

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

EAS DETECTION SYSTEM MODULE

MODEL NUMBER: TR7240

FCC ID: DO4TR7240 IC: 3356B-TR7240

REPORT NUMBER: 10072468

ISSUE DATE: 2013-11-13

Prepared for CHECKPOINT SYSTEMS 101 WOLF DRIVE THOROFARE NJ, 08086, USA

Prepared by UL LLC 1285 WALT WHITMAN RD. MELVILLE, NY 11747, U.S.A. TEL: (631) 271-6200 FAX: (877) 854-3577

 \mathbb{N}^{5}

NVLAP LAB CODE 100255-0

Revision History

Rev.	Date	Revisions	Revised By
	11/13/13	Initial Issue	M. Antola

UL LLC FORM NO: CCSUP4701D 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of Underwriters Laboratories Inc.

Page 2 of 55

TABLE OF CONTENTS

1.	AT	restation of test results 4
2.	TES	ST METHODOLOGY
3.	FAG	CILITIES AND ACCREDITATION5
4.	CA	LIBRATION AND UNCERTAINTY
4	4.1.	MEASURING INSTRUMENT CALIBRATION 5
	4.2.	SAMPLE CALCULATION
4	4.3.	MEASUREMENT UNCERTAINTY
5.	EQ	UIPMENT UNDER TEST
;	5.1.	DESCRIPTION OF EUT
	5.2.	DESCRIPTION OF AVAILABLE ANTENNAS
	5.3.	SOFTWARE AND FIRMWARE
	5.4.	WORST-CASE CONFIGURATION AND MODE
	5.5.	MODIFICATIONS
ł	5.6.	DESCRIPTION OF TEST SETUP7
6.	TES	ST AND MEASUREMENT EQUIPMENT9
7.	DU.	TY CYCLE11
8.	6dE	3 BANDWIDTH
9.	RA	DIATED EMISSION TEST RESULTS16
9	9. <i>1.</i> 9.1. 9.1. 9.1.	LIMITS AND PROCEDURE161. FUNDAMENTAL AND SPURIOUS EMISSIONS (0.009 – 30 MHz)182. TX SPURIOUS EMISSION 30 TO 1000 MHz223. TX SPURIOUS EMISSIONS ABOVE 1 GHz26
10	. A	C MAINS LINE CONDUCTED EMISSIONS
11	. s	ETUP PHOTOS

Page 3 of 55

Pass

Pass

1. ATTESTATION OF TEST RESULTS

INDUSTRY CANADA RSS-210 Issue 8, Annex 2

INDUSTRY CANADA RSS-GEN Issue 3

EUT DESCRIPTION:	THOROFARE, NJ, 08086, USA EAS DETECTION SYSTEM MODULE	
MODEL:	TR7240	
SERIAL NUMBER:	NON-SERIALIZED PRODUCTION UNI	Г
DATE TESTED:	9/23/13 – 10/9/13	
	APPLICABLE STANDARDS	
ST	ANDARD	TEST RESULTS
FCC PAR	T 15 SUBPART C	Pass

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards, using test results reported in the test report documents referenced below and/or documentation furnished by the applicant. All indications of Pass/Fail in this report are opinions expressed by UL LLC based on interpretations of these calculations. The results show that the equipment is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation, as described by the referenced documents. This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL By:

Tested By:

Mirtiel At

Bob DeLisi WiSE Principal Engineer UL

Mike Antola WiSE Project Lead UL

Page 4 of 55

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.3-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 1285 Walt Whitman Rd. Melville, NY 11747, USA.

UL Melville is accredited by NVLAP, Laboratory Code 100255-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/1002550.htm</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	± 3.3 dB
Radiated Disturbance, 30 to 1000 MHz	± 4.00 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 5 of 55

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a transmitter board, Model: TR7240, designed for use in Electronic Article Surveillance Systems. The EUT was tested for full Modular Approval.

5.2. DESCRIPTION OF AVAILABLE ANTENNAS

For this investigation, the radio utilized an inductive loop antenna, Model: EVOLVE P10 PABS, with dimensions of 19.68" (W) x 4.55" (D) x 67.28" (H). This is representative of the worse-case antenna type that would be used with this module.

5.3. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was version 5.00-EnggBuild20130904.

The EUT driver software installed during testing was DMS version 1.08.078.

The test utility software used during testing was DMS version 1.08.078.

5.4. WORST-CASE CONFIGURATION AND MODE

The EUT was initially investigated in each of the three orthogonal axes to determine its worstcase orientation. It was determined that the X-axis yielded the highest reading, thus all testing was performed in this axis (see Setup Photos for details). Testing was performed on the min and max channels. Because the EUT was tested as a module, the normally floor standing antenna was placed on a table due to the need for the typical short cable to be connected in order for the unit to function properly

5.5. MODIFICATIONS

1. R2, R3, R7, R8 Change from 0 Ohm to 10 Ohm.

2. R178, R179, R174, R175 Change from 560 Ohm to 330 Ohm.

3. C130, C131 Change from 1000pF to 470pF.

4. Added Fair-rite P/N: 0443806406 with 3 turns to DC cable near TR7240

Page 6 of 55

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

	PERIPHERAL SUPPORT EQUIPMENT LIST								
Description	Manufacturer	Model	Serial Number	FCC ID					
Loop Antenna	Checkpoint	P10 Pedestal	7356748C0D10740034	N/A					
Power Supply	Globetek	GT-2S5024D-R-ES	ROHS002938151/07	N/A					

I/O CABLES

			I/O CABLE LIST		
Cable No.	Port	# of Identical Ports	Cable Type	Cable Length	Remarks
1	RF Interface	1	Shielded	15'	None
2	DC	1	Shielded	14'	None
3	AC	1	Unshielded	7'	None

TEST SETUP

The EUT is evaluated as a stand-alone device during the tests. Test software exercised the radio module.

Page 7 of 55

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Radiated Emissions / 6dB Bandwidth / Duty Cycle						
Description	Manufacturer	Model	Identifier	Cal Date	Cal Due Date	
Below 30MHz						
EMI Receiver	Rohde & Schwarz	ESCI7	75141	2013-01-30	2014-01-31	
Loop Antenna	EMCO		5A-288	2012-11-13	2013-11-13	
Switch Driver	HP	11713A	ME7A-627	N/A	N/A	
System Controller	Sunol Sciences	SC99V	44396	N/A	N/A	
Camera Controller	Panasonic	WV-CU254	44395	N/A	N/A	
RF Switch Box	UL	1	44398	N/A	N/A	
Measurement Software	UL	Version 9.5	44740	N/A	N/A	
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	4268	2012-12-22	2014-12-22	
Multimeter	Fluke	83111	ME5B-305	2013-01-29	2014-01-31	
Oscilloscope	Tektronix	TDS680B	5A-258	2013-01-31	2014-01-31	
30-1000MHz						
EMI Receiver	Rohde & Schwarz	ESCI7	75141	2013-01-30	2014-01-31	
Log-P Antenna	Schaffner	UPA6109	68	2013-04-03	2014-04-03	
Bicon Antenna	Schaffner	VBA6106A	67	2013-11-12	2014-11-12	
Switch Driver	HP	11713A	ME7A-627	N/A	N/A	
System Controller	Sunol Sciences	SC99V	44396	N/A	N/A	
Camera Controller	Panasonic	WV-CU254	44395	N/A	N/A	
RF Switch Box	UL	1	44398	N/A	N/A	
Measurement Software	UL	Version 9.5	44740	N/A	N/A	
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	4268	2012-12-22	2014-12-22	
Multimeter	Fluke	83111	ME5B-305	2013-01-29	2014-01-31	
Above 1GHz (Band Optimized Sy	/stem)					
Spectrum Analyzer	Agilent	E4446A	72823	2013-01-29	2014-01-31	
Horn Antenna (1-2 GHz)	ETS	3161-01 (26°)**	51442	2008-03-28	See * below	
Signal Path Controller	HP	11713A	50250	N/A	N/A	
Gain Controller	HP	11713A	50251	N/A	N/A	
RF Switch / Preamp Fixture	UL	BOMS1	50249	N/A	N/A	
System Controller	UL	BOMS2	50252	N/A	N/A	
Measurement Software	UL	Version 9.5	44740	N/A	N/A	
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	4268	2012-12-22	2014-12-22	
Multimeter	Fluke	83111	ME5B-305	2013-01-29	2014-01-31	

* - Note: As allowed by the calibration standard ANSI C63.4 Section 4.4.2, standard gain horns need only a one-time calibration. Only if physical damage occurs will the horn antenna require re-calibration.

Gain standard horn antennas (sometimes called standard gain horn antennas) need not be calibrated beyond that which is provided by the manufacturer unless they are damaged or deterioration is suspected, or they are used at a distance closer than $2D^2/\lambda$. Gain standard horn antennas have gains that are fixed by their dimensions and dimensional tolerances.

** - Number in parentheses denotes antenna beam width.

UL LLC FORM NO: CCSUP4701D 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of Underwriters Laboratories Inc.

Page 9 of 55

Conducted Emissions Description Manufacturer Model Identifier Cal Date Cal Due Date Ground Plane 1 **EMI** Receiver Rohde & Schwarz ESCI7 2013-01-29 2014-01-31 75141 LISN Solar 9252-50-R-24-BNC ME5A-636 2013-02-01 2014-02-28 Switch Driver ΗP 11713A 44397 NA NA **RF Switch Box** UL 4 44404 NA NA Measurement Software UL Version 9.5 44736 NA NA Temp/Humidity/Pressure Meter Cole Parmer 99760-00 43734 2012-03-13 2014-03-13 Multimeter Fluke 87V 44547 2013-01-28 2014-01-31

Page 10 of 55

7. DUTY CYCLE

<u>LIMITS</u>

FCC §15.35 (c)

The measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 1 MHz and the VBW is set to 1 MHz. The sweep time is coupled and the span is set to 0 Hz. The number of pulses is measured and calculated in a 100 ms scan.

Due to the short response time, an oscilloscope was used to in order to accurately measure the signal.

CALCULATION

Average Reading = Peak Reading (dBuV/m) + 20log (Duty Cycle), Where Duty Cycle is (# of long pulses * long pulse width) + (# of short pulses * short pulse width) / 100 or T

RESULTS

No non-compliance noted:

One	Long Pulse	# of	Short	# of	Duty	20*Log
Period	Width	Long	Width	Short	Cycle	Duty Cycle
((100.0)	Dulasa	(ma)	Dulass		(40)
(ms)	(ms)	Puises	(ms)	Fuises		(ub)

ONE PERIOD & NUMBER OF PULSES

Page 12 of 55

LONG PULSE WIDTH

UL LLC FORM NO: CCSUP4701D 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of Underwriters Laboratories Inc.

Page 13 of 55

8. 6dB BANDWIDTH

<u>LIMITS</u>

FCC §15.223 (a) / IC RSS-210 A2.3

Measurement is for reference only. If the bandwidth of the emission is less than 10% of the center frequency, the field strength shall not exceed 15 microvolts/meter or (the bandwidth of the device in kHz) divided by (the center frequency of the device in MHz) microvolts/meter at a distance of 30 meters, whichever is the higher level.

TEST PROCEDURE

ANSI C63.4

The transmitter output is connected to the spectrum analyzer.

6dB Bandwidth: The RBW is set to 10 KHz. The VBW is set to 100 KHz. The sweep time is coupled. Bandwidth is determined at the points 6 dB down from the modulated carrier.

