

TEST REPORT

Test report no.: 1-5394/17-01-02

DAKKS

Deutsche
Akkrediterungsstelle
OP-1-12076-01-03

BNetzA-CAB-02/21-102

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-03

Applicant

Sennheiser electronic GmbH & Co. KG

Am Labor 1

30900 Wedemark / GERMANY Phone: +49 5130 600-0 Fax: +49 5130 600-574 Contact: Marco Happ

e-mail: marco.happ@sennheiser.com

Phone: +49 5130 600-2621

Manufacturer

Sennheiser electronic GmbH & Co. KG

Am Labor 1

30900 Wedemark / GERMANY

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - 247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Wireless Microphone Bodypack

Model name: SK D1

FCC ID: DMOSK2G4WE IC: 2099A-SK2G4WE

DTS band 2400 MHz to 2483.5 MHz

Frequency: Lowest channel: 2403MHz, Middle channel: 2443MHz,

Middle channel: 2443MHz, Highest channel: 2481MHz

Technology tested: Proprietary digital audio transmission

Antenna: 2 Integrated PCB antennas

Power supply: 1.8 V to 4.7 V DC by Li-lon or 2x AA batteries

Temperature range: -10°C to +55°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:
Marco Bertolino	David Lang

Radio Communications & EMC

Lab Manager

Lab Manager
Radio Communications & EMC

Table of contents

1	Table of contents2						
2	Gener	al information	3				
	2.1	Notes and disclaimer					
	2.2	Application details	3				
	2.3	Test laboratories sub-contracted	3				
3	Test s	andard/s and references	4				
4	Test e	nvironment					
5		em					
•							
		General descriptionAdditional information					
6		ption of the test setup					
		Shielded semi anechoic chamber					
		Shielded fully anechoic chamber					
		Radiated measurements > 18 GHz Conducted measurements					
7	Seque	nce of testing	11				
		Sequence of testing radiated spurious 9 kHz to 30 MHz					
		Sequence of testing radiated spurious 30 MHz to 1 GHz					
		Sequence of testing radiated spurious 1 GHz to 18 GHz					
	7.4	Sequence of testing radiated spurious above 18 GHz	14				
8	Measu	rement uncertainty	15				
9	Summ	ary of measurement results	16				
10	Add	itional comments	17				
11	Add	itional EUT parameter	17				
12	Mea	surement results	18				
	12.1	Testability check					
	12.1	Antenna gain					
	12.3	Maximum output power					
	12.4	Duty cycle					
	12.5	Band edge compliance conducted	26				
	12.6	Spurious emissions radiated below 30 MHz	29				
	12.7	Spurious emissions radiated 30 MHz to 1 GHz	34				
	12.8	Spurious emissions radiated above 1 GHz	43				
13	Obs	ervations	54				
Anr	ex A	Glossary	54				
Anr	ex B	Document history					
Δnr	ex C	Accreditation Certificate	55				

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2017-11-23
Date of receipt of test item: 2017-11-27
Start of test: 2017-11-29
End of test: 2018-01-25

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 55

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices
RSS - Gen Issue 4	November 2014	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus

Guidance	Version	Description
DTS: KDB 558074 D01	V04	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 American national standard for methods of measurement of radio-
ANSI C63.4-2014	-/-	noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

© CTC advanced GmbH Page 4 of 55

4 Test environment

Temperature :		T _{nom} T _{max} T _{min}	+22 °C during room temperature tests +55 °C during high temperature tests -10 °C during low temperature tests
Relative humidity content	:		35 %
Barometric pressure :			1002 hpa
Power supply :		V _{nom} V _{max} V _{min}	3.0 V DC by Li-lon or 2x AA batteries4.7 V1.8 V

5 Test item

5.1 General description

Kind of test item :	Wireless Microphone Bodypack
Type identification :	SK D1
HMN :	-/-
PMN :	Evolution wireless D1
HVIN :	SK D1
FVIN :	2.5.0
S/N serial number :	Rad. 1367115486 Cond. 1487116785
HW hardware status :	V2.0
SW software status :	2.5.0
Frequency band :	DTS band 2400 MHz to 2483.5 MHz Lowest channel: 2403MHz, Middle channel: 2443MHz, Highest channel: 2481MHz
Type of radio transmission: Use of frequency spectrum:	DTS
Type of modulation :	GFSK
Number of channels :	40
Antenna :	2 Integrated PCB antennas
Power supply :	1.8 V to 4.7 V DC by Li-lon or 2x AA batteries
Temperature range :	-10°C to +55°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-5394/17-01-01_AnnexA

1-5394/17-01-01_AnnexB 1-5394/17-01-01_AnnexD

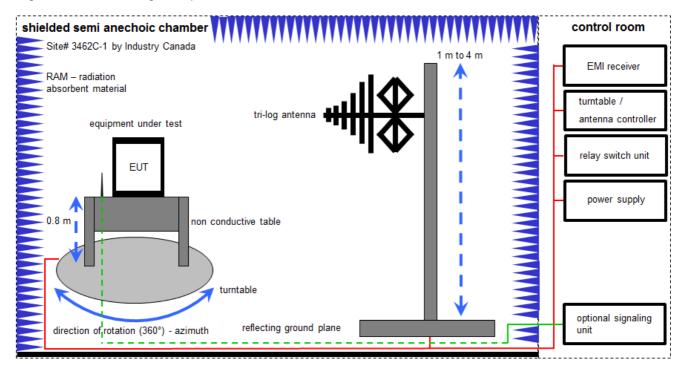
© CTC advanced GmbH Page 5 of 55

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical maintenance)
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval	-	_
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 6 of 55

6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

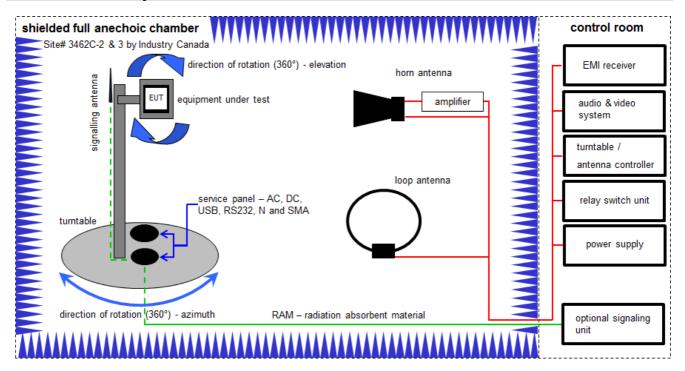
Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	01.02.2017	31.01.2018
4	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
7	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018

© CTC advanced GmbH Page 7 of 55

6.2 Shielded fully anechoic chamber

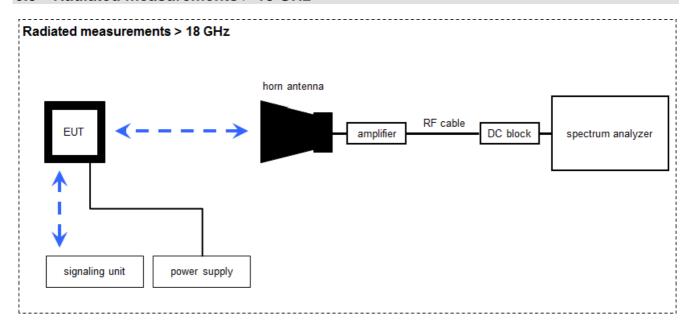
Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $\overline{\text{FS [dB}\mu\text{V/m]}} = 40.0 \text{ [dB}\mu\text{V/m]} + (-35.8) \text{ [dB]} + 32.9 \text{ [dB/m]} = 37.1 \text{ [dB}\mu\text{V/m]} (71.61 \ \mu\text{V/m})$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	k	07.07.2017	06.07.2019
2	A+B	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	vIKI!	14.02.2017	13.02.2019
4	A+B	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
5	В	Band Reject filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	11	300003351	ev	-/-	-/-
6	A+B	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	31.01.2017	30.01.2018
7	В	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
8	В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
9	A+B	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
10	A+B	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO	-/-	300004682	ne	-/-	-/-
11	A+B	PC	ExOne	F+W	-/-	300004703	ne	-/-	-/-
12	В	Highpass Filter (Chebyshev)	WHKX10-4432.5- 4925-18000-40SS	Wainwright	1	300005028	ev	-/-	-/-
13	В	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-

