

CETECOM ICT Services consulting - testing - certification >>>

TEST REPORT

Deutsche

Akkreditierungsstelle D-PL-12076-01-01

Test report no.: 1-1248/16-01-02-A

Testing laboratory

CETECOM ICT Services GmbH Untertuerkheimer Strasse 6 - 10 66117 Saarbruecken / Germany + 49 681 5 98 - 0 Phone: + 49 681 5 98 - 9075 Fax: Internet: http://www.cetecom.com e-mail: ict@cetecom.com

Accredited Testing Laboratory: The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-01

Applicant

Sennheiser electronic GmbH & Co. KG Am Labor 1 30900 Wedemark / GERMANY Phone: +49 5130 600-0 Fax. +49 5130 600-574 Contact: Marco Happ marco.happ@sennheiser.com e-mail: Phone: +49 5130 600-2621

Manufacturer

Sennheiser electronic GmbH & Co. KG Am Labor 1 30900 Wedemark / GERMANY

Test standard/s

Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency 47 CFR Part 15 devices Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and RSS - 247 Issue 1

Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item				
Kind of test item:	Wireless conference system			
Model name:	ADN-W AM-US			
FCC ID:	DMOADNWA			
IC:	2099A-ADNWA			
Frequency:	UNII Bands 5250 MHz to 5350 MHz and 5470 MHz to 5865 MHz	Z SENNHEISER		
Technology tested:	Proprietary	A DECEMBER OF		
Antenna:	External antenna	the second second second second		
Power supply:	6.2 V to 7.5 V DC by external power supply			
Temperature range:	+5°C to +45°C			

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Stefan Bös Lab Manager Radio Communications & EMC

Test performed:

David Lang Lab Manager Radio Communications & EMC

1 Table of contents

1	Table of contents2		
2	Genera	I information	3
		lotes and disclaimer Application details	
3	Test sta	andard/s and references	3
4	Test en	vironment	5
5	Test ite	m	5
		General description	
6	Test la	poratories sub-contracted	5
7	Measur	ement uncertainty	6
8	Summa	ry of measurement results	7
9		nal comments	
10	RF	measurements	9
	10.1 10.2.1 10.2.2 10.2.3 10.3 10.3.1 10.3.2 10.3.3 10.4 10.4.1 10.5 .1 10.5.1 10.5.2 10.5.3 10.5.4	Description of test setup	9 11 11 12 15 15 16 17 18 18 21 21 22 24
11	Ob	servations	27
Anr	nex A	Document history	27
Anr	nex B	Further information	27
Anr	nex C	Accreditation Certificate	28

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-1248/16-01-05 and dated 2016-06-23.

2.2 Application details

Date of receipt of order:	2016-04-20
Date of receipt of test item:	2016-05-27
Start of test:	2016-06-27
End of test:	2016-07-21
Person(s) present during the test:	-/-

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15		Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 1	May 2015	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices

Guidance	Version	Description
UNII: KDB 789033 D02	v01r02	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E Compliance measurement procedures for unlicensed - national
		information infrastructure devices operating in the 5250 - 5350
UNII: KDB 905462 D02	v02	MHz and 5470 - 5725 MHz bands incorporating dynamic
		frequency selection
UNII: KDB 905462 D04	v01	Operational Modes for DFS Testing New Rules
		American national standard for methods of measurement of radio-
ANSI C63.4-2014	-/-	noise emissions from low-voltage electrical and electronic
		equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing
/	,	of unlicensed wireless devices
KDB 662911 D01	V02r01	Emissions Testing of Transmitters with Multiple Outputs in the Same Band

4 Test environment

Temperature	:	Tnom+20°C during room temperature testsTmax+45°C during high temperature testsTmin+5°C during low temperature tests		
Relative humidity content	:	55 %		
Barometric pressure	:		not relevant for this kind of testing	
Power supply	:	V _{nom} V _{max} V _{min}	x 7.5 V	