<u>RESULTS</u>

Frequency	6dB Bandwidth
(MHz)	(KHz)
7.4	704.5
9.5	860.5

UL LLC FORM NO: CCSUP4701D 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of Underwriters Laboratories Inc.

Page 14 of 55

6dB BANDWIDTH

Page 15 of 55

9. RADIATED EMISSION TEST RESULTS

9.1. LIMITS AND PROCEDURE

<u>LIMIT</u>

§15.223 IC RSS-210, Section 2.6 (Transmitter) IC RSS-GEN, Section 6 (Receiver)

(a) The field strength of any emissions within the band 1.705–10 MHz shall not exceed 100 microvolts/ meter at 30 meters. However, if the bandwidth of the emissions is less than 10% of the center frequency, the field strength shall not exceed 15 microvolts/meter or (the bandwidth of the device in kHz) divided by (the center frequency of the device in MHz) microvolts/meter at a distance of 30 meters, whichever is the higher level. For the purpose of this Section, bandwidth is determined at the points 6 dB down from the modulated carrier. The emission limits in this paragraph are based on measurement instrumentation employing an average detector. The provisions in Section 15.35(b) for limiting peak emissions apply.

(b) The field strength of any emissions appearing outside of the 1.705– 10 MHz shall not exceed the general radiated emission limits in § 15.209 as follows:

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Limits for	Limits for radiated disturbance of an intentional radiator							
Frequency range (MHz)	Limits (µV/m)	Measurement Distance (m)						
0.009 - 0.490	2400 / F (kHz)	300						
0.490 - 1.705	24000 / F (kHz)	30						
1.705 – 30.0	30	30						
30 - 88	100**	3						
88 - 216	150**	3						
216 – 960	200**	3						
Above 960	500	3						

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g. §§ 15.231 and 15.241. §15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Formula for converting the filed strength from uV/m to dBuV/m is: Limit (dBuV/m) = 20 log limit (uV/m)

Page 16 of 55

In addition:

§15.209 (d) The emission limits shown the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emissions limits in these three bands are based on measurements employing an average detector.

TEST PROCEDURE

ANSI C63.4

The EUT is an intentional radiator that incorporates a digital device, the highest fundamental frequency generated or used in the device is 9.5 MHz; therefore, the frequency range was investigated from 30 MHz to the 10th harmonic of the highest fundamental frequency, or 2000 MHz.

RESULTS

No non-compliance noted:

UL LLC FORM NO: CCSUP4701D 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of Underwriters Laboratories Inc.

Page 17 of 55

UL LLC FORM NO: CCSUP4701D 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of Underwriters Laboratories Inc.

Page 18 of 55

Manufacturer:C	heckpoint Syste	ms							
Device:RF Reade	er Board								
Model:TR4240									
Job#:10072468	120V 60Hz								
Tested: GB/RM	Fundamental Tx	7.2MHz							
Radiated Emissi	on Data								
0 Degrees 2 - 30	MHz								
Test Frequency (MHz)	Meter Reading (dBuV)	Detector	AF-5A288 [dB/m]	GL-3M [dB]	DCF [dB]	Corrected Reading (dBuV/m)	FCC Pt15 SubC 15.223 [dBuV/m]	Margin (dB)	Azimuth [Degs]
7.21138	40.67	PK	16.5	0.4	-21.9	35.67	58.67	-23	218
7.60463	44.13	PK	16.4	0.4	-21.9	39.03	58.67	-19.64	109
8.0705	43.41	PK	16.4	0.4	-21.9	38.31	58.67	-20.36	3
8.341	44.31	PK	16.5	0.4	-21.9	39.31	58.67	-19.36	63
6.844	28.12	PK	16.5	0.4	-21.9	23.12	58.67	-35.55	146
8.704	31.02	PK	16.5	0.4	-21.9	26.02	58.67	-32.65	283
90 Degrees 2 - 3	OMHz								
Test Frequency (MHz)	Meter Reading (dBuV)	Detector	AF-5A288 [dB/m]	GL-3M [dB]	DCF [dB]	Corrected Reading (dBuV/m)	FCC Pt15 SubC 15.223 [dBuV/m]	Margin (dB)	Azimuth [Degs]
7.209	29.59	PK	16.5	0.4	-21.9	24.59	58.67	-34.08	274
7.6185	29.9	РК	16.4	0.4	-21.9	24.8	58.67	-33.87	279
PK - Peak detect	or (Maximized)								

[BW in kHz] / [Center Frequency in MHz] = 704.5 / 7.4 = 95.2uV/m at 30-meters

95.2uV/m at 30-meters = 58.67dBuV/m at 10-meters

Page 19 of 55

Page 20 of 55

Manufacturer:0	Checkpoint Syste	ms							
Device:RF Read	er Board								
Model:TR4240									
Job#:10072468	120V 60Hz								
Tested: GB/RM	Fundamental Tx	9.5MHz							
Radiated Emiss	ion Data								
0 Degrees 2 - 30	MHz								
Test Frequency (MHz)	Meter Reading (dBuV)	Detector	AF-5A288 [dB/m]	GL-3M [dB]	DCF [dB]	Corrected Reading (dBuV/m)	FCC Pt15 SubC 15.223 [dBuV/m]	Margin (dB)	Azimuth [Degs]
9.40656	46.01	PK	16.6	0.5	-21.9	41.21	58.24	-17.03	347
9.79721	45.42	PK	16.6	0.9	-21.9	40.62	58.24	-17.62	339
90 Degrees 2 - 3	OMHz								
Test Frequency (MHz)	Meter Reading (dBuV)	Detector	AF-5A288 [dB/m]	GL-3M [dB]	DCF [dB]	Corrected Reading (dBuV/m)	FCC Pt15 SubC 15.223 [dBuV/m]	Margin (dB)	Azimuth [Degs]
9.798	24.43	PK	16.6	0.5	-21.9	19.63	58.24	-38.61	0
9.4	39.51	РК	16.6	0.5	-21.9	34.71	58.24	-23.53	291
PK - Peak detec	tor (Maximized)								
NOTE: Sind fundamenta	ce the emiss I is derived i	ions bai n the fol	ndwidth Iowing v	is less t vay per	han 10% 15.223:	of the center	frequency	, the limi	t of the

[BW in kHz] / [Center Frequency in MHz] = 860.5 / 9.5 = 90.57uV/m at 30-meters

90.57uV/m at 30-meters = 58.24dBuV/m at 10-meters

Page 21 of 55

9.1.2. TX SPURIOUS EMISSION 30 TO 1000 MHz

LOW CHANNEL

Page 22 of 55

Frequency	Meter	Det	AF-54 [dB/m]	GL-3M [dB]	Corrected	FCC Pt 15 Subpart C 15.209	Margin (dB)	Azimuth	Height	Polarit
(MHz)	Reading				Reading			(Degs)	(cm)	
	(dBuV)				(dBuV/m)					
30.3	16.03	QP	17.6	0	33.63	40	-6.37	357	294	Н
30.3	16.09	QP	17.6	0	33.69	40	-6.31	357	294	н
32.3	14.67	QP	16.8	0	31.47	40	-8.53	350	324	н
33.3	9.92	QP	16.5	.1	26.52	40	-13.48	350	324	н
33.3	11.38	QP	16.5	.1	27.98	40	-12.02	350	324	н
30.38	19.9	QP	17.6	0	37.5	40	-2.5	5	292	v
32.2163	7.67	QP	16.8	0	24.47	40	-15.53	121	292	v
32.3	15.28	QP	16.8	0	32.08	40	-7.92	344	325	v
686.3894	9.17	QP	20.3	1.7	31.17	46	-14.83	3	259	н
683.9986	8.28	QP	20.1	1.9	30.28	46	-15.72	194	101	н
698.5	12.26	QP	20.1	1.8	34.16	46	-11.84	51	119	н
900.1	8.24	QP	22.8	2.1	33.14	46	-12.86	101	326	н
914.45	8.32	QP	22.6	2.1	33.02	46	-12.98	243	358	н
600.0148	23.16	QP	19.7	1.7	44.56	46	-1.44	24	102	v
928.5	8.07	QP	22.8	2.1	32.97	46	-13.03	335	389	v
914.5	17.17	QP	22.6	2.1	41.87	46	-4.13	64	180	v
589.2035	7.78	QP	19.4	1.7	28.88	46	-17.12	66	229	v
591.555	8.66	QP	19.4	1.7	29.76	46	-16.24	25	290	v
896.4	17.61	QP	22.6	2.1	42.31	46	-3.69	75	188	v
900.0263	18.58	QP	22.8	2.1	43.48	46	-2.52	71	192	v
912	8.16	QP	22.7	2.1	32.96	46	-13.04	62	136	v
941	8.5	QP	22.6	2.2	33.3	46	-12.7	56	132	v

Page 23 of 55

HIGH CHANNEL

UL LLC FORM NO: CCSUP4701D 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of Underwriters Laboratories Inc.

Page 24 of 55

Frequency	Meter	Det	AF-54 [dB/m]	GL-3M [dB]	Corrected	FCC Pt 15 Subpart C 15.209	Margin (dB)	Azimuth	Height	Polarity
(MHz)	Reading				Reading			(Degs)	(cm)	
	(dBuV)				(dBuV/m)					
36.7486	12.86	QP	15.1	0	27.96	40	-12.04	35	138	v
38.3427	12.81	QP	14.5	.2	27.51	40	-12.49	335	116	v
701	3.78	QP	20	1.9	25.68	46	-20.32	243	299	н
708.5	10.86	QP	20.1	1.8	32.76	46	-13.24	204	121	н
910.9407	11.87	QP	22.8	2.1	36.77	46	-9.23	360	163	н
681.7	13.3	QP	20	1.7	35	46	-11	79	127	н
690.2	8.66	QP	20.7	1.8	31.16	46	-14.84	99	175	н
600.0238	16.05	QP	19.7	1.7	37.45	46	-8.55	111	101	v
900.0151	18.14	QP	22.8	2.1	43.04	46	-2.96	72	199	v
911	8.14	QP	22.8	2.1	33.04	46	-12.96	304	233	v
708	8.2	QP	20.1	1.8	30.1	46	-15.9	99	175	v

Page 25 of 55

LOW CHANNEL PLOT 90 UL EMC - Melville 01:05:28 25 Sep 2013 Radiated Emissions 3-meter Manufacturer:Checkpoint Systems Device:RF reader board Model:IR4240 Job#:H8072468 1280-68Hz Tested by:AA 7.2 MHz 80 FCC SubC Peak EdBuV/m] 70 60 FCC SubC 15.209 Avg EdBuV/m] 50 (m/U/m) 40 30 20 10 Ø Frequency (GHz) BOMS 1GHz - 2GHz General Pt 15 Sub C 15_209.TST * Rev 9.5 12 Jun 2013

9.1.3. TX SPURIOUS EMISSIONS ABOVE 1 GHz

UL LLC FORM NO: CCSUP4701D 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of Underwriters Laboratories Inc.

