

FCC TEST REPORT (BLUETOOTH)

REPORT NO.: RF141104C08

MODEL NO.: M2 AEBT, M2 OEBT (Refer to item 3.1 for more details)

FCC ID: DMOM2AEBT

RECEIVED: Sep. 23, 2014

TESTED: Sep. 23 ~ Dec. 11, 2014

ISSUED: Dec. 12, 2014

APPLICANT: Sennheiser electronic GmbH & Co.KG

ADDRESS: Am Labor 1 D-30900 Wedemark, Germany

ISSUED BY: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

- LAB ADDRESS: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan, R.O.C.
- **TEST LOCATION:** No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

RELE	ASE CONTROL RECORD	4
1.	CERTIFICATION	5
2.	SUMMARY OF TEST RESULTS	6
2.1	MEASUREMENT UNCERTAINTY	6
3.	GENERAL INFORMATION	7
3.1	GENERAL DESCRIPTION OF EUT	7
3.2	DESCRIPTION OF TEST MODES	9
3.2.1	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	10
3.3	DESCRIPTION OF SUPPORT UNITS	12
3.3.1	CONFIGURATION OF SYSTEM UNDER TEST	12
3.4	GENERAL DESCRIPTION OF APPLIED STANDARDS	13
4.	TEST TYPES AND RESULTS	14
4.1	RADIATED EMISSION AND BANDEDGE MEASUREMENT	14
4.1.1	LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT	14
4.1.2	TEST INSTRUMENTS	15
4.1.3	TEST PROCEDURES	16
4.1.4	DEVIATION FROM TEST STANDARD	16
4.1.5	TEST SETUP	17
4.1.6	EUT OPERATING CONDITIONS	17
4.1.7	TEST RESULTS	18
4.2	CONDUCTED EMISSION MEASUREMENT	25
4.2.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	25
4.2.2	TEST INSTRUMENTS	25
4.2.3	TEST PROCEDURES	26
4.2.4	DEVIATION FROM TEST STANDARD	26
4.2.5	TEST SETUP	27
4.2.6	EUT OPERATING CONDITIONS	27
4.2.7	TEST RESULTS	
4.3	NUMBER OF HOPPING FREQUENCY USED	30
4.3.1	LIMIT OF HOPPING FREQUENCY USED	30
4.3.2	TEST SETUP	30
4.3.3	TEST INSTRUMENTS	30
4.3.4	TEST PROCEDURES	30
4.3.5	DEVIATION FROM TEST STANDARD	30
4.3.6	TEST RESULTS	30
4.4	DWELL TIME ON EACH CHANNEL	32
4.4.1	LIMIT OF DWELL TIME USED	32
4.4.2	TEST SETUP	32
4.4.3	TEST INSTRUMENTS	32
4.4.4	TEST PROCEDURES	32
4.4.5	DEVIATION FROM TEST STANDARD	32
4.4.6	TEST RESULTS	33
4.5	CHANNEL BANDWIDTH	37
4.5.1		
4.5.2	TEST SETUP	37
4.5.3		
	DEVIATION FROM TEST STANDARD	

4.5.6	EUT OPERATING CONDITION	
4.5.7	TEST RESULTS	
4.6	HOPPING CHANNEL SEPARATION	
4.6.1	LIMIT OF HOPPING CHANNEL SEPARATION	39
4.6.2	TEST SETUP	39
4.6.3	TEST INSTRUMENTS	39
4.6.4	TEST PROCEDURES	39
4.6.5	DEVIATION FROM TEST STANDARD	39
4.6.6	TEST RESULTS	40
4.7	MAXIMUM OUTPUT POWER	41
4.7.1	LIMITS OF MAXIMUM OUTPUT POWER MEASUREMENT	
4.7.2	TEST SETUP	41
4.7.3	TEST INSTRUMENTS	41
4.7.4	TEST PROCEDURES	41
4.7.5	DEVIATION FROM TEST STANDARD	41
4.7.6	EUT OPERATING CONDITION	41
4.7.7	TEST RESULTS	42
4.8	CONDUCTED OUT OF BAND EMISSION MEASUREMENT	43
4.8.1	LIMITS OF CONDUCTED OUT OF BAND EMISSION MEASUREMENT	43
4.8.2	TEST INSTRUMENTS	43
4.8.3	TEST PROCEDURE	43
4.8.4	DEVIATION FROM TEST STANDARD	43
4.8.5	EUT OPERATING CONDITION	43
4.8.6	TEST RESULTS	43
5.	PHOTOGRAPHS OF THE TEST CONFIGURATION	46
6.	INFORMATION ON THE TESTING LABORATORIES	47
7.	APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE	
	EUT BY THE LAB	48

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF141104C08	Original release.	Dec. 12, 2014

1. CERTIFICATION

PRODUCT: Bluetooth Headphone with NFC
MODEL NO.: M2 AEBT, M2 OEBT (Refer to item 3.1 for more details)
BRAND: Sennheiser
APPLICANT: Sennheiser electronic GmbH & Co.KG
TESTED: Sep. 23 ~ Dec. 11, 2014
TEST SAMPLE: ENGINEERING SAMPLE
STANDARDS: FCC Part 15, Subpart C (Section 15.247)

The above equipment (model: M2 AEBT) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch,** and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY

: <u>Ny</u>, **DATE**: <u>Dec. 12, 2014</u> Ivy Lin / Specialist

APPROVED BY

, DATE : Dec. 12, 2014

Ken Liu / Senior Manager

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	APPLIED STANDARD: FCC I	Part 15, S	ubpart C
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -9.75dB at 0.15400MHz.
15.247(a)(1) (iii)	Number of Hopping Frequency Used	PASS	Meet the requirement of limit.
15.247(a)(1) (iii)	Dwell Time on Each Channel	PASS	Meet the requirement of limit.
15.247(a)(1)	 Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System 	PASS	Meet the requirement of limit.
15.247(b)	Maximum Peak Output Power	PASS	Meet the requirement of limit.
15.205 & 209	Radiated Emissions	PASS	Meet the requirement of limit. Minimum passing margin is -4.5dB at 51.24MHz.
15.247(d)	Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -21.4dB at 2483.50MHz.
15.247(d)	Antenna Port Emission	PASS	Meet the requirement of limit.
15.203	Antenna Requirement	PASS	No antenna connector is used.

