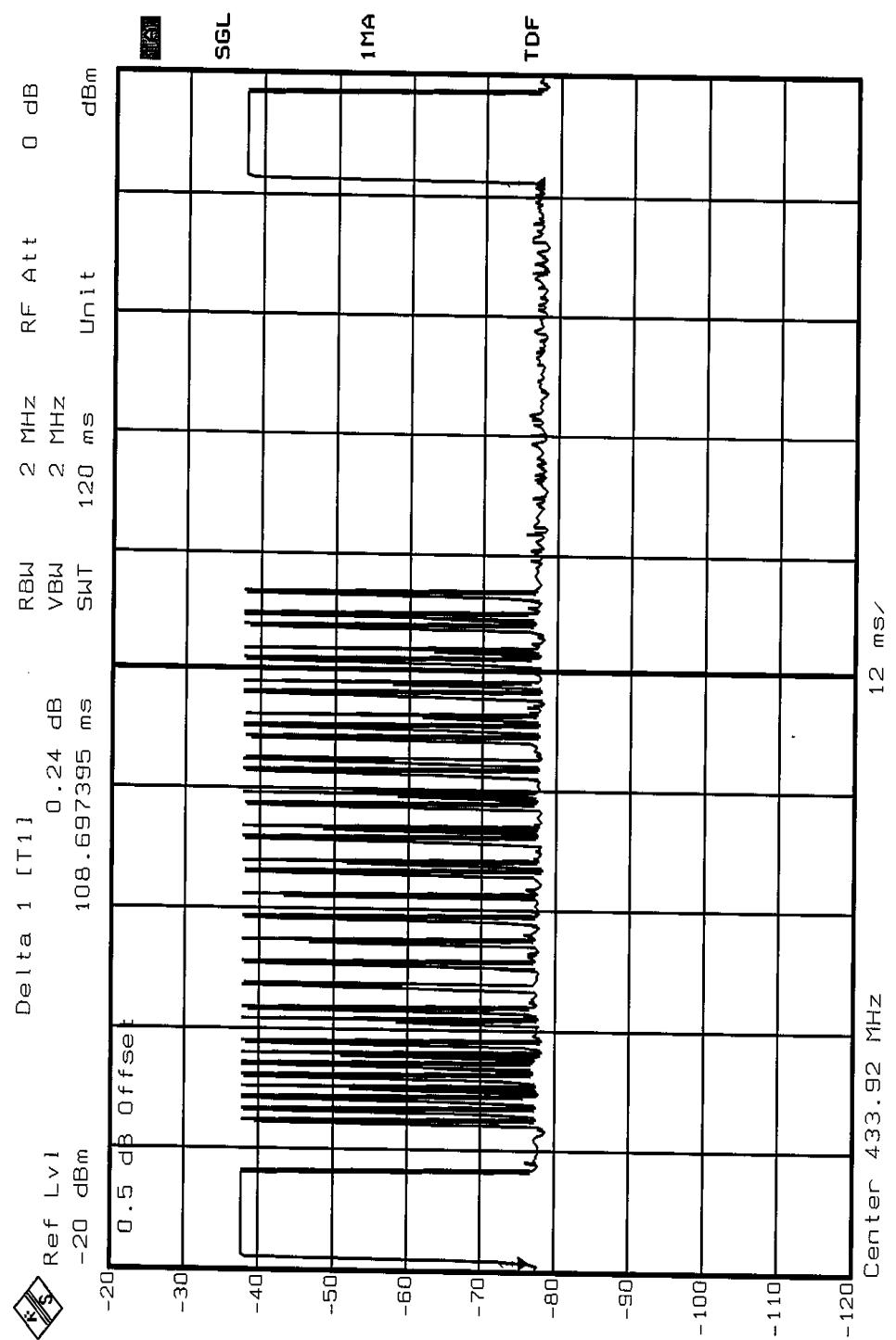
4.2.7 TEST RESULT

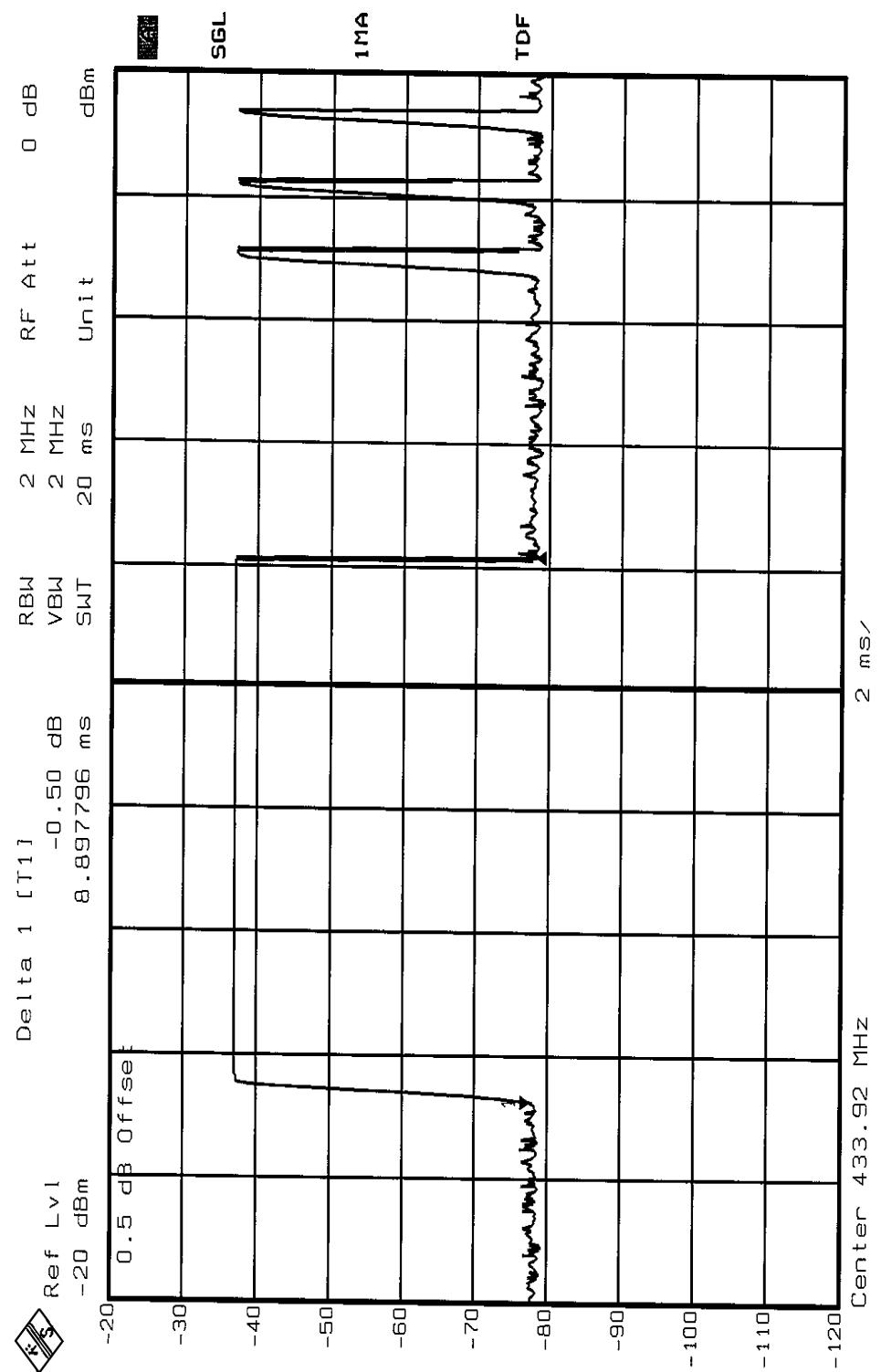
EUT	433MHz Wireless A/V Sender with infrared extender	MODEL	R-9800
FREQUENCY RANGE	30 – 1000 MHz	DETECTOR FUNCTION	Quasi-Peak / Peak / Average
ENVIRONMENTAL CONDITIONS	35deg. C, 50%RH, 1050 hPa		TESTED BY: Gary Chang