© CTC advanced GmbH Page 8 of 55

6.3 Radiated measurements > 18 GHz

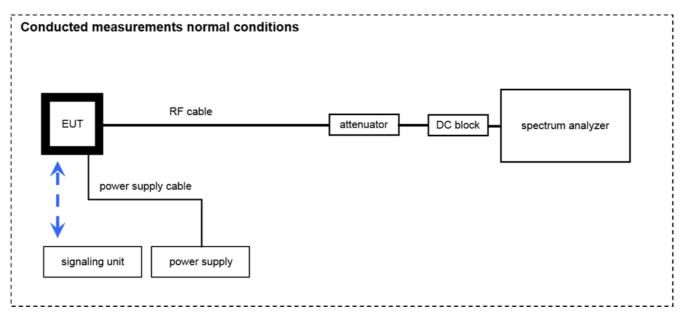
Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Horn Antenna 18,0- 40,0 GHz	LHAF180	Microw.Devel	39180-103-022	300001748	k	22.05.2015	22.05.2018
2	Α	Amplifier 2-40 GHz	JS32-02004000-57- 5P	MITEQ	1777200	300004541	ev	-/-	-/-
3	Α	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
4	А	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
5	Α	Signal Analyzer 40 GHz	FSV40	R&S	101353	300004819	k	19.09.2016	18.09.2018

© CTC advanced GmbH Page 9 of 55

Conducted measurements

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Signal Analyzer 40 GHz	FSV40	R&S	101353	300004819	k	19.09.2016	18.09.2018
2	А	Open Switch and Control Unit and Power Sensors	OSP120 incl. B157	R&S	101274, 100877	300004825	ne	-/-	-/-
3	А	RF-Cable WLAN- Tester Analyzer	ST18/SMAm/SMAm/ 36	Huber & Suhner	Batch no. 54876	400001220	ev	-/-	-/-
4	Α	Power Supply	HMP2020	Rohde & Schwarz	102219	300005264	ne	-/-	-/-

© CTC advanced GmbH Page 10 of 55

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

© CTC advanced GmbH Page 11 of 55

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 12 of 55

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes
 the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table
 positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 13 of 55

7.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 14 of 55

8 Measurement uncertainty

Measurement uncertainty						
Test case	Uncertainty					
Antenna gain	± 3 dB					
Power spectral density	± 1.5 dB					
DTS bandwidth	± 100 kHz (depends on the used RBW)					
Occupied bandwidth	± 100 kHz (depends on the used RBW)					
Maximum output power	± 1.5 dB					
Detailed spurious emissions @ the band edge - conducted	± 1.5 dB					
Band edge compliance radiated	± 3 dB					
Spurious emissions conducted	± 3 dB					
Spurious emissions radiated below 30 MHz	± 3 dB					
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB					
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB					
Spurious emissions radiated above 12.75 GHz	± 4.5 dB					
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB					

© CTC advanced GmbH Page 15 of 55

9 Summary of measurement results

No deviations from the technical specifications were ascertained
There were deviations from the technical specifications ascertained
This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 2	See table!	2018-03-05	Reduced test plan according customers specification!

Test specification clause	Test case	Guideline	Temperatur e conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (f)(ii)	Antenna gain	-/-	Nominal	Nominal	GFSK	×				-/-
§15.35	Duty cycle	-/-	Nominal	Nominal	GFSK		-,	/-		-/-
§15.247(e) RSS - 247 / 5.2 (b)	Power spectral density	KDB 558074 DTS clause: 10.2	Nominal	Nominal	GFSK				\boxtimes	-/-
§15.247(a)(2) RSS - 247 / 5.2 (a)	DTS bandwidth	KDB 558074 DTS clause: 8.1	Nominal	Nominal	GFSK				\boxtimes	-/-
RSS Gen clause 4.6.1	Occupied bandwidth	-/-	Nominal	Nominal	GFSK				\boxtimes	-/-
§15.247(b)(3) RSS - 247 / 5.4 (d)	Maximum output power	KDB 558074 DTS clause: 9.1.1	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge – cond.	-/-	Nominal	Nominal	GFSK				\boxtimes	-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance cond	KDB 558074 DTS clause: 13.3.2 and clause 12.2.2	Nominal	Nominal	GFSK	×				-/-
§15.247(d) RSS - 247 / 5.5	TX spurious emissions cond.	KDB 558074 DTS clause: 11.1 & 11.2 11.3	Nominal	Nominal	GFSK				\boxtimes	-/-
§15.209(a) RSS-Gen	TX spurious emissions rad. below 30 MHz	-/-	Nominal	Nominal	GFSK	×				-/-
§15.247(d) RSS - 247 / 5.5 RSS-Gen	TX spurious emissions rad. 30 MHz to 1 GHz	-/-	Nominal	Nominal	GFSK	×				-/-
§15.247(d) RSS - 247 / 5.5 RSS-Gen	TX spurious emissions rad. above 1 GHz	-/-	Nominal	Nominal	GFSK	×				-/-
§15.109 RSS-Gen	RX spurious emissions rad. 30 MHz to 1 GHz	-/-	Nominal	Nominal	GFSK	×				-/-
§15.109 RSS-Gen	RX spurious emissions rad. above 1 GHz	-/-	Nominal	Nominal	GFSK	×				-/-
§15.107(a) §15.207	Conducted emissions < 30 MHz	-/-	Nominal	Nominal	GFSK				\boxtimes	-/-

Notes:

С	Compliant	NC	Not compliant	NA	Not applicable	NP	Not performed
---	-----------	----	---------------	----	----------------	----	---------------

© CTC advanced GmbH Page 16 of 55

10 **Additional comments** Reference documents: Test mode instructions: Anleitung-Testmode.pdf Special test descriptions: None Configuration descriptions: The DUT is configured via a GUI based software provide by the manufacturer. Power settings were fix programmed and could not be changed. Provided channels: 0 to 39 (2403 MHz to 2481 MHz) 11 **Additional EUT parameter** Test mode: No test mode available Iperf was used to ping another device with the largest support packet size XTest mode available Special software is used. EUT is transmitting pseudo random data by itself \boxtimes **GFSK** Modulation types: Frequency Hopping Spread Spectrum (FHSS) Antennas and transmit Operating mode 1 (single antenna) operating modes: Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used) XOperating mode 2 (multiple antennas, no beamforming) Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming. Operating mode 3 (multiple antennas, with beamforming) Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken

© CTC advanced GmbH Page 17 of 55

into account when performing the measurements.

12 Measurement results

12.1 Testability check

Description:

Comparison of the first assessment with the current product based on the performance and decision of the test ability.