NOTE: If The Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of hopping channel whichever is greater.

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emission	150kHz ~ 30MHz	2.44 dB
	30MHz ~ 200MHz	3.59 dB
Radiated emissions	200MHz ~1000MHz	3.60 dB
Radiated emissions	1GHz ~ 18GHz	2.29 dB
	18GHz ~ 40GHz	2.29 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

EUT	Bluetooth Headphone with NFC
MODEL NO.	M2 AEBT, M2 OEBT (Refer to Note for more details)
POWER SUPPLY	3.7Vdc (Battery)
	5Vdc (Host equipment)
MODULATION TYPE	GFSK, /4-DQPSK, 8DPSK
MODULATION TECHNOLOGY	FHSS
TRANSFER RATE	1/2/3Mbps
OPERATING FREQUENCY	2402 ~ 2480MHz
NUMBER OF CHANNEL	79
MAX. OUTPUT POWER	6.776mW
ANTENNA TYPE	Refer to Note for more details
ANTENNA CONNECTOR	NA
I/O PORTS	Refer to user's manual
DATA CABLE	Refer to Note for more details
ACCESSORY DEVICES	Refer to Note for more details

NOTE:

1. All models are listed as below. The model: M2 AEBT is for final test

Brand	Model	Similarities	Differences
Sennheiser	M2 AEBT	 Main PCB ANC PCB Transducer Headband structure Bluetooth functionality NFC functionality 	- 3 way switch control (AUX PCB) - filter's components (Resistors and Capacitors value)
Sennheiser	M2 OEBT	 Main PCB ANC PCB Transducer Headband structure Bluetooth functionality NFC functionality 	 - 3 way switch control (AUX PCB) - Smaller earcup - filter's components (Resistors and Capacitors value)

a. The filter is of passive type. For more detail please refer to the schematic and block diagram.

b. The 3 way switch is for "volume" and "play" control not affecting RF. For more detail please refer to the schematic.

c. The feed-forward passive AF (Audio Frequency) filter is to cancel / reduce external noise to the mic (in the headphone) typically in the frequency 2 - 3 kHz.

d. The feed-back passive AF (Audio Frequency) filter is to cancel / reduce internal noise to the mic (in the headphone) typically in the frequency 20Hz - 1 kHz.

2. The EUT use the following antenna.

Brand	Model	Antenna Type	Antenna Gain (dBi)	Antenna Connector
Sennheiser	M2 AEBT	PCB	1.8	N/A
Sennheiser	M2 OEBT	PCB	1.5	N/A

3. The EUT contains the following accessories.

No.	Product	Description
1	Audio cable	1.4mm non-shield cable with 3.5mm Angled plug
2	USB Cable	1.2m shielded cable
3	Inflight adapter	-

4. The EUT consumes power from the following battery.

BRAND	SYNergy
MODEL	AHB622540PCT-02
RATING	3.7Vdc

5. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES

79 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.2.1 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

		APPLICABLE TO				
CONFIGURE MODE	RE≥1G R	RE<1G PLC	APCM		DESCRIPTIO	N
-	\checkmark		\checkmark	-		
		Emission above 10 Conducted Emissio			ed Emission below 10 a Port Conducted Mea	
NOTE: The EU Z-plane		tested on the position	oned of each 3	3 axis. The w	orst case was found	when positioned o
			-\.			
		(ABOVE 1 GHz				
					ode from all poss tenna diversity ar	
packet type						
	nannel(s) was	s (were) selecte	d for the fin	al test as l	isted below.	
EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEI		ULATION INOLOGY	MODULATION TYPE	PACKET TYPI
-	0 to 78	0, 39, 78	F	HSS	GFSK	DH5
-	0 to 78	0, 39, 78	F	HSS	8DPSK	DH5
			-\-			
		-	-			
Pre-Scan ha	as been cond	ucted to determ	nine the wor		ode from all poss	
Pre-Scan ha between av packet type	as been cond ailable modul	ucted to determ ations, antenna	nine the wor a ports (if EL	JT with an	tenna diversity ar	
Pre-Scan ha between av packet type Following cl	as been cond ailable modul	ucted to determ	nine the wor a ports (if EL	JT with an	tenna diversity ar	
Pre-Scan ha between av packet type	as been cond ailable modul	ucted to determ ations, antenna	nine the wor ports (if EL d for the fin	JT with an	tenna diversity ar	chitecture) and
between av packet type Following cl EUT CONFIGURE	as been cond ailable modul hannel(s) was AVAILABLE	ucted to determ ations, antenna s (were) selecter TESTED	hine the wor ports (if EL d for the fin MOD	JT with an al test as l ULATION	tenna diversity ar isted below. MODULATION	
Pre-Scan ha between av packet type Following cl EUT CONFIGURE MODE	as been cond ailable modul hannel(s) was AVAILABLE CHANNEL 0 to 78	ucted to determ ations, antenna s (were) selecter TESTED CHANNEL	hine the wor ports (if EL d for the fin MOD	JT with an al test as l ULATION INOLOGY	tenna diversity ar isted below. MODULATION TYPE	chitecture) and
Pre-Scan ha between av packet type Following cl EUT CONFIGURE MODE -	as been cond ailable modul hannel(s) was AVAILABLE CHANNEL 0 to 78	ucted to determ ations, antenna s (were) selecter TESTED CHANNEL 0 EMISSION:	nine the wor ports (if EL d for the fin L MOD L F	JT with an al test as I ULATION INOLOGY	tenna diversity ar isted below. MODULATION TYPE	PACKET TYPE

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED MODULATION CHANNEL TECHNOLOGY		MODULATION TYPE	PACKET TYPE
-	0 to 78	0	FHSS	GFSK	DH5

BANDEDGE MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture), and packet types.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
-	0 to 78	0, 78	FHSS	GFSK	DH5
-	0 to 78	0, 78	FHSS	8DPSK	DH5

Following channel(s) was (were) selected for the final test as listed below.

