

TEST REPORT

Test report no.: 1-4063/17-01-09-B

DAKKS

Doutsche
Akkreditierungsstelle
D-PL-12076-01-03

BNetzA-CAB-02/21-102

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-03

Applicant

Sennheiser electronic GmbH & Co. KG

Am Labor 1

30900 Wedemark / GERMANY Phone: +49 5130 600-0 Contact: Marcus Kasten

e-mail: Marcus.Kasten@sennheiser.com

Phone: +49 5130 600-1229

Manufacturer

Sennheiser electronic GmbH & Co. KG

Am Labor 1

30900 Wedemark / GERMANY

Test standard/s

FCC - Title 47 CFR FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio

Part 15 frequency devices

RSS - 247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

RSS - Gen Issue 5 Spectrum Management and Telecommunications Radio Standards Specification

- General Requirements for Compliance of Radio Apparatus

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Wireless Headphone

Model name: M3AEBTXL
FCC ID: DMOM3AEBT
IC: 2099A-M3AEBT

Frequency: DTS band 2400 MHz to 2483.5 MHz

Technology tested: Bluetooth® + EDR

Antenna: PCB inverted F antenna

Power supply: 3.7 V DC by Li-Polymer battery

Temperature range: 0°C to +55°C

Lab Manager

Radio Communications & EMC

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Lab Manager

Radio Communications & EMC

Test report authorized:	Test performed:
p.o.	
Andreas Luckenbill	Mihail Dorongovskij

Table of contents

1	Table	of contents	2
2	Gener	al information	3
	2.1	Notes and disclaimer	7
	2.2	Application details	
	2.3	Test laboratories sub-contracted	
3	Test s	tandard/s and references	4
4		nvironment	
5	Test if	em	
	5.1	General description	
	5.2	Additional information	
6	Descr	ption of the test setup	6
	6.1	Shielded semi anechoic chamber	
	6.2	Shielded fully anechoic chamber	
	6.3	Radiated measurements > 18 GHz	
	6.4	Conducted measurements Bluetooth system	
	6.5	AC conducted	11
7	Seque	nce of testing	12
	7.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	12
	7.2	Sequence of testing radiated spurious 30 MHz to 1 GHz	13
	7.3	Sequence of testing radiated spurious 1 GHz to 18 GHz	
	7.4	Sequence of testing radiated spurious above 18 GHz	15
8	Measi	rement uncertainty	16
9	Sumn	ary of measurement results	17
10		dditional comments	
_			
11	IVI	easurement results	
	11.1	Antenna gain	
	11.2	Carrier frequency separation	
	11.3	Number of hopping channels	
	11.4	Time of occupancy (dwell time)	
	11.5	Spectrum bandwidth of a FHSS system	
	11.6	Maximum output power	
	11.7	Detailed spurious emissions @ the band edge - conducted	
	11.8	Band edge compliance radiated	
	11.9	Spurious emissions conducted	
	11.10 11.11	Spurious emissions radiated below 30 MHzSpurious emissions radiated 30 MHz to 1 GHz	
	11.12 11.13	Spurious emissions radiated above 1 GHzSpurious emissions conducted below 30 MHz (AC conducted)	
	_	•	
	nex A	Glossary	
Anr	nex B	Document history	
Anr	nex C	Accreditation Certificate - D-PL-12076-01-04	75
Anr	nex D	Accreditation Certificate - D-PL-12076-01-05	76

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-4063/17-01-09-A and dated 2019-03-11

2.2 Application details

Date of receipt of order: 2018-06-11
Date of receipt of test item: 2019-01-31
Start of test: 2019-02-01
End of test: 2019-02-12

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 76

3 Test standard/s and references

Test standard	Date	Description
FCC - Title 47 CFR Part 15	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices
RSS - Gen Issue 5	April 2018	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus

Guidance	Version	Description
DTS: KDB 558074 D01	v05r01	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

© CTC advanced GmbH Page 4 of 76

4 Test environment

Temperature	:	T_{nom} T_{max} T_{min}	+24 °C during room temperature tests No tests under extreme environmental conditions required. No tests under extreme environmental conditions required.
Relative humidity content	:		38 %
Barometric pressure	:		1017 hpa
Power supply	:	V _{nom} V _{max} V _{min}	3.7 V DC by Li-Polymer battery No tests under extreme environmental conditions required. No tests under extreme environmental conditions required.

5 Test item

5.1 General description

Kind of test item :	Wireless Headphone
Type identification :	M3AEBTXL
HMN :	-/-
PMN :	MOMENTUM Wireless
HVIN :	M3AEBTXL
FVIN :	1.0.0.181
S/N serial number :	Rad. 5518000577 Cond. 5518000575
Hardware status :	1.1
Software status :	N/A
Firmware status :	1.0.0.181
Frequency band :	DTS band 2400 MHz to 2483.5 MHz
Type of radio transmission: Use of frequency spectrum:	FHSS
Type of modulation :	GFSK, Pi/4 QPSK, 8DPSK
Number of channels :	79
Antenna :	PCB inverted F antenna
Power supply :	3.7 V DC by Li-Polymer battery
Temperature range :	0°C to +55°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-4063/17-01-01_AnnexA

1-4063/17-01-01_AnnexB 1-4063/17-01-01_AnnexD

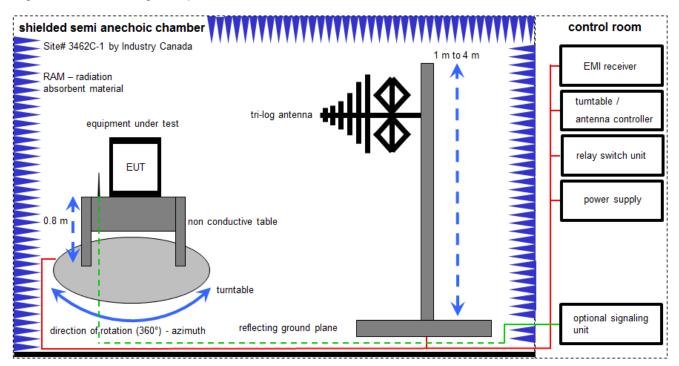
© CTC advanced GmbH Page 5 of 76

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k ne	calibration / calibrated not required (k, ev, izw, zw not required)	EK zw	limited calibration cyclical maintenance (external cyclical maintenance)
ev Ve vlkl!	periodic self verification long-term stability recognized Attention: extended calibration interval	izw g	internal cyclical maintenance blocked for accredited testing
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 6 of 76

6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

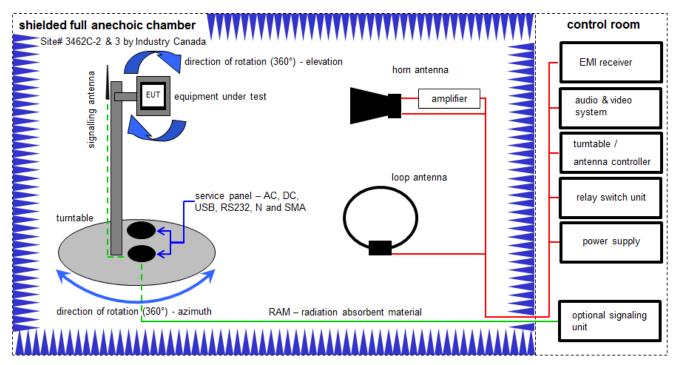
EMC32 software version: 10.30.0

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	12.12.2018	11.12.2019
4	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
7	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	371	300003854	vlKI!	24.11.2017	23.11.2020
8	Α	Bluetooth Tester	CBT35	R&S	100635	300003907	NK!	-/-	-/-

© CTC advanced GmbH Page 7 of 76

6.2 Shielded fully anechoic chamber

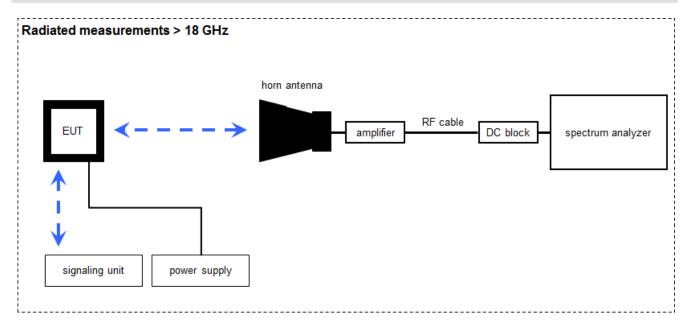
Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $\overline{FS} [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \ \mu V/m)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	B, C	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	k	07.07.2017	06.07.2019
2	A, B, C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	A, C	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	vlKI!	14.02.2017	13.02.2019
4	A, B, C	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
5	Α	Band Reject filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	11	300003351	ev	-/-	-/-
6	A, B, C	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	14.09.2018	13.12.2019
7	Α	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
8	Α	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
9	А	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
10	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
11	A, B, C	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO	-/-	300004682	ne	-/-	-/-
12	A, B, C	PC	ExOne	F+W	-/-	300004703	ne	-/-	-/-
13	A, B, C	Bluetooth Tester	CBT35	R&S	100635	300003907	NK!	-/-	-/-

© CTC advanced GmbH Page 8 of 76

6.3 Radiated measurements > 18 GHz

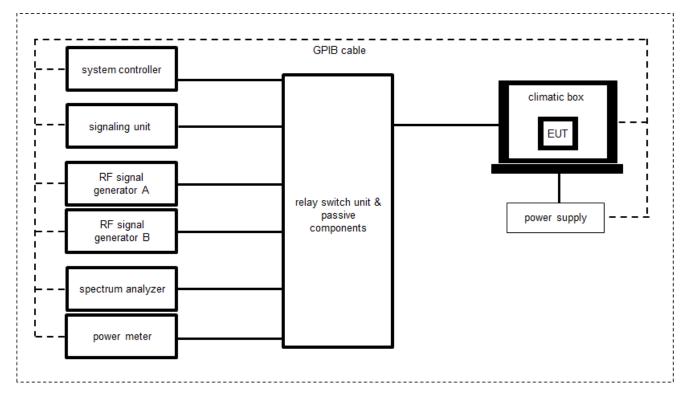
Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Microwave System Amplifier, 0.5-26.5 GHz	83017A	HP	00419	300002268	ev	-/-	-/-
2	Α	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	-/-	300000486	vIKI!	13.12.2017	12.12.2019
3	Α	Spectrum Analyzer	FSV30	Rohde & Schwarz	103170	300004855	vIKI!	11.12.2018	10.12.2020
4	Α	RF-Cable	ST18/SMAm/SMAm/48	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
5	Α	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-
6	Α	Bluetooth Tester	CBT35	R&S	100635	300003907	NK!	-/-	-/-

