

FCC Test Report

FCC ID	:	DMOSCBT6
Equipment	:	HD 4.40BT HD 4.50BTNC
Model No.	:	SCBT6 SCBT7 (Refer to item 1.1.1 for more details)
Brand Name	:	Sennheiser
Applicant	:	Sennheiser Communications A/S
Address	:	Industriparken 27, Ballerup 2750, Denmark
Standard	:	47 CFR FCC Part 15.247
Received Date	:	Aug. 29, 2016
Tested Date	:	Aug. 31 ~ Sep. 21, 2016

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by:

ong Chem

Along Chem/ Assistant Manager Gary Chang / Manager

Approved by:

Testing Laboratory 2732

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	8
1.3	Test Setup Chart	8
1.4	The Equipment List	9
1.5	Test Standards	10
1.6	Measurement Uncertainty	10
2	TEST CONFIGURATION	11
2.1	Testing Condition	11
2.2	The Worst Test Modes and Channel Details	11
3	TRANSMITTER TEST RESULTS	12
3.1	Conducted Emissions	12
3.2	Unwanted Emissions into Restricted Frequency Bands	17
3.3	Unwanted Emissions into Non-Restricted Frequency Bands	
3.4	Conducted Output Power	44
3.5	Number of Hopping Frequency	46
3.6	20dB and Occupied Bandwidth	48
3.7	Channel Separation	50
3.8	Number of Dwell Time	52
4		

Release Record

Report No.	Version	Description	Issued Date
FR682901AD	Rev. 01	Initial issue	Oct. 20, 2016
FR682901AD	Rev. 02	Add 20dB and Occupied Bandwidth in section 2.2	Nov. 01, 2016

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 0.369MHz 39.33 (Margin -9.19dB) - AV	Pass
15.247(d)	Radiated Emissions	[dBuV/m at 3m]: 798.24MHz	Pass
15.209		40.07 (Margin -5.93dB) - PK	1 855
15.247(d)	Band Edge	Meet the requirement of limit	Pass
15.247(b)(1)	Conducted Output Power	Power [dBm]: 9.55	Pass
15.247(a)(1)(iii)	Number of Hopping Channels	Meet the requirement of limit	Pass
15.247(a)(1)	Hopping Channel Separation	Meet the requirement of limit	Pass
15.247(a)(1)(iii)	Dwell Time	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Summary of Test Results

1 General Description

1.1 Information

1.1.1 Product Details

The following models are provided to this EUT.

Brand Name	Model Name	Product Name	Description
	SCBT6	HD 4.40BT	
Sennheiser	SCBT7	HD 4.50BTNC	Having components for Active Noise Cancellation

1.1.2 Specification of the Equipment under Test (EUT)

RF General Information							
Frequency Range (MHz)	Bluetooth Mode	Ch. Frequency (MHz)	Channel Number	Data Rate			
2400-2483.5	BR	2402-2480	0-78 [79]	1 Mbps			
2400-2483.5	EDR	2402-2480	0-78 [79]	2 Mbps			
2400-2483.5	EDR	2402-2480	0-78 [79]	3 Mbps			
Note 2: Bluetooth BR	2400-2483.5EDR2402-24800-78 [79]3 MbpsNote 1: RF output power specifies that Maximum Peak Conducted Output Power.Note 2: Bluetooth BR uses a GFSK.Note 3: Bluetooth EDR uses a combination of $\pi/4$ -DQPSK and 8DPSK.						

1.1.3 Antenna Details

Ant. No.	Туре	Gain (dBi)	Connector	Remark
1	PIFA	2		

1.1.4 Power Supply Type of Equipment under Test (EUT)

	5Vdc from host 3.7Vdc from battery
--	---------------------------------------

1.1.5 Accessories

	Accessories				
No.	Equipment	Description			
1	Battery	Brand Name: SYNergy ScienTech Corp. Model Name: AHB622540PCT-02 Power Rating: Typical Voltage: 3.7Vdc, 630mAh Charging Voltage: 4.2Vdc, 262mAh			
2	Audio cable	1.4m non-shielded without core			
3	USB cable (for charging use)	1.07m shielded cable without core.			

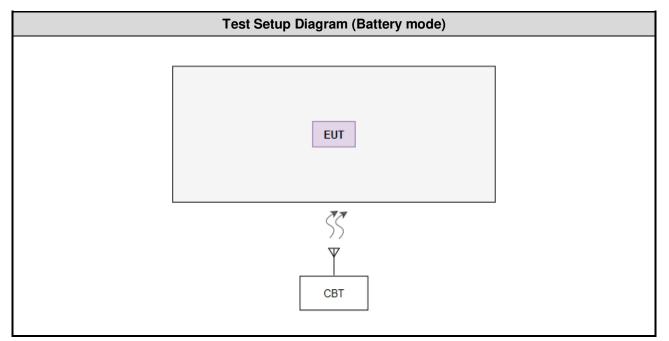
1.1.6 Channel List

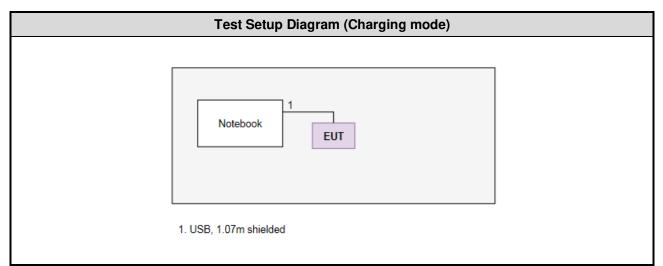
	Frequency	band (MHz)			2400~2	2483.5	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

1.1.7 Test Tool and Duty Cycle

Test Tool	Blue Tool, version 2.5
Test Tool	

1.1.8 Power Setting


Modulation Mode	Test Frequency (M		Hz)	
	2402	2441	2480	
GFSK/1Mbps	Default	Default	Default	
π/4-DQPSK /2Mbps	Default	Default	Default	
8DPSK/3Mbps	Default	Default	Default	



1.2 Local Support Equipment List

		Su	pport Equipment	List	
No.	Equipment	Brand	Model	FCC ID	Signal cable / Length (m)
1	Notebook	DELL	Latitude E6430	DoC	USB, 1.07m shielded.

1.3 Test Setup Chart

The Equipment List 1.4

Conducted Emission				
Conduction room 1 /	(CO01-WS)			
Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
R&S	ESCS 30	100169	Oct. 21, 2015	Oct. 20, 2016
SCHWARZBECK	Schwarzbeck 8127	8127-667	Nov. 13, 2015	Nov. 12, 2016
EMC	EMCCFD300-BM-BM-6000	50821	Dec. 21, 2015	Dec. 20, 2016
AUDIX	e3	6.120210k	NA	NA
	Conduction room 1 / Manufacturer R&S SCHWARZBECK EMC	R&S ESCS 30 SCHWARZBECK Schwarzbeck 8127 EMC EMCCFD300-BM-BM-6000	Manufacturer Model No. Serial No. R&S ESCS 30 100169 SCHWARZBECK Schwarzbeck 8127 8127-667 EMC EMCCFD300-BM-BM-6000 50821	Manufacturer Model No. Serial No. Calibration Date R&S ESCS 30 100169 Oct. 21, 2015 SCHWARZBECK Schwarzbeck 8127 8127-667 Nov. 13, 2015 EMC EMCCFD300-BM-BM-6000 50821 Dec. 21, 2015

Test Item	Radiated Emission									
Test Site	966 chamber 3 / (03CH03-WS)									
Instrument	Manufacturer	Model No.	Model No. Serial No.		Calibration Until					
Spectrum Analyzer	R&S	FSV40	101498	Dec. 13, 2015	Dec. 12, 2016					
Receiver	Agilent	N9038A	MY53290044	Oct. 14, 2015	Oct. 13, 2016					
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-685	Apr. 26, 2016	Apr. 25, 2017					
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1206	Feb. 24, 2016	Feb. 23, 2017					
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 04, 2015	Nov. 03, 2016					
Preamplifier	EMC	EMC02325	980225	Aug. 05, 2016	Aug. 04, 2017					
Preamplifier	Agilent	83017A	MY53270014	Aug. 22, 2016	Aug. 21, 2017					
Preamplifier	EMC	EMC184045B	980192	Aug. 24, 2016	Aug. 23, 2017					
RF cable-3M	HUBER+SUHNER	SUCOFLEX104	MY22620/4	Feb. 05, 2016	Feb. 04, 2017					
RF cable-8M	HUBER+SUHNER	SUCOFLEX104	MY22600/4	Feb. 05, 2016	Feb. 04, 2017					
RF cable-1M	HUBER+SUHNER	SUCOFLEX104	MY22624/4	Feb. 05, 2016	Feb. 04, 2017					
LF cable-0.8M	EMC	EMC8D-NM-NM-800	EMC8D-NM-NM-800-001	Feb. 05, 2016	Feb. 04, 2017					
LF cable-3M	EMC	EMC8D-NM-NM-3000	131103	Feb. 05, 2016	Feb. 04, 2017					
LF cable-13M	EMC	EMC8D-NM-NM-13000	131104	Feb. 05, 2016	Feb. 04, 2017					
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 16, 2015	Nov. 15, 2016					
Measurement Software	AUDIX	e3	6.120210g	NA	NA					

TH01-WS)				
Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
OHDE&SCHWARZ	CBT	100959	Mar. 02, 2016	Mar. 02, 2017
R&S	FSV40	101063	Feb. 17, 2016	Feb. 16, 2017
Anritsu	ML2495A	1218007	Oct. 14, 2015	Oct. 13, 2016
Anritsu	MA2411B	1207367	Oct. 14, 2015	Oct. 13, 2016
GW INSTEK	GPC-3060D	EM884797	Oct. 20, 2015	Oct. 19, 2016
Sporton	Sporton_1	1.3.30	NA	NA
	DHDE&SCHWARZ R&S Anritsu Anritsu GW INSTEK	DHDE&SCHWARZ CBT R&S FSV40 Anritsu ML2495A Anritsu MA2411B GW INSTEK GPC-3060D	DHDE&SCHWARZ CBT 100959 R&S FSV40 101063 Anritsu ML2495A 1218007 Anritsu MA2411B 1207367 GW INSTEK GPC-3060D EM884797	DHDE&SCHWARZ CBT 100959 Mar. 02, 2016 R&S FSV40 101063 Feb. 17, 2016 Anritsu ML2495A 1218007 Oct. 14, 2015 Anritsu MA2411B 1207367 Oct. 14, 2015 GW INSTEK GPC-3060D EM884797 Oct. 20, 2015

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247 ANSI C63.10-2013

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty	
Parameters	Uncertainty
Bandwidth	±34.134 Hz
Conducted power	±0.808 dB
Power density	±0.463 dB
Conducted emission	±2.670 dB
AC conducted emission	±2.90 dB
Radiated emission ≤ 1GHz	±3.66 dB
Radiated emission > 1GHz	±5.37 dB

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	25°C / 55%	Howard Huang
Radiated Emissions	03CH03-WS	23-24°C / 60-66%	Vincent Yeh Aska Huang
RF Conducted	TH01-WS	23°C / 65%	Brad Wu

➢ FCC site registration No.: 207696

➢ IC site registration No.: 10807C-1

2.2 The Worst Test Modes and Channel Details

Test item	Mode	Test Frequency (MHz)	Data Rate (Mbps)	Test Configuration
Conducted Emissions	Charging			2, 4
Radiated Emissions ≤ 1GHz	GFSK Charging	2480 	1Mbps 	1, 3 2, 4
Radiated Emissions > 1GHz	GFSK 8DPSK	2402, 2441, 2480 2402, 2441, 2480	1Mbps 3Mbps	3
Conducted Output Power	GFSK л/4 QDPSK 8DPSK	2402, 2441, 2480 2402, 2441, 2480 2402, 2441, 2480	1 Mbps 2 Mbps 3 Mbps	3
Number of Hopping Channels	GFSK 8DPSK	2402~2480 2402~2480	1Mbps 3Mbps	3
Hopping Channel Separation 20dB and Occupied Bandwidth	GFSK 8DPSK	2402, 2441, 2480 2402, 2441, 2480	1Mbps 3Mbps	3
Dwell Time	GFSK 8DPSK	2402 2402	1Mbps 3Mbps	3

NOTE:

1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement – X, Y, and Z-plane. The **Y-plane** results were found as the worst case and were shown in this report.