ANTENNA PORT CONDUCTED MEASUREMENT:

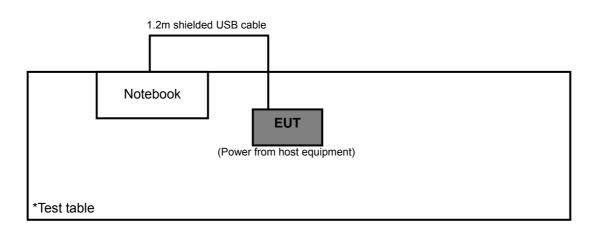
- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture), and packet types.
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
-	0 to 78	0, 39, 78	FHSS	GFSK	DH5
-	0 to 78	0, 39, 78	FHSS	8DPSK	DH5

TEST CONDITION:

APPLICABLE TO	APPLICABLE TO ENVIRONMENTAL CONDITIONS		TESTED BY
RE≥1G	25deg. C, 65%RH	120Vac, 60Hz	Alan Wu
RE<1G	25deg. C, 68%RH	120Vac, 60Hz	Alan Wu
PLC	25deg. C, 55%RH	120Vac, 60Hz	Tank Wu
APCM	25deg. C, 60%RH	120Vac, 60Hz	Frank Liu

3.3 DESCRIPTION OF SUPPORT UNITS


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	Notebook	DELL	D531	CN-0XM006-486 43-81U-2973	QDS-BRCM1020

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	1.2m shielded USB cable (Accessory)

NOTE: All power cords of the above support units are non-shielded (1.8m).

3.3.1 CONFIGURATION OF SYSTEM UNDER TEST

3.4 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247)

FCC Public Notice DA 00-705

ANSI C63.10-2009

All test items have been performed and recorded as per the above standards.

NOTE: The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

4. TEST TYPES AND RESULTS

4.1 RADIATED EMISSION AND BANDEDGE MEASUREMENT

4.1.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESCI	100744	Apr. 15, 2014	Apr. 14, 2015
Spectrum Analyzer ROHDE & SCHWARZ	FSU 43	100115	Dec. 18, 2013	Dec. 17, 2014
BILOG Antenna SCHWARZBECK	VULB9168	9168-155	Feb. 26, 2014	Feb. 25, 2015
HORN Antenna SCHWARZBECK	BBHA 9120D	9120D-404	Jan. 05, 2014	Jan. 04, 2015
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170241	Feb. 17, 2014	Feb. 16, 2015
Preamplifier Agilent	8449B	3008A01961	Oct. 18, 2013 Oct. 18, 2014	Oct. 17, 2014 Oct. 17, 2015
Preamplifier Agilent	8447D	2944A10738	Oct. 18, 2013 Oct. 18, 2014	Oct. 17, 2014 Oct. 17, 2015
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	309220/4	Aug. 09, 2014	Aug. 08, 2015
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	250724/4	Aug. 09, 2014	Aug. 08, 2015
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	295012/4	Aug. 09, 2014	Aug. 08, 2015
Software BV ADT	ADT_Radiated_ V7.6.15.9.4	NA	NA	NA
Antenna Tower inn-co GmbH	MA 4000	010303	NA	NA
Antenna Tower Controller inn-co GmbH	CO2000	019303	NA	NA
Turn Table BV ADT	TT100.	TT93021704	NA	NA
Turn Table Controller BV ADT	SC100.	SC93021704	NA	NA

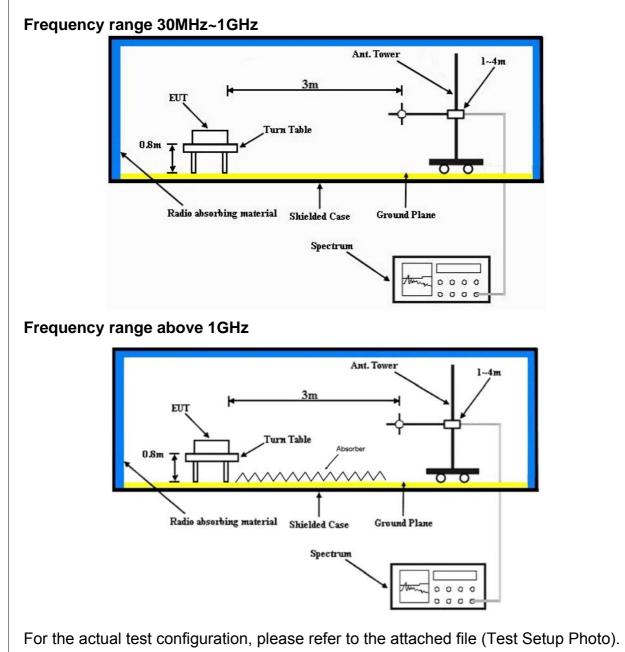
NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 4.
- 3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 460141.
- 5. The IC Site Registration No. is IC7450F-4.

4.1.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation.

4.1.5 TEST SETUP

4.1.6 EUT OPERATING CONDITIONS

Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 TEST RESULTS ABOVE 1GHz WORST-CASE DATA:

EUT TEST CONDITION		MEASUREMENT DETAIL				
CHANNEL Channel 0		FREQUENCY RANGE	1 ~ 25GHz			
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)			
ENVIRONMENTAL CONDITIONS	25deg. C, 68%RH	TESTED BY	Alan Wu			

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2376.00	40.0 PK	74.0	-34.0	1.29 H	312	42.20	-2.20
2	2376.00	30.0 AV	54.0	-24.0	1.29 H	312	32.20	-2.20
3	#2400.00	40.0 PK	80.9	-40.9	1.29 H	312	42.00	-2.00
4	#2400.00	9.9 AV	50.8	-40.9	1.29 H	312	11.90	-2.00
5	*2402.00	100.9 PK			1.29 H	312	68.70	32.20
6	*2402.00	70.8 AV			1.29 H	312	38.60	32.20
7	4804.00	50.5 PK	74.0	-23.5	1.21 H	276	45.20	5.30
8	4804.00	20.4 AV	54.0	-33.6	1.21 H	276	15.10	5.30
		ANTENNA		Y & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2376.00	40.6 PK	74.0	-33.4	1.00 V	56	42.80	-2.20
2	2376.00	30.8 AV	54.0	-23.2	1.00 V	56	33.00	-2.20
3	#2400.00	43.1 PK	84.0	-40.9	1.00 V	56	45.10	-2.00
4	#2400.00	13.0 AV	53.9	-40.9	1.00 V	56	15.00	-2.00
5	*2402.00	104.0 PK			1.00 V	56	71.80	32.20
6	*2402.00	73.9 AV			1.00 V	56	41.70	32.20
7	4804.00	50.9 PK	74.0	-23.1	1.00 V	85	45.60	5.30
8	4804.00	20.8 AV	54.0	-33.2	1.00 V	85	15.50	5.30

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)

- Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

- 4. Margin value = Emission Level Limit value
- 5. "* ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. Average value = peak reading + 20log(duty cycle)
- 8. "#":The radiated frequency is out the restricted band.