© CTC advanced GmbH Page 9 of 76

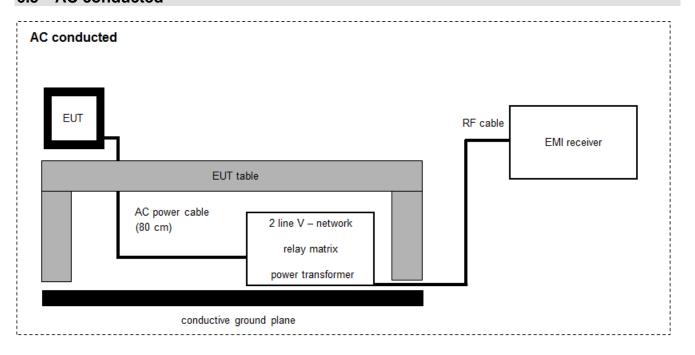
6.4 Conducted measurements Bluetooth system

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch / Control Unit	3488A	HP		300000929	ne	-/-	-/-
2	Α	Directional Coupler	101020010	Krytar	70215	300002840	ev	-/-	-/-
3	Α	DC-Blocker	8143	Inmet Corp.	none	300002842	ne	-/-	-/-
4	Α	Powersplitter	6005-3	Inmet Corp.		300002841	ev	-/-	-/-
5	Α	Spectrum Analyzer	FSV30	Rohde & Schwarz	103170	300004855	vIKI!	11.12.2018	10.12.2020
6	Α	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 699866	400001189	ev	-/-	-/-
7	Α	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 14844	400001190	ev	-/-	-/-
8	А	Wireless Connectivity Tester	CMW270	Rohde & Schwarz	100683	300005133	k	03.01.2018	02.01.2020

© CTC advanced GmbH Page 10 of 76

6.5 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

 $FS [dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 \(\mu V/m \))$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	892475/017	300002209	vIKI!	13.12.2017	12.12.2019
2	Α	RF-Filter-section	85420E	HP	3427A00162	300002214	NK!	-/-	-/-
3	Α	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-
4	Α	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	12.12.2018	11.12.2019
5	Α	Bluetooth Tester	CBT35	R&S	100635	300003907	NK!	-/-	-/-

© CTC advanced GmbH Page 11 of 76

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all
 emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 12 of 76

^{*)}Note: The sequence will be repeated three times with different EUT orientations.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 13 of 76

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes
 the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table
 positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 14 of 76

7.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 15 of 76

8 Measurement uncertainty

Measurement uncertainty			
Test case	Uncertainty		
Antenna gain	± 3 dB		
Carrier frequency separation	± 21.5 kHz		
Number of hopping channels	-/-		
Time of occupancy	According BT Core specification		
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative		
Maximum output power	± 1 dB		
Detailed conducted spurious emissions @ the band edge	± 1 dB		
Band edge compliance radiated	± 3 dB		
Spurious emissions conducted	± 3 dB		
Spurious emissions radiated below 30 MHz	± 3 dB		
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB		
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB		
Spurious emissions radiated above 12.75 GHz	± 4.5 dB		
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB		

© CTC advanced GmbH Page 16 of 76

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 2	See table!	2019-03-18	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4.(f)(ii)	Antenna gain	Nominal	Nominal	GFSK	×				Declared by manufacturer
§15.247(a)(1) RSS - 247 / 5.1.(b)	Carrier frequency separation	Nominal	Nominal	GFSK	×				-/-
§15.247(a)(1) RSS - 247 / 5.1 (d)	Number of hopping channels	Nominal	Nominal	GFSK	×				-/-
§15.247(a)(1) (iii) RSS - 247 / 5.1 (c)	Time of occupancy (dwell time)	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	×				-/-
§15.247(a)(1) RSS - 247 / 5.1 (a)	Spectrum bandwidth of a FHSS system bandwidth	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	⊠ ⊠ ⊠				-/-
§15.247(b)(1) RSS - 247 / 5.4 (b)	Maximum output power	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	× × ×				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	× ×				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	⊠ ⊠ ⊠				-/-
§15.247(d) RSS - 247 / 5.5	Spurious emissions conducted	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	× ×				-/-
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	Nominal	Nominal	GFSK	×				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	Nominal	Nominal	GFSK RX mode	×				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	Nominal	Nominal	GFSK RX mode	\boxtimes				-/-
§15.107(a) §15.207	Conducted emissions below 30 MHz (AC conducted)	Nominal	Nominal	GFSK RX mode	×				-/-

 $\underline{\text{Note:}}\ C = \text{Compliant;}\ NC = \text{Not compliant;}\ NA = \text{Not applicable;}\ NP = \text{Not performed}$

© CTC advanced GmbH Page 17 of 76

10 Additional comments

The Bluetooth® word mark and logos are owned by the Bluetooth SIG Inc. and any use of such marks by CTC advanced GmbH is under license.

Reference documents: Customer_Questionnaire_HW1.1_1-4063_17-03.pdf

howToEnterTestModeWithM3.docx

Special test descriptions: None

Configuration descriptions: TX tests: were performed with x-DH5 packets and static PRBS pattern

payload.

RX/Standby tests: BT test mode enabled, scan enabled, TX Idle

Test mode:

Bluetooth Test mode loop back enabled

(EUT is controlled over CBT/CMU/CMW)

☐ Special software is used.

EUT is transmitting pseudo random data by itself

Antennas and transmit operating modes:

- Equipment with 1 antenna,

 Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used,

 Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)

© CTC advanced GmbH Page 18 of 76

11 Measurement results

11.1 Antenna gain

Limits:

FCC	IC
6 dBi / > 6 dBi output power and	power density reduction required

Results: Declared by manufacturer

T _{nom}	V _{nom}	lowest channel 2402 MHz	middle channel 2441 MHz	highest channel 2480 MHz
	[dBi] lared		-0.5	

© CTC advanced GmbH Page 19 of 76

11.2 Carrier frequency separation

Description:

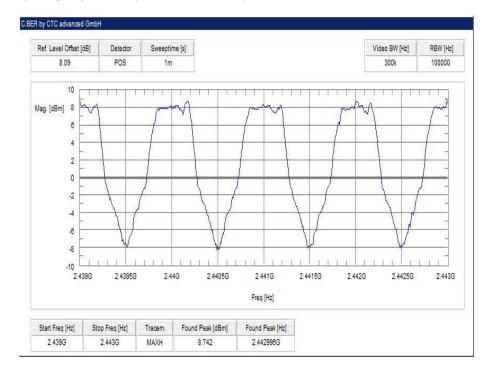
Measurement of the carrier frequency separation of a hopping system. The carrier frequency separation is constant for all modulation-modes. We use GFSK-modulation to show compliance. EUT in hopping mode.

Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	100 kHz	
Video bandwidth	300 kHz	
Span	4 MHz	
Trace mode	Max hold	
Test setup	See sub clause 6.4 A	
Measurement uncertainty	See sub clause 8	

Limits:

FCC	IC	
Carrier frequency separation		
Minimum 25 kHz or two-thirds of the 20 dB bandwidth of the hopping system whichever is greater.		

Result:


Carrier frequency separation	~ 1 MHz
------------------------------	---------

© CTC advanced GmbH Page 20 of 76

Plot:

Plot 1: Carrier frequency separation (GFSK modulation)

© CTC advanced GmbH Page 21 of 76

11.3 Number of hopping channels

Description:

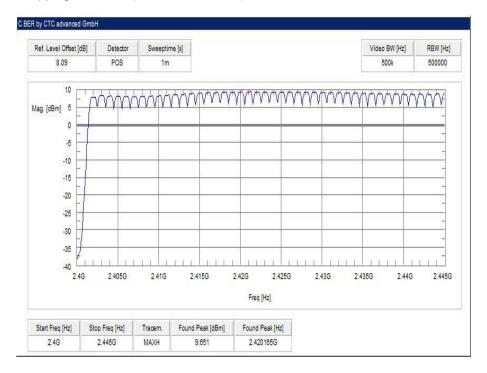
Measurement of the total number of used hopping channels. The number of hopping channels is constant for all modulation-modes. We use GFSK-modulation to show compliance. EUT in hopping mode.

Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	500 kHz	
Video bandwidth	500 kHz	
Span	Plot 1: 2400 – 2445 MHz Plot 2: 2445 – 2485 MHz	
Trace mode	Max hold	
Test setup	See sub clause 6.4 A	
Measurement uncertainty	See sub clause 8	

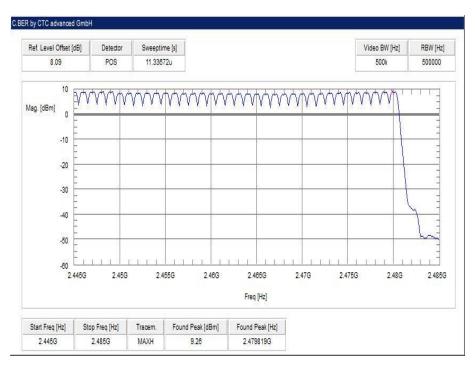
Limits:

FCC	IC	
Number of hopping channels		
At least 15 non overlapping hopping channels		

Result:


Number of hopping channels	79
----------------------------	----

© CTC advanced GmbH Page 22 of 76



Plots:

Plot 1: Number of hopping channels (GFSK modulation)

Plot 2: Number of hopping channels (GFSK modulation)

© CTC advanced GmbH Page 23 of 76

11.4 Time of occupancy (dwell time)

Measurement:

For Bluetooth® devices no measurements mandatory depending on the fixed requirements according to the Bluetooth® Core Specifications!

For Bluetooth® devices:

The channel staying time of 0.4 s within a 31.6 second period in data mode is constant for Bluetooth® devices and independent from the packet type (packet length). The calculation for a 31.6 second period is a follows:

Channel staying time = time slot length * hop rate / number of hopping channels * 31.6 s

Example for a DH1 packet (with a maximum length of one time slot) Channel staying time = $625 \mu s * 1600*1/s / 79 * 31.6 s = 0.4 s$ (in a 31.6 s period)

For multi-slot packets the hopping is reduced according to the length of the packet.