- 2. The EUT had been tested by following test configurations.
 - 1) Configuration 1: Model SCBT6, Battery mode
 - 2) Configuration 2: Model SCBT6, Charging mode
 - 3) Configuration 3: Model SCBT7, Battery mode
 - 4) Configuration 4: Model SCBT7, Charging mode

3 Transmitter Test Results

3.1 Conducted Emissions

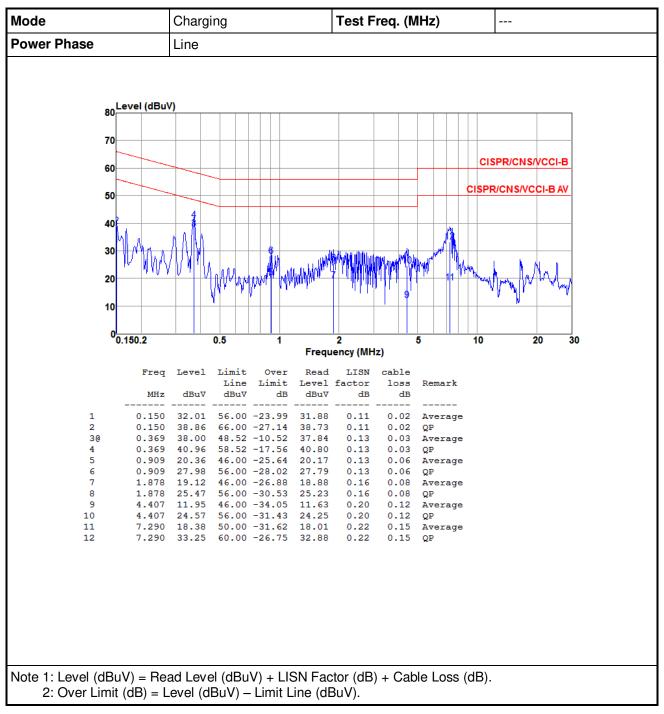

3.1.1 Limit of Conducted Emissions

	Conducted Emissions Limit	
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50
Note 1: * Decreases with the logarithm	n of the frequency.	

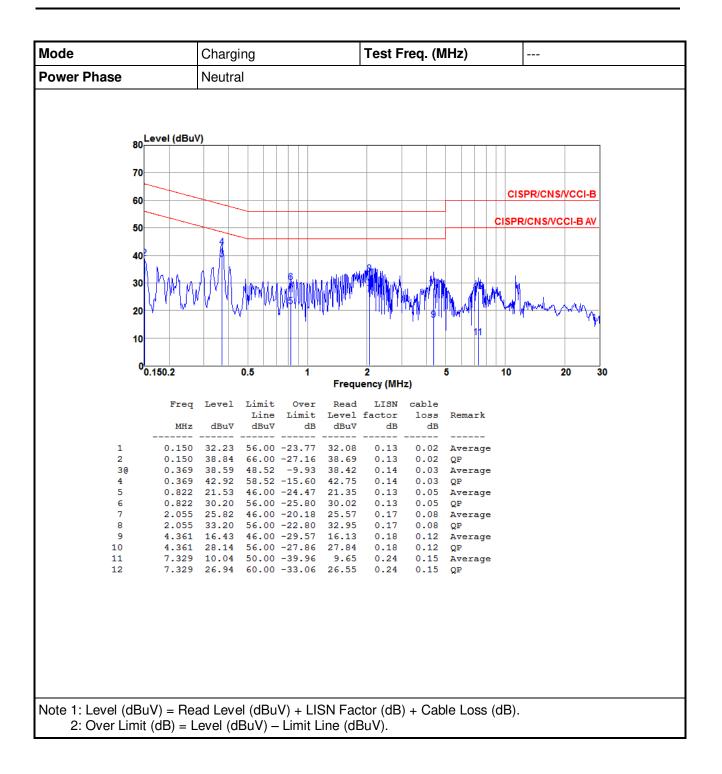
3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V/60Hz

3.1.3 Test Setup

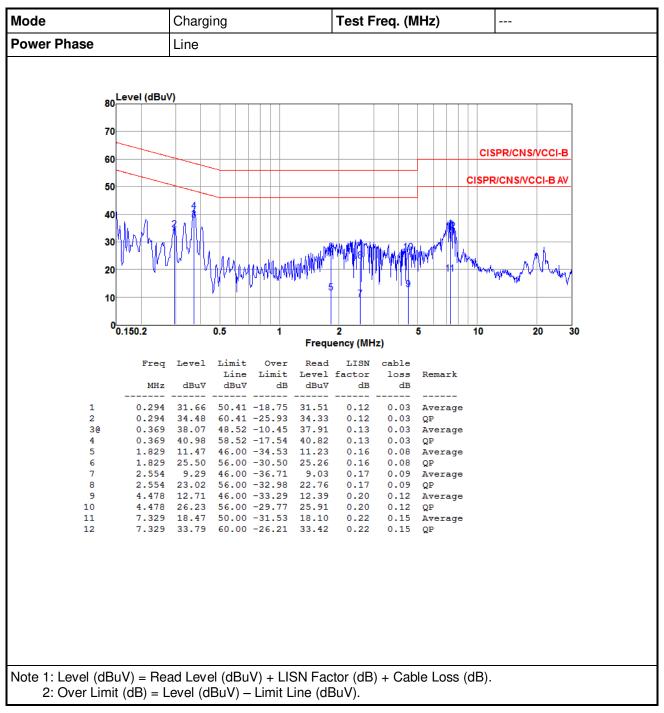

Note: 1. Support units were connected to second LISN.

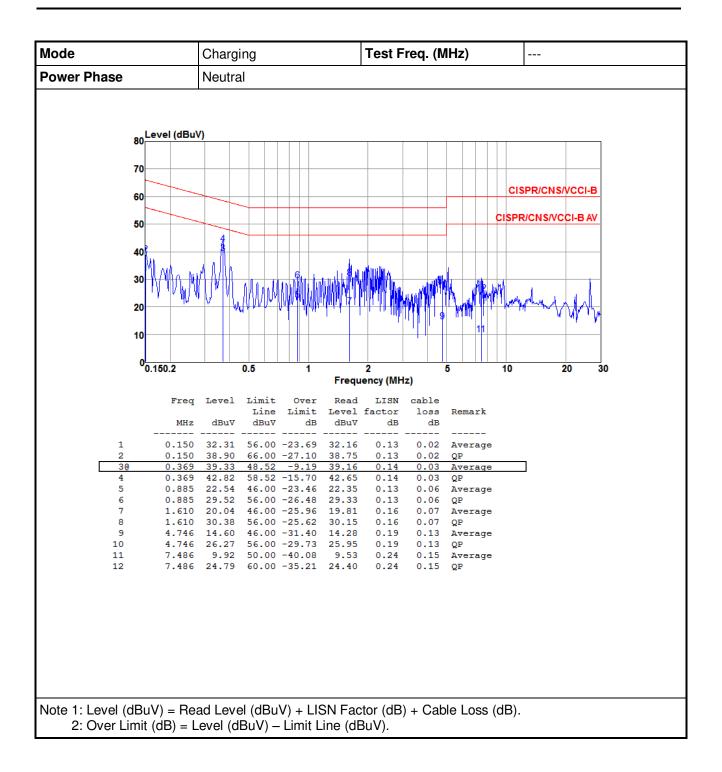
2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes



Configuration 2: Model SCBT6, Charging mode

3.1.4 Test Result of Conducted Emissions





Configuration 4: Model SCBT7, Charging mode

3.1.5 Test Result of Conducted Emissions

3.2 Unwanted Emissions into Restricted Frequency Bands

3.2.1 Limit of Unwanted Emissions into Restricted Frequency Bands

	Restricted Band	Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

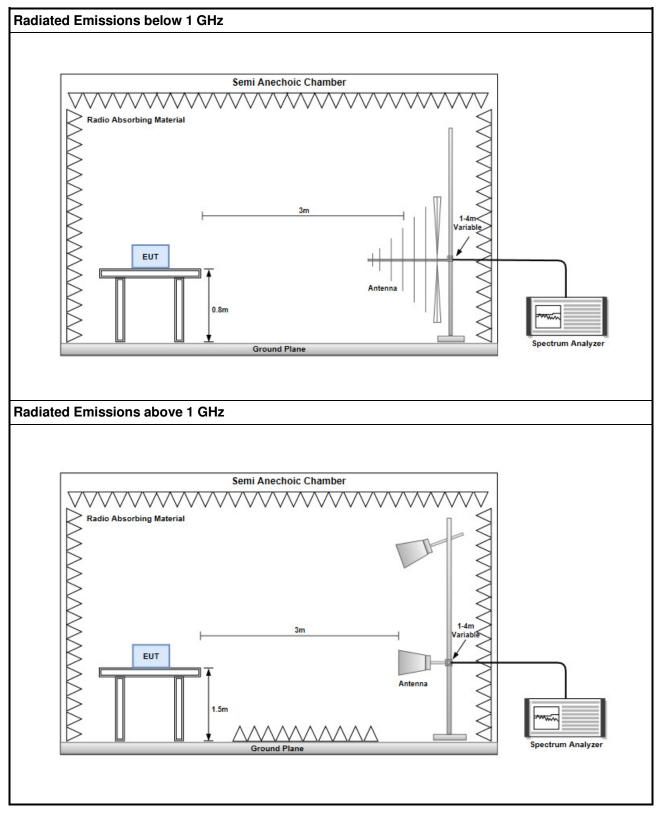
3.2.2 Test Procedures

- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

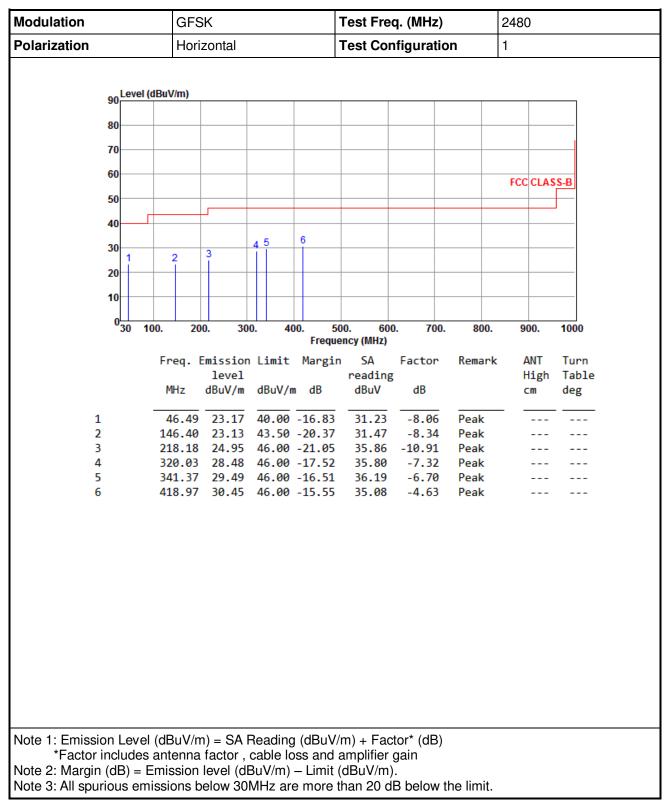
- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. Radiated emission above 1GHz / Peak value RBW=1MHz, VBW=3MHz and Peak detector