Page 26 of 55

naurateu erritaar	on Data											
Horizontal 1 - 20	3Hz											
Test Frequency (GHz)	Meter Reading (dBuV)	Detector	AF-51442 [dB/m]	BOMS Factor [dB]	Corrected Reading (dBuV/m)	FCC SubC 15.209 Avg [dBuV/m]	Margin (dB)	FCC SubC Peak [dBuV/m]	PK Margin (dB)	Azimuth [Degs]	Height [cm]	Polarity
1.001	78.34	PK	19.3	-44.67	52.97	-	-	74	-21.03	0-360	200	н
1.008	77.65	PK	19.4	-44.58	52.47	-	-	74	-21.53	0-360	200	н
1.018	75.98	PK	19.4	-44.58	50.8	-	-	74	-23.2	0-360	200	н
1.001	49.42	Av	19.3	-44.67	24.05	54	-29.95	-	-	61	206	н
1.0075	49.21	Av	19.4	-44.58	24.03	54	-29.97	-	-	8	379	н
1.0177	49	Av	19.4	-44.58	23.82	54	-30.18	-	-	15	150	Н
Vertical 1 - 2GH:	2											
Test Frequency (GHz)	Meter Reading (dBuV)	Detector	AF-51442 [dB/m]	BOMS Factor [dB]	Corrected Reading (dBuV/m)	FCC SubC 15.209 Avg [dBuV/m]	Margin (dB)	FCC SubC Peak [dBuV/m]	PK Margin (dB)	Azimuth [Degs]	Height [cm]	Polarity
1.001	77.08	PK	19.3	-44.67	51.71	-	-	74	-22.29	0-360	200	v
1.008	74.15	PK	19.4	-44.58	48.97	-	-	74	-25.03	0-360	200	V
1.28	82.21	PK	20.4	-44.37	58.24	-	-	74	-15.76	0-360	99	V
1.001	49.42	Av	19.3	-44.67	24.05	54	-29.95	-	-	344	148	v
1.0075	49.3	Av	19.4	-44.58	24.12	54	-29.88	-	-	358	318	V
1.28	61.49	Av	20.4	-44.37	37.52	54	-16.48	-	-	181	118	v
Pk - Peak detect	or											
Av - Average det	tector											

Page 27 of 55

Page 28 of 55

HIGH CHAI	NNEL	ΟΑΤΑ										
Padiated Emissi	on Data											
Radiated Emissi	Un Data											
Horizontal 1 - 26	147 147											
1012011811-20												
	Meter				Corrected	ECC SubC		ECC SubC				
Test Frequency	Reading		AF-51442	BOMS	Reading	15 209 Ave	Margin	Peak	PK Margin	Azimuth	Haight	
(GHz)	(dBuV)	Detector	[dB/m]	Factor [dB]	(dBuV/m)	[dBuV/m]	(dB)	[dBuV/m]	(dB)	[Degs]	fcml	Polarity
1	82.42	PK	19.3	-44 77	56.95	loogini	(00)	74	-17.05	0.360	200	н
1 003	80.94	PK	19.3	-44 71	55.53			74	-18.47	0.360	200	н
1.005	80.13	PK	19.4	-44.71	54.95			74	-19.05	0.360	200	н ц
1.005	75 10	DV.	19.4	-44.56	50.02			74	-15.05	0.260	200	
1.010	75.26	PK	19.4	-44.50	50.02			74	-23.30	0.360	200	н ц
1.015	73.96	PK	19.6	-44.59	48.97			74	-25.03	0.360	200	н
1.007	57.48	Δv	19.3	-44.33	32.01	54	-21.99	/1	-25.05	59	200	н
1 0029	49.28	Av	19.3	-44 71	23.87	54	-30.13			8	386	н
1.0023	49.15	Δv	19.0	-44 59	23.96	54	-30.04			11	367	н
1 0154	48.94	Av	19.4	-44 55	23.79	54	-30.21			10	365	н
1.02	49.4	Δν	19.4	-44 55	24.25	54	-29.75				147	н
1.037	48.91	Δv	19.6	-44.59	23.92	54	-30.08			6	351	н
1.057	40.51	~	15.0	-11.33	23.32	24	-50.00					
Vertical 1 - 2GHz	,											
Venticura - 2011												
	Meter				Corrected	FCC SubC		FCC SubC				
Test Frequency	Reading		AF-51442	BOMS	Reading	15.209 Ave	Margin	Peak	PK Margin	Azimuth	Height	
(GHz)	(dBuV)	Detector	[dB/m]	Factor [dB]	(dBuV/m)	[dBuV/m]	(dB)	[dBuV/m]	(dB)	[Dees]	[cm]	Polarity
1	78.21	PK	19.3	-44.77	52.74			74	-21.26	0-360	200	v
1.003	77.7	PK	19.3	-44.71	52.29	-	-	74	-21.71	0-360	200	v
1.008	77.02	PK	19.4	-44.58	51.84	-	-	74	-22.16	0-360	200	v
1.25	72.55	PK	20.2	-44.41	48.34	-	-	74	-25.66	0-360	200	v
1.28	82.19	PK	20.4	-44.37	58.22	-	-	74	-15.78	0-360	99	v
1.3	72.42	PK	20.5	-44.37	48.55	-	-	74	-25.45	0-360	99	v
1.36	71.87	PK	20.6	-44.38	48.09	-	-	74	-25.91	0-360	99	v
1.2486	54	Av	20.1	-44.43	29.67	54	-24.33	-	-	64	359	v
1.28	60.61	Av	20.4	-44.37	36.64	54	-17.36	-	-	166	111	v
1.3	66.26	Av	20.5	-44.37	42.39	54	-11.61	-	-	65	108	V
1.36	57.78	Av	20.6	-44.38	34	54	-20	-	-	0	102	V
1	57	Av	19.3	-44.77	31.53	54	-22.47	-	-	41	159	V
1.003	49.32	Av	19.3	-44.71	23.91	54	-30.09	-	-	347	150	v
1.0082	49.03	Av	19.4	-44.59	23.84	54	-30.16	-	-	97	163	V
PK - Peak detect	or											
Av - Average det	ector											

Page 29 of 55

10. AC MAINS LINE CONDUCTED EMISSIONS

<u>LIMITS</u>

§15.207 IC RSS-GEN, Section 7.2.2

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges.

Frequency range	Limits (dBµV)					
(MHz)	Quasi-peak	Average				
0.15 to 0.50	66 to 56	56 to 46				
0.50 to 5	56	46				
5 to 30	60	50				
Notes: 1. The lower limit shall apply at the 2. The limit decreases linearly with MHz.	transition frequencies the logarithm of the frequency i	in the range 0.15 MHz to 0.50				

TEST PROCEDURE

ANSI C63.4

Testing was performed on low and high channels. The test was performed on each channel twice – once with the antenna connected and again with the antenna replaced with a termination.

<u>RESULTS</u>

No non-compliance noted:

Page 30 of 55

6 WORST EMISSIONS - LOW CHANNEL W/O TERMINATION

Manufacturer:0	heckpoint Syste	m						
Device:RF Read	er Board, 7.2 MH	z						
Model:TR4240	· · · ·							
lob:10072468	120V/60Hz							
Tested by:MM								
rested by min								
Line_11_15_30	MHz							
Test Frequency	Meter Reading		Line 1 G/L	Corrected	Subpart C OPK	Margin	Subpart C Ave	Margin
(ML-)	(dBuV)	Detector	(dp)	Reading (dBuV)	Limit (dBuV)	(dp)	Limit (dBu)/)	(dp)
6 22622	25.0	OP	10.2	46 1	60	12.9	cinic (abav)	(00)
£ 0£0000	E1 00	00	10.5	40.1 62.20	60	2.29	_	
7 150175	51.55	QP OP	10.5	79.72	60	10.72	_	-
7.156175	69.42	QP QP	10.5	79.72	60	19.72	-	-
7.020055	66.77	QP QP	10.4	79.17	60	19.17	-	-
8.356415	68.65	QP QP	10.4	/9.05	60	19.05	-	-
8.932478	47.05	QP	10.5	57.55	60	-2.45	-	-
9.972905	37.7	QP	10.6	48.3	60	-11.7	-	-
10.40645	30.63	QP	10.7	41.33	60	-18.67	-	-
6.2264	27.62	Av	10.3	37.92	-	-	50	-12.08
6.86796	39.57	Av	10.3	49.87	-	-	50	-0.13
7.15739	45.1	Av	10.3	55.4	-	-	50	5.4
7.62667	45.82	Av	10.4	56.22	-	-	50	6.22
8.353	51.3	Av	10.4	61.7	-	-	50	11.7
8.92994	36.33	Av	10.5	46.83	-	-	50	-3.17
9.97134	26.62	Av	10.6	37.22	-	-	50	-12.78
10.4045	20.14	Av	10.7	30.84	-	-	50	-19.16
Neutral .15 - 30	MHz							
Test Frequency	Meter Reading		Line 2 G/L	Corrected	Subpart C QPK	Margin	Subpart C Avg	Margin
(MHz)	(dBuV)	Detector	(dB)	Reading (dBuV)	Limit (dBuV)	(dB)	Limit (dBuV)	(dB)
6.17229	34.53	QP	10.3	44.83	60	-15.17	-	-
6.774363	49.32	QP	10.3	59.62	60	-0.38	-	-
7.12379	68.16	QP	10.4	78.56	60	18.56	-	-
7.55269	69.61	QP	10.4	80.01	60	20.01	-	-
8.356075	68.77	QP	10.5	79.27	60	19.27	-	-
9.221823	45.08	QP	10.5	55.58	60	-4.42	-	-
9.909073	35.66	QP	10.6	46.26	60	-13.74	-	-
10.76465	30.88	QP	10.8	41.68	60	-18.32	-	-
6.17525	26.76	Av	10.3	37.06	-	-	50	-12.94
6.77476	39.3	Av	10.3	49.6	-	-	50	-0.4
7.12372	53.6	Av	10.4	64	-	-	50	14
7.5525	55.45	Av	10.4	65.85	-	-	50	15.85
8.35733	52.64	Av	10.5	63.14	-	-	50	13.14
9.22101	34.9	Av	10 5	45.4	-	-	50	-4.6
9 9088	25 38	Av	10.6	35.98	-	-	50	-14 02
10 7639	21.12	Av	10.8	31.92		_	50	-18.08
10.7055	£1.12		10.0	51.52		_	50	10.00
OP - Quasi-Peak	detector							
Av - Average de	tector							