Example for a DH3 packet (with a maximum length of three time slots) Channel staying time = $3 * 625 \mu s * 1600/3 *1/s / 79 * 31.6 s = 0.4 s$ (in a 31.6 s period)

Example for a DH5 packet (with a maximum length of five time slots) Channel staying time = $5 * 625 \mu s * 1600/5 *1/s / 79 * 31.6 s = 0.4 s$ (in a 31.6 s period)

This is according the Bluetooth® Core Specification 5.0 (and lower) for all Bluetooth® devices and all modulations.

The following table shows the relations:

Packet Size	Pulse Width [ms] *	Max. number of transmissions per channel in 31.6 sec
DH1	0.366	640
DH3	1.622	214
DH5	2.870	128

^{*} according Bluetooth® specification

Results:

Packet Size	Pulse Width [ms]*	Max. number of transmissions in 31.6 sec	Time of occupancy (dwell time) [Pulse width * Number of transmissions]
DH1	0.366	640	234.2 ms
DH3	1.622	214	347.1 ms
DH5	2.870	128	367.4 ms

Limits:

FCC	IC		
Time of occupancy (dwell time)			
The frequency hopping operation shall have an average time of occupancy on any frequency not exceeding 0.4 seconds within a duration in seconds equal to the number of hopping frequencies multiplied by 0.4.			

© CTC advanced GmbH Page 24 of 76

11.5 Spectrum bandwidth of a FHSS system

Description:

Measurement of the 20dB bandwidth and 99% bandwidth of the modulated signal. The measurement is performed according to the "Measurement Guidelines" (DA 00-705, March 30, 2000). EUT in single channel mode.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	30 kHz		
Video bandwidth	100 kHz		
Span	3 MHz		
Trace mode	Max hold		
Test setup	See sub clause 6.4 A		
Measurement uncertainty	See sub clause 8		

Limits:

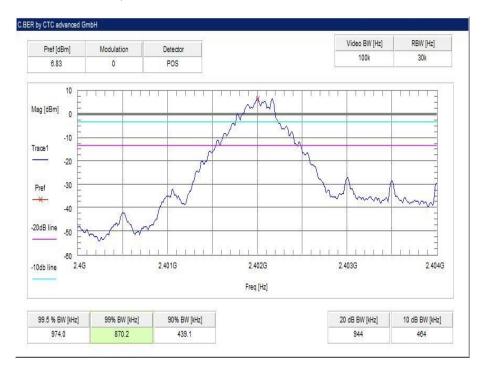
FCC	IC		
Spectrum bandwidth of a FHSS system			
GFSK < 1500 kHz Pi/4 DQPSK < 1500 kHz 8DPSK < 1500 kHz			

© CTC advanced GmbH Page 25 of 76

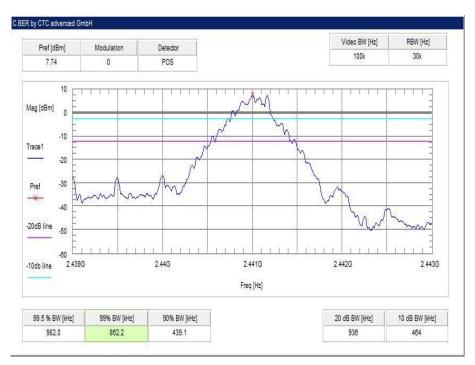
Results:

Modulation	20 dB bandwidth [kHz]		
Frequency	2402 MHz	2441 MHz	2480 MHz
GFSK	944	936	944
Pi/4 DQPSK	1248	1240	1240
8DPSK	1256	1256	1256

Results:

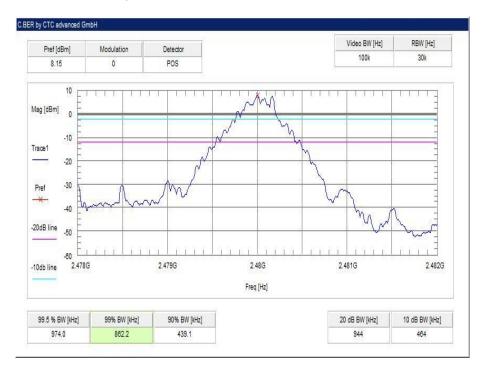

Modulation	99 % bandwidth [kHz]		
Frequency	2402 MHz	2441 MHz	2480 MHz
GFSK	870	862	862
Pi/4 DQPSK	1165	1165	1165
8DPSK	1165	1171	1165

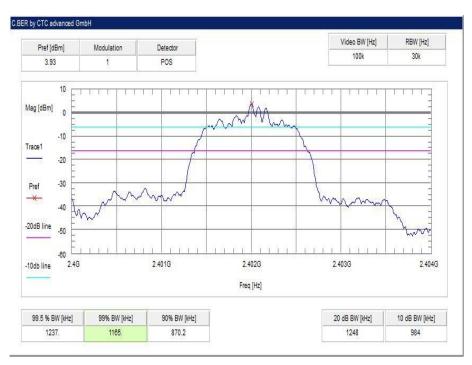
© CTC advanced GmbH Page 26 of 76



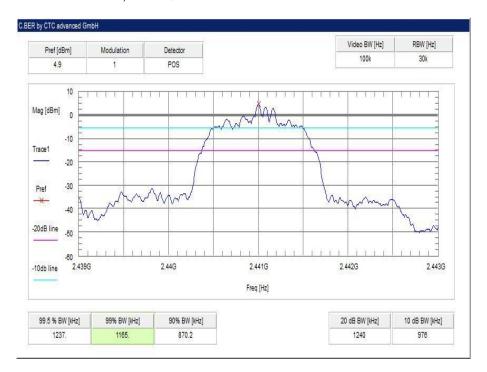
Plots:

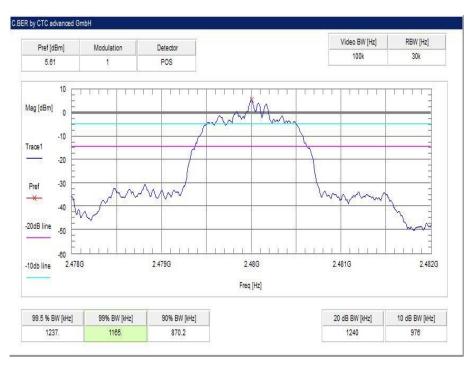
Plot 1: lowest channel - 2402 MHz, GFSK modulation


Plot 2: middle channel – 2441 MHz, GFSK modulation

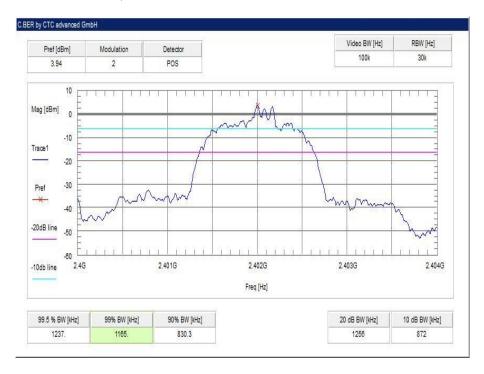

© CTC advanced GmbH Page 27 of 76

Plot 3: highest channel – 2480 MHz, GFSK modulation


Plot 4: lowest channel – 2402 MHz, Pi / DQPSK modulation

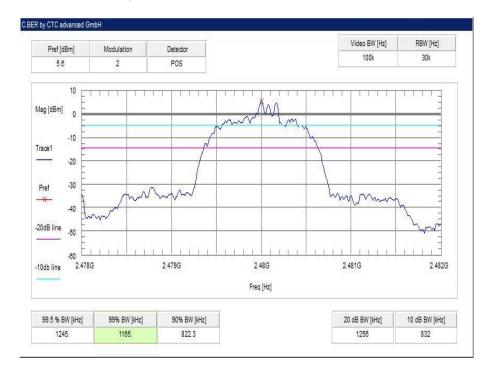

© CTC advanced GmbH Page 28 of 76

Plot 5: middle channel – 2441 MHz, Pi / DQPSK modulation


Plot 6: highest channel – 2480 MHz, Pi / DQPSK modulation

© CTC advanced GmbH Page 29 of 76

Plot 7: lowest channel – 2402 MHz, 8 DPSK modulation


Plot 8: middle channel – 2441 MHz, 8 DPSK modulation

© CTC advanced GmbH Page 30 of 76

Plot 9: highest channel – 2480 MHz, 8 DPSK modulation

© CTC advanced GmbH Page 31 of 76

11.6 Maximum output power

Description:

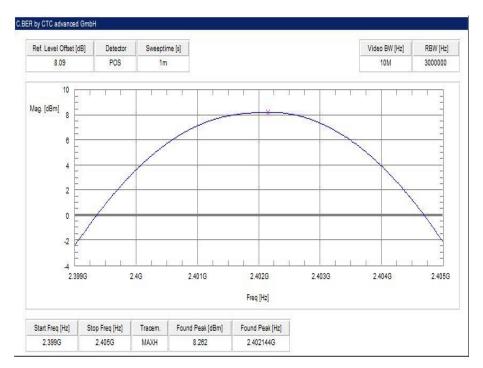
Measurement of the maximum output power conducted and radiated. EUT in single channel mode. The measurement is performed according to the ANSI C63.10.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	3 MHz		
Video bandwidth	10 MHz		
Span	6 MHz		
Trace mode	Max hold		
Test setup	See sub clause 6.4 A		
Measurement uncertainty	See sub clause 8		

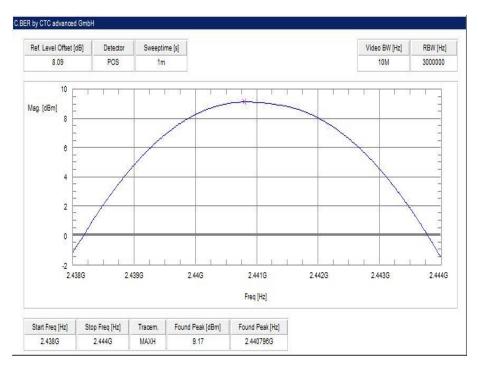
Limits:

FCC	IC		
Maximum output power			
[Conducted: 0.125 W – antenna gain max. 6 dBi] Systems using more than 75 hopping channels: Conducted: 1.0 W – antenna gain max. 6 dBi			

Results:

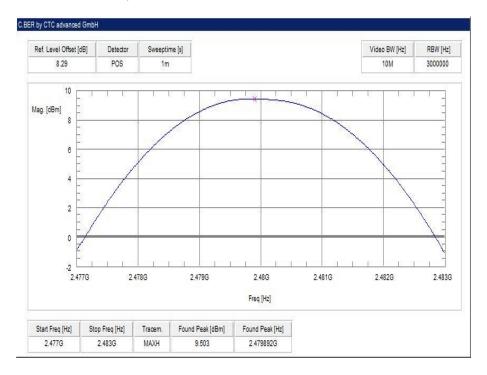

Modulation	Maximum output power conducted [dBm]		
Frequency	2402 MHz	2441 MHz	2480 MHz
GFSK	8.3	9.2	9.5
Pi/4 DQPSK	6.4	7.3	7.9
8 DPSK	6.8	7.8	8.3

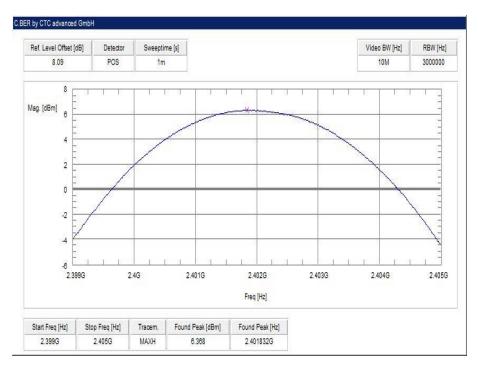
© CTC advanced GmbH Page 32 of 76



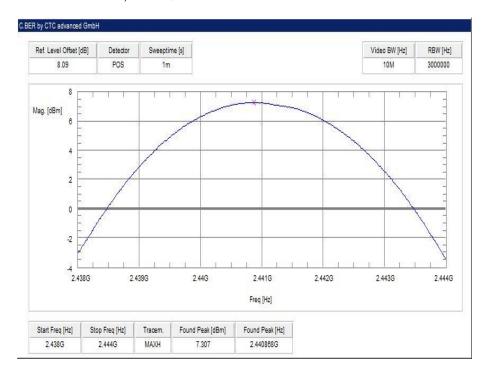
Plots:

Plot 1: lowest channel - 2402 MHz, GFSK modulation


Plot 2: middle channel – 2441 MHz, GFSK modulation

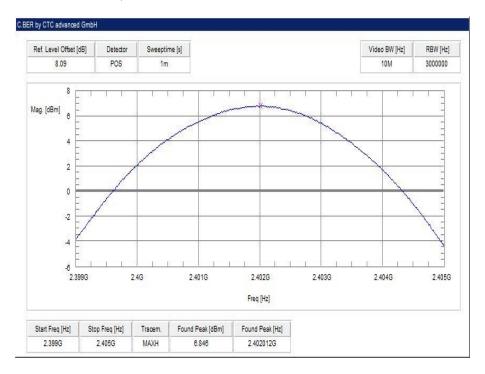

© CTC advanced GmbH Page 33 of 76

Plot 3: highest channel – 2480 MHz, GFSK modulation


Plot 4: lowest channel – 2402 MHz, Pi / DQPSK modulation

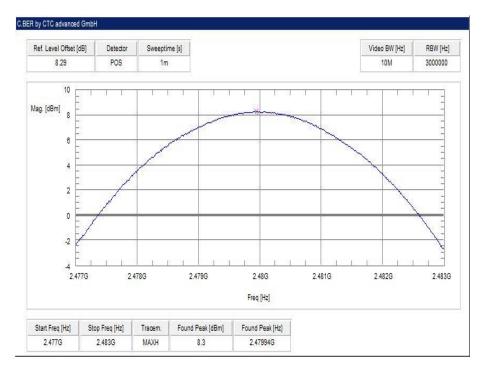
© CTC advanced GmbH Page 34 of 76

Plot 5: middle channel – 2441 MHz, Pi / DQPSK modulation


Plot 6: highest channel – 2480 MHz, Pi / DQPSK modulation

© CTC advanced GmbH Page 35 of 76

Plot 7: lowest channel – 2402 MHz, 8 DPSK modulation


Plot 8: middle channel – 2441 MHz, 8 DPSK modulation

© CTC advanced GmbH Page 36 of 76

Plot 9: highest channel - 2480 MHz, 8 DPSK modulation

© CTC advanced GmbH Page 37 of 76

11.7 Detailed spurious emissions @ the band edge - conducted

Description:

Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel and hopping mode. The measurement is repeated for all modulations.

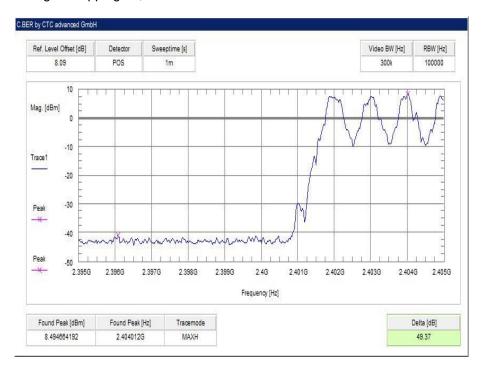
Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	100 kHz		
Video bandwidth	300 kHz / 500 kHz		
Span	Lower Band Edge: 2395 – 2405 MHz Upper Band Edge: 2478 – 2489 MHz		
Trace mode	Max hold		
Test setup	See sub clause 6.4 A		
Measurement uncertainty	See sub clause 8		

Limits:

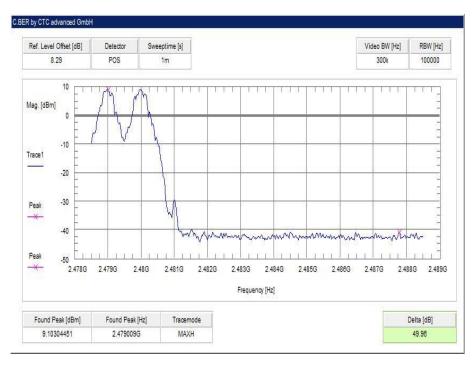
FCC	IC
-----	----

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

Results:

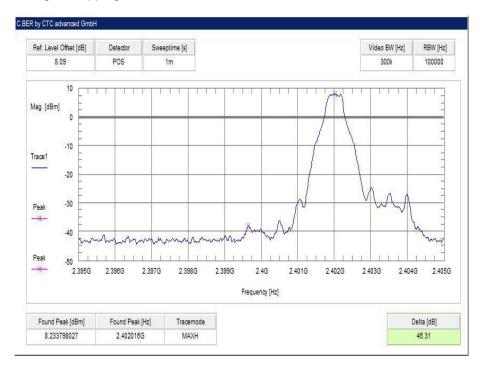

Scenario	Spurious band edge conducted [dB]		ted [dB]
Modulation	GFSK	Pi/4 DQPSK	8DPSK
Lower band edge – hopping off	> 20 dB	> 20 dB	> 20 dB
Lower band edge – hopping on	> 20 dB	> 20 dB	> 20 dB
Upper band edge – hopping off	> 20 dB	> 20 dB	> 20 dB
Upper band edge – hopping on	> 20 dB	> 20 dB	> 20 dB

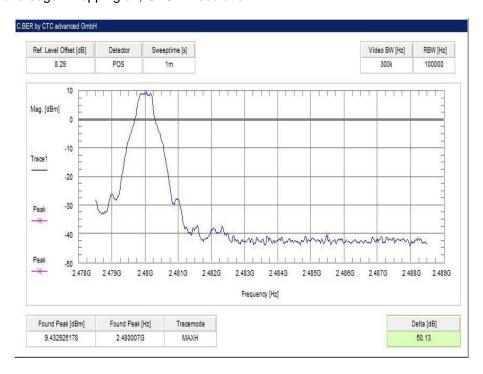
© CTC advanced GmbH Page 38 of 76



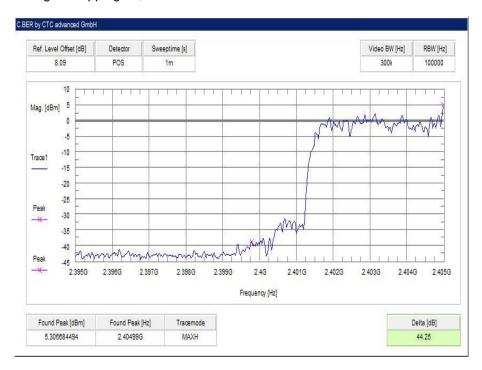
Plots:

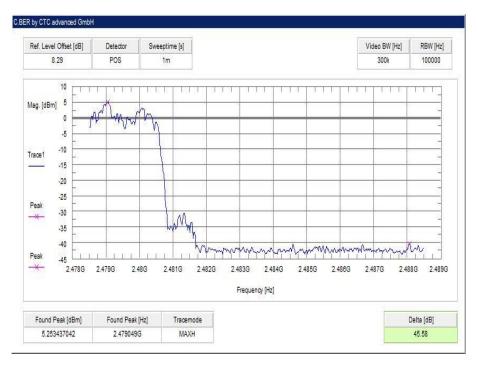
Plot 1: Lower band edge – hopping on, GFSK modulation


Plot 2: Upper band edge – hopping on, GFSK modulation

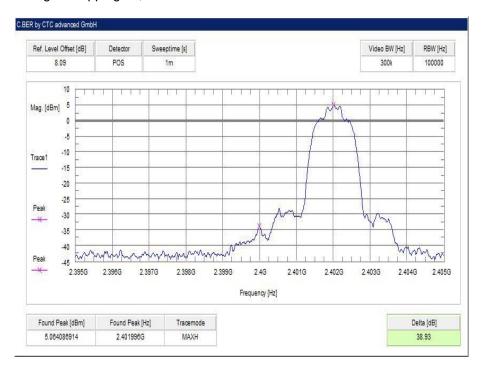

© CTC advanced GmbH Page 39 of 76

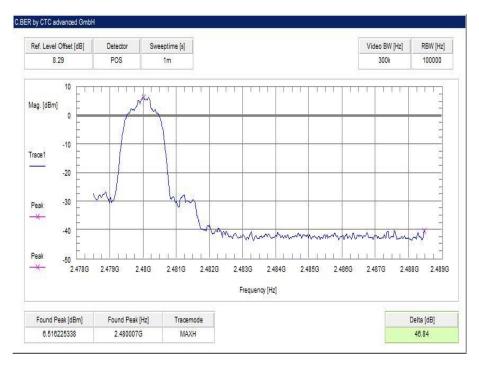
Plot 3: Lower band edge – hopping off, GFSK modulation