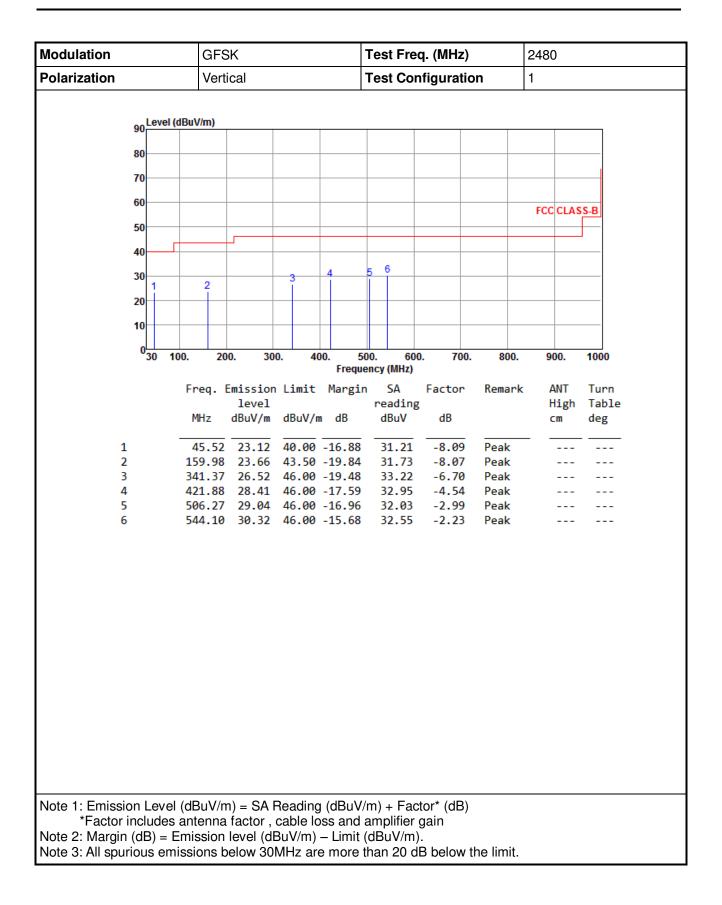
Radiated emission above 1GHz / Average value for harmonics The average value is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula for DH5 packet type which has worst duty factor:


З.

20log (Duty cycle) = 20log
$$\frac{1s / 1600 * 5}{100 \text{ ms}}$$
 = -30.1dB

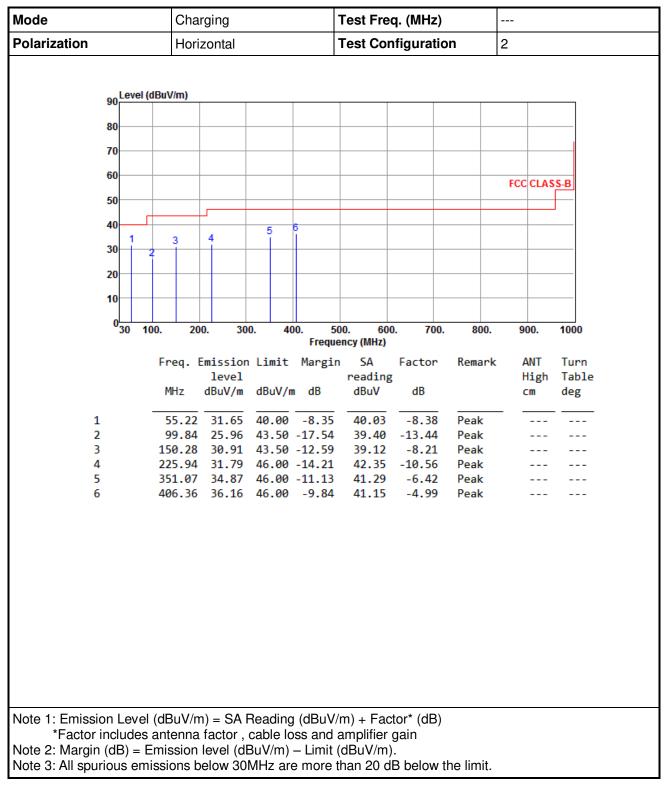
4. Radiated emission above 1GHz / Average value for other emissions RBW=1MHz. VBW=1/T and Peak detector

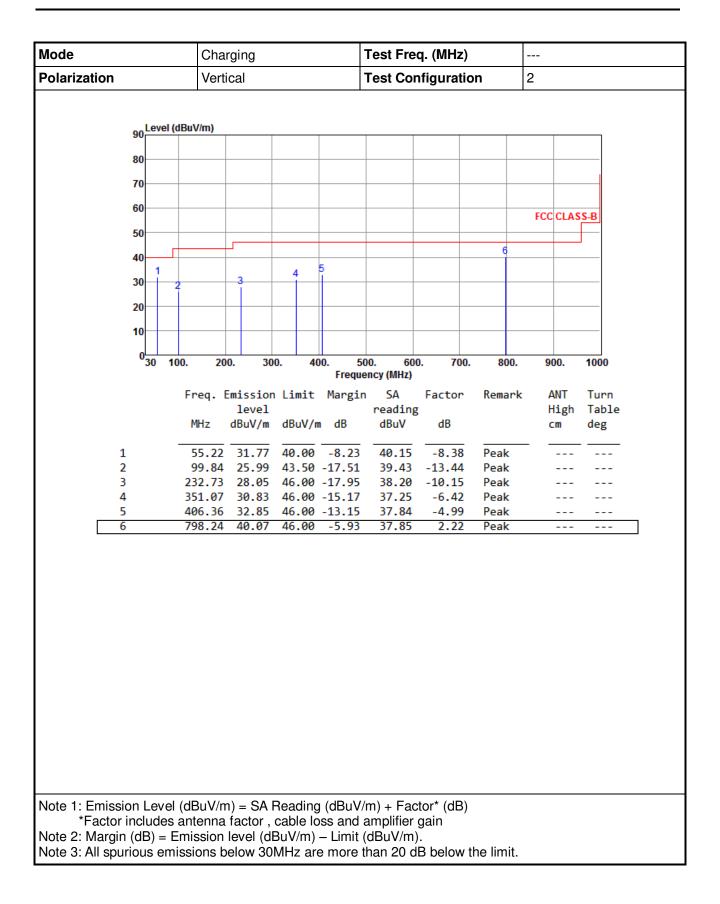

3.2.3 Test Setup



Configuration 1: Model SCBT6, Battery mode

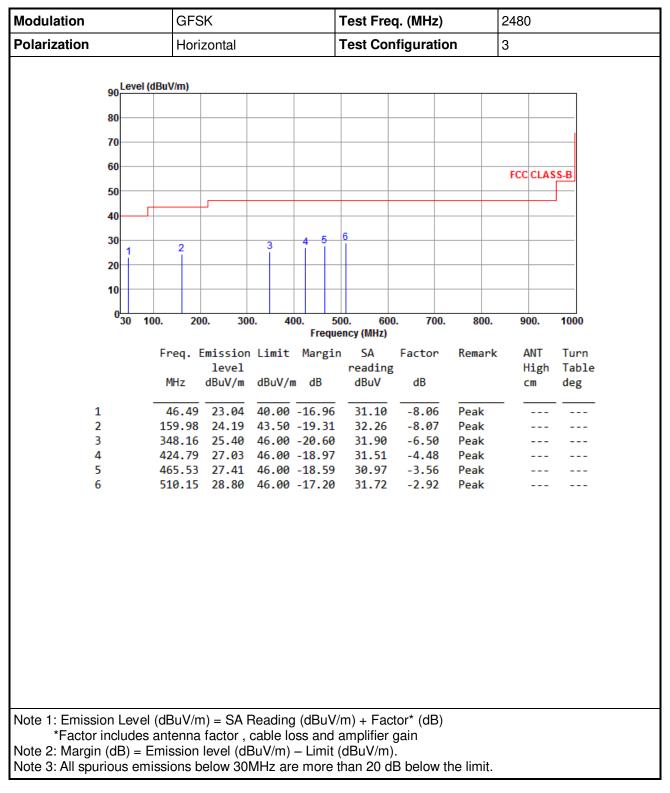
3.2.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