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL Channel 39		FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	25deg. C, 68%RH	TESTED BY	Alan Wu	

		ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2441.00	100.7 PK			1.00 H	325	68.50	32.20	
2	*2441.00	70.6 AV			1.00 H	325	38.40	32.20	
3	4882.00	51.1 PK	74.0	-22.9	1.25 H	271	45.70	5.40	
4	4882.00	21.0 AV	54.0	-33.0	1.25 H	271	15.60	5.40	
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2441.00	105.7 PK			1.00 V	56	73.50	32.20	
2	*2441.00	75.6 AV			1.00 V	56	43.40	32.20	
3	4882.00	51.6 PK	74.0	-22.4	1.00 V	96	46.20	5.40	
4	4882.00	21.5 AV	54.0	-32.5	1.00 V	96	16.10	5.40	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. Average value = peak reading + 20log(duty cycle)

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL Channel 78		FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER (SYSTEM)	120V/ac 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	25deg. C, 68%RH	TESTED BY	Alan Wu	

			POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)
1	*2480.00	100.0 PK			1.00 H	325	67.70	32.30
2	*2480.00	69.9 AV			1.00 H	325	37.60	32.30
3	2483.50	34.6 PK	74.0	-39.4	1.00 H	325	36.40	-1.80
4	2483.50	4.5 AV	54.0	-49.5	1.00 H	325	6.30	-1.80
5	4960.00	51.4 PK	74.0	-22.6	1.26 H	270	45.60	5.80
6	4960.00	21.3 AV	54.0	-32.7	1.26 H	270	15.50	5.80
		ANTENNA		Y & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	106.0 PK			1.00 V	53	73.70	32.30
2	*2480.00	75.9 AV			1.00 V	53	43.60	32.30
3	2483.50	40.6 PK	74.0	-33.4	1.00 V	53	42.40	-1.80
4	2483.50	10.5 AV	54.0	-43.5	1.00 V	53	12.30	-1.80
5	4960.00	51.7 PK	74.0	-22.3	1.00 V	134	45.90	5.80
6	4960.00	21.6 AV	54.0	-32.4	1.00 V	134	15.80	5.80

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. Average value = peak reading + 20log(duty cycle)

8DPSK

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 0	FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER (SYSTEM)	120V/ac 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	25deg. C, 68%RH	TESTED BY	Alan Wu	

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2376.00	39.4 PK	74.0	-34.6	1.28 H	318	41.60	-2.20
2	2376.00	27.7 AV	54.0	-26.3	1.28 H	318	29.90	-2.20
3	#2400.00	57.4 PK	78.9	-21.5	1.28 H	318	59.40	-2.00
4	#2400.00	27.3 AV	48.8	-21.5	1.28 H	318	29.30	-2.00
5	*2402.00	98.9 PK			1.28 H	318	66.70	32.20
6	*2402.00	68.8 AV			1.28 H	318	36.60	32.20
7	4804.00	50.1 PK	74.0	-23.9	1.28 H	278	44.80	5.30
8	4804.00	20.0 AV	54.0	-34.0	1.28 H	278	14.70	5.30
		ANTENNA		Y & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2376.00	40.0 PK	74.0	-34.0	1.00 V	57	42.20	-2.20
2	2376.00	28.5 AV	54.0	-25.5	1.00 V	57	30.70	-2.20
3	#2400.00	61.0 PK	82.5	-21.5	1.00 V	57	63.00	-2.00
4	#2400.00	30.9 AV	52.4	-21.5	1.00 V	57	32.90	-2.00
5	*2402.00	102.5 PK			1.00 V	57	70.30	32.20
					1.00 V	57	40.00	32.20
6	*2402.00	72.4 AV			1.00 V	57	40.20	32.20
6 7	*2402.00 4804.00	72.4 AV 50.2 PK	74.0	-23.8	1.00 V 1.00 V	86	40.20 44.90	5.30

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. Average value = peak reading + 20log(duty cycle)
- 8. "#":The radiated frequency is out the restricted band.

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL Channel 39		FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	25deg. C, 68%RH	TESTED BY	Alan Wu	

			POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)
1	*2441.00	100.3 PK			1.86 H	321	68.10	32.20
2	*2441.00	70.2 AV			1.86 H	321	38.00	32.20
3	4882.00	50.6 PK	74.0	-23.4	1.21 H	279	45.20	5.40
4	4882.00	20.5 AV	54.0	-33.5	1.21 H	279	15.10	5.40
		ANTENNA		(& TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2441.00	102.8 PK			1.00 V	55	70.60	32.20
2	*2441.00	72.7 AV			1.00 V	55	40.50	32.20
3	4882.00	51.5 PK	74.0	-22.5	1.00 V	87	46.10	5.40
4	4882.00	21.4 AV	54.0	-32.6	1.00 V	87	16.00	5.40

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. Average value = peak reading + 20log(duty cycle)

