

FCC ID: DO4WRTZ1500

5.3 Maximum peak conducted output power

For test instruments and accessories used see section 6 Part CPC 2.

5.3.1 Description of the test location

Test location: Shielded Room S4

5.3.2 Photo documentation of the test set-up

5.3.3 Applicable standard

According to FCC Part 15C, Section 15.247(b)(2): For frequency hopping systems operating in the 902-928 MHz band the maximum peak conducted output power shall not exceed the limit of 1 watt for systems employing at least 50 hopping channels.

5.3.4 Description of Measurement

A spectrum analyzer is connected to the output of the transmitter via a suitable attenuator while EUT was operating in transmit mode using the assigned frequency.

Spectrum analyser settings: RBW 300 kHz VBW 1 MHz

Peak

Detector

Sweep time Power Mode Span 5 ms (Auto) Max. hold 500 kHz

CSA Group Bayern GmbH Ohmstrasse 1-4 · 94342 Strasskirchen Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481440 File No. T42115-00-00HU, page 12 of 27

FCC ID: DO4WRTZ1500

5.5 Spurious radiated emissions in restricted bands

For test instruments and accessories used see section 6 Part SER 1, SER 2, SER 3.

5.5.1 Description of the test location

Test location:	OATS1
Test distance:	3 metres

Test location:Anechoic Chamber A2 and A1Test distance:3 metres

5.5.2 Photo documentation of the test set-up

Open area test site

5.5.3 Applicable standard

CSA Group

According to FCC Part 15, Section 15.247(d):

In any 100 kHz bandwidth outside the frequency bands 902 to 928 MHz, the digitally modulated radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or an radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limit specified in Section 15.209(a) (see Section 15.205(c)).

5.5.4 Description of Measurement

Radiated spurious emissions from the EUT are measured in the frequency range of 9 kHz to 1000 MHz using a tuned receiver and appropriate broadband linear polarized antennas. The measurements are made with 120 kHz bandwidth and quasi-peak detection (200 Hz, 9 kHz up to 30 MHz). The EUT was placed on a 1.0 X 1.5 metres non-conducting table 80 centimetres above the ground plane. The set up of the equipment under test will be in accordance to ANSI C63.4. The antenna was positioned 3 metres horizontally from the EUT. To locate maximum emissions from the EUT the antenna is shifted in height from 1 to 4 metres, after the EUT is rotated 360 degrees. The measurement scan is made in horizontal and vertical polarization of the antenna. The correction factors for antenna gain and cable loss are stored in the EMI receiver and automatically added to a measurement data to display the final level in dB μ V/m.

For the radiated measurement up from 1 GHz to maximum frequency as specified in Section 15.33, a spectrum analyzer and appropriate linear polarized antennas are used. The EUT is placed on a 1.0 X 1.5 metres non-conducting table 80 centimetres above the ground plane. The set up of the EUT will be in accordance to ANSI C63.4. The antenna was positioned 3 m horizontally from the EUT. To locate maximum emissions the EUT was rotated 360 degrees in the fully anechoic chamber. The measurement scan is made in horizontal and vertical polarization of the antenna. For testing above 1 GHz, if the emission level of the EUT in peak mode complies with the average limit is 20 dB lower, then testing will be stopped and peak values of the EUT will be reported, otherwise, the emission will be measured in average mode again and reported.