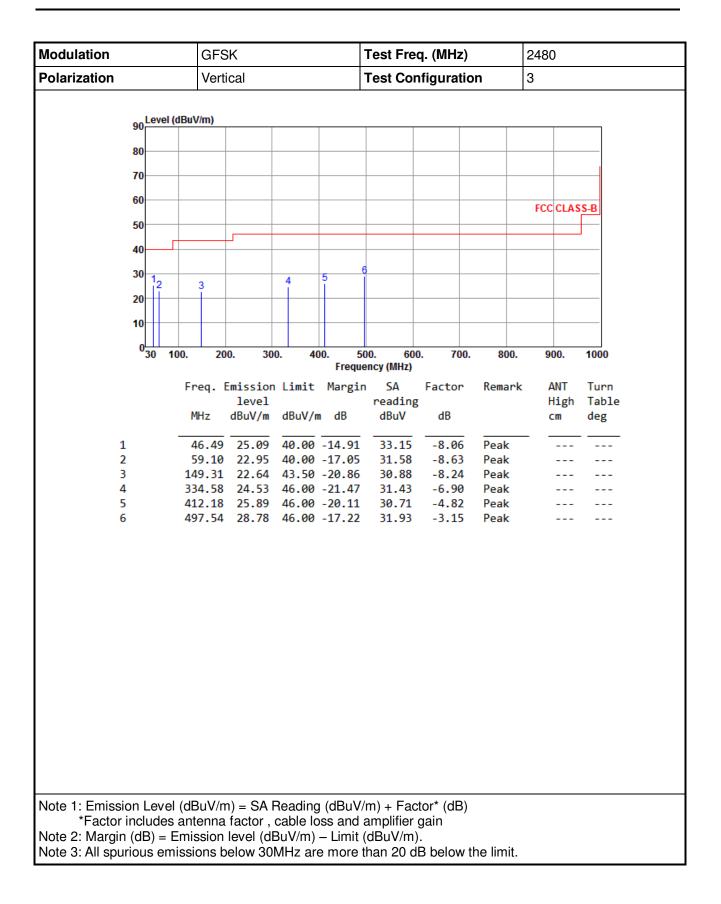




Configuration 2: Model SCBT6, Charging mode

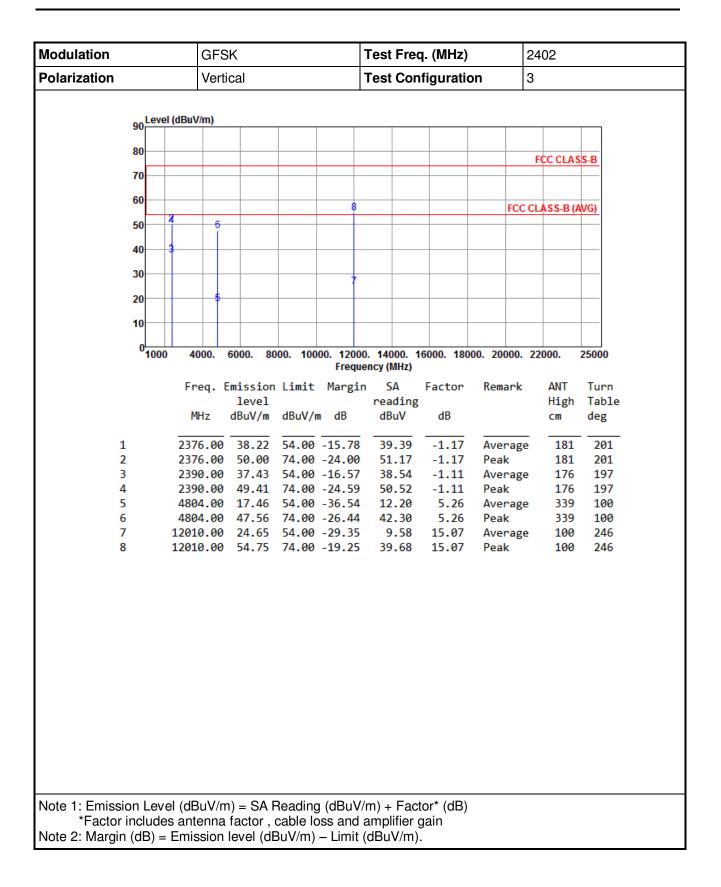
3.2.5 Transmitter Radiated Unwanted Emissions (Below 1GHz)

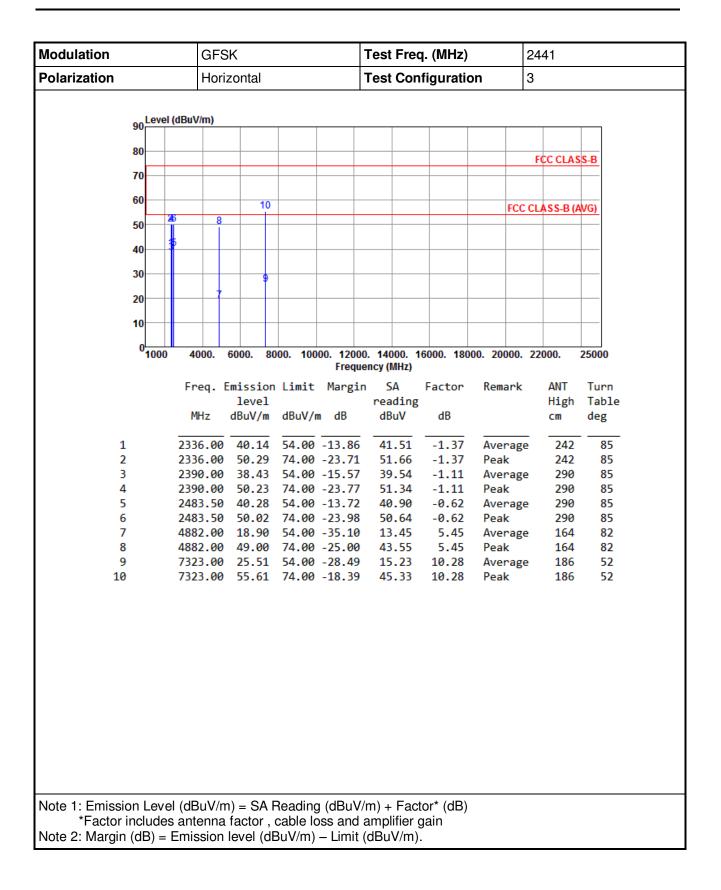




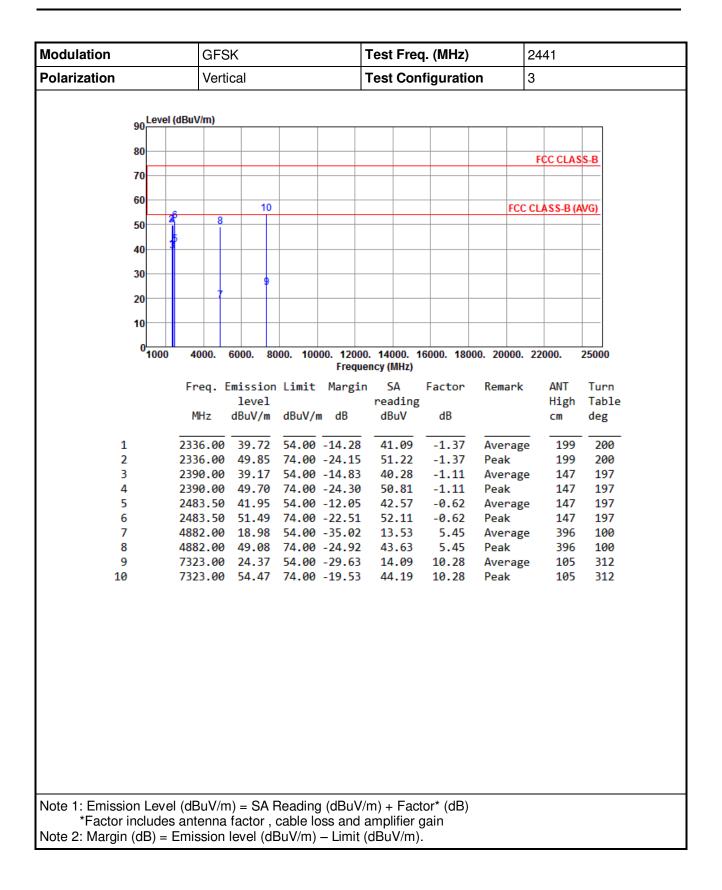
Configuration 3: Model SCBT7, Battery mode

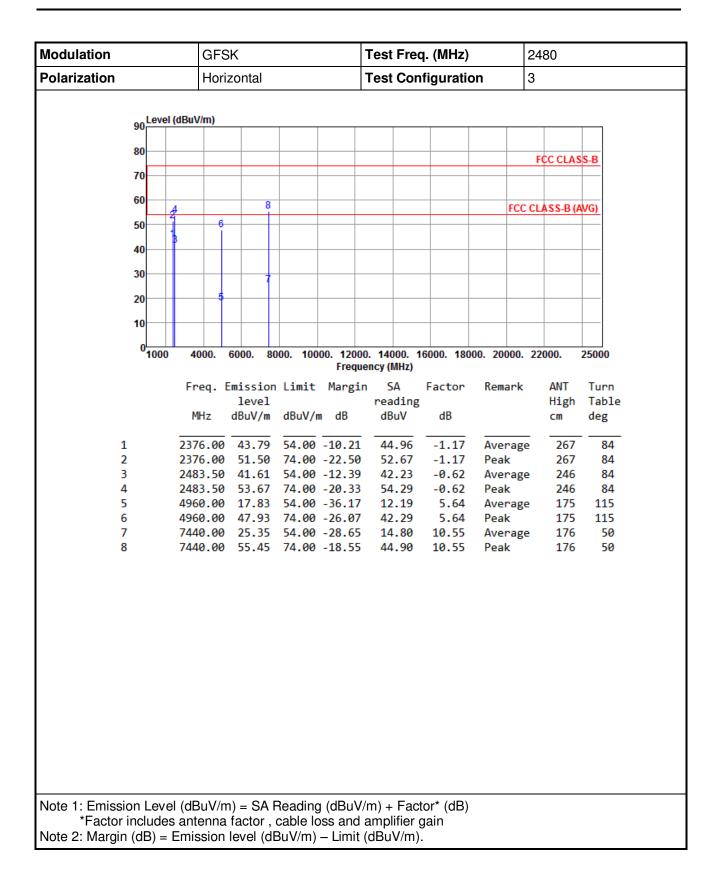
3.2.6 Transmitter Radiated Unwanted Emissions (Below 1GHz)