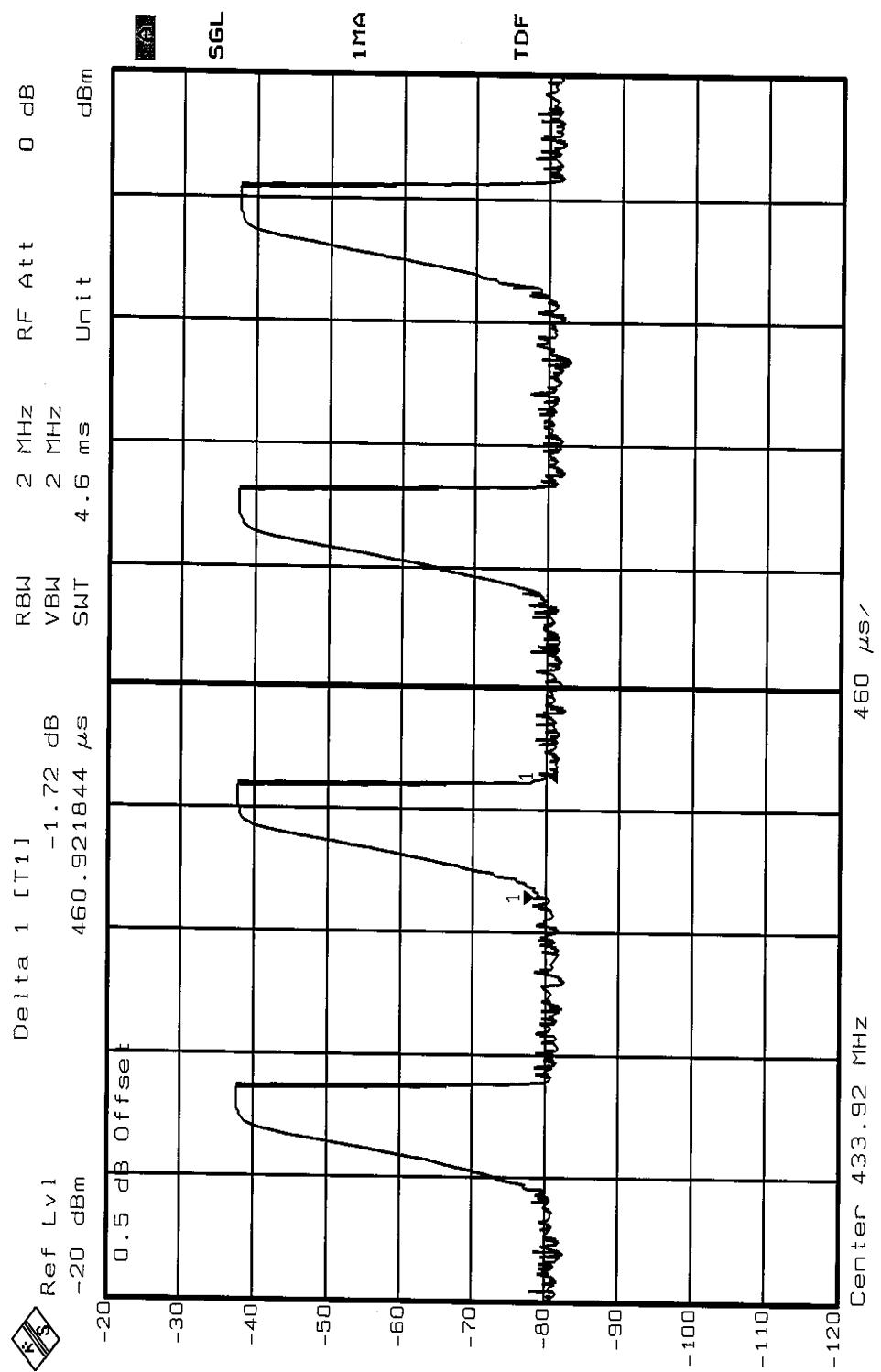
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB)	Cable Factor (dB)	Pre-Amp. Factor (dB)	Correction Factor (dB)
1	137.20	21.0 QP	43.50	-22.50	1.60H	257	6.63	10.95	3.42	0.00	-14.37
2	150.00	24.8 QP	43.50	18.70	1.28H	118	10.98	10.30	3.52	0.00	-13.82
3	189.50	24.0 QP	43.50	-19.50	1.12H	8	11.08	8.95	3.98	0.00	-12.92
4	210.00	25.4 QP	43.50	-18.10	1.24H	215	11.66	9.54	4.20	0.00	-13.74
5	233.00	25.0 QP	46.00	-21.00	1.49H	40	9.55	10.98	4.47	0.00	-15.45
6	267.00	28.0 QP	46.00	-18.00	1.60H	15	10.48	12.61	4.92	0.00	-17.52
7	*433.99	65.1 PK	100.80	-35.70	1.04H	3	75.92	16.29	1.58	28.71	10.84
8	*434.00	52.7 AV	80.80	-28.10	1.04H	3	-	-	-	-	-
9	867.00	41.5 QP	46.00	-4.50	1.17H	23	18.53	20.59	2.39	0.00	-22.97