Measurement:

Measurement parameters				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	3 MHz			
Video bandwidth	3 MHz			
Span	5 MHz			
Trace mode	Max hold			
Test setup See chapter 6.4 A				
Measurement uncertainty See chapter 8				

Limits:

Main report value -2 dB / +1.5 dB

Results:

T_nom	V_{nom}	lowest channel	middle channel	highest channel
		GFSK mode		
Conducted power / dBm Main report 1-5735/12-01-16-A Sum (Ant1 & Ant2)		16.0	16.2	15.8
Test ability chec	power / dBm k – delta sample :1 & Ant2)	17.1	17.2	16.9

© CTC advanced GmbH Page 18 of 55

12.2 Antenna gain

Description:

The antenna gain of the complete system is calculated by the difference of radiated power (@ 3 MHz) in EIRP and the conducted power (@ 3 MHz) of the module.

Measurement:

Measurement parameter				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	3 MHz			
Video bandwidth	10 MHz			
Trace mode	Max hold			
Test setup	See chapter 6.4 A (conducted) See chapter 6.2 B (radiated)			
Measurement uncertainty	See chapter 8			

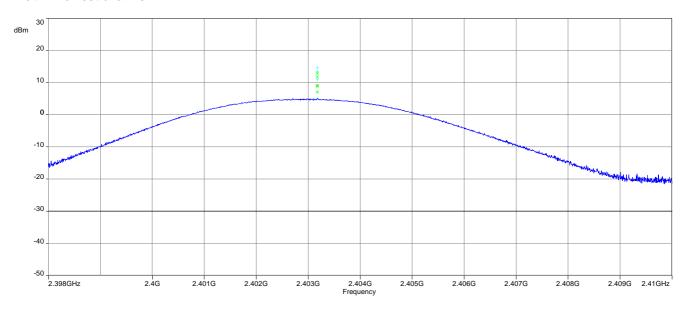
Limits:

FCC	IC			
6 dBi / > 6 dBi output power and power density reduction required				

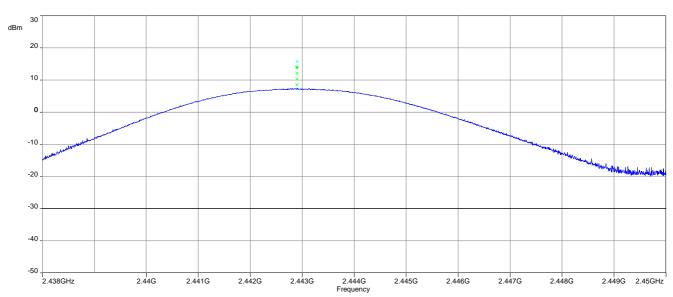
Results:

antenna port 1	lowest channel	middle channel	highest channel
Conducted power / dBm Measured with GFSK modulation	17.4	17.4	17.0
Radiated power / dBm Measured with GFSK modulation	15.2	15.8	16.1
Gain / dBi Calculated	-2.2	-1.6	-0.9

Results:

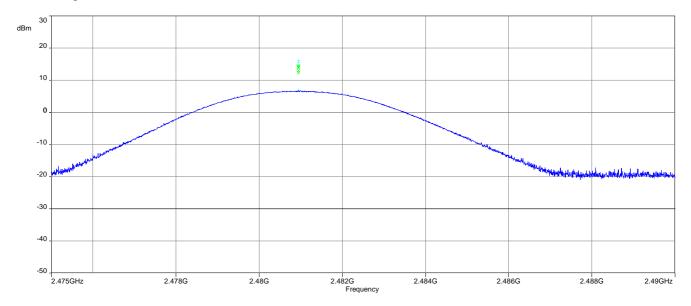

antenna port 2	lowest channel	middle channel	highest channel
Conducted power / dBm Measured with GFSK modulation	16.6	16.7	16.6
Radiated power / dBm Measured with GFSK modulation	14.6	15.9	15.6
Gain / dBi Calculated	-2.0	-0.8	-1.0

© CTC advanced GmbH Page 19 of 55



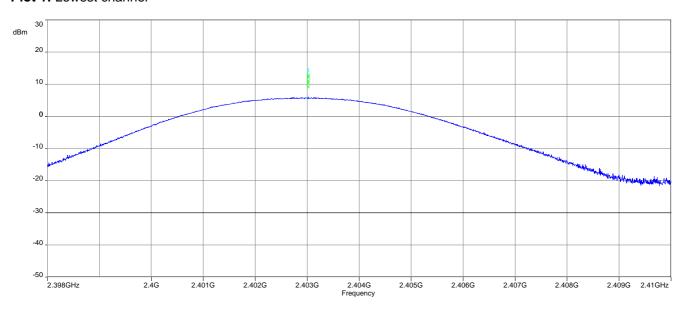
Plots: GFSK - mode; antenna port 1 (radiated)

Plot 1: Lowest channel

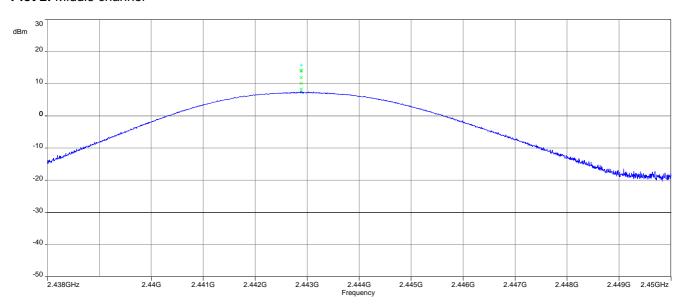

Plot 2: Middle channel

© CTC advanced GmbH Page 20 of 55

Plot 3: Highest channel

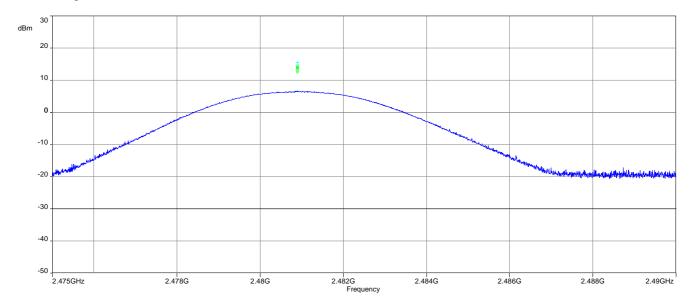


© CTC advanced GmbH Page 21 of 55



Plots: GFSK – mode; antenna port 2 (radiated)

Plot 1: Lowest channel


Plot 2: Middle channel

© CTC advanced GmbH Page 22 of 55

Plot 3: Highest channel

© CTC advanced GmbH Page 23 of 55

12.3 Maximum output power

Description:

Measurement of the maximum conducted peak output power. The measurements are performed using the data rate identified in the previous chapter.

Measurement:

Measurement parameter According to DTS clause: 9.1.1				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	3 MHz			
Video bandwidth 10 MHz				
Trace mode	Max hold			
Test setup See chapter 6.4 A				
Measurement uncertainty See chapter 8				

Limits:

FCC	IC		
Conducted 1.0 W / 30 dBm with an antenna gain of max. 6 dBi			

Results:

antenna port 1	maximum output power / dBm		Bm
	lowest channel	middle channel	highest channel
Output power conducted	17.4	17.4	17.0

antenna port 2	maximum output power / dBm			
	lowest channel	middle channel	highest channel	
Output power conducted	16.6	16.7	16.6	

© CTC advanced GmbH Page 24 of 55

12.4 Duty cycle

Description:

Measurement of the timing behavior.

Measurement:

Measurement parameter		
Detector	Peak	
Sweep time	Depends on the signal see plot	
Resolution bandwidth	10 MHz	
Video bandwidth	10 MHz	
Trace mode	Max hold	
Test setup	See chapter 6.4 A	
Measurement uncertainty	See chapter 8	

Limits:

FCC	IC
No lim	itation!