LINE 1 RESULTS - LOW CHANNEL W/O TERMINATION

Page 32 of 55

LINE 2 RESULTS - LOW CHANNEL W/O TERMINATION

Page 33 of 55

<u>6 WORST EMISSIONS – LOW CHANNEL W/ TERMINATION</u>

Manufacturer:Cl	heckpoint System	ı						
Device:RF Reade	er Board, 7.2 MHz							
Model:TR4240 V	Vith Termination							
Job:10072468	120V/60Hz							
Tested by:MM								
Line - L1 .15 - 30	MHz							
Test Frequency	Meter Reading		Line 1 G/L	Corrected	Subpart C QPK	Margin	Subpart C Avg	Margin
(MHz)	(dBuV)	Detector	(dB)	Reading (dBuV)	Limit (dBuV)	(dB)	Limit (dBuV)	(dB)
0.3067	43.59	QP	10	53.59	60.06	-6.47	-	-
0.342553	38.87	QP	10	48.87	59.14	-10.27	-	-
7.03925	20.01	QP	10.3	30.31	60	-29.69	-	-
7.162275	26.39	QP	10.3	36.69	60	-23.31	-	-
7.642023	31.8	QP	10.4	42.2	60	-17.8	-	-
8.392305	38.15	QP	10.4	48.55	60	-11.45	-	-
8.751893	24.43	QP	10.4	34.83	60	-25.17	-	-
10.2048	17.48	QP	10.6	28.08	60	-31.92	-	-
0.30625	17.9	Av	10	27.9	-	-	50.07	-22.17
0.32528	15.03	Av	10	25.03	-	-	49.57	-24.54
7.04021	9.08	Av	10.3	19.38	-	-	50	-30.62
7.15612	13.43	Av	10.3	23.73	-	-	50	-26.27
7.64091	17.61	Av	10.4	28.01	-	-	50	-21.99
8.39342	22.54	Av	10.4	32.94	-	-	50	-17.06
8.75259	13.66	Av	10.4	24.06	-	-	50	-25.94
							50	20.77
10.2077	8.63	Av	10.6	19.23	-	-	50	-50.77
10.2077	8.63	Av	10.6	19.23	-	-	50	-50.77
10.2077 Neutral .15 - 30M	8.63 /Hz	Av	10.6	19.23	-	-	50	-50.77
10.2077 Neutral .15 - 30M Test Frequency	8.63 /Hz Meter Reading	Av	Line 2 G/L	19.23 Corrected	Subpart C QPK	Margin	Subpart C Avg	Margin
10.2077 Neutral .15 - 30M Test Frequency (MHz)	8.63 /Hz Meter Reading (dBuV)	Av	10.6 Line 2 G/L (dB)	Corrected Reading (dBuV)	- Subpart C QPK Limit (dBuV)	- Margin (dB)	Subpart C Avg Limit (dBuV)	Margin (dB)
10.2077 Neutral .15 - 30N Test Frequency (MHz) 0.305433	8.63 /Hz (dBuV) 37.88	Av Detector QP	10.6 Line 2 G/L (dB) 10	19.23 Corrected Reading (dBuV) 47.88	Subpart C QPK Limit (dBuV) 60.09	Margin (dB) -12.21	Subpart C Avg Limit (dBuV)	Margin (dB)
10.2077 Neutral .15 - 30M Test Frequency (MHz) 0.305433 0.30811	8.63 /Hz Meter Reading (dBuV) 37.88 37.82	Av Detector QP QP	10.6 Line 2 G/L (dB) 10	19.23 Corrected Reading (dBuV) 47.88 47.82	Subpart C QPK Limit (dBuV) 60.09 60.02	Margin (dB) -12.21 -12.2	Subpart C Avg Limit (dBuV) -	-30.77 Margin (dB) -
10.2077 Neutral .15 - 30M Test Frequency (MHz) 0.305433 0.30811 7.040148	8.63 //Hz (dBuV) 37.88 37.82 20.58	Av Detector QP QP	10.6 Line 2 G/L (dB) 10 10.4	19.23 Corrected Reading (dBuV) 47.88 47.82 30.98	Subpart C QPK Limit (dBuV) 60.02 60.02	Margin (dB) -12.21 -12.2 -29.02	Subpart C Avg Limit (dBuV) - - -	-30.77 Margin (dB) - -
10.2077 Neutral .15 - 30M Test Frequency (MHz) 0.305433 0.30811 7.040148 7.226653	8.63 MHz (dBuV) 37.88 37.82 20.58 28.17	Av Detector QP QP QP	10.6 Line 2 G/L (dB) 10 10.4 10.4	19.23 Corrected Reading (dBuV) 47.88 47.82 30.98 38.57	Subpart C QPK Limit (dBuV) 60.02 60 60	Margin (dB) -12.21 -12.2 -29.02 -21.43	Subpart C Avg Limit (dBuV) - - - -	-30.77 Margin (dB) - - -
10.2077 Neutral .15 - 30M Test Frequency (MHz) 0.305433 0.30811 7.040148 7.22653 7.59483	8.63 //Hz (dBuV) 37.88 37.82 20.58 28.17 30.93	Av Detector QP QP QP QP	10.6 Line 2 G/L (dB) 10 10.4 10.4 10.4	19.23 Corrected Reading (dBuV) 47.88 47.82 30.98 38.57 41.33	- Subpart C QPK Limit (dBuV) 60.02 60 60 60	Margin (dB) -12.21 -12.2 -29.02 -21.43 -18.67	Subpart C Avg Limit (dBuV) - - - - -	-50.77 Margin (dB) - - - -
10.2077 Neutral .15 - 30M Test Frequency (MHz) 0.305433 0.30811 7.040148 7.226653 7.59483 8.348365	8.63 //Hz Meter Reading (dBuV) 37.88 37.82 20.58 28.17 30.93 37.05	Av Detector QP QP QP QP QP	10.6 Line 2 G/L (dB) 10 10.4 10.4 10.4 10.4	19.23 Corrected Reading (dBuV) 47.88 47.82 30.98 38.57 41.33 47.55	Subpart C QPK Limit (dBuV) 60.09 60.02 60 60 60 60	Margin (dB) -12.21 -12.2 -29.02 -21.43 -18.67 -12.45	Subpart C Avg Limit (dBuV) - - - - - -	-30.77 Margin (dB) - - - - -
10.2077 Neutral .15 - 30M Test Frequency (MHz) 0.305433 0.30811 7.040148 7.226653 7.59483 8.348365 8.691988	8.63 //Hz Meter Reading (dBuV) 37.88 37.82 20.58 28.17 30.93 37.05 26.19	Av Detector QP QP QP QP QP QP	10.6 Line 2 G/L (dB) 10 10.4 10.4 10.4 10.5 10.5	19.23 Corrected Reading (dBuV) 47.88 47.82 30.98 38.57 41.33 47.55 36.69	Subpart C QPK Limit (dBuV) 60.09 60.02 60 60 60 60 60	Margin (dB) -12.21 -12.2 -29.02 -21.43 -18.67 -12.45 -23.31	Subpart C Avg Limit (dBuV) - - - - - - - - - -	-30.77 Margin (dB) - - - - -
10.2077 Neutral .15 - 30N Test Frequency (MHz) 0.305433 0.30811 7.040148 7.226653 7.59483 8.348365 8.691988 9.42637	8.63 //Hz Meter Reading (dBuV) 37.88 37.82 20.58 28.17 30.93 37.05 26.19 20.58 20.58 26.19 20.58	Av Detector QP QP QP QP QP QP QP QP	10.6 Line 2 G/L (dB) 10 10.4 10.4 10.5 10.5 10.5	19.23 Corrected Reading (dBuV) 47.88 47.82 30.98 38.57 41.33 47.55 36.69 31.18	Subpart C QPK Limit (dBuV) 60.09 60.02 60 60 60 60 60 60	Margin (dB) -12.21 -12.2 -29.02 -21.43 -18.67 -12.45 -23.31 -28.82	Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - -	-30.77 Margin (dB) - - - - - -
10.2077 Neutral .15 - 30N Test Frequency (MHz) 0.305433 0.30811 7.040148 7.226653 7.59483 8.348365 8.691988 9.42637 10.893275	8.63 //Hz Meter Reading (dBuV) 37.88 37.82 20.58 28.17 30.93 37.05 26.19 20.58 16.02	Av Detector QP QP QP QP QP QP QP QP QP	10.6 Line 2 G/L (dB) 10 10.4 10.4 10.4 10.5 10.5 10.5 10.6 10.8	19.23 Corrected Reading (dBuV) 47.88 47.82 30.98 38.57 41.33 47.55 36.69 31.18 26.82	Subpart C QPK Limit (dBuV) 60.09 60.02 60 60 60 60 60 60 60 60	Margin (dB) -12.21 -12.2 -29.02 -21.43 -18.67 -12.45 -23.31 -28.82 -33.18	Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-30.77 Margin (dB) - - - - - - - - - -
10.2077 Neutral .15 - 30N Test Frequency (MHz) 0.305433 0.30811 7.040148 7.226653 7.59483 8.348365 8.691988 9.42637 10.893275 0.30231	8.63 //Hz Meter Reading (dBuV) 37.88 37.82 20.58 28.17 30.93 37.05 26.19 20.58 16.02 17.77	Av Detector QP QP QP QP QP QP QP QP QP QP QP QP QP	10.6 Line 2 G/L (dB) 10 10.4 10.4 10.4 10.4 10.5 10.5 10.6 10.8 10.8	19.23 Corrected Reading (dBuV) 47.88 47.82 30.98 38.57 41.33 47.55 36.69 31.18 26.82 27.77	- Subpart C QPK Limit (dBuV) 60.09 60.02 60 60 60 60 60 60 60 60	Margin (dB) -12.21 -12.2 -29.02 -21.43 -18.67 -12.45 -23.31 -28.82 -33.18 -	Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-30.77 Margin (dB) - - - - - - - - - - - - - - - - - - -
10.2077 Neutral .15 - 30N Test Frequency (MHz) 0.305433 0.30811 7.040148 7.226653 7.59483 8.348365 8.691988 9.42637 10.893275 0.30231 0.30833 7.24045	8.63 //Hz Meter Reading (dBuV) 37.88 37.82 20.58 28.17 30.93 37.05 26.19 20.58 16.02 17.77 23.57	Av Detector QP QP QP QP QP QP QP QP QP QP QP Av Av	10.6 Line 2 G/L (dB) 10 10.4 10.4 10.4 10.5 10.5 10.6 10.8 10 10 10 10	19.23 Corrected Reading (dBuV) 47.88 47.82 30.98 38.57 41.33 47.55 36.69 31.18 26.82 27.77 33.57	- Subpart C QPK Limit (dBuV) 60.09 60.02 60 60 60 60 60 60 60 60 60	Margin (dB) -12.21 -12.2 -29.02 -21.43 -18.67 -12.45 -23.31 -28.82 -33.18 -	Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-30.77 Margin (dB) - - - - - - - - - - - - - - - - - - -