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 78	FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER (SYSTEM)	120V/ac 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	25deg. C, 68%RH	TESTED BY	Alan Wu	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)
1	*2480.00	99.5 PK			1.00 H	326	67.20	32.30
2	*2480.00	69.4 AV			1.00 H	326	37.10	32.30
3	2483.50	48.7 PK	74.0	-25.3	1.00 H	326	50.50	-1.80
4	2483.50	18.6 AV	54.0	-35.4	1.00 H	326	20.40	-1.80
5	4882.00	49.8 PK	74.0	-24.2	1.22 H	274	44.40	5.40
6	4882.00	19.7 AV	54.0	-34.3	1.22 H	274	14.30	5.40
		ANTENNA		(& TEST DI	STANCE: V	ERTICAL A	Т 3 М	
	IO. FREQ. (MHz) EMISSION LEVEL LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (dBuV) FACTOR							
NO.	FREQ. (MHz)			MARGIN (dB)				
NO. 1	FREQ. (MHz) *2480.00	LEVEL		MARGIN (dB)		ANGLE		FACTOR
	, , ,	LEVEL (dBuV/m)		MARGIN (dB)	HEIGHT (m)	ANGLE (Degree)	(dBuV)	FACTOR (dB/m)
1	*2480.00	LEVEL (dBuV/m) 103.4 PK		MARGIN (dB) -21.4	HEIGHT (m) 1.00 V	ANGLE (Degree) 52	(dBuV)	FACTOR (dB/m) 32.30
1 2	*2480.00 *2480.00	LEVEL (dBuV/m) 103.4 PK 73.3 AV	(dBuV/m)		HEIGHT (m) 1.00 V 1.00 V	ANGLE (Degree) 52 52	(dBuV) 71.10 41.00	FACTOR (dB/m) 32.30 32.30
1 2 3	*2480.00 *2480.00 2483.50	LEVEL (dBuV/m) 103.4 PK 73.3 AV 52.6 PK	(dBuV/m) 74.0	-21.4	HEIGHT (m) 1.00 V 1.00 V 1.00 V	ANGLE (Degree) 52 52 52 52	(dBuV) 71.10 41.00 54.40	FACTOR (dB/m) 32.30 32.30 -1.80

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. Average value = peak reading + 20log(duty cycle)

BELOW 1GHz WORST-CASE DATA : GFSK

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 0	FREQUENCY RANGE	Below 1000MHz	
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Quasi-Peak	
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	TESTED BY	Alan Wu	

			POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)
1	51.24	35.5 QP	40.0	-4.5	1.99 H	135	49.50	-14.00
2	165.73	29.0 QP	43.5	-14.5	1.99 H	265	42.70	-13.70
3	231.70	31.3 QP	46.0	-14.7	1.24 H	313	47.20	-15.90
4	363.65	33.7 QP	46.0	-12.3	1.00 H	274	45.00	-11.30
5	625.60	31.9 QP	46.0	-14.1	1.24 H	285	38.10	-6.20
6	666.35	32.4 QP	46.0	-13.6	1.49 H	64	38.10	-5.70
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	51.24	30.1 QP	40.0	-9.9	1.00 V	241	44.10	-14.00
2	119.16	27.2 QP	43.5	-16.3	1.49 V	79	43.30	-16.10
3	336.48	30.6 QP	46.0	-15.4	1.49 V	83	42.40	-11.80
4	437.38	34.4 QP	46.0	-11.6	1.00 V	192	44.30	-9.90
5	666.35	30.3 QP	46.0	-15.7	1.49 V	277	36.00	-5.70
6	778.89	30.8 QP	46.0	-15.2	1.24 V	232	34.10	-3.30

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)

– Pre-Amplifier Factor (dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

4.2 CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED	LIMIT (dBµV)
	Quasi-peak	Average
0.15 ~ 0.5	66 to 56	56 to 46
0.5 ~ 5	56	46
5 ~ 30	60	50

4.2.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

NOTE: 1. The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

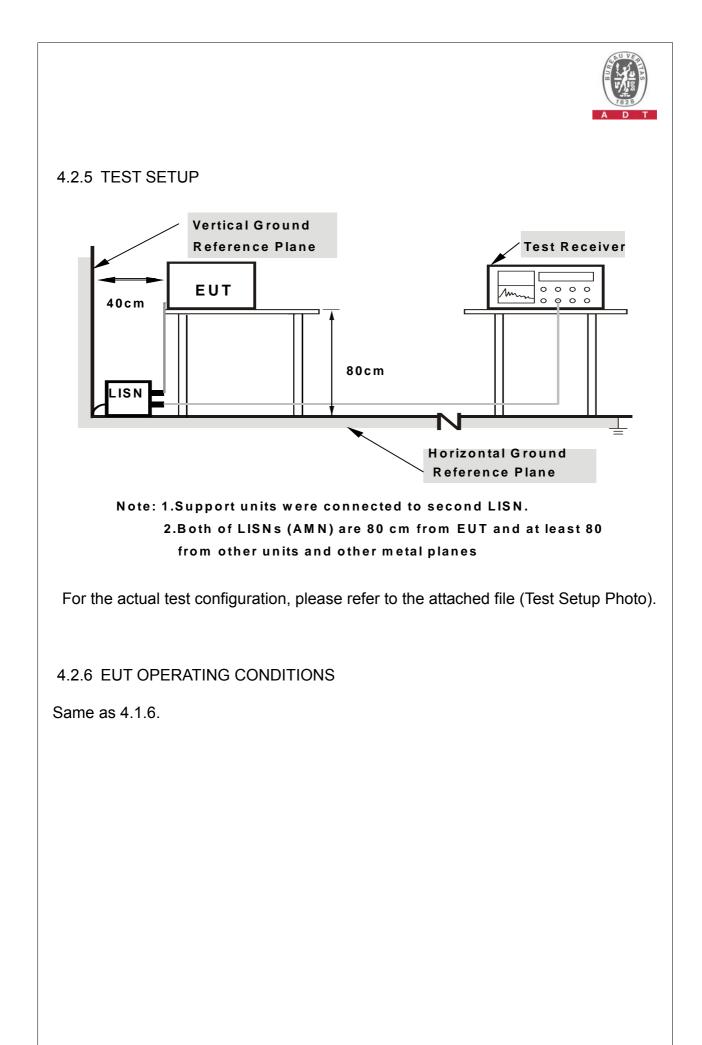
4.2.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESCI	100612	Sep. 30, 2014	Sep. 29, 2015
RF signal cable Woken	5D-FB	Cable-HYC01-01	Dec. 27, 2013	Dec. 26, 2014
LISN ROHDE & SCHWARZ (EUT)	ESH3-Z5	835239/001	Feb. 13, 2014	Feb. 12, 2015
LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Jul. 21, 2014	Jul. 20, 2015
Software ADT	BV ADT_Cond_ V7.3.7.3	NA	NA	NA

Notes: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Shielded Room 1.

3. The VCCI Site Registration No. is C-2040.

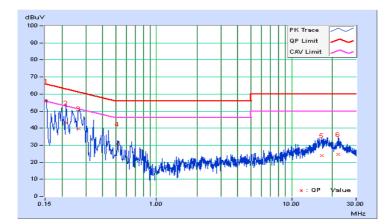

4.2.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation.