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M											
No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB)	Cable Factor (dB)	Pre-Amp. Factor (dB)	Correction Factor (dB)
1	145.00	28.0 QP	43.50	-15.50	1.33V	77	13.94	10.58	3.48	0.00	-14.06
2	161.00	27.0 QP	43.50	-16.50	1.01V	16.	13.75	9.62	3.62	0.00	-13.25
3	240.00	25.2 QP	46.00	-20.80	1.29V	23	9.24	11.41	4.55	0.00	-15.96
4	263.00	24.7 QP	46.00	-21.30	1.23V	79	6.91	12.89	4.91	0.00	-17.79
5	*434.00	51.3 AV	80.80	-29.50	1.04V	58	-	-	-	-	-
6	*434.00	63.7 PK	100.80	-37.10	1.04V	58	74.54	16.29	1.58	28.71	10.84
7	590.00	24.0 QP	46.00	-22.00	1.17V	89	-2.28	18.48	7.80	0.00	-26.28
8	638.00	23.8 QP	46.00	-22.20	1.12V	252	-3.37	19.09	8.08	0.00	-27.17
9	867.00	33.8 QP	46.00	-12.20	1.09V	41	10.83	20.59	2.39	0.00	-22.97

NOTE:


1. Emission level(dBuV/m)=Raw Value(dBuV) – Correction Factor(dB)
2. Correction Factor(dB) = Pre-Amplifier Factor (dB) - Antenna Factor (dB) - Cable Factor (dB)
3. Pre-Amplifier Factor (dB) = 0, when the test receiver is used to read the value and because it did not use the Pre-Amplifier.
4. The other emission levels were very low against the limit.
5. “ – “: N/A
6. Margin value = Emission level – Limit value.
7. “*” = Fundamental frequency




8. The average value of fundamental frequency is: Average = Peak value + Duty cycle
Where the duty factor is calculated from following formula:

$$20\log(\text{Duty cycle}) = 20\log \frac{(8.90 \times 1) + (0.46 \times 33)}{100\text{ms}} = -12.4\text{dB}$$

please see page 19,20,21 for plotted duty

EUT		433MHz Wireless A/V Sender with infrared extender	MODEL	R-9800	
			FREQUENCY RANGE	Above 1 GHz	
MODE		Channel 1	DETECTOR FUNCTION	Peak / Average	
ENVIRONMENTAL CONDITIONS		35deg. C, 50%RH, 1050 hPa	TESTED BY: Gary Chang		

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB)	Cable Factor (dB)	Pre-Amp. Factor (dB)	Correction Factor (dB)
1	1302.00	41.8 PK	74.00	-32.20	1.52H	202	52.00	25.39	1.99	37.55	10.16
2	1735.00	43.8 PK	74.00	-30.20	1.22H	4	53.00	26.02	1.77	36.97	9.17.
3	2169.00	47.1 PK	74.00	-26.90	1.09H	4	55.00	26.95	1.89	36.76	7.94
4	2603.00	46.3 PK	74.00	-27.70	1.19H	37	52.00	28.16	2.93	36.75	5.65.