10.2077 Neutral .15 - 30N Test Frequency (MHz) 0.305433 0.30811 7.040148 7.226653 7.59483 8.348365 8.691988 9.42637 10.893275 0.30231 0.30833 7.04015	8.63 //Hz Meter Reading (dBuV) 37.88 37.82 20.58 28.17 30.93 37.05 26.19 20.58 16.02 17.77 23.57 8.26	Av Detector QP QP QP QP QP QP QP QP QP QP QP QP Av Av	10.6 Line 2 G/L (dB) 10 10.4 10.4 10.4 10.4 10.5 10.5 10.6 10.8 10 10.8 10 10.4	19.23 Corrected Reading (dBuV) 47.88 47.82 30.98 38.57 41.33 47.55 36.69 31.18 26.82 27.77 33.57 18.66	- Subpart C QPK Limit (dBuV) 60.09 60.02 60 60 60 60 60 60 60 60 60	Margin (dB) -12.21 -12.2 -29.02 -21.43 -18.67 -12.45 -23.31 -28.82 -33.18 - -	Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-30.77 Margin (dB) - - - - - - - - - - - - - - - - - - -
10.2077 Neutral .15 - 30N Test Frequency (MHz) 0.305433 0.30811 7.040148 7.226653 7.59483 8.348365 8.691988 9.42637 10.893275 0.30231 0.30231 0.30833 7.04015 7.22671	8.63 //Hz Meter Reading (dBuV) 37.88 37.82 20.58 28.17 30.93 37.05 26.19 20.58 16.02 17.77 23.57 8.26 15.24	Av Detector QP QP QP QP QP QP QP QP QP QP QP Av Av Av	10.6 Line 2 G/L (dB) 10 10.4 10.4 10.4 10.5 10.5 10.6 10.8 10 10.1 10.4 10.4	19.23 Corrected Reading (dBuV) 47.88 47.82 30.98 38.57 41.33 47.55 36.69 31.18 26.82 27.77 33.57 18.66 25.64	- Subpart C QPK Limit (dBuV) 60.09 60.02 60 60 60 60 60 60 60 60 60 60 60 60 60	Margin (dB) -12.21 -12.2 -29.02 -21.43 -18.67 -12.45 -23.31 -28.82 -33.18 - -	Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-30.77 Margin (dB) - - - - - - - - - - - - - - - - - - -
10.2077 Neutral .15 - 30N Test Frequency (MHz) 0.305433 0.30811 7.040148 7.226653 7.59483 8.348365 8.691988 9.42637 10.893275 0.30231 0.30833 7.04015 7.22671 7.59426	8.63 //Hz Meter Reading (dBuV) 37.88 37.82 20.58 28.17 30.93 37.05 26.19 20.58 16.02 17.77 23.57 8.26 15.24 17.16 21.42 21.	Av Detector QP QP QP QP QP QP QP QP QP QP QP QP Av Av Av Av	10.6 Line 2 G/L (dB) 10 10.4 10.4 10.4 10.5 10.5 10.6 10.8 10 10.4 10.4 10.4	19.23 Corrected Reading (dBuV) 47.88 47.82 30.98 38.57 41.33 47.55 36.69 31.18 26.82 27.77 33.57 18.66 25.64 27.66	- Subpart C QPK Limit (dBuV) 60.09 60.02 60 60 60 60 60 60 60 60 60 60 60 60 60	Margin (dB) -12.21 -12.2 -29.02 -21.43 -18.67 -12.45 -23.31 -28.82 -33.18 - - - - - - - - - - - - - - - - - - -	Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-30.77 Margin (dB) - - - - - - - - - - - - - - - - - - -
10.2077 Neutral .15 - 30N Test Frequency (MHz) 0.305433 0.30811 7.040148 7.226653 7.59483 8.348365 8.691988 9.42637 10.893275 0.30231 0.30833 7.04015 7.22671 7.59426 8.33478	8.63 //Hz Meter Reading (dBuV) 37.88 37.82 20.58 28.17 30.93 37.05 26.19 20.58 16.02 17.77 23.57 8.26 15.24 17.16 21.42	Av Detector QP QP QP QP QP QP QP QP QP QP QP QP Av Av Av Av Av	10.6 Line 2 G/L (dB) 10 10.4 10.4 10.4 10.4 10.5 10.6 10.8 10 10 10.4 10.4 10.4 10.4	19.23 Corrected Reading (dBuV) 47.88 47.82 30.98 38.57 41.33 47.55 36.69 31.18 26.82 27.77 33.57 18.66 25.64 27.56 31.92	- Subpart C QPK Limit (dBuV) 60.09 60.02 60 60 60 60 60 60 60 60 60 60 60 60 60	Margin (dB) -12.21 -12.2 -29.02 -21.43 -18.67 -12.45 -23.31 -28.82 -33.18 - - - - - - - - - - - - - - - - - - -	Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-30.77 Margin (dB) - - - - - - - - - - - - - - - - - - -
10.2077 Neutral .15 - 30N Test Frequency (MHz) 0.305433 0.30811 7.040148 7.226653 7.59483 8.348365 8.691988 9.42637 10.893275 0.30231 0.30833 7.04015 7.22671 7.59426 8.33478 8.69329	8.63 AHz Meter Reading (dBuV) 37.88 37.82 20.58 28.17 30.93 37.05 26.19 20.58 16.02 17.77 23.57 8.26 15.24 17.16 21.42 15.23	Av Detector QP QP QP QP QP QP QP QP QP QP QP QP Av Av Av Av Av Av	10.6 Line 2 G/L (dB) 10 10.4 10.4 10.4 10.4 10.5 10.5 10.6 10.8 10 10 10.4 10.4 10.4 10.4 10.5 10.5	19.23 Corrected Reading (dBuV) 47.88 47.82 30.98 38.57 41.33 47.55 36.69 31.18 26.82 27.77 33.57 18.66 25.64 27.56 31.92 25.73	- Subpart C QPK Limit (dBuV) 60.09 60.02 60 60 60 60 60 60 60 60 60 60 60 60 60	Margin (dB) -12.21 -12.2 -29.02 -21.43 -18.67 -12.45 -23.31 -28.82 -33.18 - - - - - - - - - - - - - - - - - - -	Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-30.77 Margin (dB) - - - - - - - - - - - - - - - - - - -
10.2077 Neutral .15 - 30N Test Frequency (MHz) 0.305433 0.30811 7.040148 7.226653 7.59483 8.348365 8.691988 9.42637 10.893275 0.30231 0.30833 7.04015 7.22671 7.59426 8.33478 8.69329 9.42663	8.63 AHz Meter Reading (dBuV) 37.88 37.82 20.58 28.17 30.93 37.05 26.19 20.58 16.02 17.77 23.57 8.26 15.24 17.16 21.42 15.23 11.54 7.84	Av Detector QP QP QP QP QP QP QP QP QP QP QP QP Av Av Av Av Av Av Av	10.6 Line 2 G/L (dB) 10 10.4 10.4 10.4 10.4 10.5 10.5 10.6 10.8 10 10 10.4 10.4 10.4 10.4 10.5 10.5 10.5 10.5 10.5	19.23 Corrected Reading (dBuV) 47.88 47.82 30.98 38.57 41.33 47.55 36.69 31.18 26.82 27.77 33.57 18.66 25.64 27.56 31.92 25.73 22.14	Subpart C QPK Limit (dBuV) 60.09 60.02 60 60 60 60 60 60 60 60 60 60 60 60 60	Margin (dB) -12.21 -12.2 -29.02 -21.43 -18.67 -12.45 -23.31 -28.82 -33.18 - - - - - - - - - - - - - - - - - - -	Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-30.77 Margin (dB) - - - - - - - - - - - - - - - - - - -
10.2077 Neutral .15 - 30N Test Frequency (MHz) 0.305433 0.30811 7.040148 7.226653 7.59483 8.348365 8.691988 9.42637 10.893275 0.30231 0.30833 7.04015 7.22671 7.59426 8.33478 8.69329 9.42663 10.8941	8.63 AHz Meter Reading (dBuV) 37.88 37.82 20.58 28.17 30.93 37.05 26.19 20.58 16.02 17.77 23.57 8.26 15.24 17.16 21.42 15.23 11.54 7.91	Av Detector QP QP QP QP QP QP QP QP QP QP Av Av Av Av Av Av Av Av Av Av	10.6 Line 2 G/L (dB) 10 10.4 10.4 10.4 10.4 10.5 10.5 10.6 10.8 10 10 10.4 10.4 10.4 10.4 10.5 10.5 10.6 10.8	19.23 Corrected Reading (dBuV) 47.88 47.82 30.98 38.57 41.33 47.55 36.69 31.18 26.82 27.77 33.57 18.66 25.64 27.56 31.92 25.73 22.14 18.71	Subpart C QPK Limit (dBuV) 60.09 60.02 60 60 60 60 60 60 60 60 60 60 60 60 60	Margin (dB) -12.21 -29.02 -21.43 -18.67 -12.45 -23.31 -28.82 -33.18 - - - - - - - - - - - - - - - - - - -	Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-30.77 Margin (dB) - - - - - - - - - - - - - - - - - - -
10.2077 Neutral .15 - 30N Test Frequency (MHz) 0.305433 0.30811 7.040148 7.226653 7.59483 8.348365 8.691988 9.42637 10.893275 0.30231 0.30833 7.04015 7.22671 7.59426 8.33478 8.69329 9.42663 10.8941 QP - Quasi-Peak 0	8.63 MHz Meter Reading (dBuV) 37.88 37.82 20.58 28.17 30.93 37.05 26.19 20.58 16.02 17.77 23.57 8.26 15.24 17.16 21.42 15.23 11.54 7.91 detector	Av Detector QP QP QP QP QP QP QP QP QP QP Av Av Av Av Av Av Av Av Av	10.6 Line 2 G/L (dB) 10 10.4 10.4 10.4 10.4 10.5 10.5 10.6 10.8 10 10 10.4 10.4 10.4 10.4 10.5 10.5 10.6 10.8	19.23 Corrected Reading (dBuV) 47.88 47.82 30.98 38.57 41.33 47.55 36.69 31.18 26.82 27.77 33.57 18.66 25.64 27.56 31.92 25.73 22.14 18.71	Subpart C QPK Limit (dBuV) 60.09 60.02 60 60 60 60 60 60 60 60 60 60 60 60 60	Margin (dB) -12.21 -29.02 -21.43 -18.67 -12.45 -23.31 -28.82 -33.18 - - - - - - - - - - - - - - - - - - -	Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-30.77 Margin (dB) - - - - - - - - - - - - - - - - - - -