5 Test item

5.1 General description

Kind of test item :	Wireless conference system
Type identification :	ADN-W AM-US
HMN :	-/-
PMN :	ADN-W AM
HVIN :	ADN-W AM-US
FVIN :	1.3.3.2
S/N serial number :	1231100009
HW hardware status :	FPGA: 2_8_5_prod2/ AM1.bin
SW software status :	ADNW_TERMINAL.EXE from 16.11.2012; APP:001120
Frequency band :	UNII Bands 5250 MHz to 5350 MHz and 5470 MHz to 5865 MHz
Type of radio transmission : Use of frequency spectrum :	OFDM (Frame based equipment)
Type of modulation :	Fixed QPSK- Modulation Scheme, Coding Rate 1/2
Number of channels :	42
Antenna :	External antenna The device is equipped with 3 external antenna ports. Tests have been performed in a conducted way assuming an antenna gain of 0 dBi. Detailed antenna specification provided by manufacturer (see section 9)
Power supply :	6.2 V to 7.5 V DC by external power supply
Temperature range :	+5°C to +45°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report:

1-1248/16-01-01_AnnexA 1-1248/16-01-01_AnnexB 1-1248/16-01-01_AnnexH

6 Test laboratories sub-contracted

None

7 Measurement uncertainty

Measurement uncertainty			
Test case	Uncertainty		
Occupied bandwidth	± 100 kHz (depends on the used RBW)		
Frequency accuracy (radar burst)	0.1 Hz		
Level accuracy (radar burst)	± 0.5 dB		
Maximum output power	± 0.5 dB		

8 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
DFS-Testing	CFR Part 15, FCC 06-96	Pass	2016-11-15	DFS only

Test Standard Clause	Test Case	Bandwidth	С	NC	NA	NP	Remark
7.8.1* ³	U-NII Detection Bandwidth	20 MHz	\boxtimes				-/-
§15.407 (h)(2)	DFS Detection Threshold	20 MHz	\boxtimes				-/-
§15.407 (h)(2) (ii) & 7.8.2* ³	Channel Availability Check Time	20 MHz	\boxtimes				-/-
§15.407 (h)(2) (iv) & 7.8.3* ³	Non-Occupancy Period	20 MHz	\boxtimes				-/-
§15.407 (h)(2) (iii) & 7.8.2* ³	Channel Move Time / Channel Closing Transmission Time	20 MHz	\boxtimes				-/-
7.8.3 & 7.8.4 ^{*3}	In-Service Monitoring / Statistical Performance Check	20 MHz	\boxtimes				-/-

Abbreviations/References:

C Compliant

NC Not compliant

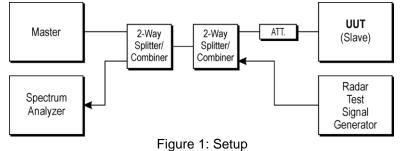
NA Not applicable

NP Not performed

9 Additional comments

Reference documents:	Antenna specification: MAF94051_spec sheet / PS-CWC-0028 Rev. A, issued 10 Aug 2004.
Special test descriptions:	All tests except the In-Service Monitoring are conducted with Pulse Type 0.
	A special test software had been provided by the customer to prevent need to reset the device between the trails.
Configuration descriptions:	All tests performed in normal test mode (during normal operation) were carried out with 4 client devices (AND-W D1) associated to the DUT. One AND-W D1 was actively transmitting audio.

10 RF measurements


10.1 Description of test setup

10.1.1 Conducted measurements

<u>Setup</u>

Figure 1 shows a setup whereby the UUT is a RLAN device operating in slave mode, without Radar Interference Detection function. This setup also contains a RLAN device operating in master mode. The radar test signals are injected into the master device. The UUT (slave device) is associated with the master device.

Figure 1 shows an example

rigare n. e

RPP = SG - CA

(RPP-radar pulse power; SG-signal generator power; CA-loss signal path)

Example calculation: RPP [dBm] = -30.0 [dBm] – 33.0 [dB] = -63.0 [dBm]