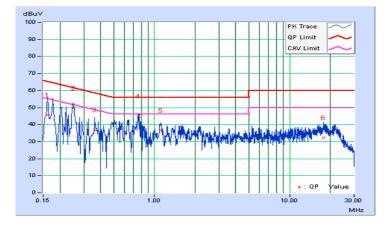

4.2.7 TEST RESULTS

CONDUCTED WORST-CASE DATA : GFSK

PHA	SE	L	Line 1			,	6dB	BAND	WIDTH		9kHz			
	Freq. Corr.			Reading Value			Emission Level		Limit			Margin		
No		Fac	ctor	[dB((uV)]	[dl	B (u	IV)]	[dB (uV)]		[dB (uV)]		(dB)	
	[MHz]	(d	IB)	Q.P.	AV.	Q.P.	-	AV.	Q.P.	A	V.	Q.P.	AV.	
1	0.15400	0.	.08	55.95	37.56	56.03	3 3	37.64	65.78	55.	78	-9.75	-18.14	
2	0.21406	0.	.07	42.93	22.36	43.00	0 2	22.43	63.05	53.	05	-20.05	-30.62	
3	0.26569	0.	.07	39.57	22.77	39.64	4 2	22.84	61.25	51.	25	-21.61	-28.41	
4	0.51400	0.	.09	30.60	16.03	30.69	9	16.12	56.00	46.	00	-25.31	-29.88	
5	16.65000	0.	.86	23.00	13.56	23.86	6	14.42	60.00	50.	00	-36.14	-35.58	
6	22.19400	1.	.11	23.47	13.73	24.58	8	14.84	60.00	50.	00	-35.42	-35.16	

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

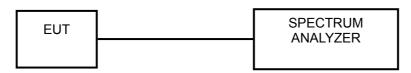
- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



PHA	SE	Line 2 6dB BANDWIDTH 9kHz									
Fred		Corr.			Emission Level		Limit			Margin	
No		Factor		(uV)]		(uV)]	[dB (uV)]			(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	A\	/ .	Q.P.	AV.
1	0.16190	0.05	45.64	26.39	45.69	26.44	65.37	55.	37	-19.68	-28.93
2	0.25400	0.06	49.71	37.56	49.77	37.62	61.63	51.	63	-11.86	-14.01
3	0.36200	0.07	37.07	25.00	37.14	25.07	58.68	48.	68	-21.55	-23.62
4	0.76618	0.08	45.04	31.82	45.12	31.90	56.00	46.	00	-10.88	-14.10
5	1.11800	0.10	36.63	21.65	36.73	21.75	56.00	46.	00	-19.27	-24.25
6	17.89400	0.81	31.47	23.05	32.28	23.86	60.00	50.	00	-27.72	-26.14

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



4.3 NUMBER OF HOPPING FREQUENCY USED

4.3.1 LIMIT OF HOPPING FREQUENCY USED

At least 15 channels frequencies, and should be equally spaced.

4.3.2 TEST SETUP

4.3.3 TEST INSTRUMENTS

Refer to section 4.1.2 to get information of above instrument.

4.3.4 TEST PROCEDURES

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

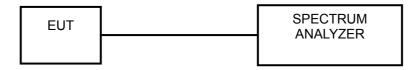
4.3.5 DEVIATION FROM TEST STANDARD

No deviation.

4.3.6 TEST RESULTS

There are 79 hopping frequencies in the hopping mode. Please refer to next page for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

				GF	SK				
-10		RBW 100 kHz VBW 300 kHz SWT 1.09 ms		Marker 1 [71] 4.32 dBm 2.40200 GHz Marker 2 [71] 5.23 dBm 2.44200 GHz	22 Ref 22 dBm 0 Wiset 12 dB 0	Att 20 dB	RBW 100 kHz VBW 300 kHz SWT 1.09 ms	[T1] MP VIEW	Marker 1 [11] 7.65 dBm 2.44300 GHz Marker 2 [11] 7.39 dBm 2.48000 GHz
-20			l Span 42 MHz		-20 -30 -50 -50 -70 -78 -78 -78 -78 -78 -78 -78 -78 -78 -78	1 1 1 42MF		Span 42 MH:	
				8DF	PSK				
22 - Ref 22 dBm 10 - 1 -10		RBM 100 Msc VBW 300 Msc SWY 1.09 ms	(T1) MP VIEW (T2) MP VIEW 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Marker 1 [11] 240200 GHz 240200 GHz Marker 2 [11] 0.03 dEm 2.44200 GHz	22 - Ref 22 dBn - Unset 12 dB 10 - 4 - 10	All 20.48	RBN 100 Hz VBW 300 Hz SNY 1.09 ms	[T1] MP VIEW [T2] MP VIEW 2 4	Marker 1 [71] 1 82 dBm 2.44300 GHz Marker 2 [71] 1 76 dBm 2.46000 GHz
-60	1 1 1 4.2 MHz		l Span 42 MHz	A D T	-60	1 I I 42M	i i	I I Span 42 MH:	



4.4 DWELL TIME ON EACH CHANNEL

4.4.1 LIMIT OF DWELL TIME USED

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.4.2 TEST SETUP

4.4.3 TEST INSTRUMENTS

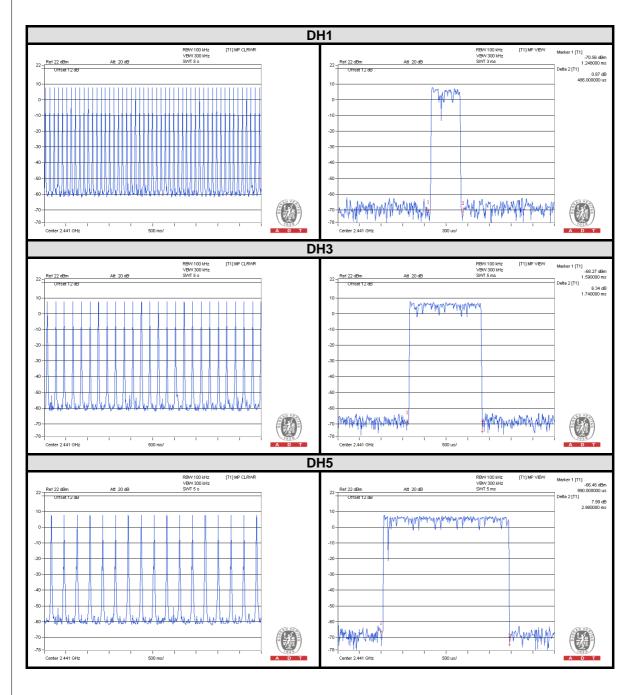
Refer to section 4.1.2 to get information of above instrument.