Results:

T _{nom}	V _{nom}	lowest channel	middle channel	highest channel
GFSK M	odulation	54.6 %	54.7%	54.6%

Duty Cycle correction factor as per DTS clause 13.3.2:

 $10 \log (1/x) = 10 \log (1/0.546) =$ **2.6 dB**

where x is the duty cycle

© CTC advanced GmbH Page 25 of 55

12.5 Band edge compliance conducted

Description:

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to the lowest channel for the lower restricted band and to the highest channel for the upper restricted band. The measurement is repeated for all modulations. Measurement distance is 3 meter.

Measurement:

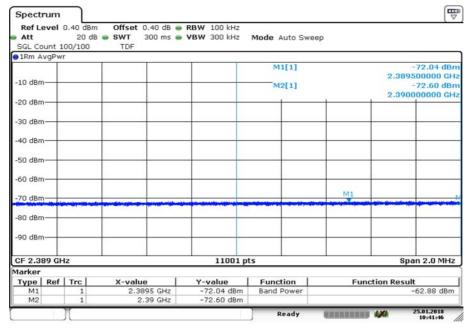
	Measurement parameter for peak measurements	Measurement parameter for average measurements
	measurements	According to DTS clause: 13.3.2
Detector	Peak	RMS
Sweep time	Auto	Auto
Resolution bandwidth	1 MHz	100 kHz
Video bandwidth	1 MHz	300 kHz
Span	See plot	2 MHz
Trace mode	Max. hold	RMS Average over 101 sweeps
Analyzer function	-/-	Band power function (Compute the power by integrating the spectrum over 1 MHz)
Test setup	See chapter 6.4 A	
Measurement uncertainty	See chapter 8	

Limits:

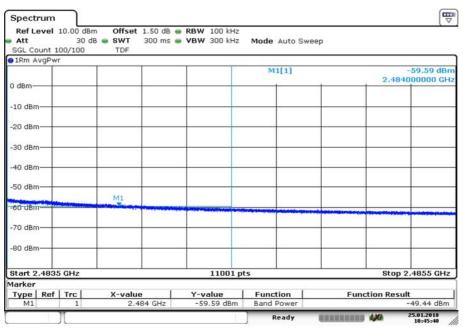
FCC	IC
74 dBμV/m (54 dBμV/m (@ 3 m (AVG)
-41.2 dBm (if measured ac	cording DTS clause 13.3.2)

Results:

band edge compliance conducted / dBm			
	Antenna 1	Antenna 2	-/-
Lower band edge	-62.9	-49.4	-/-
Upper band edge	-60.4	-49.1	-/-


Note: Antenna gain as well as duty cycle correction factor is considered with the Reference Level Offset

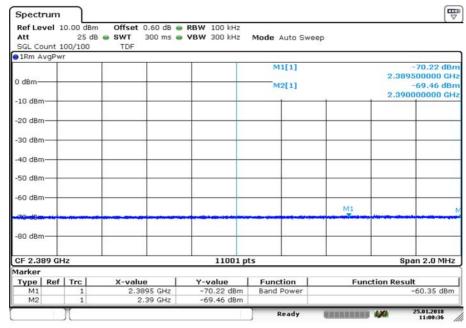
© CTC advanced GmbH Page 26 of 55


Plots: GFSK - Antenna 1

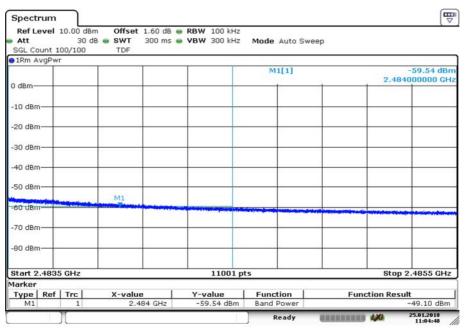
Plot 1: lower band edge

Date: 25.JAN.2018 10:41:46

Plot 2: upper band edge


Date: 25.JAN.2018 10:45:40

© CTC advanced GmbH Page 27 of 55


Plots: GFSK - Antenna 2

Plot 1: lower band edge

Date: 25.JAN.2018 11:00:36

Plot 2: upper band edge

Date: 25.JAN.2018 11:04:48

© CTC advanced GmbH Page 28 of 55

12.6 Spurious emissions radiated below 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The limits are recalculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

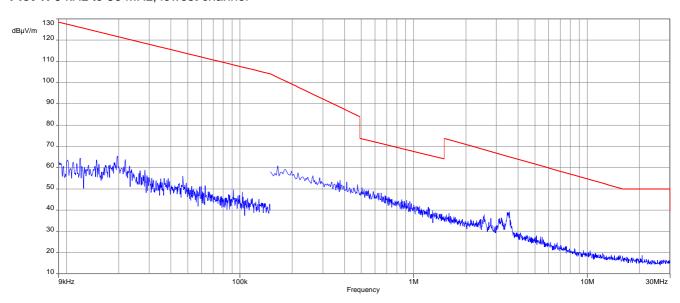
Measurement:

Measurement parameter		
Detector	Peak / Quasi Peak	
Sweep time	Auto	
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz	
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz	
Span	9 kHz to 30 MHz	
Trace mode	Max Hold	
Test setup	See chapter 6.2 A	
Measurement uncertainty	See chapter 8	

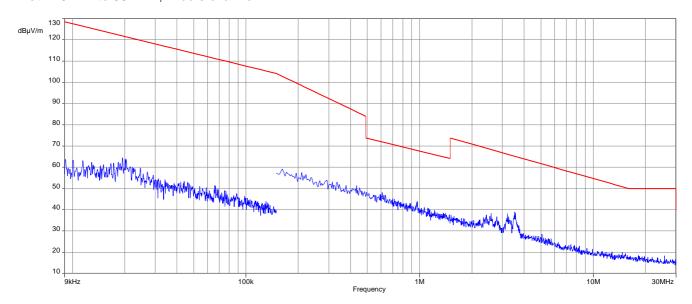
Limits:

FCC			IC
Frequency / MHz	Field Strength	n / (dBµV / m)	Measurement distance / m
0.009 - 0.490	2400/	F(kHz)	300
0.490 – 1.705	24000/F(kHz)		30
1.705 – 30.0	3	0	30

Results:

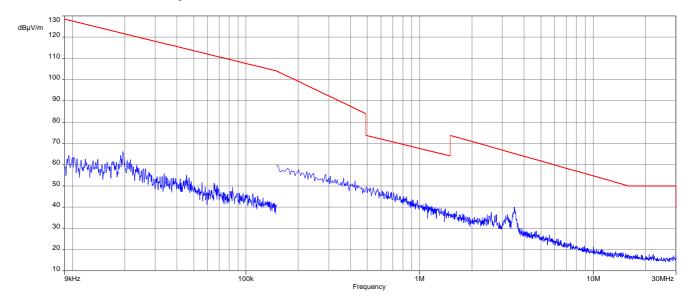

TX spurious emissions radiated < 30 MHz / (dBμV / m) @ 3 m			
Frequency / MHz	Detector Level / (dBµV / m)		
All detected peaks are more than 20 dB below the limit.			