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M											
No.	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB)	Cable Factor (dB)	Pre-Amp. Factor (dB)	Correction Factor (dB)
1	1302.00	46.8 PK	74.00	-27.20	1.11V	151	57.00	25.39	1.99	37.55	10.16
2	1735.00	46.2 PK	74.00	-27.80	1.45V	245	55.35	26.02	1.77	36.97	9.18
3	2169.00	43.1 PK	74.00	-30.90	1.06V	56	51.00	26.95	1.89	36.76	7.94
4	2604.00	44.7 PK	74.00	-29.30	1.06V	2	50.40	28.16	2.93	36.75	5.66

NOTE:

1. Emission level(dBuV/m)=Raw Value(dBuV) – Correction Factor(dB)
2. Correction Factor(dB) = Pre-Amplifier Factor (dB) - Antenna Factor (dB) - Cable Factor (dB)
3. Pre-Amplifier Factor (dB) = 0, when the test receiver is used to read the value and because it did not use the Pre-Amplifier.
4. The other emission levels were very low against the limit.
5. Margin value = Emission level – Limit value.

4.3 BAND EDGES MEASUREMENT

4.3.1 LIMITS OF BAND EDGES MEASUREMENT

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for device operating above 70 MHz and below 900 MHz.

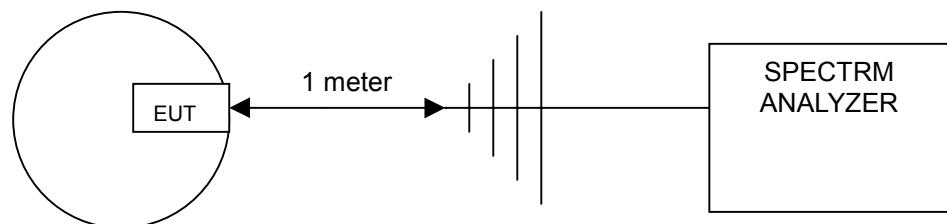
Fundamental Frequency (MHz)	Limit of 20 dB Bandwidth(kHz)
433.92	1084.8

4.3.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
ROHDE & SCHWARZ TEST RECEIVER	ESMI	839013/007	Jan. 27, 2003
CHASE BILOG Antenna	CBL6112A	2345	NA
HP Plotter	7475A	2641V27755	NA

NOTE:

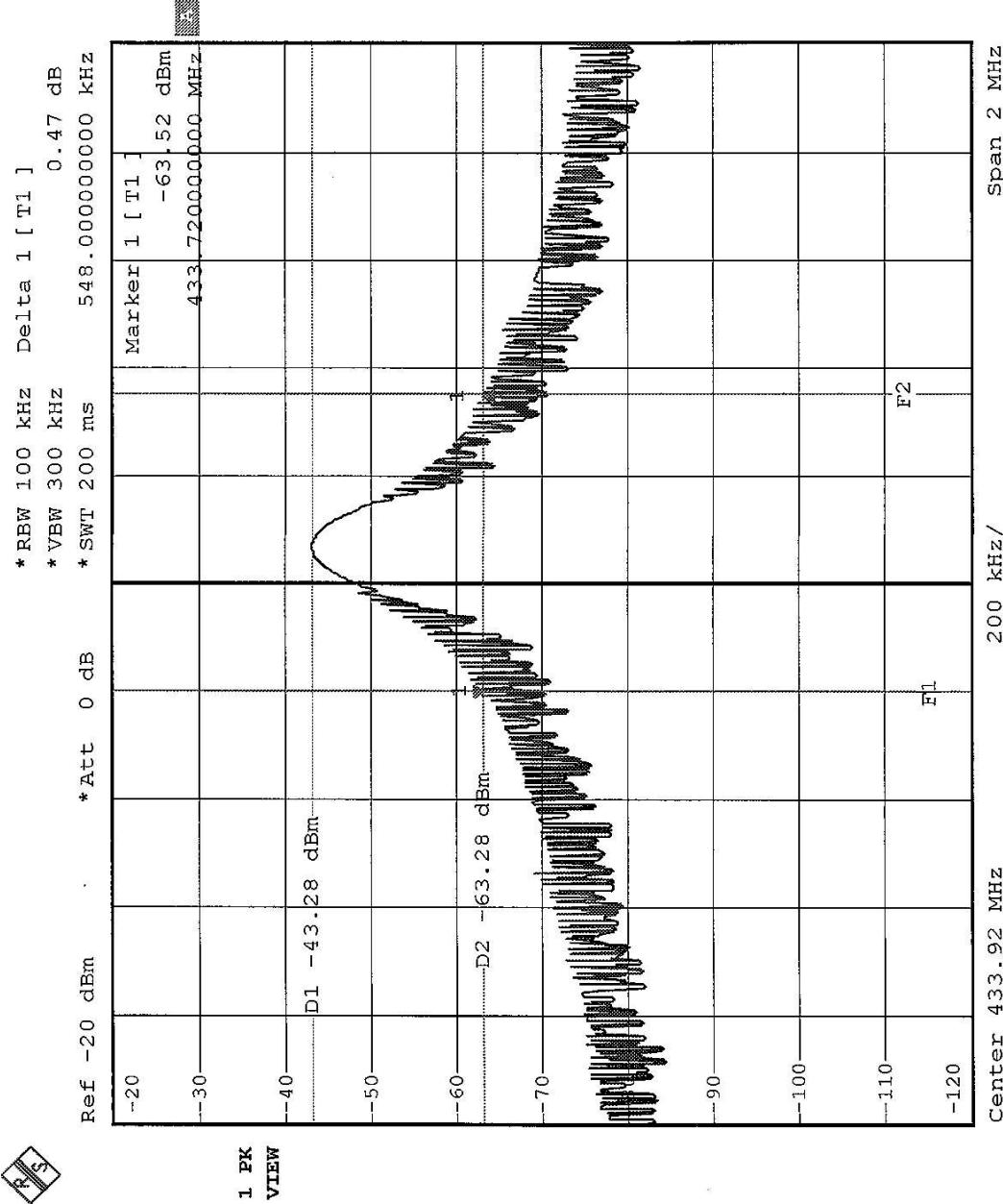
1. The measurement uncertainty is less than +/- 3.0dB, which is calculated as per the NAMAS document NIS81.
2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.


4.3.3 TEST PROCEDURES

- 1 The EUT was placed on the turn table .
- 2 The signal was coupled to the spectrum analyzer through an antenna.
- 3 Set the resolution bandwidth to 100kHz and video bandwidth to 300kHz then select Peak function to scan the channel frequency.
- 4 The 20dB bandwidth was measured and recorded.

4.3.4 DEVIATION FROM TEST STANDARD

No deviation


4.3.5 TEST SETUP

4.3.6 TEST RESULTS

Frequency (MHz)	20 dB bandwidth (kHz)	Maximum limit (kHz)	PASS/FAIL
433.92	548.00	1084.80	PASS

The plot of test result is attached as below.

5. PHOTOGRAPHS OF THE TEST CONFIGURATION

CONDUCTED EMISSION TEST

RADIATED EMISSION TEST

6. INFORMATION ON THE TESTING LABORATORIES

We, ADT Corp., were founded in 1988 to provide our best service in EMC and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025, Guide 25 or EN 45001:

USA	FCC, NVLAP
Germany	TUV Rheinland
Japan	VCCI
New Zealand	MoC
Norway	NEMKO
R.O.C.	BSMI, DGT, CNLA

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: www.adt.com.tw/index.5/phtml. If you have any comments, please feel free to contact us at the following:

Lin Kou EMC Lab:
Tel: 886-2-26052180
Fax: 886-2-26052943

Hsin Chu EMC Lab:
Tel: 886-35-935343
Fax: 886-35-935342

Lin Kou Safety Lab:
Tel: 886-2-26093195
Fax: 886-2-26093184

Lin Kou RF&Telecom Lab:
Tel: 886-3-3270910
Fax: 886-3-3270892

Email: service@mail.adt.com.tw
Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.