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
11	А	Vektor Signal Generator	SMU200A	R&S	101633	300003496	k	07.04.2014	07.04.2017
2	А	Spectrum Analyzer 9kHz to 30GHz - 140+30dBm	FSP30	R&S	100886	300003575	k	27.01.2016	27.01.2018
3	А	DFS-test site	div. Splitter, Cables, Attenuators	Mini-Circuits	na	300004557	ev	-/-	-/-
4	А	Access point WLAN	BAT54-Rail	Hirschmann	9439260210001 10207	400000689	ne	-/-	-/-
5	А	RF-Cable WLAN- Tester Port 1	ST18/SMAm/SMAm/ 36	Huber & Suhner	Batch no. 601494	400001216	ev	-/-	-/-
6	А	RF-Cable WLAN- Tester Port 2	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 54877	400001217	ev	-/-	-/-
7	А	RF-Cable WLAN- Tester Port 3	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 54877	400001218	ev	-/-	-/-
8	А	RF-Cable WLAN- Tester Port 4	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 1273777	400001219	ev	-/-	-/-
9	А	RF-Cable WLAN- Tester Analyzer	ST18/SMAm/SMAm/ 36	Huber & Suhner	Batch no. 54876	400001220	ev	-/-	-/-
10	А	RF-Cable WLAN- Tester Vector Signal Generator	ST18/SMAm/SMAm/ 60	Huber & Suhner	Batch no. 606844	400001222	ev	-/-	-/-
11	А	RF-Cable WLAN- Tester Reserve	ST18/SMAm/SMAm/ 36	Huber & Suhner	Batch no. 54876	400001223	ev	-/-	-/-
12	A	PC	ExOne	F+W	2890296v001	300005102	ne	-/-	-/-

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

10.2 Parameters of DFS test signals

10.2.1 DFS Detection Thresholds for Master Devices as well as Client Devices With Radar Detection

Maximum Transmit Power EIRP	Value (see note)					
≥ 200 mW	-64 dBm					
< 200 mW and power spectral density < 10 dBm/MHz	-62 dBm					
< 200 mW and That do not meet the power spectral density < 10 dBm/MHz	-64 dBm					
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response. Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.						

10.2.2 DFS Response Requirement Values

Parameter	Value		
Non-occupancy period	minimum 30 minutes		
Channel Availability Check Time	60 seconds		
Channel Move Time	10 seconds See Note 1.		
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.		
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3.		

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

10.2.3 Radar Test Waveforms

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance.

Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518- 3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	Roundup $ \begin{bmatrix} \left(\frac{1}{360}\right) \\ \left(\frac{19 \cdot 10^{6}}{\text{PRI}_{\mu \text{sec}}}\right) \end{bmatrix} $	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (Rada				80%	120
Note 1: Short Pul channel closing ti		hould be used for the o	detection bandw	vidth test, channel i	move time, and

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4.

Pulse Repetition Intervals Values for Test A

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trails
5	50-100	5-20	1000- 2000	1-3	8-20	80%	30

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms.

Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trails
6	1	333	9	0.333	300	70%	30

For the Frequency Hopping Radar Type, the same Burst parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined.

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set.

А

10.3 Test preparation

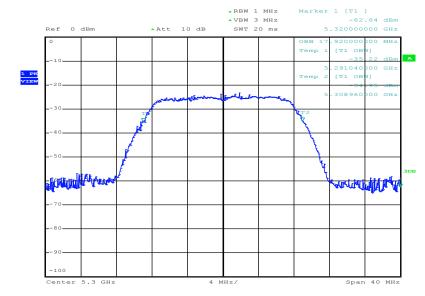
10.3.1 Channel loading

Timing plots are required with calculations demonstrating a minimum channel loading of approximately 17% or greater. For example, channel loading can be estimated by setting the spectrum analyzer for zero span and approximate the Time On/ (Time On + Off Time). This can be done with any appropriate channel BW and modulation type.

Note (Frame Based Systems): The channel loading test file will be transferred from the *Master Device* to the *Client Device* for all test configurations. For frame based systems with a fixed talk/listen ratio, the ratio systems will be set to the worst case (maximum) that is user configurable during this test as specified by the manufacturer. For frame based systems that dynamically allocate the talk/listen ratio, the channel loading test file will be transferred from the *Master Device* to the *Client Device* for all test configurations.

 Exer 2. 2 MB

 March 2 MB


 <td

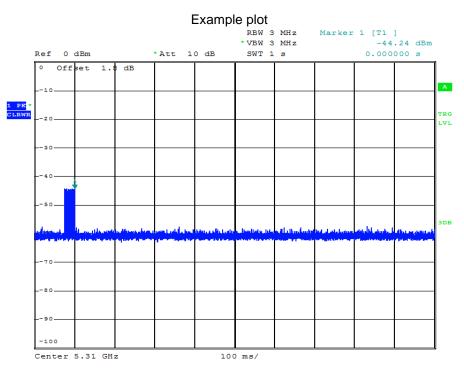
20 MHz-mode: Calculated duty cycle = 10.0%

Date: 13.JUN.2016 11:16:20

Plot 1

10.3.2 99% Bandwidth to determine the U-NII-bandwidth

20 MHz-mode: 17.9 MHz


Date: 13.JUN.2016 11:17:10

Plot 2

10.3.3 Radar burst timing signal

To accurately determine the channel closing time and channel closing transmission time the spectrum analyser is triggered at the end of the radar burst (see marker at t = 0ms).