© CTC advanced GmbH Page 29 of 55



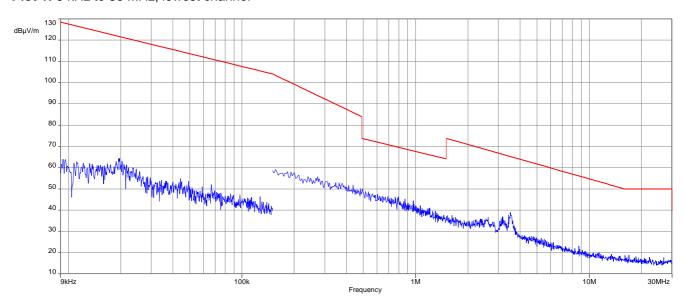
Plots: GFSK (Antenna 1)

Plot 1: 9 kHz to 30 MHz, lowest channel

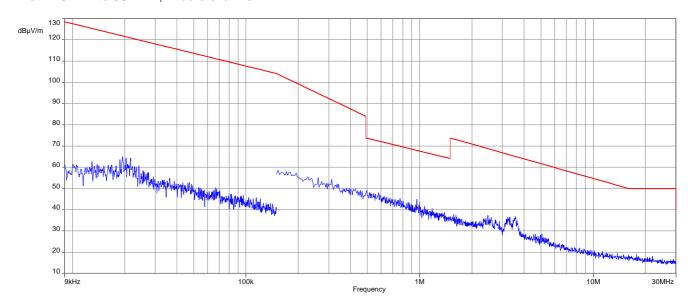

Plot 2: 9 kHz to 30 MHz, middle channel

© CTC advanced GmbH Page 30 of 55

Plot 3: 9 kHz to 30 MHz, highest channel

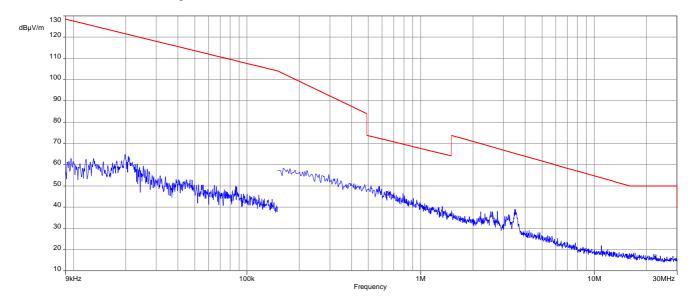


© CTC advanced GmbH Page 31 of 55



Plots: GFSK (Antenna 2)

Plot 1: 9 kHz to 30 MHz, lowest channel


Plot 2: 9 kHz to 30 MHz, middle channel

© CTC advanced GmbH Page 32 of 55

Plot 3: 9 kHz to 30 MHz, highest channel

© CTC advanced GmbH Page 33 of 55

12.7 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions and cabinet radiations below 1 GHz.

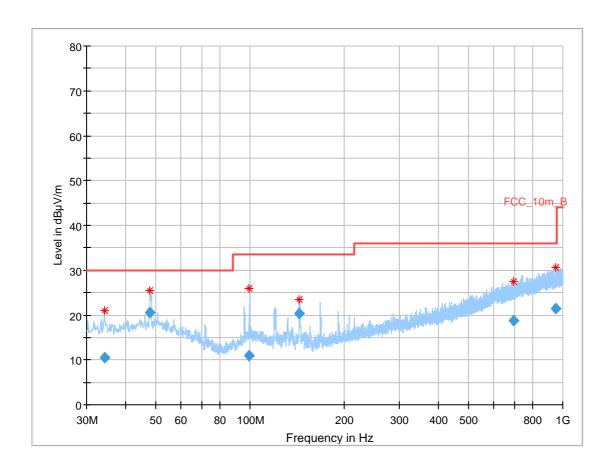
Measurement:

Measurement parameter		
Detector	Peak / Quasi Peak	
Sweep time	Auto	
Resolution bandwidth	120 kHz	
Video bandwidth	3 x RBW	
Span	30 MHz to 1 GHz	
Trace mode	Max Hold	
Test setup	See chapter 6.1 A	
Measurement uncertainty	See chapter 8	

Limits:

FCC	IC

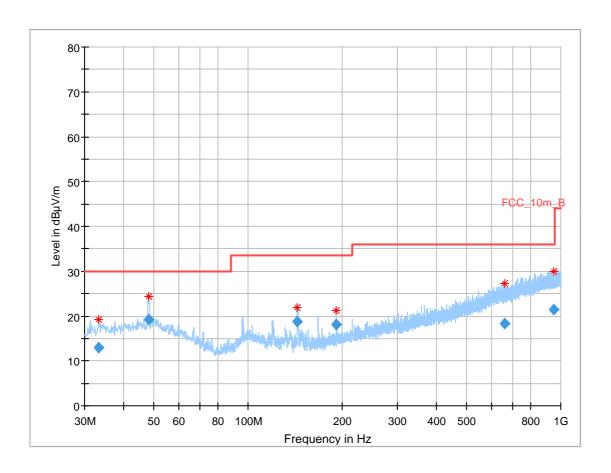
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).


Frequency / MHz	Field Strength / (dBµV / m)	Measurement distance / m
30 – 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10

© CTC advanced GmbH Page 34 of 55

Plot: GFSK (Antenna 1)

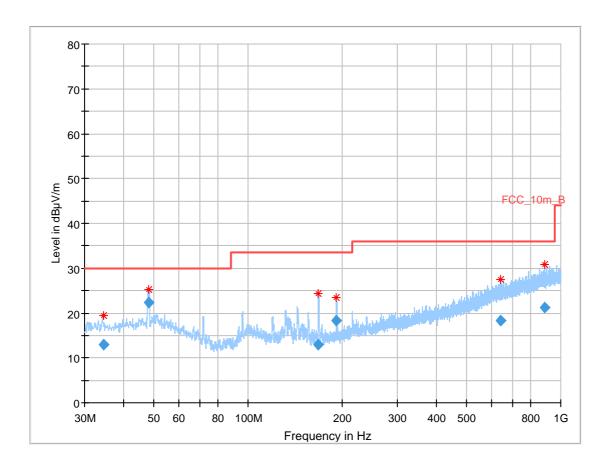
Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, lowest channel


Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.354	10.43	30.0	19.57	1000	120	101.0	V	172.0	12.6
47.856	20.65	30.0	9.35	1000	120	98.0	V	342.0	13.7
99.502	10.91	33.5	22.59	1000	120	101.0	V	117.0	12.0
143.806	20.32	33.5	13.18	1000	120	98.0	V	-4.0	9.0
694.549	18.84	36.0	17.16	1000	120	170.0	V	105.0	21.5
950.272	21.52	36.0	14.48	1000	120	101.0	Н	347.0	24.3

© CTC advanced GmbH Page 35 of 55

Plot 2: 30 MHz to 1 GHz, vertical & horizontal polarization, middle channel

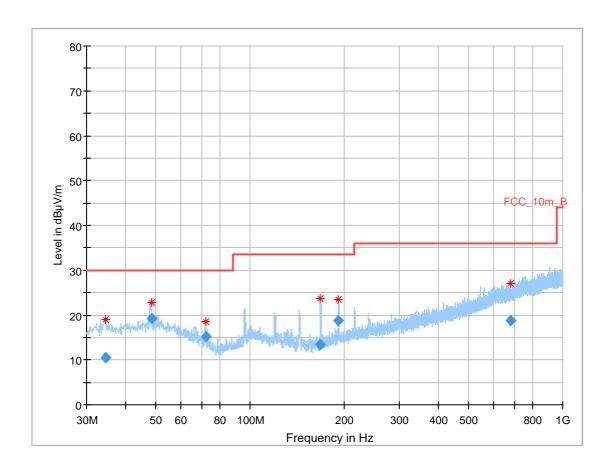

Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
33.172	12.96	30.0	17.04	1000	120	101.0	V	353.0	12.4
48.055	19.24	30.0	10.76	1000	120	98.0	V	65.0	13.7
143.658	18.81	33.5	14.69	1000	120	98.0	V	-6.0	9.0
191.327	18.02	33.5	15.48	1000	120	98.0	V	200.0	11.5
662.969	18.42	36.0	17.58	1000	120	98.0	Н	53.0	21.2
950.034	21.51	36.0	14.49	1000	120	101.0	Н	-9.0	24.3