4.4.4 TEST PROCEDURES

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

4.4.5 DEVIATION FROM TEST STANDARD

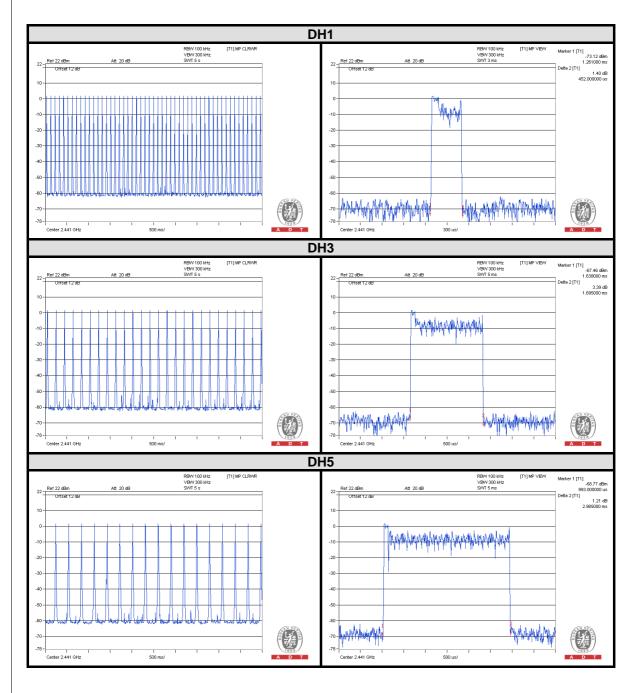
No deviation.


4.4.6 TEST RESULTS

GFSK

Mode	Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
DH1	51 (times / 5 sec) * 6.32 = 322.320 times	0.486	156.648	400
DH3	25 (times / 5 sec) * 6.32 = 158.000 times	1.740	274.920	400
DH5	17 (times / 5 sec) * 6.32 = 107.440 times	2.980	320.171	400

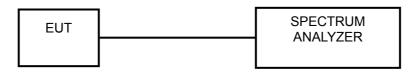
NOTE: Test plots of the transmitting time slot are shown on next page.



8DPSK

Mode	Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
DH1	51 (times / 5 sec) * 6.32 = 322.320 times	0.452	145.689	400
DH3	26 (times / 5 sec) * 6.32 = 164.320 times	1.695	278.522	400
DH5	17 (times / 5 sec) * 6.32 = 107.440 times	2.985	320.708	400

NOTE: Test plots of the transmitting time slot are shown on next page.



4.5 CHANNEL BANDWIDTH

4.5.1 LIMITS OF CHANNEL BANDWIDTH

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dBbandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

4.5.2 TEST SETUP

4.5.3 TEST INSTRUMENTS

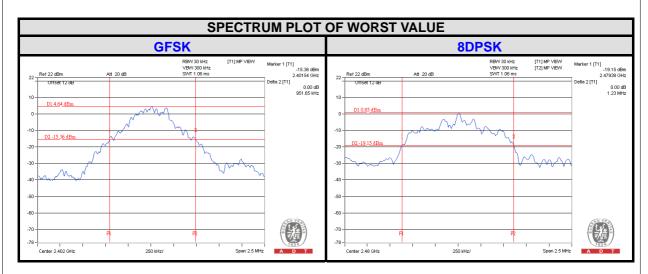
Refer to section 4.1.2 to get information of above instrument.

4.5.4 TEST PROCEDURE

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.5.5 DEVIATION FROM TEST STANDARD

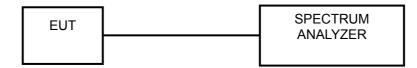
No deviation.


4.5.6 EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.5.7 TEST RESULTS

CHANNEL	FREQUENCY (MHz)	20dB BANDWIDTH (MHz)			
		GFSK	8DPSK		
0	2402	0.95	1.22		
39	2441	0.94	1.23		
78	2480	0.94	1.23		



4.6 HOPPING CHANNEL SEPARATION

4.6.1 LIMIT OF HOPPING CHANNEL SEPARATION

At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

4.6.2 TEST SETUP

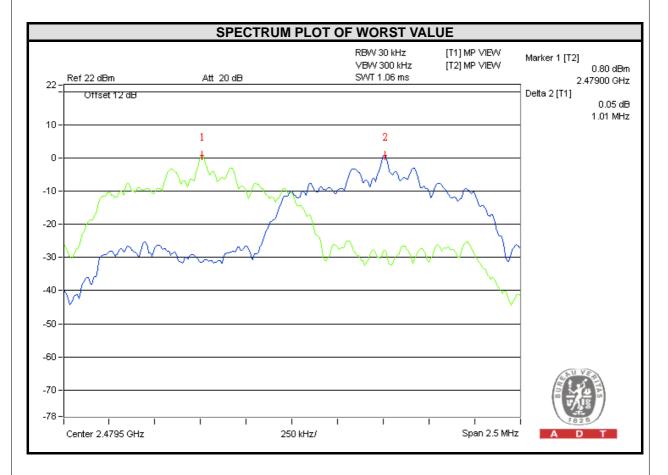
4.6.3 TEST INSTRUMENTS

Refer to section 4.1.2 to get information of above instrument.

4.6.4 TEST PROCEDURES

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

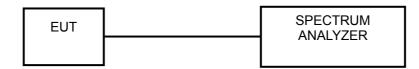
4.6.5 DEVIATION FROM TEST STANDARD


No deviation.

4.6.6 TEST RESULTS

CHANNEL	FREQUENCY (MHz)	ADJACENT CHANNEL SEPARATION (MHz)		20dB BANDWIDTH (MHz)		MINIMUM LIMIT (MHz)		PASS / FAIL
		GFSK	8DPSK	GFSK	8DPSK	GFSK	8DPSK	
0	2402	1.01	1.01	0.95	1.22	0.64	0.82	PASS
39	2441	1.01	1.01	0.94	1.23	0.63	0.82	PASS
78	2480	1.00	1.01	0.94	1.23	0.63	0.82	PASS

NOTE: The minimum limit is two-third 20dB bandwidth.