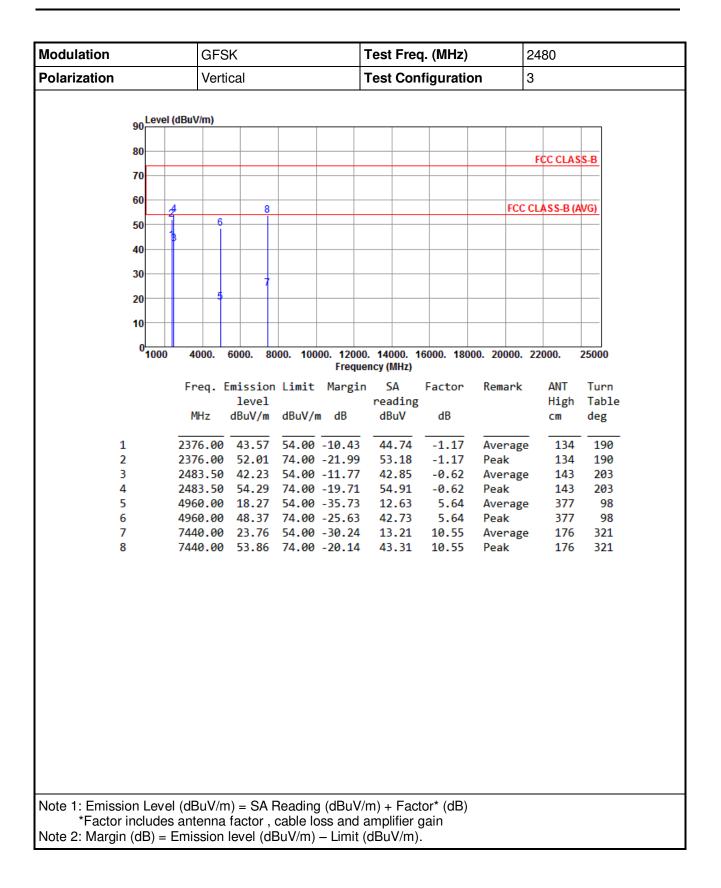


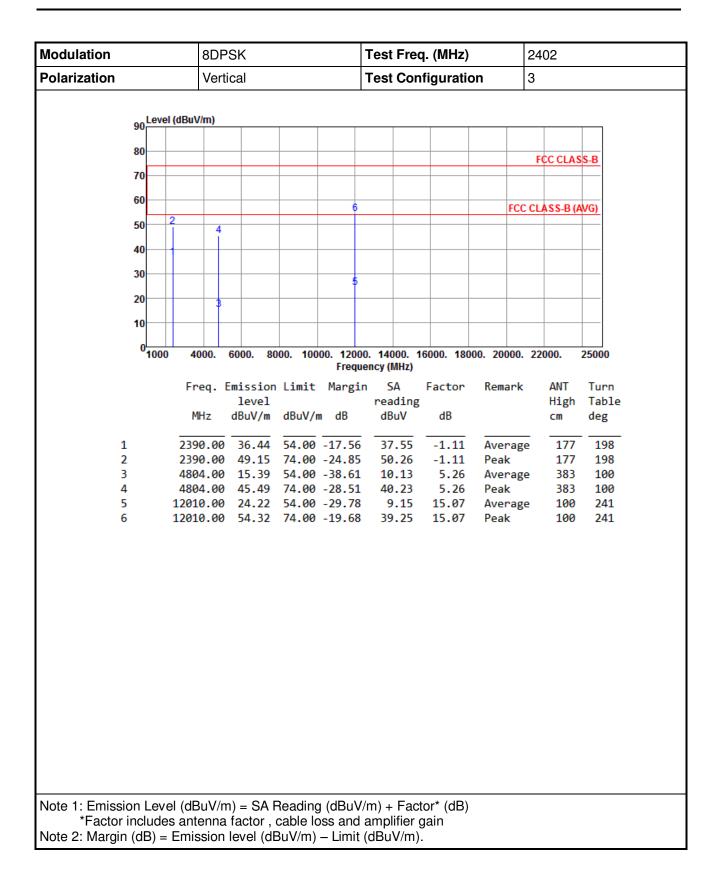

Iodulation		GFS	K			Test Freq. (MHz)			24	2402		
olarization		Horiz	zontal			Test Cor	nfiguratio	on	3			
oo L	evel (dBuV	//m)										
90												
80									F	CC CLAS	SS-B	
70												
60-												
00					8				FCC CL	ASS-B(A	WG)	
50	2	6										
40												
30-												
					1							
20		+ 1									+	
10												
0												
-1	000 40	000. (5000. 80	00. 100		0. 14000. ' ency (MHz)	16000. 180	00. 200	00. 22	000.	25000	
	Fr	eq. E		Limit	Margin		Factor	Rema	ark	ANT	Turn	
			level	10.111	10	reading				High	Table	
	M	Hz	dBuV/m	dBuV/r	n dB	dBuV	dB			cm	deg	
1	237	6.00	38.08	54.00	-15.92	39.25	-1.17	Aver	age	203	87	
2					-24.21	50.96	-1.17	Peal		203		
									_			
6					-25.52			Peak	-	184		
7					-29.36				rage	100		
8	1201	0.00	54.74	74.00	-19.26	39.67	15.07	Peal	c	100	162	
3 4 5 6	239 239 480 480 1201	0.00 0.00 4.00 4.00 0.00	37.23 49.59 18.38 48.48 24.64	54.00 74.00 54.00 74.00 54.00	-16.77 -24.41 -35.62 -25.52	38.34 50.70 13.12 43.22 9.57	-1.11 -1.11 5.26 5.26 15.07	Aver Peal Aver Peal	rage c rage c rage	256 256 184 184	8 8 8 16	

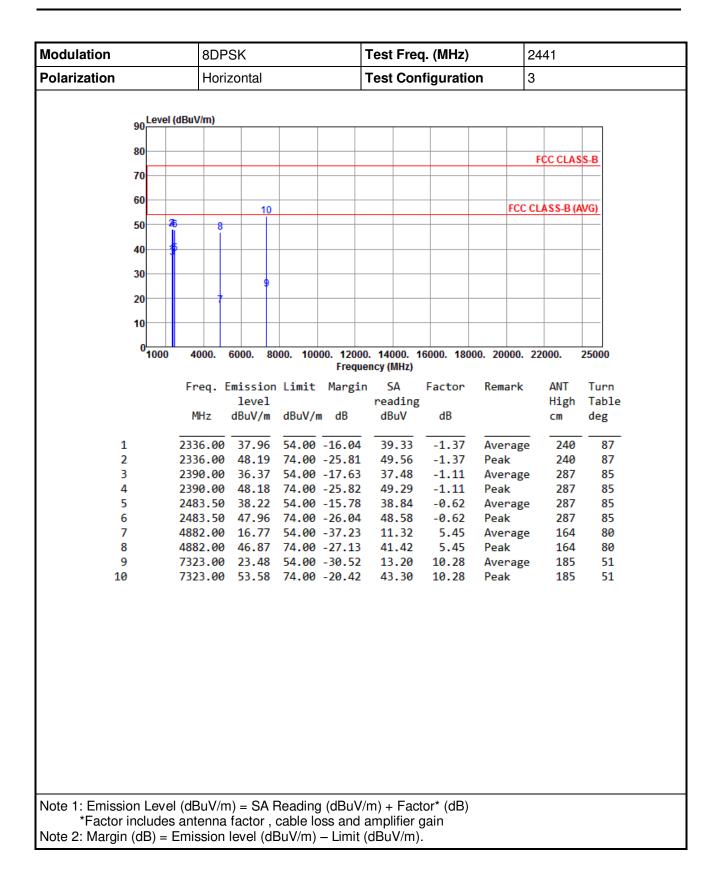
3.2.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for GFSK