© CTC advanced GmbH Page 36 of 55

Plot 3: 30 MHz to 1 GHz, vertical & horizontal polarization, highest channel

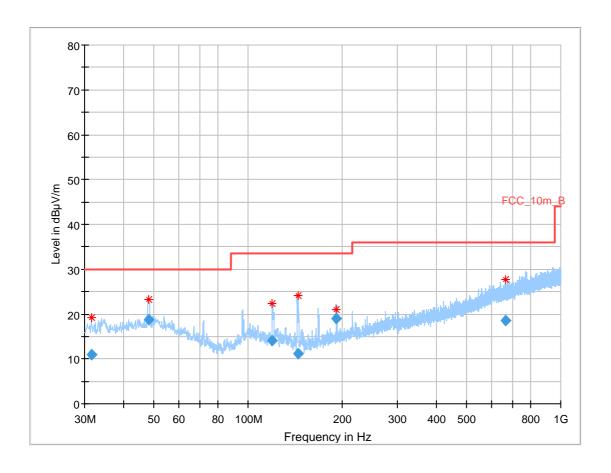
Final results:


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.623	12.97	30.0	17.03	1000	120	100.0	V	350.0	12.6
47.980	22.45	30.0	7.55	1000	120	98.0	V	198.0	13.7
167.946	12.91	33.5	20.59	1000	120	98.0	V	33.0	10.2
191.712	18.36	33.5	15.14	1000	120	170.0	V	65.0	11.5
641.822	18.32	36.0	17.68	1000	120	170.0	V	244.0	21.1
887.765	21.34	36.0	14.66	1000	120	101.0	٧	285.0	24.0

© CTC advanced GmbH Page 37 of 55

Plot: GFSK (Antenna 2)

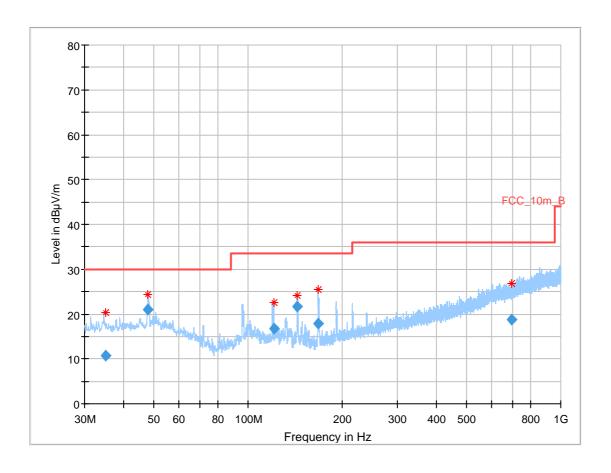
Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, lowest channel


Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.413	10.46	30.0	19.54	1000	120	101.0	V	341.0	12.6
48.316	19.16	30.0	10.84	1000	120	101.0	V	341.0	13.7
71.993	15.10	30.0	14.90	1000	120	170.0	V	331.0	9.4
167.972	13.51	33.5	19.99	1000	120	98.0	V	192.0	10.2
191.489	18.68	33.5	14.82	1000	120	101.0	V	264.0	11.5
681.177	18.76	36.0	17.24	1000	120	170.0	Н	126.0	21.4

© CTC advanced GmbH Page 38 of 55

Plot 2: 30 MHz to 1 GHz, vertical & horizontal polarization, middle channel

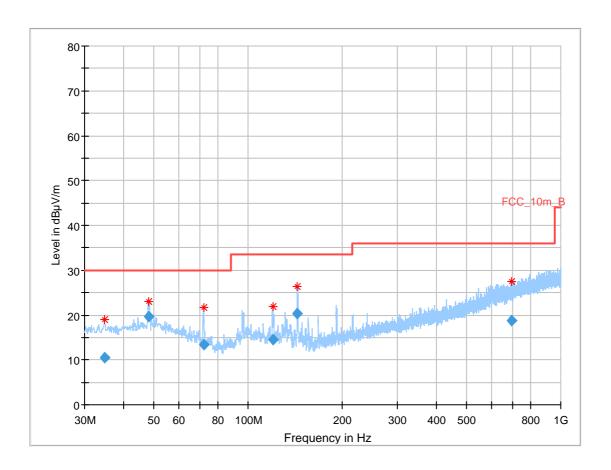

Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
31.618	11.06	30.0	18.94	1000	120	98.0	V	232.0	12.1
47.967	18.84	30.0	11.16	1000	120	98.0	V	0.0	13.7
119.710	14.06	33.5	19.44	1000	120	170.0	V	172.0	10.3
144.145	11.22	33.5	22.28	1000	120	98.0	V	153.0	9.0
191.391	18.98	33.5	14.52	1000	120	170.0	V	266.0	11.5
667.271	18.57	36.0	17.43	1000	120	98.0	V	182.0	21.3

© CTC advanced GmbH Page 39 of 55

Plot 3: 30 MHz to 1 GHz, vertical & horizontal polarization, highest channel

Final results:

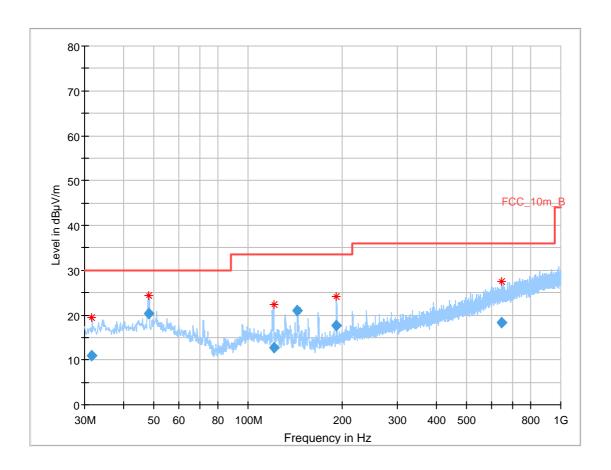

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
35.045	10.69	30.0	19.31	1000	120	170.0	V	345.0	12.7
47.901	20.92	30.0	9.08	1000	120	98.0	V	169.0	13.7
120.698	16.85	33.5	16.65	1000	120	170.0	V	344.0	10.2
143.528	21.70	33.5	11.80	1000	120	98.0	V	16.0	9.0
167.966	17.79	33.5	15.71	1000	120	98.0	V	204.0	10.2
695.128	18.83	36.0	17.17	1000	120	170.0	Н	298.0	21.5

© CTC advanced GmbH Page 40 of 55

Plot: RX / Idle mode (Antenna 1)

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization

Final results:


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.898	10.41	30.0	19.59	1000	120	101.0	V	179.0	12.6
47.992	19.75	30.0	10.25	1000	120	170.0	V	10.0	13.7
72.088	13.31	30.0	16.69	1000	120	101.0	V	110.0	9.4
120.022	14.49	33.5	19.01	1000	120	101.0	V	116.0	10.3
144.011	20.44	33.5	13.06	1000	120	101.0	V	331.0	9.0
694.861	18.85	36.0	17.15	1000	120	170.0	Н	243.0	21.5

© CTC advanced GmbH Page 41 of 55

Plot: RX / Idle mode (Antenna 2)

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization

Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
31.624	10.97	30.0	19.03	1000	120	102.0	V	347.0	12.1
47.968	20.41	30.0	9.59	1000	120	98.0	V	189.0	13.7
120.712	12.76	33.5	20.74	1000	120	170.0	V	0.0	10.2
143.978	20.95	33.5	12.55	1000	120	100.0	V	85.0	9.0
191.501	17.71	33.5	15.79	1000	120	98.0	V	111.0	11.5
644.769	18.33	36.0	17.67	1000	120	170.0	Н	182.0	21.1

© CTC advanced GmbH Page 42 of 55

12.8 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions above 1 GHz in transmit mode and receiver / idle mode.