Plot 4: Upper band edge - hopping off, GFSK modulation

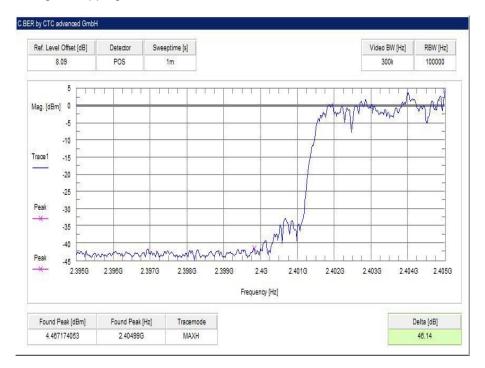

© CTC advanced GmbH Page 40 of 76

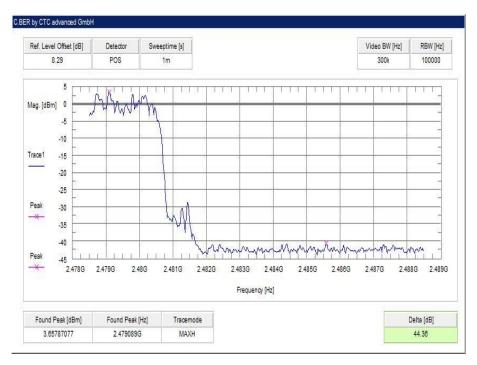
Plot 5: Lower band edge - hopping on, Pi/4 DQPSK modulation


Plot 6: Upper band edge – hopping on, Pi/4 DQPSK modulation


© CTC advanced GmbH Page 41 of 76

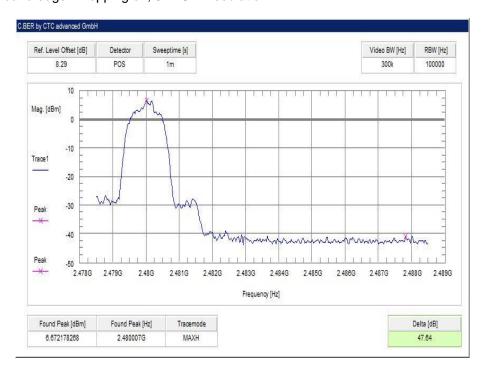
Plot 7: Lower band edge - hopping off, Pi/4 DQPSK modulation


Plot 8: Upper band edge – hopping off, Pi/4 DQPSK modulation


© CTC advanced GmbH Page 42 of 76

Plot 9: Lower band edge - hopping on, 8DPSK modulation

Plot 10: Upper band edge – hopping on, 8DPSK modulation


© CTC advanced GmbH Page 43 of 76

Plot 11: Lower band edge – hopping off, 8DPSK modulation

Plot 12: Upper band edge – hopping off, 8DPSK modulation

© CTC advanced GmbH Page 44 of 76

11.8 Band edge compliance radiated

Description:

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to single channel mode and the transmit channel is channel 00 for the lower restricted band and channel 78 for the upper restricted band. The measurement is repeated for all modulations. Measurement distance is 3m.

Measurement parameters			
Detector	Peak / RMS		
Sweep time	Auto		
Resolution bandwidth	1 MHz		
Video bandwidth	3 MHz		
Span	Lower Band: 2370 – 2400 MHz Upper Band: 2480 – 2500 MHz		
Trace mode	Max hold		
Test setup	See sub clause 6.2 C		
Measurement uncertainty	See sub clause 8		

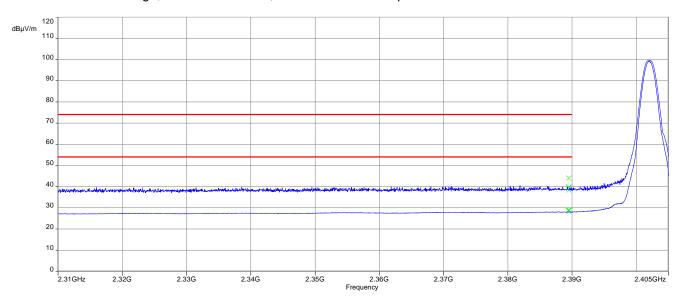
Limits:

FCC	IC	
Band edge compliance radiated		
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF		

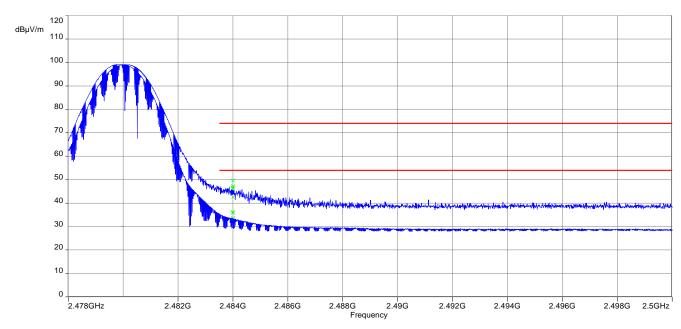
radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).

54 dBµV/m AVG 74 dBµV/m Peak

Results:

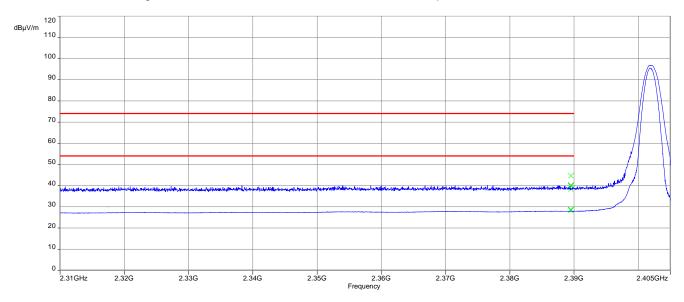

Scenario	Band edge compliance radiated [dBµV/m]		i [dBμV/m]
Modulation	GFSK	Pi/4 DQPSK	8DPSK
Lower restricted band	< 54 AVG / < 74 PP	< 54 AVG / < 74 PP	< 54 AVG / < 74 PP
Upper restricted band	< 54 AVG / < 74 PP	< 54 AVG / < 74 PP	< 54 AVG / < 74 PP

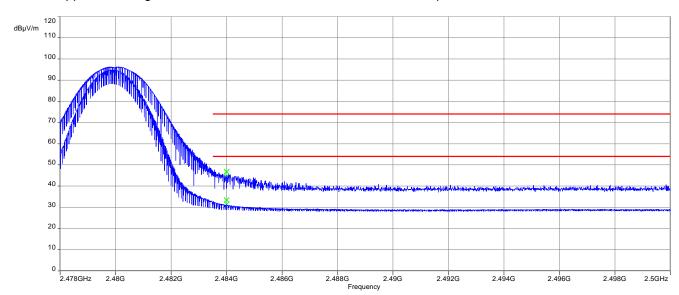
© CTC advanced GmbH Page 45 of 76



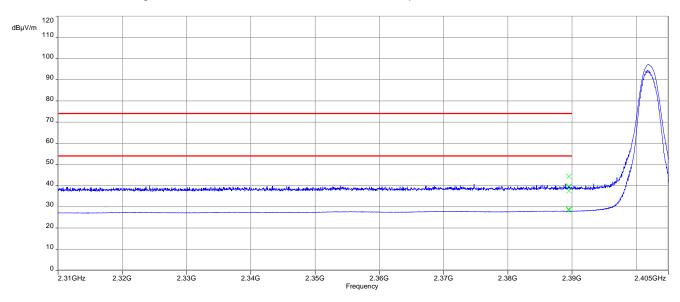
Plots:

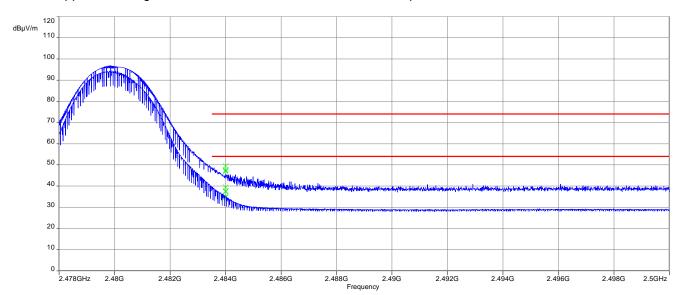
Plot 1: Lower band edge, GFSK modulation, vertical & horizontal polarization


Plot 2: Upper band edge, GFSK modulation, vertical & horizontal polarization


© CTC advanced GmbH Page 46 of 76

Plot 3: Lower band edge, Pi/4 DQPSK modulation, vertical & horizontal polarization


Plot 4: Upper band edge, Pi/4 DQPSK modulation, vertical & horizontal polarization


© CTC advanced GmbH Page 47 of 76

Plot 5: Lower band edge, 8 DPSK modulation, vertical & horizontal polarization

Plot 6: Upper band edge, 8 DPSK modulation, vertical & horizontal polarization

© CTC advanced GmbH Page 48 of 76

11.9 Spurious emissions conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is repeated for all modulations.

Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	100 kHz	
Video bandwidth	300 kHz	
Span	9 kHz to 25 GHz	
Trace mode	Max hold	
Test setup	See sub clause 6.4 A	
Measurement uncertainty	See sub clause 8	

Limits:

FCC	IC	
TX spurious emissions conducted		

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required

© CTC advanced GmbH Page 49 of 76

Results:

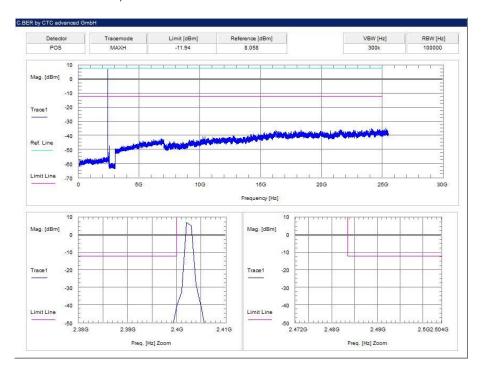
	TX spurious emissions conducted				
	GFSK - mode				
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results
2402		8.1	30 dBm		Operating frequency
	All detected emissions are below the -20 dBc criteria. Please take a look at the plot! -20 dBc		-20 dBc		compliant
2441		8.7	30 dBm		Operating frequency
	All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		compliant
2480		9.3	30 dBm		Operating frequency
All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		compliant	

Results:

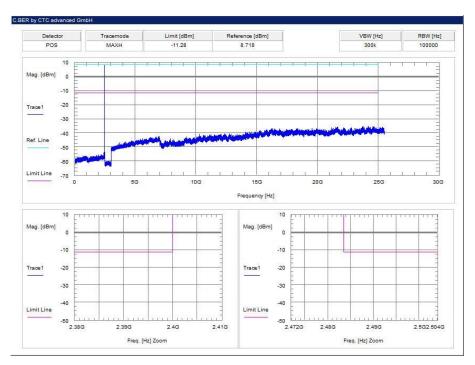
	TX spurious emissions conducted				
	Pi/4-DQPSK - mode				
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results
2402		4.9	30 dBm		Operating frequency
All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		compliant	
2441		5.7	30 dBm		Operating frequency
	All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		compliant
2480		6.5	30 dBm		Operating frequency
All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		compliant	

© CTC advanced GmbH Page 50 of 76

Results:

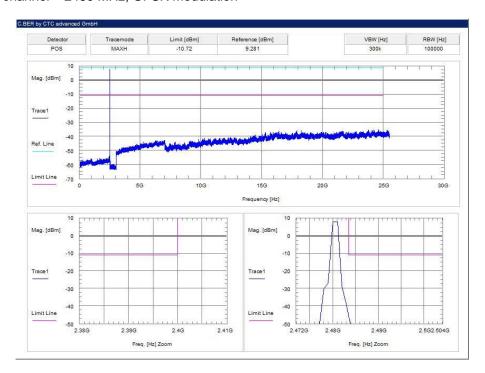

TX spurious emissions conducted					
	8DPSK - mode				
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results
2402		4.9	30 dBm		Operating frequency
	All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		compliant
			-20 dbc		
2441		5.7	30 dBm		Operating frequency
	All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		20 AD-		compliant
			-20 dBc		
2480		6.5	30 dBm		Operating frequency
	All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		20 dD a		compliant
			-20 dBc		

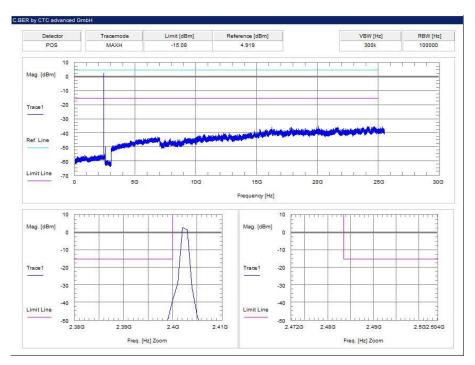
© CTC advanced GmbH Page 51 of 76



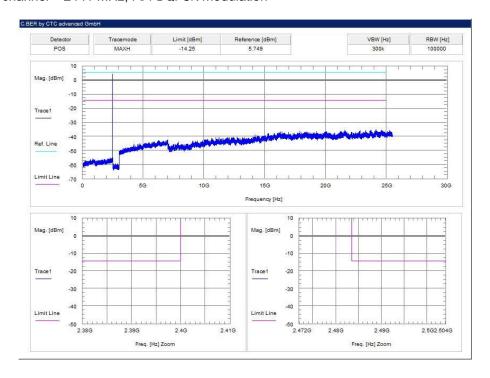
Plots:

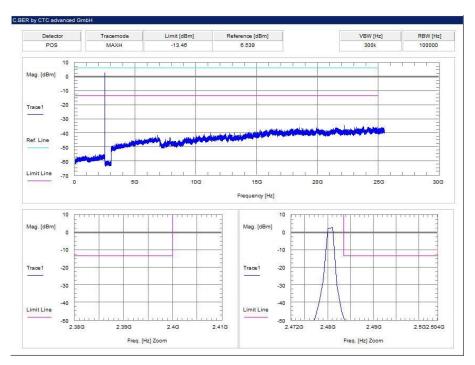
Plot 1: lowest channel - 2402 MHz, GFSK modulation


Plot 2: middle channel – 2441 MHz, GFSK modulation

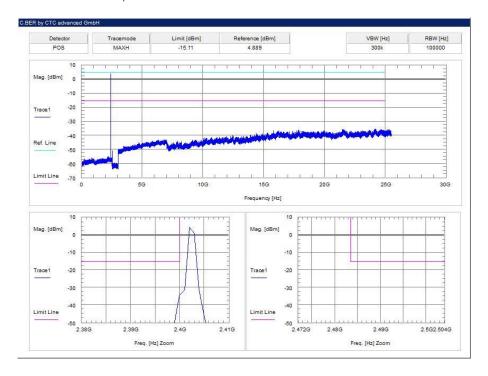

© CTC advanced GmbH Page 52 of 76

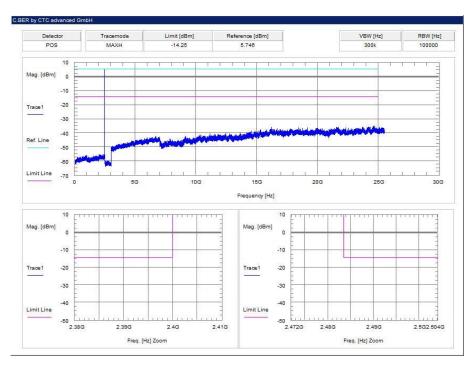
Plot 3: highest channel – 2480 MHz, GFSK modulation


Plot 4: lowest channel – 2402 MHz, Pi/4-DQPSK modulation

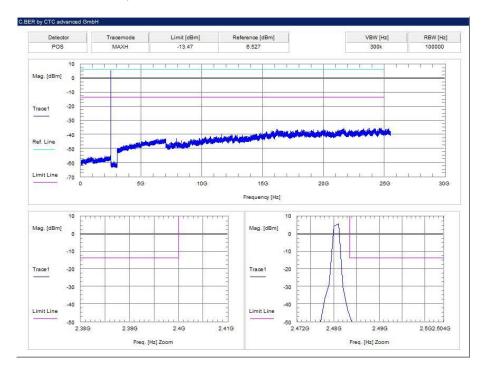

© CTC advanced GmbH Page 53 of 76

Plot 5: middle channel – 2441 MHz, Pi/4-DQPSK modulation


Plot 6: highest channel – 2480 MHz, Pi/4-DQPSK modulation


© CTC advanced GmbH Page 54 of 76

Plot 7: lowest channel – 2402 MHz, 8 DPSK modulation


Plot 8: middle channel – 2441 MHz, 8 DPSK modulation

© CTC advanced GmbH Page 55 of 76

Plot 9: highest channel – 2480 MHz, 8 DPSK modulation

© CTC advanced GmbH Page 56 of 76

11.10 Spurious emissions radiated below 30 MHz

Description:

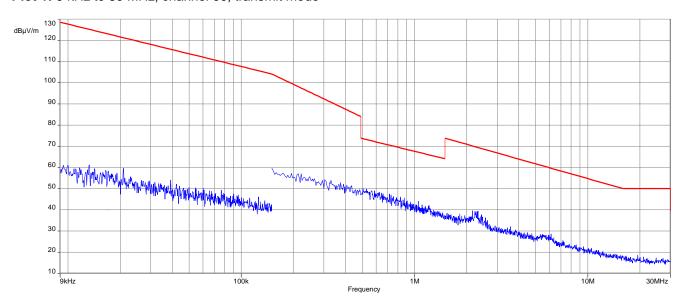
Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channels are 00; 39 and 78. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

Measurement parameters			
Detector	Peak / Quasi peak		
Sweep time	Auto		
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz		
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz		
Span	9 kHz to 30 MHz		
Trace mode	Max hold		
Measurement distance	3 m		
Test setup	See sub clause 6.2 B		
Measurement uncertainty	See sub clause 8		

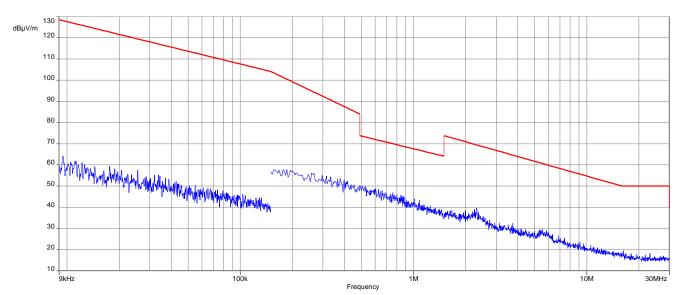
Limits:

FCC			IC		
ΤX	lHz				
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance		
0.009 – 0.490	2400/F	F(kHz)	300		
0.490 – 1.705	24000/F(kHz)		24000/F(kHz)		30
1.705 – 30.0	3	0	30		

Results:

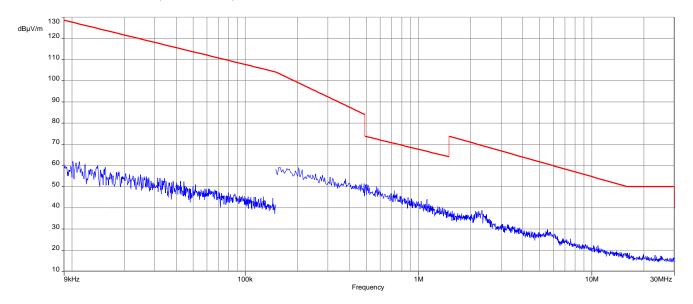

TX spurious emissions radiated below 30 MHz [dBμV/m]								
F [MHz] Detector Level [dBµV/m]								
All detected emissions are more than 20 dB below the limit.								

© CTC advanced GmbH Page 57 of 76



Plots:

Plot 1: 9 kHz to 30 MHz, channel 00, transmit mode


Plot 2: 9 kHz to 30 MHz, channel 39, transmit mode

© CTC advanced GmbH Page 58 of 76

Plot 3: 9 kHz to 30 MHz, channel 78, transmit mode

© CTC advanced GmbH Page 59 of 76

11.11 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is performed in the mode with the highest output power.