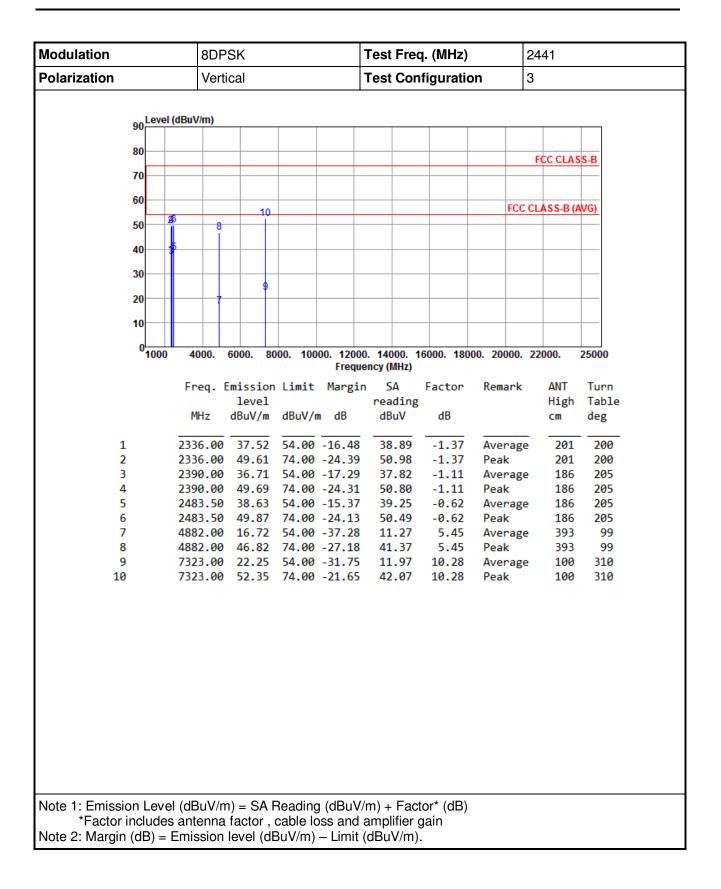


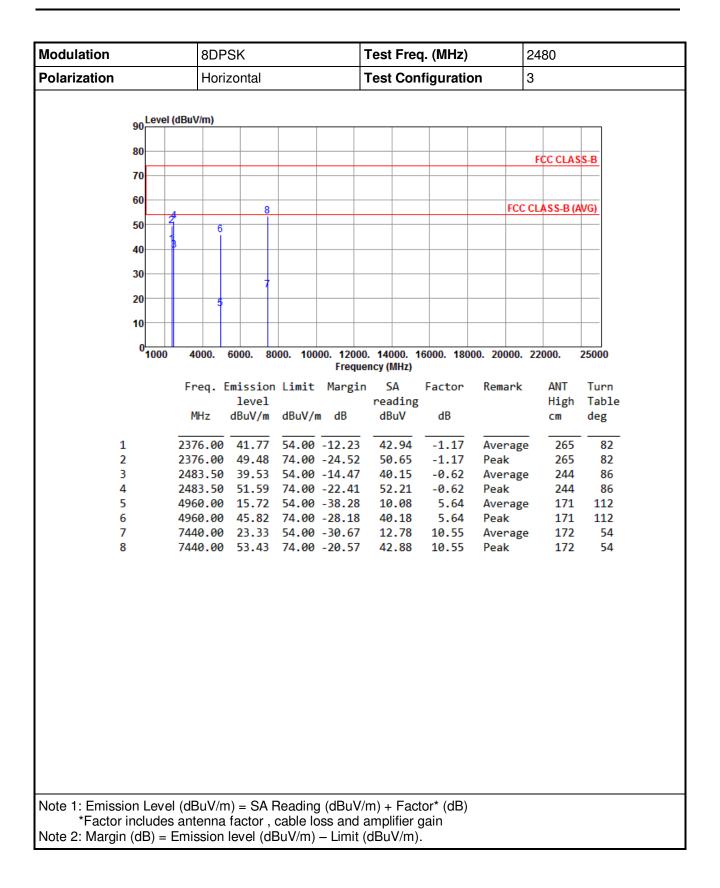


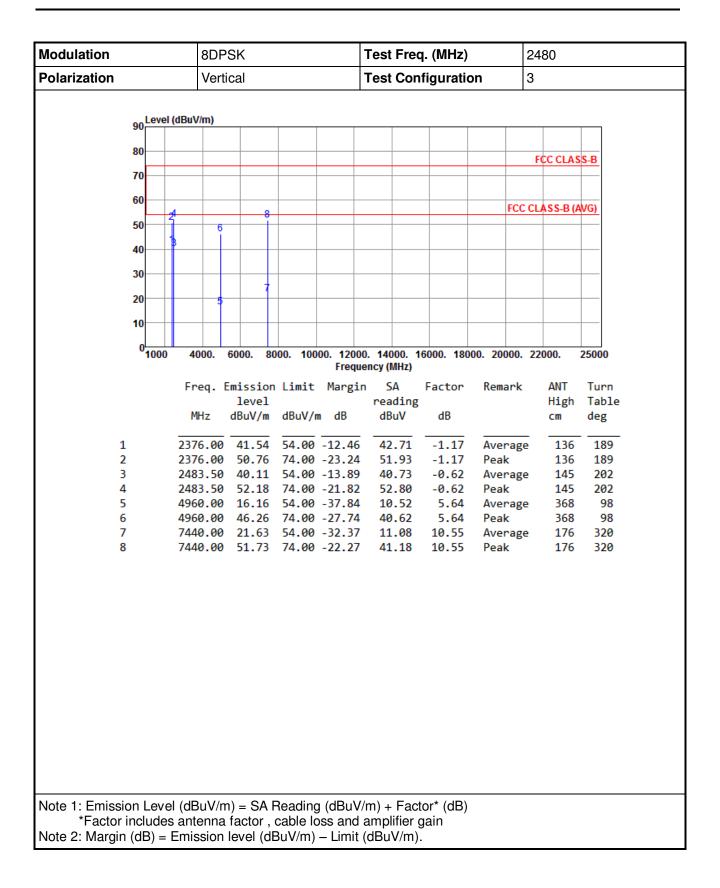


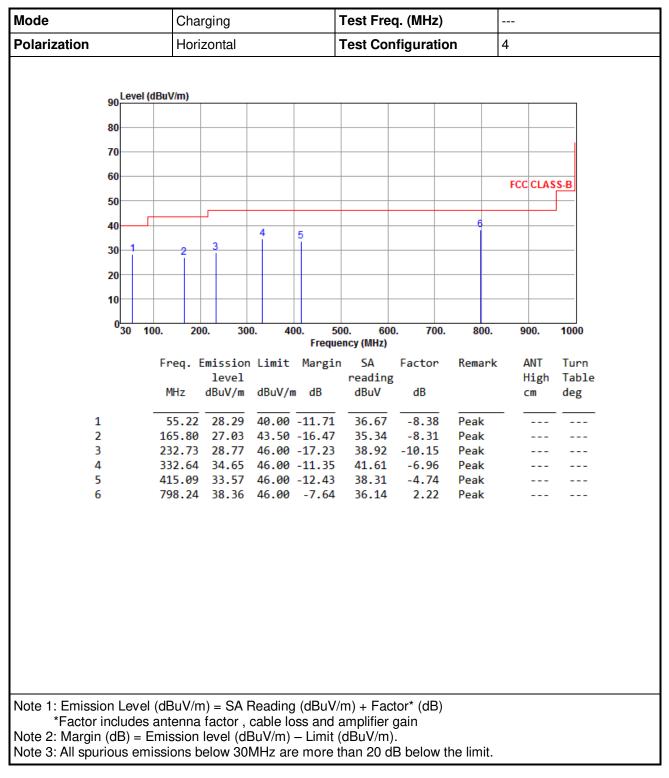

Modulation	8DPSK	8DPSK			Test Freq. (MHz)			2402		
Polarization	Horizon	tal	1	Test Configuration3						
90	IBuV/m)									
90										
80							FCC CL	ASS-B		
70										
60										
60			6			FC	C CLASS-E	3 (AVG)		
50 2	4									
40										
30										
30			5							
20	3									
10										
0 <mark>1000</mark>	4000. 6000). 8000. 100		. 14000. 1 ncy (MHz)	6000. 180	00. 20000	. 22000.	25000		
	Freq. Emis	sion Limit	Margin		Factor	Remark	C ANT			
		evel		reading			Hig			
	MHz dBu	ıV∕m dBuV/r	n dB	dBuV	dB		cm	deg		
1	2390.00 36	54.00	-17.59	37.52	-1.11	Averag	ge 25	9 84		
		.32 74.00		50.43	-1.11	Peak	25			
		5.23 54.00		10.97	5.26	Averag				
		5.33 74.00 1.43 54.00			5.26 15.07	Peak Averag	19 ge 10			
		.53 74.00			15.07	Peak	10			
Note 1: Emission Level	` '	•		,	· · ·					
		A second s		1						
*Factor includes Note 2: Margin (dB) = E										

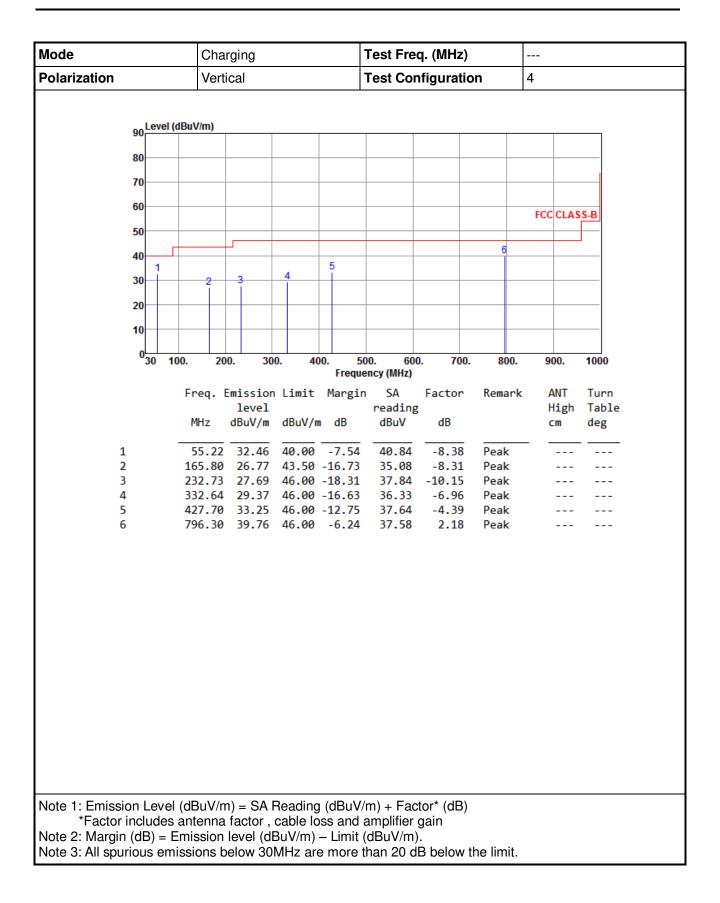
3.2.8 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 8DPSK











Configuration 4: Model SCBT7, Charging mode

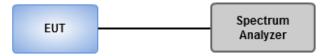
3.2.9 Transmitter Radiated Unwanted Emissions (Below 1GHz)

3.3 Unwanted Emissions into Non-Restricted Frequency Bands

3.3.1 Limit of Unwanted Emissions into Non-Restricted Frequency Bands

The peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.

3.3.2 Test Procedures


Reference Level Measurement

- 1. Set the RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Set Sweep time = auto couple, Trace mode = max hold.
- 3. Allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.

Unwanted Emissions Level Measurement

- 1. Set RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Trace Mode = max hold, Sweep = auto couple.
- 3. Allow the trace to stabilize.
- 4. Use peak marker function to determine maximum amplitude of all unwanted emissions within any 100 kHz bandwidth.