Measurement:

	Measurement parameter					
Detector	Peak / RMS					
Sweep time	Auto					
Resolution bandwidth 1 MHz						
Video bandwidth	3 x RBW					
Span	1 GHz to 26 GHz					
Trace mode	Max Hold					
Test setup See chapter 6.2 B & 6.3 A						
Measurement uncertainty See chapter 8						

Limits:

FCC	IC

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency / MHz	Field Strength / (dBµV / m)	Measurement distance / m	
Above 960	54.0 (AVG)	2	
Above 960	74.0 (peak)	3	

© CTC advanced GmbH Page 43 of 55

Results: GFSK (Antenna 1)

	TX spurious emissions radiated / dBμV/m @ 3 m								
lowest channel			mi	iddle chann	el	h	ighest chanr	nel	
f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m	
1593	Peak	50.3	7329	Peak	52.1	4961	Peak	55.3	
1595	AVG	34.4	7329	AVG	43.8		AVG	47.4	
7200	Peak	55.1	,	Peak	-/-	7441	Peak	52.5	
7209	AVG	47.5	-/-	AVG	-/-	7441	AVG	43.6	
		For peal	k emissions re	esults > 18	GHz see plot	ts below			

Results: GFSK (Antenna 2)

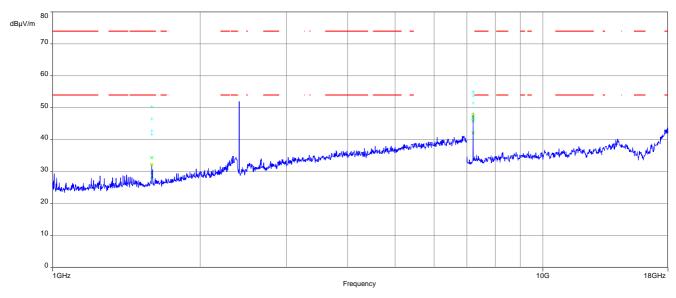
TX spurious emissions radiated / dBμV/m @ 3 m								
lowest channel			m	iddle chann	el	h	ighest chanr	nel
f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m
4805	Peak	51.7	7330	Peak	53.9	4061	Peak	54.5
4000	AVG	41.2	7330	AVG	45.1	4961	AVG	48.1
7209	Peak	58.8		Peak		7441	Peak	60.1
7209	AVG	51.6		AVG		<i>1</i> 44 I	AVG	53.9
	For peak emissions results > 18 GHz see plots below							

© CTC advanced GmbH Page 44 of 55

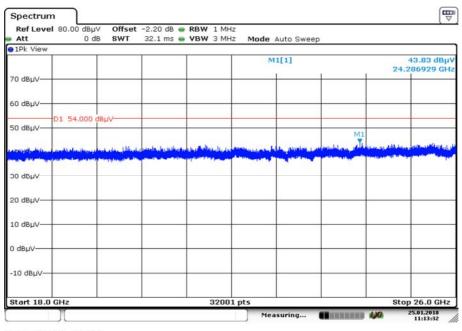
Results: RX / idle – mode (Antenna 1)

TX spurious emissions radiated / dBμV/m @ 3 m								
f / MHz Detector Level / dBµV/m								
All detecte	ed emissions are more than 10 dB b	elow the limit.						
For peak emissions results > 18 GHz see plots below								

Results: RX / idle - mode (Antenna 2)


TX spurious emissions radiated / dBμV/m @ 3 m				
f / MHz	Detector	Level / dBµV/m		
All detected emissions are more than 10 dB below the limit.				
For peak emissions results > 18 GHz see plots below				

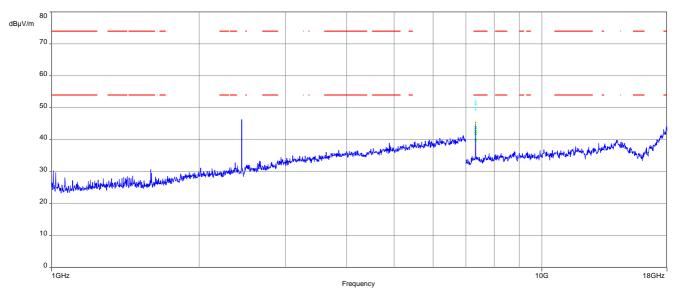
© CTC advanced GmbH Page 45 of 55


Plots: Antenna 1

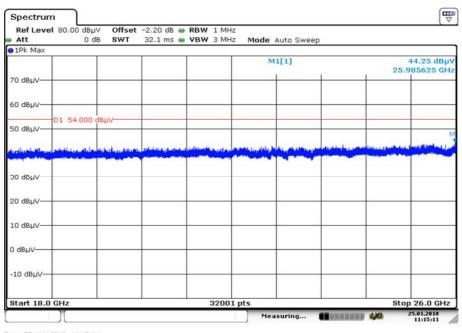
Plot 1: Lowest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 3: Lowest channel, 18 GHz to 26 GHz, vertical & horizontal polarization



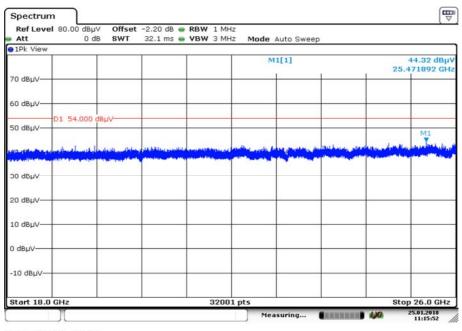
Date: 25.JAN.2018 11:13:33


© CTC advanced GmbH Page 46 of 55

Plot 4: Middle channel, 1 GHz to 18 GHz, vertical & horizontal polarization

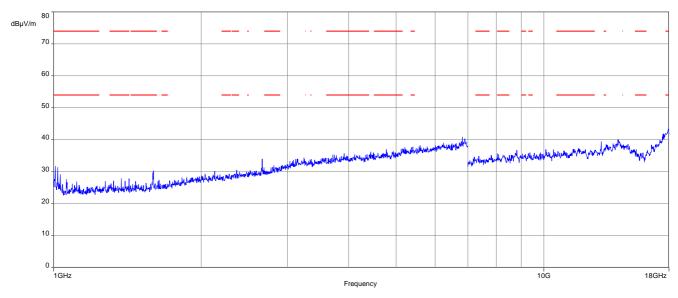
Plot 6: Middle channel, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 25.JAN.2018 11:15:11