4.7 MAXIMUM OUTPUT POWER

4.7.1 LIMITS OF MAXIMUM OUTPUT POWER MEASUREMENT

The Maximum Output Power Measurement is 125mW.

4.7.2 TEST SETUP

4.7.3 TEST INSTRUMENTS

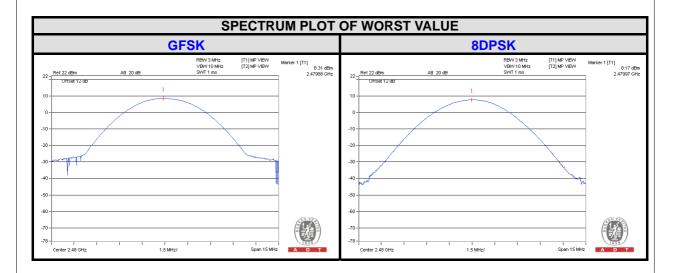
Refer to section 4.1.2 to get information of above instrument.

4.7.4 TEST PROCEDURES

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. The center frequency of the spectrum analyzer is set to the fundamental frequency and using 3MHz RBW and 10MHz VBW.
- d. Measure the captured power within the band and recording the plot.
- e. Repeat above procedures until all frequencies required were complete.

4.7.5 DEVIATION FROM TEST STANDARD

No deviation.


4.7.6 EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.7.7 TEST RESULTS

CHANNEL	FREQUENCY (MHz)	OUTPUT POWER (mW)		OUTPUT POWER (dBm)		POWER LIMIT (mW)	PASS / FAIL
		GFSK	8DPSK	GFSK	8DPSK		
0	2402	3.899	3.899	5.91	5.91	125	PASS
39	2441	5.970	5.957	7.76	7.75	125	PASS
78	2480	6.776	6.561	8.31	8.17	125	PASS

4.8 CONDUCTED OUT OF BAND EMISSION MEASUREMENT

4.8.1 LIMITS OF CONDUCTED OUT OF BAND EMISSION MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100kHz RBW).

4.8.2 TEST INSTRUMENTS

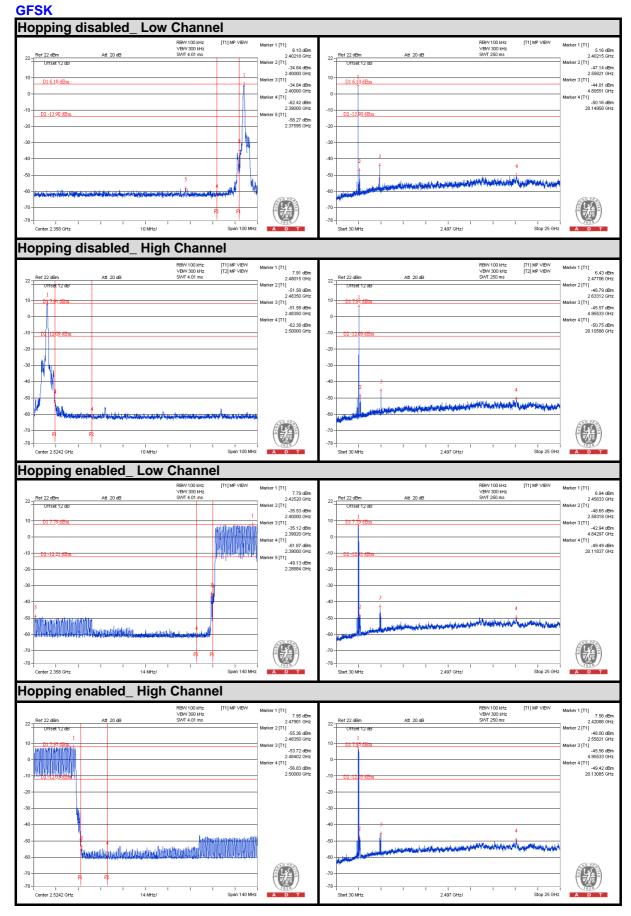
Refer to section 4.1.2 to get information of above instrument.

4.8.3 TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

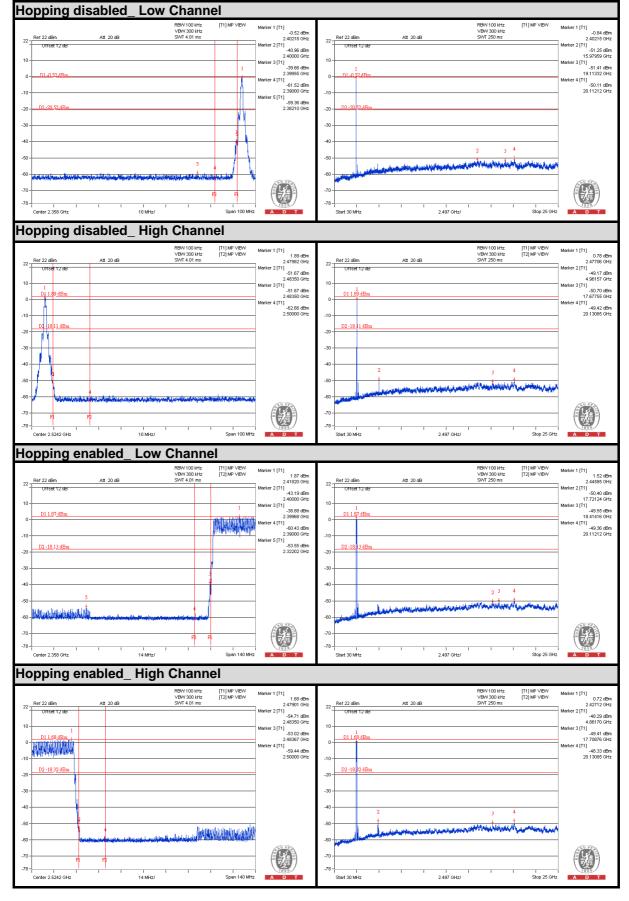
4.8.4 DEVIATION FROM TEST STANDARD

No deviation.


4.8.5 EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.8.6 TEST RESULTS


The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

8DPSK

5. PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180

Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Lab: Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

7. APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

--- END ---