Page 34 of 55

LINE 1 RESULTS - LOW CHANNEL W/ TERMINATION

Page 35 of 55

LINE 2 RESULTS - LOW CHANNEL W/ TERMINATION

Page 36 of 55

<u>6 WORST EMISSIONS – HIGH CHANNEL W/O TERMINATION</u>

Manufacturer:Ch	eckpoint Syste	m						
Device:RF Reade	r Board, 9.5 MH	Iz						
Model:TR4240								
Job:10072468	120V/60Hz							
Tested by:MM								
Line - L1 .15 - 30N	1Hz							
Test Frequency	Meter		Line 1 G/L	Corrected	Subpart C QPK		Subpart C Avg	
(MHz)	Reading	Detector	(dB)	Reading (dBuV)	Limit (dBuV)	Margin (dB)	Limit (dBuV)	Margin (dB)
0.182945	41.76	QP	10	51.76	64.35	-12.59	-	-
0.306443	43.6	QP	10	53.6	60.07	-6.47	-	-
0.367488	36.52	QP	10	46.52	58.56	-12.04	-	-
6.332893	33.8	QP	10.3	44.1	60	-15.9	-	-
7.49952	48.92	QP	10.4	59.32	60	-0.68	-	-
8.846348	54.85	QP	10.5	65.35	60	5.35	-	-
9.41096	69.81	QP	10.5	80.31	60	20.31	-	-
9.777975	68.21	QP	10.6	78.81	60	18.81	-	-
10.1908	54.12	QP	10.6	64.72	60	4.72	-	-
10.71815	44.6	QP	10.8	55.4	60	-4.6	-	-
12.3458	30.34	QP	10.8	41.14	60	-18.86	-	-
18.808375	31.15	QP	11.1	42.25	60	-17.75	-	-
0.18291	23.88	Av	10	33.88	-	-	54.35	-20.47
0.30574	23.63	Av	10	33.63	-	-	50.09	-16.46
0.36796	18.97	Av	10	28.97	-	-	48.55	-19.58
6.33287	24.36	Av	10.3	34.66	-	-	50	-15.34
7.49911	41.04	Av	10.4	51.44	-	-	50	1.44
8.84659	43.8	Av	10.5	54.3	-	-	50	4.3
9.41101	57.28	Av	10.5	67.78	-	-	50	17.78
9.77775	45.45	Av	10.6	56.05	-	-	50	6.05
10.1909	41.18	Av	10.6	51.78	-	-	50	1.78
10.7193	33.37	Av	10.8	44.17	-	-	50	-5.83
12.346	23.79	Av	10.8	34.59	-	-	50	-15.41
18.8083	18.73	Av	11.1	29.83	-	-	50	-20.17
18.8083	18.73	Av	11.1	29.83	-	-	50	-20.17
18.8083 Neutral .15 - 30M	18.73 IHz	Av	11.1	29.83	-	-	50	-20.17
18.8083 Neutral .15 - 30M Test Frequency	18.73 Hz Meter	Av	11.1 Line 2 G/L	29.83 Corrected	- Subpart C QPK	-	50 Subpart C Avg	-20.17
18.8083 Neutral .15 - 30M Test Frequency (MHz)	18.73 IHz Meter Reading	Av Detector	11.1 Line 2 G/L (dB)	29.83 Corrected Reading (dBuV)	- Subpart C QPK Limit (dBuV)	- Margin (dB)	50 Subpart C Avg Limit (dBuV)	-20.17 Margin (dB)
18.8083 Neutral .15 - 30M Test Frequency (MHz) 0.30722	18.73 Hz Meter Reading 43.53	Av Detector QP	11.1 Line 2 G/L (dB) 10	29.83 Corrected Reading (dBuV) 53.53	- Subpart C QPK Limit (dBuV) 60.05	- Margin (dB) -6.52	50 Subpart C Avg Limit (dBuV)	-20.17 Margin (dB)
18.8083 Neutral .15 - 30M Test Frequency (MHz) 0.30722 0.306458	18.73 Hz Reading 43.53 43.6	Av Detector QP QP	11.1 Line 2 G/L (dB) 10 10	29.83 Corrected Reading (dBuV) 53.53 53.6	- Subpart C QPK Limit (dBuV) 60.05 60.07	- Margin (dB) -6.52 -6.47	50 Subpart C Avg Limit (dBuV) -	-20.17 Margin (dB) -
18.8083 Neutral .15 - 30M Test Frequency (MHz) 0.30722 0.306458 0.367565	18.73 Hz Meter Reading 43.53 43.6 36.43	Av Detector QP QP	11.1 Line 2 G/L (dB) 10 10 10	29.83 Corrected Reading (dBuV) 53.53 53.6 46.43	- Subpart C QPK Limit (dBuV) 60.05 60.07 58.56	- Margin (dB) -6.52 -6.47 -12.13	50 Subpart C Avg Limit (dBuV) - -	-20.17 Margin (dB) - -
18.8083 Neutral .15 - 30M Test Frequency (MHz) 0.30722 0.306458 0.367565 6.332978	18.73 Hz Meter Reading 43.53 43.6 36.43 34.08	Av Detector QP QP QP QP	11.1 Line 2 G/L (dB) 10 10 10 10.3	29.83 Corrected Reading (dBuV) 53.53 53.6 46.43 44.38	- Subpart C QPK Limit (dBuV) 60.05 60.07 58.56 60	- Margin (dB) -6.52 -6.47 -12.13 -15.62	50 Subpart C Avg Limit (dBuV) - - -	-20.17 Margin (dB) - - -
18.8083 Neutral .15 - 30M Test Frequency (MHz) 0.30722 0.306458 0.367565 6.332978 7.433545	18.73 Htz Meter Reading 43.53 43.6 36.43 34.08 46.76	Av Detector QP QP QP QP QP	11.1 Line 2 G/L (dB) 10 10 10.3 10.4	29.83 Corrected Reading (dBuV) 53.53 53.6 46.43 44.38 57.16	- Subpart C QPK Limit (dBuV) 60.05 60.07 58.56 60 60	- Margin (dB) -6.52 -6.47 -12.13 -15.62 -2.84	50 Subpart C Avg Limit (dBuV) - - - - - -	-20.17 Margin (dB) - - - -
18.8083 Neutral .15 - 30M Test Frequency (MHz) 0.30722 0.306458 0.367565 6.332978 7.433545 8.77386	18.73 Htz Meter Reading 43.53 43.6 36.43 34.08 46.76 53.53	Av Detector QP QP QP QP QP QP QP	11.1 Line 2 G/L (dB) 10 10 10.3 10.4 10.5	29.83 Corrected Reading (dBuV) 53.53 53.6 46.43 44.38 57.16 64.03	- Subpart C QPK Limit (dBuV) 60.05 60.07 58.56 60 60 60	- Margin (dB) -6.52 -6.47 -12.13 -15.62 -2.84 4.03	50 Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-20.17 Margin (dB) - - - - - -
18.8083 Neutral .15 - 30M Test Frequency (MHz) 0.30722 0.306458 0.367565 6.332978 7.433545 8.77386 9.370515	18.73 Hz Meter Reading 43.53 43.6 36.43 34.08 46.76 53.53 67.62	Av Detector QP QP QP QP QP QP QP QP QP	11.1 Line 2 G/L (dB) 10 10 103 10.4 10.5 10.6	29.83 Corrected Reading (dBuV) 53.53 53.6 46.43 44.38 57.16 64.03 78.22	- Subpart C QPK Limit (dBuV) 60.05 60.07 58.56 60 60 60 60 60	- Margin (dB) -6.52 -6.47 -12.13 -15.62 -2.84 4.03 18.22	50 Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-20.17 Margin (dB) - - - - - -
18.8083 Neutral .15 - 30M Test Frequency (MHz) 0.30722 0.306458 0.367565 6.32978 7.433545 8.77386 9.370515 9.763803	18.73 Hz Meter Reading 43.53 43.6 36.43 34.08 46.76 53.53 67.62 69.43	Av Detector QP QP QP QP QP QP QP QP QP QP	11.1 Line 2 G/L (dB) 10 10 10.3 10.4 10.5 10.6 10.6	29.83 Corrected Reading (dBuV) 53.53 53.6 46.43 44.38 57.16 64.03 78.22 80.03	- Subpart C QPK Limit (dBuV) 60.05 60.07 58.56 60 60 60 60 60 60	- Margin (dB) -6.52 -6.47 -12.13 -15.62 -2.84 4.03 18.22 20.03	50 Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-20.17 Margin (dB) - - - - - - -
18.8083 Neutral 15 - 30M Test Frequency (MH2) 0.306458 0.367565 6.332978 7.433545 8.77386 9.370515 9.763803 10.155975	18.73 Hz Meter Reading 43.53 43.6 36.43 34.08 46.76 53.53 67.62 69.43 55.1	Av Detector QP QP QP QP QP QP QP QP QP QP	11.1 Line 2 G/L (dB) 10 100 10.3 10.4 10.5 10.6 10.6 10.7	29.83 Corrected Reading (dBuV) 53.53 53.6 46.43 44.38 57.16 64.03 78.22 80.03 65.8	- Subpart C QPK Limit (dBuV) 60.05 60.07 58.56 60 60 60 60 60 60 60	- Margin (dB) -6.52 -6.47 -12.13 -15.62 -2.84 4.03 18.22 20.03 5.8	50 Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-20.17 Margin (dB) - - - - - - - - - - - - - -
18.8083 Neutral 15 - 30M Test Frequency (MHz) 0.30722 0.306458 0.367565 6.332978 7.433545 8.77386 9.370515 9.763803 10.155975 10.666925	18.73 Meter Reading 43.53 43.6 36.43 34.08 46.76 53.53 67.62 69.43 55.1 43.57	Av Detector QP QP QP QP QP QP QP QP QP QP QP	11.1 Line 2 G/L (dB) 10 100 10.3 10.4 10.5 10.6 10.6 10.6 10.7 10.8	29.83 Corrected Reading (dBuV) 53.53 53.6 46.43 44.38 57.16 64.03 78.22 80.03 65.8 54.37	- Subpart C QPK Limit (dBuV) 60.05 60.07 58.56 60 60 60 60 60 60 60 60 60	- Margin (dB) -6.52 -6.47 -12.13 -15.62 -2.84 4.03 18.22 20.03 5.8 -5.63	50 Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-20.17 Margin (dB) - - - - - - - - - - - - - - - - - - -
18.8083 Neutral .15 - 30M Test Frequency (MHz) 0.30722 0.306458 0.367565 6.332978 7.433545 8.77386 9.370515 9.763803 10.155975 10.666925 12.1977	18.73 Meter Reading 43.53 43.6 36.43 34.08 46.76 53.53 67.62 69.43 55.1 43.57 31.41	Av Detector QP QP QP QP QP QP QP QP QP QP QP QP QP	11.1 Line 2 G/L (dB) 10 100 10.3 10.4 10.5 10.6 10.7 10.8 10.8	29.83 Corrected Reading (dBuV) 53.53 53.6 46.43 44.38 57.16 64.03 78.22 80.03 65.8 54.37 42.21	- Subpart C QPK Limit (dBuV) 60.05 60.07 58.56 60 60 60 60 60 60 60 60 60 60 60 60 60	- Margin (dB) -6.52 -6.47 -12.13 -15.62 -2.84 4.03 18.22 20.03 5.8 5.8 -5.63 -17.79	50 Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-20.17 Margin (dB) - - - - - - - - - - - - - - - - - - -
18.8083 Neutral .15 - 30M Test Frequency (MHz) 0.30722 0.306458 0.367565 6.332978 7.433545 8.77386 9.370515 9.763803 10.155975 10.666925 12.1977 18.8591	18.73 Meter Reading 43.53 43.6 36.43 34.08 46.76 53.53 67.62 69.43 55.1 43.57 31.41 31.67	Av Detector QP QP QP QP QP QP QP QP QP QP QP QP QP	11.1 Line 2 G/L (dB) 10 100 10.3 10.4 10.5 10.6 10.7 10.8 10.8 10.8 11.2	29.83 Corrected Reading (dBuV) 53.53 53.6 46.43 44.38 57.16 64.03 78.22 80.03 65.8 54.37 42.21 42.87	- Subpart C QPK Limit (dBuV) 60.05 60.07 58.56 60 60 60 60 60 60 60 60 60 60 60 60 60	- Margin (dB) -6.52 -6.47 -12.13 -15.62 -2.84 4.03 18.22 20.03 5.8 5.83 -5.63 -17.79 -17.13	50 Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-20.17 Margin (dB) - - - - - - - - - - - - - - - - - - -
18.8083 Neutral .15 - 30M Test Frequency (MHz) 0.30722 0.306458 0.367565 6.332978 7.433545 8.77386 9.370515 9.763803 10.155975 10.666925 12.1977 18.8591 0.30563	18.73 Meter Reading 43.53 43.6 36.43 34.08 46.76 53.53 67.62 69.43 55.1 43.57 31.41 31.67 18.13	Av Detector QP QP QP QP QP QP QP QP QP QP QP QP QP	11.1 Line 2 G/L (dB) 10 100 10.3 10.4 10.5 10.6 10.7 10.8 10.8 11.2 10	29.83 Corrected Reading (dBuV) 53.53 53.6 46.43 44.38 57.16 64.03 78.22 80.03 65.8 54.37 42.21 42.87 28.13	- Subpart C QPK Limit (dBuV) 60.05 60.07 58.56 60 60 60 60 60 60 60 60 60 60	- Margin (dB) -6.52 -6.47 -12.13 -15.62 -2.84 4.03 18.22 20.03 5.83 -5.63 -17.79 -17.13	50 Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-20.17 Margin (dB) - - - - - - - - - - - - - - - - - - -
18.8083 Neutral .15 - 30M Test Frequency (MHz) 0.30722 0.306458 0.367565 6.32978 7.433545 8.77386 9.370515 9.763803 10.155975 10.666925 12.1977 18.8591 0.30563 0.30608	18.73 Hz Meter Reading 43.53 43.6 36.43 34.08 46.76 53.53 67.62 69.43 55.1 43.57 31.41 31.67 18.13 17.93	Av Detector QP QP QP QP QP QP QP QP QP QP QP QP QP	11.1 Line 2 G/L (dB) 10 10.3 10.4 10.5 10.6 10.6 10.7 10.8 10.8 11.2 10 10	29.83 Corrected Reading (dBuV) 53.53 53.6 46.43 44.38 57.16 664.03 78.22 80.03 65.8 54.37 42.21 42.87 28.13 27.93	- Subpart C QPK Limit (dBuV) 60.05 60.07 58.56 60 60 60 60 60 60 60 60 60 60 60 60 60		50 Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-20.17 Margin (dB) - - - - - - - - - - - - - - - - - - -
18.8083 Neutral .15 - 30M Test Frequency (MHz) 0.306458 0.367565 6.332978 7.433545 8.77386 9.370515 9.763803 10.155975 10.666925 12.1977 18.8591 0.30563 0.30608	18.73 Meter Reading 43.53 43.6 36.43 34.08 46.76 53.53 67.62 69.43 55.1 43.57 31.41 31.67 18.13 17.93 15.86	Av Detector QP QP QP QP QP QP QP QP QP QP QP QP QP	11.1 Line 2 G/L (dB) 10 10.3 10.4 10.5 10.6 10.6 10.7 10.8 10.8 11.2 10 10 10	29.83 Corrected Reading (dBuV) 53.53 53.6 46.43 44.38 57.16 64.03 78.22 80.03 65.8 54.37 42.21 42.87 28.13 27.93 25.86	- Subpart C QPK Limit (dBuV) 60.05 60.07 58.56 60 60 60 60 60 60 60 60 60 60 60 60 60		50 Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-20.17 Margin (dB) - - - - - - - - - - - - - - - - - - -