3.3.3 Test Setup

3.3.4 Unwanted Emissions into Non-Restricted Frequency Bands

GFSK

Hopping on			Hopping off						
30MHz	~25GHz (down	20dBc)	TX Freq 2402MHz / 30MHz~25GHz (do				z (dow	down 20dBc)	
	dB 🖷 RBW 100 kHz		Spectrum Ref Level 20.00 dBr	m Offset 11.00 dB 👄	RBW 100 kHz				
Att 20 dB SWT 32.1 1Pk View	ms 🖶 VBW 300 kHz 🛛 Mode Swee	p	Att 20 d IPk View	18 SWT 32.1 ms 🖷	VBW 300 kHz N	Node Sweep			
	M3[1] M	-57.87 dBm 1 2.48350000 GHz	10 dBm	M1		M3[1]		-61.81 dBr 2.48350000 GH	
10 dBm D1 8.430 dBm D1 8.430 dBm	n an an ann an ann an ann an ann an ann an a	8.43 dBm 2.47916780 GHz	0 dBm			M1[1]		7.54 dB 2.40200150 GF	
-10 dBm	tealar - Inward - Althe distribution - A		-20 dBm	2.460 dBm					
-30 dBm		lan han in the state of the sta	-30 dBm -40 dBm -50 dBm	MP			1		
-70 dBm			-SU dBm	and have been	Hailow Loder	automatica un des	-	winningh h in housingh	
F1		F2		F1		F2			
	32001 pts	Stop 2.55 GHz	Start 2.35 GHz Marker		32001 pts			Stop 2.55 GHz	
Marker		1			Concernance in a				
larker	Y-value Function z 8.43 dBm z -48.75 dBm	Function Result	Type Ref Trc M1 1 M2 1 M3 1	X-value 2.4020015 GHz 2.4 GHz 2.4835 GHz	Y-value 7.54 dBm -45.93 dBm -61.81 dBm	Function	Funct	ion Result	
Marker Trc X-value Type Ref Trc X-value M1 1 2.4791678 GH M2 1 2.4 GH M3 1 2.44035 GH	Y-value Function 2 8.43 dBm 2 -48.75 dBm 2 -57.87 dBm		Type Ref Trc M1 1 M2 1	2.4020015 GHz 2.4 GHz 2.4835 GHz m Offset 11.00 dB	7.54 dBm -45.93 dBm -61.81 dBm RBW 100 kHz		Funct	KANAD 440	
Marker Type Ref Trc X-value M1 1 2.4791678 cf M2 1 2.4 Gr M3 1 2.4835 GH Spectrum Ref Level 20.00 dBm Offset 11.000 Att 20 dB SWT 250	Y-value Function z 9.42 dbm z -40.75 dbm z -57.07 dbm		Type Ref Trc. M1 1 1 M2 1 1 M3 1 1 M3 1 1 M4 1 1 M5 1 1 M4 1 1 M4 1 1 M5 1 1 M5 1 1 M5	2.4020015 GHz 2.4 GHz 2.4835 GHz m Offset 11.00 dB	7.54 dBm -45.93 dBm -61.81 dBm RBW 100 kHz	Node Sweep	Funct	₩₩₩ ₩ (Ლ ~44.36 dBi	
Spectrum Ref Level 20.00 dBm Offset 11.00 Ref Level 20.00 dBm Offset 11.00 Att 2000 BWT 250	Y-value Function 2 8.43 dBm 2 -48.75 dBm 2 -57.87 dBm	ب ج ب -39.09 (10 -	Type Ref Trc. M1 1 1 M2 1 1 M3 1 1 M3 1 1	2.4020015 GHz 2.4 6Hz 2.4835 GHz m Offset 11.00 dB • B SWT 250 ms •	7.54 dBm -45.93 dBm -61.81 dBm RBW 100 kHz	Aode Sweep	Funct	(q -44.36 dB	
Spectrum Control of the second s	Y-value Function 2 8.43 dBm 2 -48.75 dBm 2 -57.87 dBm	ب ج ب -39.09 (10 -	Type Ref Trc. M1 1 1 M2 1 1 M3 1 1 M3 1 1 M3 2 1 M4 20 d 1 M4 20 d 1 M4 1 1 M3 1 1	2.4020015 GHz 2.4 6Hz 2.4835 GHz m Offset 11.00 dB • B SWT 250 ms •	7.54 dBm -45.93 dBm -61.81 dBm RBW 100 kHz	Aode Sweep		(q -44.36 dB	
Spectrum Control of the second s	Y-value Function 2 8.43 dBm 2 -48.75 dBm 2 -57.87 dBm	ب ج ب -39.09 (10 -	Type Ref Trc. M1 1 1 M2 1 1 M3 1 1 M3 1 1 M4 20 d 1 M1 20 d 1 M2 1 1 M3 1 1 M3 1 1 M3 1 1 M4 20 d 1 M4 20 d 1 M3 1 1 M4 20 d 1 M4 0 dBm 1 M4 0 dBm 1 M3 1 1	2.4020015 GHz 2.4 6Hz 2.4835 GHz m Offset 11.00 dB • B SWT 250 ms •	7.54 dBm -45.93 dBm -61.81 dBm RBW 100 kHz	Aode Sweep		(q -44.36 dB	
Marker Type Ref Trc X-value M1 1 2.4791578 GH M2 1 2.4 GH M3 1 2.44835 GH Spectrum Ref Level 20.00 dBm Offset 11.00 a Att 20 dB SWT 250 a D1 8.430 dBm 0 1 8.430 dBm	Y-value Function 2 8.43 dBm 2 -48.75 dBm 2 -57.87 dBm	ب ج ب -39.09 (10 -	Type Ref Trc. M1 1 1 M2 1 1 M3 1 1 M3 1 1 M4 20 d 1 M1 20 d 1 M2 1 1 M3 1 1 M3 1 1 M3 1 1 M4 20 d 1 M4 20 d 1 M3 1 1 M4 20 d 1 M4 0 dBm 1 M4 0 dBm 1 M3 1 1	2.4020015 GHz 2.4 GHz 2.4835 GHz 3.4835 GHz 5.4835	7.54 dBm -45.93 dBm -61.81 dBm RBW 100 kHz	Aode Sweep			
Marker Type Ref Trc X-value M1 1 2.4791578 Gr M2 1 2.469 M3 1 2.469 M3 1 2.469 M3 1 2.4695 Gr J 2.4695 Gr 2.4695 Gr Spectrum Ref Level 20.00 dBm Offset 11.00 Att 20 dB SWT 250 B1Pk View 01 8.430 dBm 01 8.430 dBm 01 8.430 dBm	Y-value Function 2 8.43 dBm 2 -48.75 dBm 2 -57.87 dBm	ب ج ب -39.09 (10 -	Type Ref Trc. M1 1 1 M2 1 1 M3 1 1 M3 1 1 M4 20 d 1 M4 20 d 1 M4 10 dBm 1 10 dBm 0 7.540 c 0 dBm -02 -1 -10 dBm	2.4020015 GHz 2.4 GHz 2.4835 GHz 3.4835 GHz 5.4835	7.54 dBm -45.93 dBm -61.81 dBm RBW 100 kHz	Aode Sweep			
Marker Type ef Trc X-value M2 1 2.4791678 cf M3 1 2.463 A3 1 2.463 2.463 2.463 2.463 2.463 2.463 2.463 0.403 0f M3 2 1 2.4635 GH 2.4635 GH 0.403 0f M3 2 2.4635 GH 0.403 0f M3 2 2.66 0f 0f 0f 0f 0f 0f 0f 0f 0f 0f	Y-value Function 2 8.43 dBm 2 -48.75 dBm 2 -57.87 dBm	ب ج ب -39.09 (10 -	Type Ref Trc. M1 1 1 M2 1 1 M3 1 1 M4 1 1 M4	2.4020015 GHz 2.4 GHz 2.4835 GHz 3.4835 GHz 5.4835	7.54 dBm -45.93 dBm -61.81 dBm RBW 100 kHz	Aode Sweep		₩₩₩ ₩ (Ლ ~44.36 dBi	
Marker Type Ref M1 1 2.4791578 Gr M2 1 2.491578 Gr M3 1 2.44855 Gr M3 1 2.44855 Gr Spectrum Ref Level 20.00 dBm Offset 11.00 att 20 dB SWT 250 att 20 dB SWT 250 att 20 dBm 01 8.430 dBm 01 -10 dBm 02 -11.570 dBm	Y-value Function 2 8.43 dBm 2 -48.75 dBm 2 -57.87 dBm	ب ج ب -39.09 (10 -	Type Ref Trc. M1 1 1 M2 1 1 M3 1 1 M3 1 1 M3 1 1 M4 20 d 1 M4 0 dBm 1	2.4020015 GHz 2.4 GHz 2.4835 GHz 3.4835 GHz 5.4835	7.54 dBm -45.93 dBm -61.81 dBm RBW 100 kHz	Aode Sweep			
Janker Type Ref Trc X-value M2 1 2.4'91.678 colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" M2 1 2.4'91.678 colspan="2">Colspan="2" M3 1 2.4'93.678 colspan="2">Colspan="2" Spectrum Offset 11.000 Offset 11.000 Att 20 dB SWT 250 JDPk View D1 8.430 dBm Offset 11.000 0 dBm D1 8.430 dBm D1 0.480 dBm -10 dBm D2 -11.570 dBm D1 -30 dBm M1	Y-value Function 2 9.43 dbm 2 -48.75 dbm 2 -57.87 dbm	ب ج ب -39.09 (10 -	Type Ref Trc. M1 1 1 M2 1 1 M3 1 1 M4 1 1 M4	2.4020015 GHz 2.46Hz 2.4835 GHz	7.54 dBm -45.93 dBm -61.81 dBm RBW 100 kHz VBW 300 kHz NBW 300 kHz NBW 100 kHz	Aode Sweep M1[1]		(q -44.36 dB	
Spectrum Offset 11.02 1 2.4791576 dBm 2.4 GH M3 1 2.4 GH M4 20 dB Offset M4 20 dB SWT M4 20 dB SWT 0 dBm 01 8.430 dBm -10 dBm 02 -11.570 dBm -20 dBm Mk 40 dBm <td>Y-value Function 2 9.43 dbm 2 -48.75 dbm 2 -57.87 dbm</td> <td></td> <td>Type Ref Trc. M1 1 1 M2 1 1 M3 1 1 M3 1 1 M3 1 1 M4 20 d 1 M4 0 dBm 1</td> <td>2.4020015 GHz 2.46Hz 2.4835 GHz</td> <td>7.54 dBm -45.93 dBm -61.81 dBm RBW 100 kHz</td> <td>Aode Sweep M1[1]</td> <td></td> <td>-44.26 /18 7.205920 G</td>	Y-value Function 2 9.43 dbm 2 -48.75 dbm 2 -57.87 dbm		Type Ref Trc. M1 1 1 M2 1 1 M3 1 1 M3 1 1 M3 1 1 M4 20 d 1 M4 0 dBm 1	2.4020015 GHz 2.46Hz 2.4835 GHz	7.54 dBm -45.93 dBm -61.81 dBm RBW 100 kHz	Aode Sweep M1[1]		-44.26 /18 7.205920 G	
Marker Type Ref Trc X-value M1 1 2.4791578 (M M2 1 2.491578 (M M3 1 2.4935 GH M3 2.4935 GH Spectrum Ref Level 20.00 dBm Offset 11.000 htt 20 dB SWT 250 10 dBm 01 8.430 dBm 0 0 dBm 02 -11.570 dBm - -10 dBm 02 -11.570 dBm - -30 dBm M1 -40 dBm M1	Y-value Function 2 9.43 dbm 2 -48.75 dbm 2 -57.87 dbm		Type Ref Trc. M1 1 1 M2 1 1 M3 1 1 M3 1 1 M3 1 1 M4 1 1 M3 1 1 M3 1 1 M4 1 1 M3 1 1 M4 1 1 M3 1 1 M4 20 0 M4 01 7540 10 dBm 01 7540 -10 dBm -02 1 -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm	2.4020015 GHz 2.46Hz 2.4835 GHz	7.54 dBm -45.93 dBm -61.81 dBm RBW 100 kHz VBW 300 kHz NBW 300 kHz NBW 100 kHz	Aode Sweep M1[1]		-44.36 dB 7.205920 Gł	
M1 1 2.4'791678 cf M2 1 2.4'Gf M3 1 2.4'Gf M4 20'df Offset 11:00 Att 20'df SWT 250 IPk Viow 10'dfm 0'dfm 250'dfm 0 dBm 01'8.430 dBm 0'dfm 0'dfm -10 dBm 02'-11.570 dBm 0'dfm 0'dfm -30 dBm M1 0'dfm 0'dfm 0'dfm -50 dBm M1 dfm dfm dfm	Y-value Function 2 9.43 dbm 2 -48.75 dbm 2 -57.87 dbm		Type Ref Trc. M1 1 1 M2 1 1 M3 1 1 M4 0 0 M4 0 1 -20 dBm	2.4020015 GHz 2.46Hz 2.4835 GHz	7.54 dBm -45.93 dBm -61.81 dBm RBW 100 kHz VBW 300 kHz NBW 300 kHz NBW 100 kHz	Aode Sweep M1[1]		-44.86 dBr 7.205920 CH	



8DPSK

Hopping on	Hopping off TX Freq 2402MHz / 30MHz~25GHz (down 20dBc)			
30MHz~25GHz (down 20dBc)				
Spectrum (TTS) RefLevel 20.00 dBm Offset 11.00 dB = RBW 100 kHz Att 20 dB SWT 32.1 ms = VBW 300 kHz	Spectrum mm Ref Level 20.00 dBm Offset 11.00 dB RBW 100 kHz Att 20 dB SWT 32.1 ms YBW 300 kHz			
1Pk View M9[1] -54-62 dBm -54-62 dBm -54-62 dBm -54-62 dBm -54-62 dBm 2.49350000 GHz 6.62 dBm 6.62 dBm 6.62 dBm 6.62 dBm 6.62 dBm 2.47716790 GHz 2.47716790 GHz 10 dBm 02 - 13,380 dBm 01 dBm 02 - 13,380 dBm 10 dBm 10 dBm	• IPk View M9[1] -61.58 dBm -61.58 dBm -61.58 dBm 2.48350000 GH -8.42 dBm 2.42350000 GH -8.2 dBm -4.2 dBm -10 dBm -0.2 -15.580 dBm -0.2 -1			
20 dBm	-20 dBm			
Fi 32001 pts Stop 2,55 GHz Jarker 32001 pts Stop 2,55 GHz Type Ref Trc X-value Function M1 1 2.4771679 GHz 6.62 dBm M2 1 2.4971679 GHz -45.46 dBm M3 1 2.4835 GHz -54.62 dBm	Fi 7 Start 2.35 GHz 32001 pts Stop 2.55 GHz Marker Type Ref Trc X-value Function Function Result M1 1 2.4020077 GHZ 4.42 Gm Function Function Result M2 1 2.4 GHZ -61.58 dBm Hexage Function Result			
Ref Level 20.00 dBm Offset 11.00 dB . RBW 100 kHz	Ref Level 20.00 dBm Offset 11.00 dB . RBW 100 kHz			
Ref Level 20.00 dBm Offset 11.00 dB @ RBW 100 Htz Att 20 dB SWT 250 ms @ VBW 300 kHz JDk. View M1[1] -46.80 dBm 157.756170 GHz 15.746170 GHz	Ref level 20.00 dBm Offset 11.00 dB RBW 100 kHz Mode Sweep Fill			
New Milil -46.80 dBm 0 dBm 01 6.620 dBm 01 6.620 dBm 10 dBm 02 -13.380 dBm 0	RefLevel 20.00 dBm Offset 11.00 dB RBW 100 kHz Att 20 dB SWT 250 ms VBW 300 kHz Mode Sweep PIPk View			
RefLevel 20.00 dBm Offset 11.00 db @ RBW 100 kHz Att 20 dB SWT 250 ms @ VBW 300 kHz Mode Sweep 1Pk View MI[1] -46.80 dBm -46.80 dBm 10 dBm 01 6.620 dBm 01 6.620 dBm 01 6.620 dBm	Ref Level 20.db SWT 250 ms VBW Mode Sweep # Att 20.db SWT 250 ms VBW Mode Sweep # It 20.db SWT 250 ms VBW Mode Sweep # It 10.dbm 15.759440 GH 15.759440 GH 15.759440 GH 0 dBm 01.4.420 dBm 0.0 dBm 0.0 dBm 0.0 dBm 0.0 dBm -10 dBm 0.2 - 15,580 dBm 0.0 dBm 0.0 dBm 0.0 dBm 0.0 dBm			

3.4 Conducted Output Power

3.4.1 Limit of Conducted Output Power

1 Watt

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band.

🛛 0.125 Watt

For all other frequency hopping systems in the 2400–2483.5 MHz band.

0.125 Watt

For Frequency hopping systems operating in the 2400–2483.5 MHz band have hopping channel carrier frequencies that are separated by two-thirds of the 20 dB bandwidth of the hopping channel.