Measurement parameters					
Detector	Peak / Quasi Peak				
Sweep time	Auto				
Resolution bandwidth	120 kHz				
Video bandwidth	3 x RBW				
Span	30 MHz to 1 GHz				
Trace mode	Max hold				
Measured modulation	☐ GFSK ☐ Pi/4 DQPSK ☐ 8DPSK				
Measurement distance	10 m				
Test setup	See sub clause 6.1 A				
Measurement uncertainty	See sub clause 8				

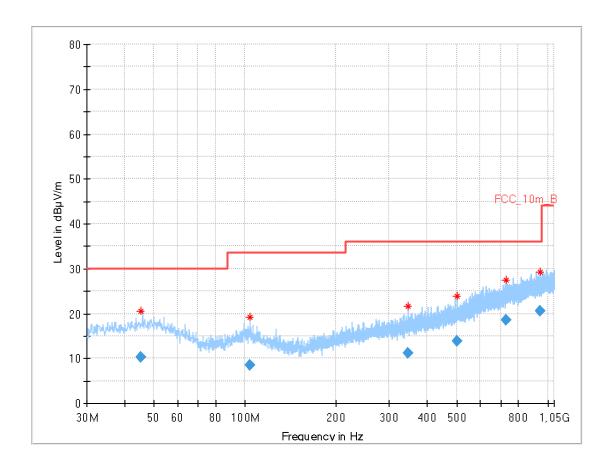
The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

FCC	IC					
TX spurious emissions radiated						

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

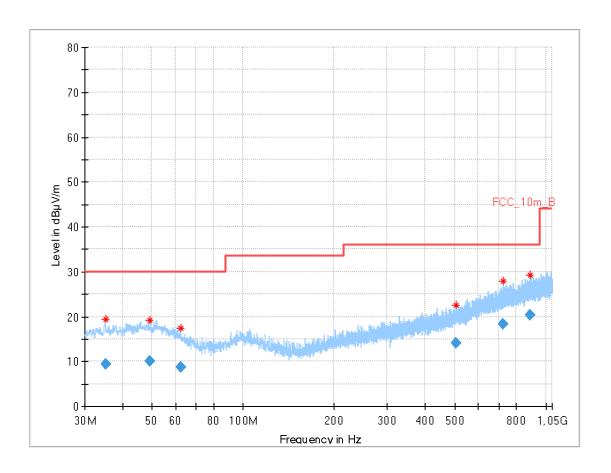
C4E 00	^
815.209	J


Frequency (MHz)	Field strength (dBμV/m)	Measurement distance
30 - 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10
Above 960	54.0	3

© CTC advanced GmbH Page 60 of 76

Plots: Transmit mode

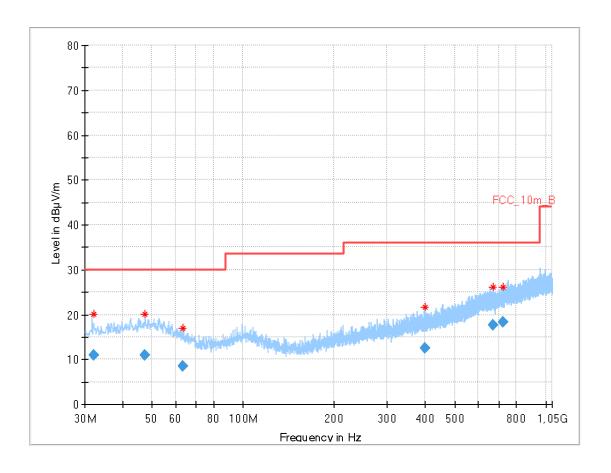
Plot 1: 30 MHz to 1 GHz, TX mode, channel 00, vertical & horizontal polarization


Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
45.333	10.22	30.0	19.78	1000	120	170.0	Н	49
104.145	8.45	33.5	25.05	1000	120	98.0	Н	340
345.680	11.27	36.0	24.73	1000	120	102.0	Н	310
500.345	13.90	36.0	22.10	1000	120	170.0	٧	239
727.859	18.48	36.0	17.52	1000	120	170.0	٧	173
945.409	20.53	36.0	15.47	1000	120	170.0	٧	288

© CTC advanced GmbH Page 61 of 76

Plot 2: 30 MHz to 1 GHz, TX mode, channel 39, vertical & horizontal polarization

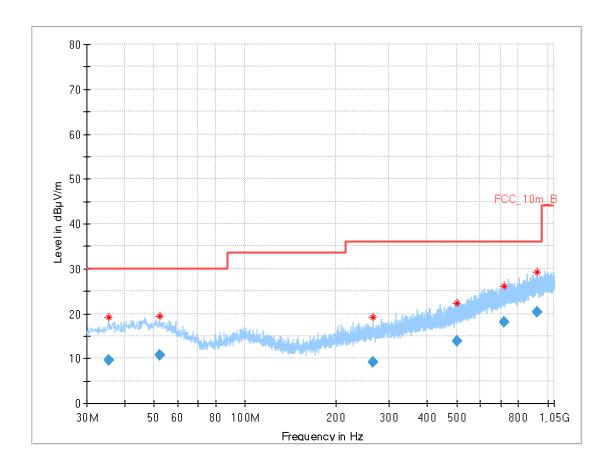

Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
35.169	9.35	30.0	20.65	1000	120	101.0	٧	215
49.071	10.02	30.0	19.98	1000	120	170.0	٧	65
62.389	8.72	30.0	21.28	1000	120	101.0	٧	117
506.148	14.07	36.0	21.93	1000	120	98.0	Н	357
721.652	18.37	36.0	17.63	1000	120	98.0	Н	236
887.368	20.38	36.0	15.62	1000	120	98.0	٧	6

© CTC advanced GmbH Page 62 of 76

Plot 3: 30 MHz to 1 GHz, TX mode, channel 78, vertical & horizontal polarization

Final results:


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
32.241	10.98	30.0	19.02	1000	120	170.0	Н	347
47.299	10.84	30.0	19.16	1000	120	103.0	Н	232
63.427	8.38	30.0	21.62	1000	120	170.0	Н	29
400.047	12.56	36.0	23.44	1000	120	170.0	Н	256
671.587	17.58	36.0	18.42	1000	120	98.0	Н	76
722.253	18.34	36.0	17.66	1000	120	101.0	٧	227

© CTC advanced GmbH Page 63 of 76

Plots: Receiver mode

Plot 1: 30 MHz to 1 GHz, RX / idle – mode, vertical & horizontal polarization

Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
35.515	9.62	30.0	20.38	1000	120	170.0	٧	158
52.210	10.71	30.0	19.29	1000	120	101.0	٧	242
264.655	9.22	36.0	26.78	1000	120	170.0	Н	292
499.946	13.95	36.0	22.05	1000	120	170.0	٧	306
716.405	18.20	36.0	17.80	1000	120	170.0	٧	122
919.767	20.33	36.0	15.67	1000	120	170.0	Н	198

© CTC advanced GmbH Page 64 of 76

11.12 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is performed in the mode with the highest output power.

Measurement parameters					
Detector	Peak / RMS				
Sweep time	Auto				
Resolution bandwidth	1 MHz				
Video bandwidth	3 x RBW				
Span	1 GHz to 26 GHz				
Trace mode	Max hold				
Measured modulation	☐ GFSK ☐ Pi/4 DQPSK ☐ 8DPSK				
Measurement distance	3 m (1 GHz - 18 GHz) 0.5 m (18 GHz - 26 GHz)				
Test setup	See sub clause 6.2 A (1 GHz - 18 GHz) See sub clause 6.3 A (18 GHz - 26 GHz)				
Measurement uncertainty	See sub clause 8				

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

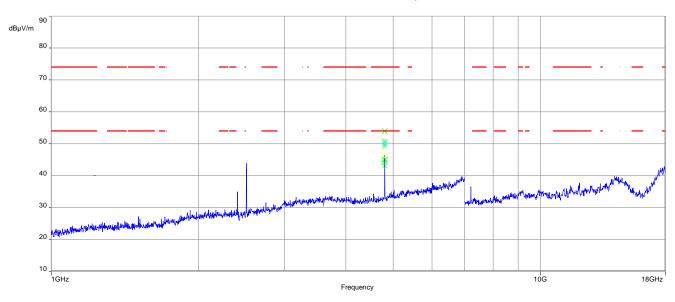
FCC			IC					
	TX spurious emissions radiated							
radiator is operating, the radio frequence that in the 100 kHz bandwidth within the conducted or a radiated measurement. In addition, radiated emissions which face	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).							
	§15.209							
Frequency (MHz)	ncy (MHz) Field strength (dBµV/m) Measurement distance							
Above 960	54	1.0	3					

© CTC advanced GmbH Page 65 of 76

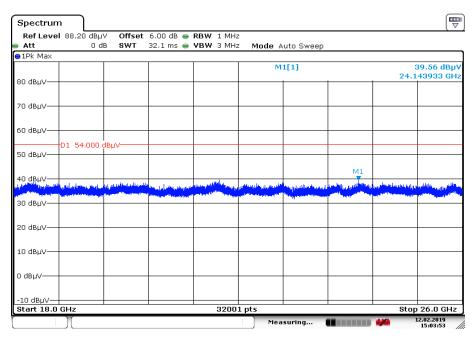
Results: Transmitter mode

TX spurious emissions radiated [dBμV/m]								
2402 MHz			2441 MHz			2480 MHz		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
4804	Peak	54.0	4881	Peak	49.6	4960	Peak	55.3
	AVG	50.6		AVG	43.1		AVG	52.5
-/-	, Peak -/-	7322	Peak	50.5	,	Peak	-/-	
-/-	AVG	-/-	1322	AVG	43.2	-/-	AVG	-/-
-/-	Peak	-/-	,	Peak	-/-	,	Peak	-/-
	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-

Results: Receiver mode


RX spurious emissions radiated [dBµV/m]					
F [MHz]	Detector	Level [dBµV/m]			
All detected emissions are more than 20 dB below the limit.					
,	Peak	-/-			
-/-	AVG	-/-			

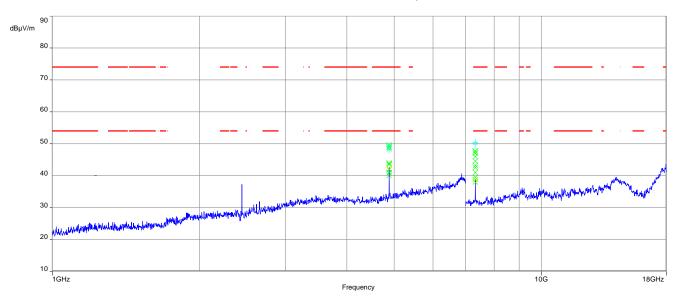
© CTC advanced GmbH Page 66 of 76


Plots: Transmitter mode

Plot 1: 1 GHz to 18 GHz, TX mode, channel 00, vertical & horizontal polarization

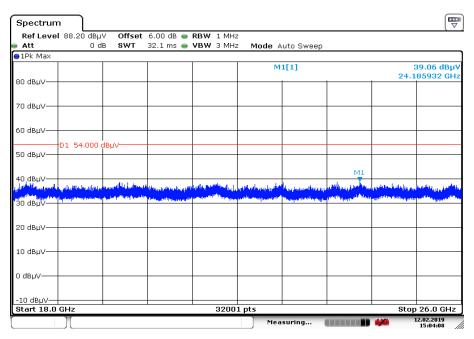
The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: 18 GHz to 26 GHz, TX mode, channel 00, vertical & horizontal polarization