18.8083 Neutral .15 - 30M Test Frequency (MH2) 0.306458 0.367565 6.332978 7.433545 8.77386 9.370515 9.763803 10.155975 10.666925 12.1977 18.8591 0.30563 0.30608 0.36691 6.33278	18.73 Hz Meter Reading 43.53 43.6 36.43 34.08 46.76 53.53 67.62 69.43 55.1 43.57 31.41 31.67 18.13 17.93 15.86 24.95	Av Detector QP QP QP QP QP QP QP QP QP QP QP QP QP	11.1 Line 2 G/L (dB) 10 100 10.3 10.4 10.5 10.6 10.6 10.6 10.7 10.8 11.2 10 10 10 10 10	29.83 Corrected Reading (dBuV) 53.53 53.6 46.43 44.38 57.16 64.03 78.22 80.03 65.8 54.37 42.21 42.87 28.13 27.93 25.86 35.25	- Subpart C QPK Limit (dBuV) 60.05 60.07 58.56 60 60 60 60 60 60 60 60 60 60 60 60 60	Margin (dB) -6.52 -6.47 -12.13 -15.62 -2.84 4.03 18.22 20.03 5.8 -5.63 -17.79 -17.13 - -	50 Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-20.17 Margin (dB) - - - - - - - - - - - - - - - - - - -
18.8083 Neutral 15 - 30M Test Frequency (MHz) 0.30722 0.306458 0.367565 6.332978 7.433545 8.77386 9.370515 9.763803 10.155975 10.666925 12.1977 18.8591 0.30563 0.30608 0.36691 6.33278 7.42966	18.73 Hz Meter Reading 43.53 43.6 36.43 34.08 46.76 53.53 67.62 69.43 55.1 43.57 31.41 31.67 18.13 17.93 15.86 24.95 39.41	Av Detector QP QP QP QP QP QP QP QP QP QP QP QP QP	11.1 Line 2 G/L (dB) 10 10 10, 10, 10, 10, 10, 10, 6 10, 6 10, 6 10, 7 10, 8 10, 8 11, 2 10, 10 0 10 10 10 10 10 10 10 10 10 10 10 1	29.83 Corrected Reading (dBuV) 53.53 53.6 46.43 44.38 57.16 64.03 78.22 80.03 65.8 54.37 42.21 42.87 28.13 27.93 25.86 35.25 49.81	- Subpart C QPK Limit (dBuV) 60.05 60.07 58.56 60 60 60 60 60 60 60 60 60 60 60 60 60	Margin (dB) -6.52 -6.47 -12.13 -15.62 -2.84 4.03 18.22 20.03 5.8 -5.63 -17.79 -17.13 - - - - - - - - - - - - - - - - - - -	50 Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-20.17 Margin (dB) - - - - - - - - - - - - - - - - - - -
18.8083 Neutral 15 - 30M Test Frequency (MHz) 0.30722 0.306458 0.367565 6.332978 7.433545 8.77386 9.370515 9.763803 10.155975 10.666925 12.1977 18.8591 0.30563 0.30608 0.36691 6.33278 7.42966 8.77358	18.73 Meter Reading 43.53 43.6 36.43 34.08 46.76 53.53 67.62 69.43 55.1 43.57 31.41 31.67 18.13 17.93 15.86 24.95 39.41 43.52	Av Detector QP QP QP QP QP QP QP QP QP QP QP QP QP	11.1 Line 2 G/L (dB) 10 100 10.3 10.4 10.5 10.6 10.6 10.6 10.6 10.7 10.8 10.8 11.2 10 10 10 10 3 10.4 10.5	29.83 Corrected Reading (dBuV) 53.53 53.6 46.43 44.38 57.16 64.03 78.22 80.03 65.8 54.37 42.21 42.87 28.13 27.93 25.86 35.25 49.81 54.02	- Subpart C QPK Limit (dBuV) 60.05 60.07 58.56 60 60 60 60 60 60 60 60 60 60 60 60 60	Margin (dB) -6.52 -6.47 -12.13 -15.62 -2.84 4.03 18.22 20.03 5.8 -5.63 -17.79 -17.13 - - - - - - - - - - - - - - - - - - -	50 Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-20.17 Margin (dB) - - - - - - - - - - - - - - - - - - -
18.8083 Neutral 15 - 30M Test Frequency (MHz) 0.30722 0.306458 0.367565 6.332978 7.433545 8.77386 9.370515 9.763803 10.155975 10.666925 12.1977 18.8591 0.30563 0.30608 0.36691 6.33278 7.42966 8.77358 9.37068	18.73 Meter Reading 43.53 43.6 36.43 34.08 46.76 53.53 67.62 69.43 55.1 43.57 31.41 31.67 18.13 17.93 15.86 24.95 24.95 39.41 43.52	Av Detector QP QP QP QP QP QP QP QP QP QP QP QP QP	11.1 Line 2 G/L (dB) 10 100 10.3 10.4 10.5 10.6 10.6 10.6 10.7 10.8 10.8 11.2 10 10 10 10.3 10.4 4 10.5 10.6	29.83 Corrected Reading (dBuV) 53.53 53.6 46.43 44.38 57.16 64.03 78.22 80.03 65.8 54.37 42.21 42.87 28.13 27.93 25.86 35.25 49.81 54.02 66.6	- Subpart C QPK Limit (dBuV) 60.05 60.07 58.56 60 60 60 60 60 60 60 60 60 60 60 60 60	Margin (dB) -6.52 -6.47 -12.13 -15.62 -2.84 4.03 18.22 20.03 5.8 -5.63 -17.79 -17.13 - - - - - - - - - - - - - - - - - - -	50 Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-20.17 Margin (dB) - - - - - - - - - - - - - - - - - - -
18.8083 Neutral .15 - 30W Test Frequency (MHz) 0.30722 0.306458 0.367565 6.32978 7.433545 9.763803 10.155975 10.666925 12.1977 18.8591 0.30563 0.30608 0.36691 6.33278 7.42966 8.77358 9.37068	18.73 Hz Meter Reading 43.63 43.64 36.43 34.08 46.76 53.53 67.62 69.43 55.1 43.57 31.41 31.67 18.13 17.93 15.86 24.95 39.41 43.52 56 56.54	Av Detector QP QP QP QP QP QP QP QP QP QP QP QP QP	11.1 Line 2 G/L (dB) 10 10.3 10.4 10.5 10.6 10.6 10.6 10.7 10.8 10.2 10.2 10 10 10 10 10 10 10.3 10.4 10.5 10.6 6 10.6 10.6	29.83 Corrected Reading (dBuV) 53.53 53.6 46.43 44.38 57.16 64.03 78.22 80.03 65.8 54.37 42.21 42.87 28.13 27.93 25.86 35.25 49.81 54.02 65.6 65.40	Subpart C QPK Limit (dBuV) 60.05 60.07 58.56 60 60 60 60 60 60 60 60 60 60 60 60 60	Margin (dB) -6.52 -6.47 -12.13 -15.62 -2.84 4.03 18.22 20.03 5.8 -5.63 -17.79 -17.13 - - - - - - - - - - - - - - - - - - -	50 Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-20.17 Margin (dB) - - - - - - - - - - - - - - - - - - -
18.8083 Neutral .15 - 30W Test Frequency (MHz) 0.30722 0.306458 0.367565 6.332978 9.370515 9.763803 10.155975 10.666925 12.1977 18.8591 0.30563 0.30608 0.36691 6.33278 7.42966 8.77358 9.37068 9.76385 10.1561	18.73 Meter Reading 43.53 43.6 36.43 34.08 46.76 53.53 67.62 69.43 55.1 43.57 31.41 31.67 18.13 17.93 15.86 24.95 39.41 43.52 55.54 43.52	Av Detector QP QP QP QP QP QP QP QP QP QP QP QP QP	11.1 Line 2 G/L (dB) 10 100 10.3 10.4 10.5 10.6 10.6 10.7 10.8 11.2 10 10 10 10 10.3 10.4 10.5 10.6 10.6 10.6 10.6 10.6 10.6 10.5	29.83 Corrected Reading (dBuV) 53.53 53.6 46.43 44.38 57.16 64.03 78.22 80.03 65.8 54.37 42.21 42.87 28.13 27.93 25.86 35.25 49.81 54.02 66.6 67.14 52.23	- Subpart C QPK Limit (dBuV) 60.05 60.07 58.56 60 60 60 60 60 60 60 60 60 60 60 60 60	Margin (dB) -6.52 -6.47 -12.13 -15.62 -2.84 4.03 18.22 20.03 5.8 -5.63 -17.79 -17.13 - - - - - - - - - - - - - - - - - - -	50 Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-20.17 Margin (dB) - - - - - - - - - - - - - - - - - - -
18.8083 Neutral .15 - 30M Test Frequency (MHz) 0.30722 0.306458 0.367565 6.32978 7.433545 8.77386 9.370515 9.763803 10.155975 10.666925 12.1977 18.8591 0.30563 0.30608 0.36691 6.33278 7.42966 8.77358 9.37068 9.37068 9.76385 10.1561	18.73 Meter Reading 43.53 43.6 36.43 34.08 46.76 53.53 67.62 69.43 55.1 43.57 31.41 31.67 18.13 17.93 15.86 24.95 39.41 43.52 56.54 41.53 32.31	Av Detector QP QP QP QP QP QP QP QP QP QP QP QP QP	11.1 Line 2 G/L (dB) 10 10, 10, 10, 10, 10, 10, 10, 10, 10,	29.83 Corrected Reading (dBuV) 53.53 53.6 46.43 44.38 57.16 664.03 78.22 80.03 65.8 54.37 42.21 42.87 28.13 27.93 25.86 35.25 49.81 54.02 66.6 67.14 52.23 43.11	- Subpart C QPK Limit (dBuV) 60.05 60.07 58.56 60 60 60 60 60 60 60 60 60 60 60 60 60	Margin (dB) -6.52 -6.47 -12.13 -15.62 -2.84 4.03 18.22 20.03 5.8 -5.63 -17.79 -17.13 - - - - - - - - - - - - - - - - - - -	50 Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-20.17 Margin (dB) - - - - - - - - - - - - - - - - - - -
18.8083 Neutral .15 - 30M Test Frequency (MH2) 0.306458 0.367565 6.332978 7.433545 8.77386 9.370515 9.763803 10.155975 10.666925 12.1977 18.8591 0.30563 0.30608 0.36691 6.33278 7.42966 8.77358 9.370685 9.76385 10.1561 10.6708	18.73 Meter Reading 43.53 43.6 36.43 34.08 46.76 53.53 67.62 69.43 55.1 43.57 31.41 31.67 18.13 17.93 15.86 24.95 39.41 43.52 56.54 41.53 32.31 23	Av Detector QP QP QP QP QP QP QP QP QP QP QP QP QP	11.1 Line 2 G/L (dB) 10 10, 10, 10, 10, 10, 10, 10, 10, 10,	29.83 Corrected Reading (dBuV) 53.53 53.6 46.43 44.38 57.16 64.03 78.22 80.03 65.8 54.37 42.21 42.87 28.13 25.86 35.25 49.81 54.02 66.6 67.14 52.23 43.11 33.8	- Subpart C QPK Limit (dBuV) 60.05 60.07 58.56 60 60 60 60 60 60 60 60 60 60 60 60 60	Margin (dB) -6.52 -6.47 -12.13 -15.62 -2.84 4.03 18.22 20.03 5.8 -5.63 -17.79 -17.13 - - - - - - - - - - - - - - - - - - -	50 Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-20.17 Margin (dB) - - - - - - - - - - - - - - - - - - -
18.8083 Neutral 15 - 30M Test Frequency (MH2) 0.30722 0.306458 0.367565 6.332978 7.433545 8.77386 9.370515 9.763803 10.155975 10.666925 12.1977 18.8591 0.30563 0.30608 0.36691 6.33278 7.42966 8.77358 9.370688 9.76385 10.1561 10.6708 12.1985 18.8604	18.73 Hz Meter Reading 43.53 43.6 36.43 34.08 46.76 53.53 67.62 69.43 55.1 43.57 31.41 31.67 18.13 17.93 15.86 24.95 39.41 43.52 56 56.54 41.53 32.31 23 18.9	Av Detector QP QP QP QP QP QP QP QP QP QP QP QP QP	11.1 Line 2 G/L (dB) 10 100 10.3 10.4 10.5 10.6 10.6 10.6 10.7 10.8 11.2 10 10 10 10 10 10.3 10.4 10.5 10.6 10.6 10.7 10.8 10.8 11.2 10.5 10.6 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	29.83 Corrected Reading (dBuV) 53.53 53.6 46.43 44.38 57.16 64.03 78.22 80.03 65.8 54.37 42.21 42.87 28.13 27.93 25.86 35.25 49.81 54.02 66.6 67.14 52.23 43.11 33.8 30.1	- Subpart C QPK Limit (dBuV) 60.05 60.07 58.56 60 60 60 60 60 60 60 60 60 60 60 60 60	Margin (dB) -6.52 -6.47 -12.13 -15.62 -2.84 4.03 18.22 20.03 5.8 -5.63 -17.79 -17.13 - - - - - - - - - - - - - - - - - - -	50 Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-20.17 Margin (dB) - - - - - - - - - - - - - - - - - - -
18.8083 Neutral 15 - 30M Test Frequency (MH2) 0.30722 0.306458 0.367565 6.332978 7.433545 8.77386 9.370515 9.763803 10.155975 10.666925 12.1977 18.8591 0.30563 0.30608 0.36691 6.33278 7.42966 8.77358 9.37068 9.76385 10.1561 10.6708 12.1985 18.8604	18.73 Hz Meter Reading 43.53 43.6 36.43 34.08 46.76 53.53 55.1 43.57 31.41 31.67 18.13 17.93 15.86 24.95 39.41 43.52 56 56.54 41.53 32.31 32.31 18.9	Av Detector QP QP QP QP QP QP QP QP QP QP	11.1 Line 2 G/L (dB) 10 10 10, 10, 10, 10, 10, 10, 10, 10, 1	29.83 Corrected Reading (dBuV) 53.53 53.6 46.43 44.38 57.16 64.03 78.22 80.03 65.8 54.37 42.21 42.87 28.13 27.93 25.86 35.25 49.81 54.02 66.6 67.14 52.23 43.11 33.8 30.1	- Subpart C QPK Limit (dBuV) 60.05 60.07 58.56 60 60 60 60 60 60 60 60 60 60 60 60 60	Margin (dB) -6.52 -6.47 -12.13 -15.62 -2.84 4.03 18.22 20.03 5.8 -5.63 -17.79 -17.13 - - - - - - - - - - - - - - - - - - -	50 Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-20.17 Margin (dB) - - - - - - - - - - - - - - - - - - -
18.8083 Neutral 15 - 30M Test Frequency (MHz) 0.30722 0.306458 0.367565 6.332978 7.433545 8.77386 9.370515 9.763803 10.155975 10.666925 12.1977 18.8591 0.30563 0.306692 6.33278 7.42966 8.77358 9.37068 9.76385 10.1561 10.6708 12.1985 18.8604 QP - Quasi-Peak of	18.73 Meter Reading 43.53 43.6 36.43 34.08 46.76 53.53 67.62 69.43 55.1 43.57 31.41 31.67 18.13 17.93 15.86 24.95 39.41 43.52 56 56.54 41.53 32.31 23 18.9 19.9 18.9 18.9 19.9	Av Detector QP QP QP QP QP QP QP QP QP QP QP QP QP	11.1 Line 2 G/L (dB) 10 100 10.3 10.4 10.5 10.6 10.6 10.6 10.7 10.8 10.8 11.2 10 10 10 10 10 10 10.5 10.6 10.7 10.8 10.4 10.5 10.6 10.7 10.8 10.4 10.5 10.6 10.7 10.8 10.8 10.7 10.8 10.6 10.7 10.8 10.8 10.7 10.8 10.8 10.7 10.8 10.8 10.7 10.8 10.8 10.7 10.8 10.8 10.8 10.7 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8	29.83 Corrected Reading (dBuV) 53.53 53.6 46.43 44.38 57.16 64.03 78.22 80.03 65.8 54.37 42.21 42.87 28.13 27.93 25.86 35.25 49.81 54.02 66.6 67.14 52.23 43.11 33.8 30.1	- Subpart C QPK Limit (dBuV) 60.05 60.07 58.56 60 60 60 60 60 60 60 60 60 60 60 60 60	Margin (dB) -6.52 -6.47 -12.13 -15.62 -2.84 4.03 18.22 20.03 5.8 -5.63 -17.79 -17.13 - - - - - - - - - - - - - - - - - - -	50 Subpart C Avg Limit (dBuV) - - - - - - - - - - - - - - - - - - -	-20.17 Margin (dB) - - - - - - - - - - - - - - - - - - -