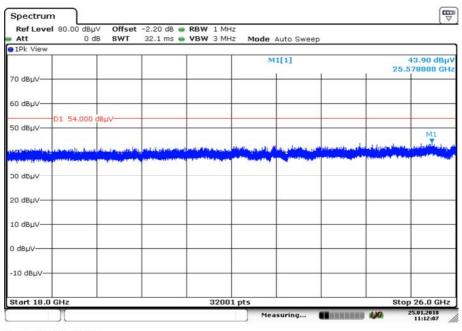

© CTC advanced GmbH Page 47 of 55

Plot 7: Highest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

Plot 9: Highest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

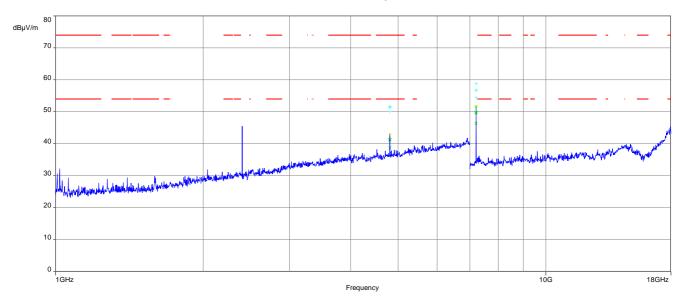


Date: 25.JAN.2018 11:15:52

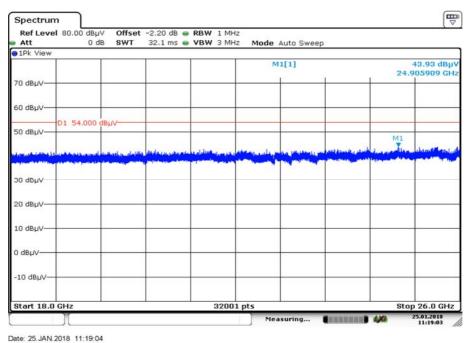

© CTC advanced GmbH Page 48 of 55

Plot 10: Rx-Mode, 1 GHz to 18 GHz, vertical & horizontal polarization

Plot 3: Rx-Mode, 18 GHz to 26 GHz, vertical & horizontal polarization


Date: 25.JAN.2018 11:12:07

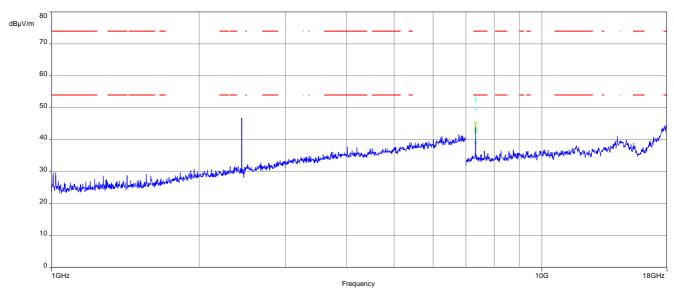
© CTC advanced GmbH Page 49 of 55


Plots: Antenna 2

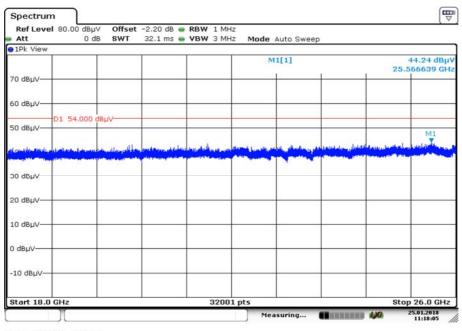
Plot 1: Lowest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 3: Lowest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

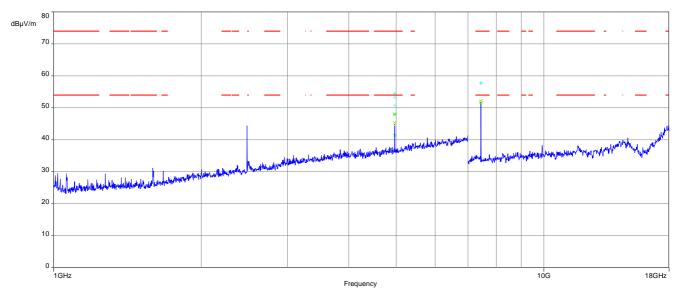


Date: 23.3AN.2016 11.19.04

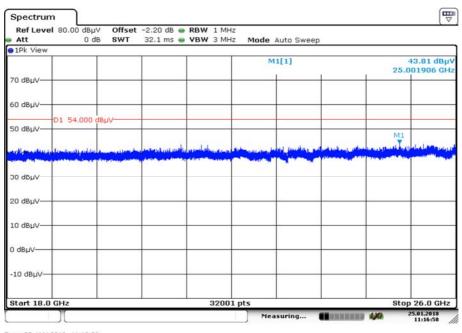

© CTC advanced GmbH Page 50 of 55

Plot 4: Middle channel, 1 GHz to 18 GHz, vertical & horizontal polarization

Plot 6: Middle channel, 18 GHz to 26 GHz, vertical & horizontal polarization

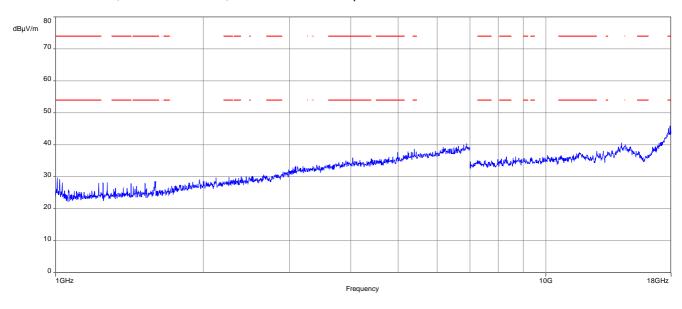


Date: 25.JAN.2018 11:18:05

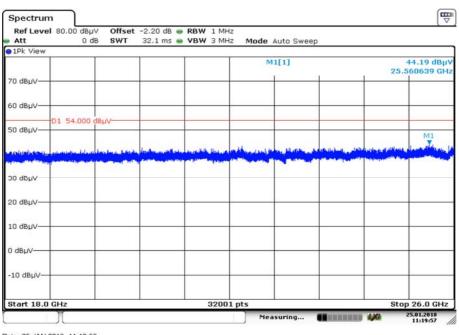

© CTC advanced GmbH Page 51 of 55

Plot 7: Highest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

Plot 9: Highest channel, 18 GHz to 26 GHz, vertical & horizontal polarization



Date: 25.JAN.2018 11:16:58


© CTC advanced GmbH Page 52 of 55

Plot 10: Rx-Mode, 1 GHz to 18 GHz, vertical & horizontal polarization

Plot 3: Rx-Mode, 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 25.JAN.2018 11:19:58

© CTC advanced GmbH Page 53 of 55

13 Observations

No observations except those reported with the single test cases have been made.

Annex A Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
ОС	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier

© CTC advanced GmbH Page 54 of 55

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2018-03-05

Annex C Accreditation Certificate

first page	last page	
Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Jagreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields: Telecommunication	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 10117 Berlin G0327 Frankfurt am Main Gffice Braunschweig Bundesallee 100 38116 Braunschweig The publication of extracts of the accreditation certificate is subject to the prior written approval by	
The accreditation certificate shall only apply in connection with the notice of accreditation of 02.06.2017 with the accreditation number 0-Pt-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 43 pages. Registration number of the certificate: 0-Pt-12076-01-03 Frankfurt, 02.06.2017 Dipty g 1970 has been test of Division	d is valid until 21.04.2021. It comprises the cover sheet, Cooperation (LLC). The signature round program international recommendation (LLC) are shaped on their accordinations. Cooperation (LLC). The signature is to these agreements recognise each other's accreditations. The uncounter state of membership can be retrieved from the following weakflets:	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

http://www.dakks.de/as/ast/d/D-PL-12076-01-03.pdf

© CTC advanced GmbH Page 55 of 55