Date: 12 FEB 2019 15:03:53

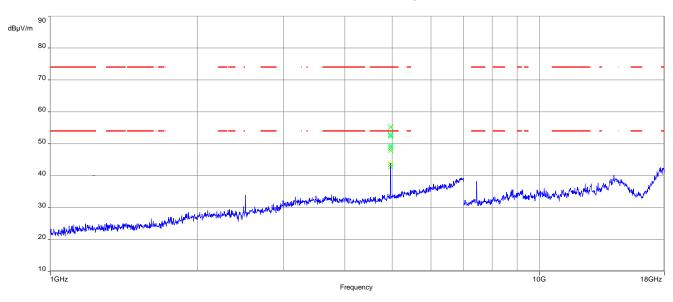
© CTC advanced GmbH Page 67 of 76



Plot 3: 1 GHz to 18 GHz, TX mode, channel 39, vertical & horizontal polarization

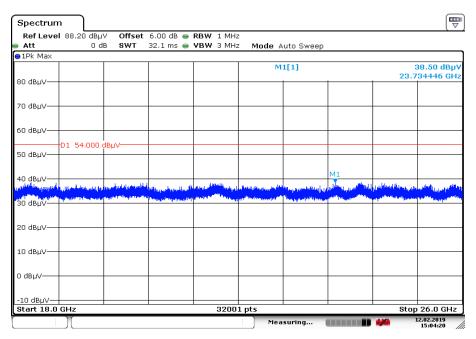
The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 4: 18 GHz to 26 GHz, TX mode, channel 39, vertical & horizontal polarization



Date:12.FEB.2019 15:04:08

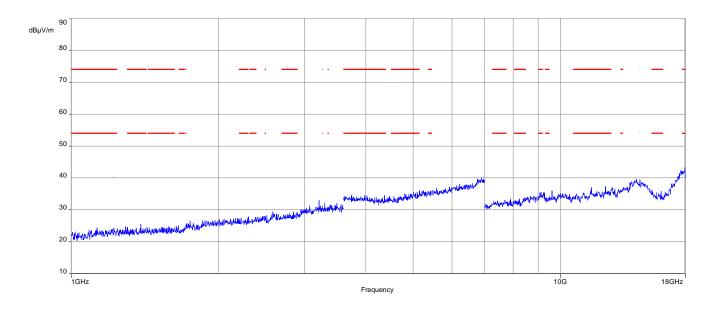
© CTC advanced GmbH Page 68 of 76



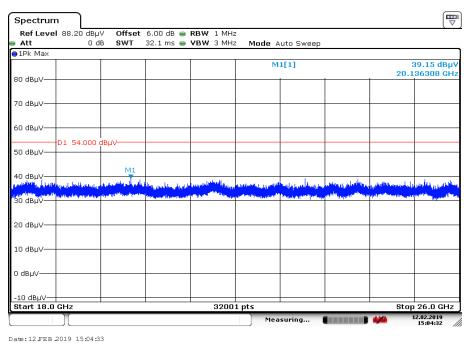
Plot 5: 1 GHz to 18 GHz, TX mode, channel 78, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 6: 18 GHz to 26 GHz, TX mode, channel 78, vertical & horizontal polarization


Date: 12 FEB 2019 15:04:20

© CTC advanced GmbH Page 69 of 76



Plots: Receiver mode

Plot 1: 1 GHz to 18 GHz, RX / idle – mode, vertical & horizontal polarization

Plot 2: 18 GHz to 26 GHz, RX / idle – mode, vertical & horizontal polarization

Date: 12 FEB 2019 15 N4 N5

© CTC advanced GmbH Page 70 of 76

11.13 Spurious emissions conducted below 30 MHz (AC conducted)

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

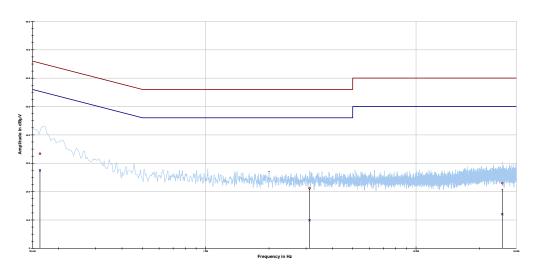
Measurement:

Measurement parameter					
Detector	Peak - Quasi Peak / Average				
Sweep time	Auto				
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz				
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz				
Span	9 kHz to 30 MHz				
Trace mode	Max. hold				
Test setup	See chapter 6.5 A				
Measurement uncertainty	See chapter 8				

Limits:

FCC		IC		
Frequency / MHz)	Quasi-Peak	/ (dBµV / m)	Average / (dBµV / m)	
0.15 – 0.5		o 56*	56 to 46*	
0.5 – 5	5	66	46	
5 – 30.0	6	60	50	

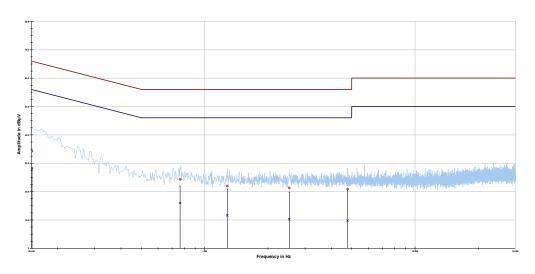
^{*}Decreases with the logarithm of the frequency


© CTC advanced GmbH Page 71 of 76

Plots:

Plot 1: 150 kHz to 30 MHz, phase line

Project ID: 1-4063/17-01-09


Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.162974	33.35	31.96	65.311	27.44	28.19	55.629
3.117348	21.21	34.79	56.000	9.90	36.10	46.000
25.705008	22.98	37.02	60.000	12.01	37.99	50.000

© CTC advanced GmbH Page 72 of 76

Plot 2: 150 kHz to 30 MHz, neutral line

Project ID: 1-4063/17-01-09

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.151003	34.25	31.69	65.945	28.35	27.63	55.971
0.763990	24.30	31.70	56.000	15.97	30.03	46.000
1.280879	21.93	34.07	56.000	11.62	34.38	46.000
2.524516	21.27	34.73	56.000	10.23	35.77	46.000
4.776122	20.91	35.09	56.000	9.77	36.23	46.000

© CTC advanced GmbH Page 73 of 76

Annex A Glossary

EUT	Equipment under test					
DUT	Device under test					
UUT	Unit under test					
GUE	GNSS User Equipment					
ETSI	European Telecommunications Standards Institute					
EN	European Standard					
FCC	Federal Communications Commission					
FCC ID	Company Identifier at FCC					
IC	Industry Canada					
PMN	Product marketing name					
HMN	Host marketing name					
HVIN	Hardware version identification number					
FVIN	Firmware version identification number					
EMC	Electromagnetic Compatibility					
HW	Hardware					
SW	Software					
Inv. No.	Inventory number					
S/N or SN	Serial number					
С	Compliant					
NC	Not compliant					
NA	Not applicable					
NP	Not performed					
PP	Positive peak					
QP	Quasi peak					
AVG	Average					
ОС	Operating channel					
ocw	Operating channel bandwidth					
OBW	Occupied bandwidth					
ООВ	Out of band					
DFS	Dynamic frequency selection					
CAC	Channel availability check					
OP	Occupancy period					
NOP	Non occupancy period					
DC	Duty cycle					
PER	Packet error rate					
CW	Clean wave					
MC	Modulated carrier					
WLAN	Wireless local area network					
RLAN	Radio local area network					
DSSS	Dynamic sequence spread spectrum					
OFDM	Orthogonal frequency division multiplexing					
FHSS	Frequency hopping spread spectrum					
GNSS	Global Navigation Satellite System					
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz					

© CTC advanced GmbH Page 74 of 76

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2019-02-18
-A	Editorial Changes – PMN changed to "MOMENTUM Wireless"	2019-03-11
-B	Plot changed in Chapter 11.8, serial numbers added, editorial changes	2019-03-18

Annex C Accreditation Certificate - D-PL-12076-01-04

first page	last page
Deutsche Deutsche Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH
Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation	Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields:	
Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Aktraditierungsstelle GmbH (DAKS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attende by DAKS. The accreditation attende by DAKS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkSselleG) of 31 July 2009 (federal Law Gazette 1p. 2659) and the Regulation (EC) No 765/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Into 12.18 of 9 July 2008, 30.9) CAKS is a signatory to the Multilateral Agreements for Mutual Recognition of the European on-operation for Accreditation (EA), international Accreditation for Accreditation of Accreditation of Accreditation of Accreditation of the European on-operation for Accreditation (Accreditation for Accreditation of Accreditation of the European on-operation for Accreditation of Accreditation of the European on-operation for Accreditation of the European on-operation (Accreditation for Accreditation of the European on-operation for Accreditation of European on-operation for European on-operatio
The accreditation cortificate shall only apply in connection with the notice of accreditation of 11.01.2019 with the accreditation number D-Pt-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 7 pages. Registration number of the certificate: D-Pt-12076-01-04 Frankfurt am Main, 11.01.2019 Frankfurt am Main, 11.01.2019	Accretion (EA), international accreditation forum (Le) jain international aboratory Accreditation Cooperation (IAC). The significancies to these agreements recognise seach other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.ueropean-accreditation.org ILAC: www.lac.org IAF: www.lac.org
Senteconder	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-04.pdf

© CTC advanced GmbH Page 75 of 76

Annex D Accreditation Certificate - D-PL-12076-01-05

first page	last page
DakkS Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH
Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation	Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken Is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields: Telecommunication (FCC Requirements)	
	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DA&S). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overlead. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009 (Federal Law Gazette 1 p. 2625) and the Regulation (EC) No 765/2008 of the European Parliament and of the Council of 91 July 2008 string out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Union 1.218 of 91 July 2008, p. 30). DA&LS is a signatory to the Multilateral Agreements for Multila Recognition of the European Co-peration for Accreditation (EA). The signatories to these agreements road for the European Co-peration (IAC). The signatories to these agreements road grained accorditation.
The accreditation certificate shall only apply in connection with the notice of accreditation of 11.01.2019 with the accreditation number D-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 5 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 11.01.2019 Frankfurt am Main, 11.01.2019	The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org; ILAC: www.lisc.org IAF: www.lisf.nu
The Memo pursual.	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05.pdf

© CTC advanced GmbH Page 76 of 76