UL LLC FORM NO: CCSUP4701D 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of Underwriters Laboratories Inc.

Page 37 of 55

LINE 1 RESULTS - HIGH CHANNEL W/O TERMINATION

Page 38 of 55

LINE 2 RESULTS - HIGH CHANNEL W/O TERMINATION

Page 39 of 55

<u>6 WORST EMISSIONS – HIGH CHANNEL W/ TERMINATION</u>

Manufacturer:C	heckpoint Syste	m						
Device:RF Reade	er Board, 9.5 MH	z						
Model:TR4240 V	With Terminatio	n						
Job:10072468	120V/60Hz							
Tested by:MM	,							
Line-11 15-30	MH 2							
2								
Test Frequency	Meter Reading		Line 1 G/I	Corrected	Subpart C OPK	Margin	Subpart C Ave	Margin
(MHz)	(dBuV)	Detector	(dB)	Reading (dBuV)	Limit (dBuV)	(dB)	Limit (dBuV)	(dB)
0 182515	41.61	OP	10	51.61	64 37	-12 76		(02)
0.306575	43.6	OP	10	53.6	60.06	-6.46		-
0.367083	36.63	OP	10	46.63	58.57	-11.94		-
9,12273	36.77	OP	10.5	47.27	60	-12.73	-	-
9 410833	41.42	OP	10.5	51.92	60	-8.08	-	-
9.863495	41.88	OP	10.6	52.48	60	-7.52		-
10 222725	26.82	OP	10.6	37.42	60	-22.58	-	
0.18192	23.78	Av	10	33.78	-		54.4	-20.62
0.30594	23.42	Av	10	33.42	-	-	50.08	-16.66
0.36672	15.46	Av	10	25.46	-	-	48.57	-23.11
9,12266	23.26	Av	10.5	33.76	-	-	50	-16.24
9.41066	28.55	Av	10.5	39.05	-	-	50	-10.95
9 8595	27.66	Av	10.6	38.26	-	-	50	-11 74
10 2188	19.26	Av	10.6	29.86	-	-	50	-20.14
Neutral .15 - 30M	ИНz							
Test Frequency	Meter Reading		Line 2 G/L	Corrected	Subpart C OPK	Margin	Subpart C Ave	Margin
(MHz)	(dBuV)	Detector	(dB)	Reading (dBuV)	Limit (dBuV)	(dB)	Limit (dBuV)	(dB)
0.181848	41.76	QP	10	51.76	64.4	-12.64		
0.305753	43.51	QP	10	53.51	60.09	-6.58	-	-
0.366403	36.28	QP	10	46.28	58.58	-12.3	-	-
9.122655	37	QP	10.5	47.5	60	-12.5	-	-
9.41107	41.64	QP	10.6	52.24	60	-7.76	-	-
9.794608	43.7	QP	10.6	54.3	60	-5.7	-	-
10.1571	31.35	QP	10.7	42.05	60	-17.95	-	-
0.18303	23.93	Av	10	33.93	-	-	54.35	-20.42
0.30543	23.58	Av	10	33.58	-	-	50.09	-16.51
0.36674	19.2	Av	10	29.2	-	-	48.57	-19.37
9.12286	23.77	Av	10.5	34.27	-	-	50	-15.73
9.41083	29.02	Av	10.6	39.62	-	-	50	-10.38
9.79454	29.88	Av	10.6	40.48	-	-	50	-9.52
10.1687	18.45	Av	10.7	29.15	-	-	50	-20.85
QP - Quasi-Peak	detector							

LINE 1 RESULTS - HIGH CHANNEL W/ TERMINATION

Page 41 of 55

LINE 2 RESULTS - HIGH CHANNEL W/ TERMINATION

Page 42 of 55

11. SETUP PHOTOS

RADIATED RF MEASUREMENT SETUP FOR PORTABLE CONFIGURATION

Page 43 of 55

UL LLC FORM NO: CCSUP4701D 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of Underwriters Laboratories Inc.

Page 44 of 55

Page 45 of 55

RADIATED EMISSION BELOW 30 MHz

Page 46 of 55

Page 47 of 55

RADIATED EMISSION 30-1000 MHz

Page 48 of 55

Page 49 of 55

RADIATED EMISSION ABOVE 1 GHz

Page 50 of 55

UL LLC FORM NO: CCSUP4701D 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of Underwriters Laboratories Inc.

Page 51 of 55

AC MAINS LINE CONDUCTED EMISSION

UL LLC FORM NO: CCSUP4701D 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of Underwriters Laboratories Inc.

Page 52 of 55

Page 53 of 55

UL LLC FORM NO: CCSUP4701D 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of Underwriters Laboratories Inc.

Page 54 of 55

END OF REPORT

Page 55 of 55