3.4.2 Test Procedures

- 1. A wideband power meter is used for power measurement. Bandwidth of power senor and meter is 50MHz
- 2 If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power

3.4.3 Test Setup

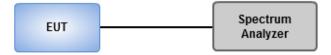
Modulation Mode	Freq. (MHz)	Output Power (mW)	Output Power (dBm)	Limit (mW)
GFSK	2402	7.05	8.48	125
GFSK	2441	8.55	9.32	125
GFSK	2480	9.02	9.55	125
л /4 DQPSK	2402	4.09	6.12	125
л /4 DQPSK	2441	5.97	7.76	125
л /4 DQPSK	2480	6.56	8.17	125
8DPSK	2402	4.35	6.38	125
8DPSK	2441	6.22	7.94	125
8DPSK	2480	6.84	8.35	125

3.4.4 Test Result of Conducted Output Power

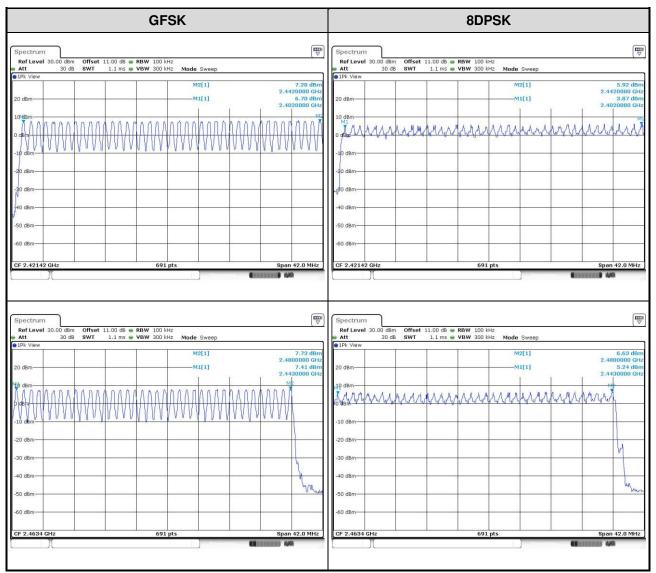
Modulation Mode	Freq. (MHz)	AV Output Power (mW)	AV Output Power (dBm)
GFSK	2402	6.73	8.28
GFSK	2441	8.26	9.17
GFSK	2480	8.79	9.44
л /4 DQPSK	2402	2.77	4.42
л /4 DQPSK	2441	4.18	6.21
л /4 DQPSK	2480	4.70	6.72
8DPSK	2402	2.79	4.45
8DPSK	2441	4.20	6.23
8DPSK	2480	4.68	6.70

Note: Average power is for reference only.

3.5 Number of Hopping Frequency


3.5.1 Limit of Number of Hopping Frequency

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.


3.5.2 Test Procedures

- 1. Set RBW = 100kHz, VBW = 300kHz, Sweep time = Auto, Detector = Peak Trace max hold.
- 2 Allow trace to stabilize.

3.5.3 Test Setup

3.5.4 Test Result of Number of Hopping Frequency

3.6 20dB and Occupied Bandwidth

3.6.1 Test Procedures

20dB Bandwidth

- 1. Set RBW=30kHz, VBW=100kHz, Sweep time = Auto, Detector=Peak, Trace max hold
- 2 Allow trace to stabilize
- 3 Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

Occupied Bandwidth

- 1. Set RBW=30kHz, VBW=100kHz, Sweep time = Auto, Detector=Sample, Trace max hold
- 2 Allow trace to stabilize
- 3. Use Occupied bandwidth function of spectrum analyzer to measuring 99% occupied bandwidth

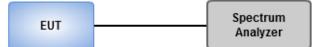
3.6.2 Test Setup

Modulation Mode	Freq. (MHz)	20dB Bandwidth (MHz)	Occupied Bandwidth (MHz)				
GFSK	2402	0.952	0.879				
GFSK	2441	0.943	0.875				
GFSK	2480	0.943	0.874				
8DPSK	2402	1.265	1.179				
8DPSK	2441	1.265	1.194				
8DPSK	2480	1.265	1.202				

3.6.3 Test result of 20dB and Occupied Bandwidth

Worst Plot of 20dB Bandwidth	Worst Plot of Occupied Bandwidth			
Mill -14.04 dbm 10 dbm 01 5.423 dbm 01 5.423 dbm 01 5.423 dbm 01 1.26522 MHz 10 dbm 02 -14.577 dbm 1.26522 MHz 1.26522 MHz 10 dbm 02 -14.577 dbm 1.26522 MHz 1.26522 MHz 10 dbm 02 -14.577 dbm 1.2652 MHz 1.2652 MHz	Spectrum Image: Constraint of the sector of th			
50 dBm	-50 dBm			
70 d8m	-70 dBm			
CF 2.48 GHz 691 pts Span 3.0 MHz	CF 2.48 GHz 3000 pts Span 3.0 MHz			

3.7 Channel Separation


3.7.1 Limit of Channel Separation

- Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.
- Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

3.7.2 Test Procedures

- 1. Set RBW=100kHz, VBW=300kHz, Sweep time = Auto, Detector=Peak Trace max hold
- 2 Allow trace to stabilize
- 3 Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The EUT shall show compliance with the appropriate regulatory limit

3.7.3 Test Setup

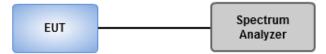
Modulation Mode	Freq. (MHz)	Channel Separation (MHz)	20dB Bandwidth (MHz)	Minimum Limit (MHz)
GFSK	2402	1.003	0.952	0.635
GFSK	2441	1.003	0.943	0.629
GFSK	2480	1.003	0.943	0.629
8DPSK	2402	1.003	1.265	0.843
8DPSK	2441	1.003	1.265	0.843
8DPSK	2480	1.003	1.265	0.843

3.7.4 Test result of Channel Separation

Worst Plot							
Spectrum							■
Ref Level 20.00 dBm	o Offset 11.00 dB 👄	DDW 100 H	1-				(v
Att 20.00 uBr		VBW 300 kł		Swoon			
●1Pk View●2Pk View			ie moue	oweeh			
			D2	2[2]			-0.04 dB
						-1.	00290 MHz
10 dBm	D2		M	1[1]	M1		6.75 dBm
			~~~	m	$\sim$	2.480	16860 GHz
0 dBm							
-10 dBm							
-20 dBm/				$\sim$	~~~	~	$\searrow$
-30 dBm							
							m
-50 dBm							
-60 dBm							
-70 dBm							
CF 2.4795 GHz		691	pts			Spa	n 3.0 MHz
				Measuri	ing 🚺		1



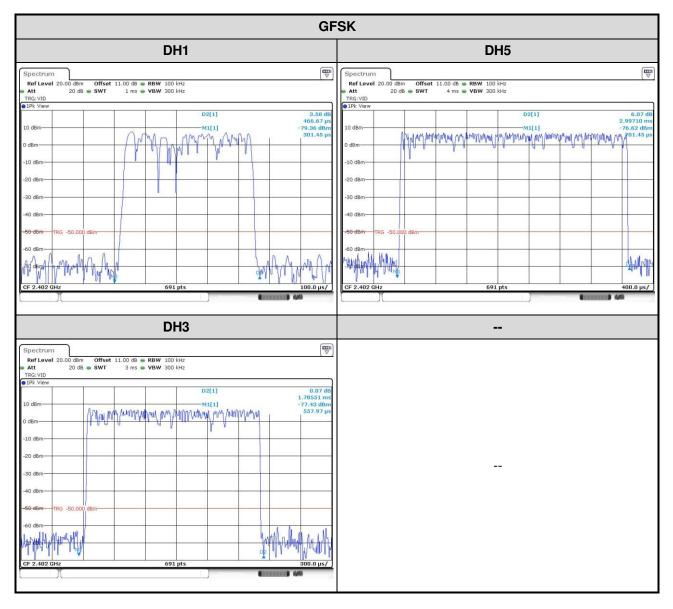
# 3.8 Number of Dwell Time


### 3.8.1 Limit of Dwell time

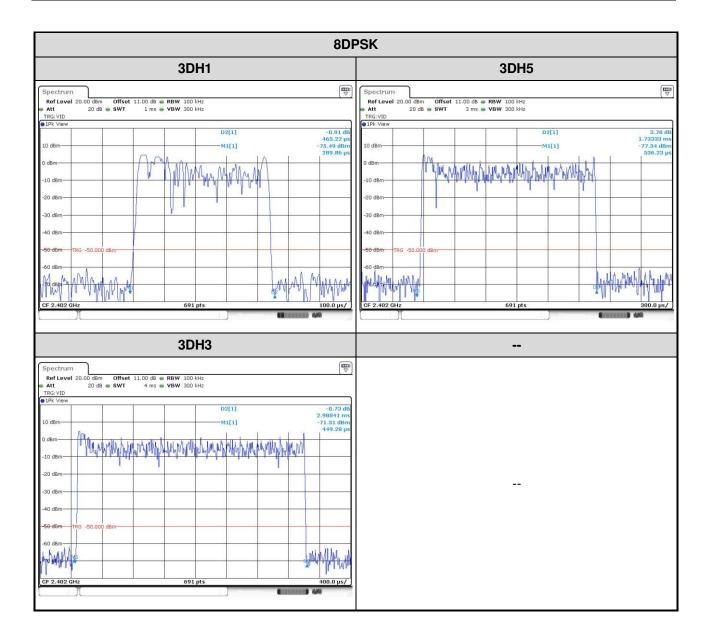
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

### 3.8.2 Test Procedures

- 1. Set RBW=100kHz,VBW=300kHz,Sweep time = 500us(DH1),2ms(DH3),4ms(DH5), Detector=Peak, Span=0Hz,Trace max hold
- 2 Enable gating and trigger function of spectrum analyzer to measure burst on time.
- 3. The DH1 packet can cover a single time slot. A maximum length packet has duration of 1 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 1/1600 seconds, or 0.625ms. DH1 Packet permit maximum 1600 / 79 /2 = 10.12 hops per second in each channel (1 time slot TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 10.12 x 31.6 = 320 within 31.6 seconds.
- 4. The DH3 packet can cover up to 3 time slots. A maximum length packet has duration of 3 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 3/1600 seconds, or 1.875ms. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 5.06 x 31.6 = 160 within 31.6 seconds.
- 5 The DH5 packet can cover up to 5 time slots. Operate DH5 at maximum dwell time and maximum duty cycle. A maximum length packet has duration of 5 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 5/1600 seconds, or 3.125ms. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 3.37 x 31.6 = 106.6 within 31.6 seconds


### 3.8.3 Test Setup






## 3.8.4 Test Result of Dwell Time

Modulation Mode	Freq. (MHz)	Length of Transmission Time (msec)	Number of Transmission in a 31.6 (79 Hopping*0.4)	Result (s)	Limit (s)
GFSK-DH1	2402	0.46667	320	0.149	0.4
GFSK-DH3	2402	1.78551	160	0.286	0.4
GFSK-DH5	2402	2.99710	106.6	0.319	0.4
8DPSK-DH1	2402	0.46522	320	0.149	0.4
8DPSK-DH3	2402	1.73333	160	0.277	0.4
8DPSK-DH5	2402	2.98841	106.6	0.319	0.4









# 4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website <u>http://www.icertifi.com.tw</u>.

Linkou Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C. Kwei Shan Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C. Kwei Shan Site II Tel: 886-3-271-8640 No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0155 Email: ICC_Service@icertifi.com.tw

-END-