Plot 3

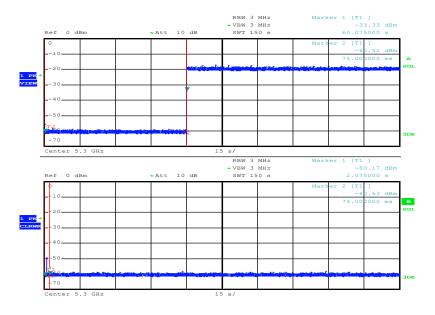
10.4 Test results (prior to use of a channel)

10.4.1 Channel Availability Check Time

Initial Channel Availability Check Time

The Initial Channel Availability Check Time tests that the UUT does not emit beacon, control, or data signals on the test Channel until the power-up sequence has been completed and the U-NII device checks for Radar Waveforms for one minute on the test Channel. This test does not use any Radar Waveforms and only needs to be performed one time.

- a) The U-NII devices will be powered on and be instructed to operate on the appropriate U-NII Channel that must incorporate DFS functions. At the same time the UUT is powered on, the spectrum analyzer will be set to zero span mode with a 3 MHz RBW and 3 MHz VBW on the Channel occupied by the radar with a 2.5 minute sweep time. The spectrum analyzer's sweep will be started at the same time power is applied to the U-NII device.
- b) The UUT should not transmit any beacon or data transmissions until at least 1 minute after the completion of the power-on cycle
- c) Confirm that the UUT initiates transmission on the channel
- Note: The results of the Channel Availability Check Time test can be found in the upper trace in the plots below.



Radar Burst at the Beginning of the Channel Availability Check Time

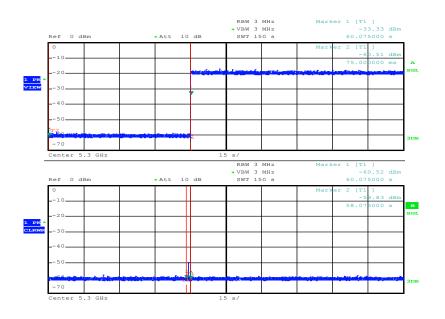
In the upper trace off the plot below Time Line T_1 is set to the end of the Channel Availability Check while T_2 is set 60 seconds before to indicate the start of the Channel Availability Check.

The lower trace in the plot below shows a single burst of one of the Short Pulse Radar Types 0-4 commencing within a 6 second window starting at the end of the power-up sequence of the DUT respectively within the first 6 seconds of the Channel Availability Check.

It must be shown that no transmissions occur on this channel after the Channel Availability Check (see Time Line T_1 in the upper plot).

Date: 13.JUN.2016 11:06:42

Plot 4



Radar Burst at the End of the Channel Availability Check Time

In the upper trace of the plot below Time Line T₁ is set to the end of the Channel Availability Check while T₂ is set 60 seconds before to indicate the start of the Channel Availability Check.

The lower trace in the plot below shows a single burst of one of the Short Pulse Radar Types 0-4 commencing within a 6 second window at the end of the Channel Availability Check respectively within the last 6 seconds of the Channel Availability Check.

It must be shown that no transmissions occur on this channel after the Channel Availability Check (see Time Line T_1 in the upper plot).

Date: 13.JUN.2016 11:12:09

Plot 5

10.5 Test results (during normal operation)

10.5.1 U-NII Detection Bandwidth

The U-NII Detection Bandwidth was determined according the procedure as described in the correspondent KDB as referenced in section 3 of this test report for any supported bandwidth.

The U-NII Detection Bandwidth must meet the U-NII Detection Bandwidth criterion referenced in section 10.2.2. Otherwise, the UUT does not comply with DFS requirements. This is essential to ensure that the UUT is capable of detecting Radar Waveforms across the same frequency spectrum that contains the significant energy from the system. In the case that the U-NII Detection Bandwidth is greater than or equal to the 99 percent power bandwidth for the measured F_H and F_L , the test can be truncated and the U-NII Detection Bandwidth can be reported as the measured F_H and F_L .

Operating mode	99% Bandwidth	F∟	Fн	U-NII Detection
	(MHz)	(MHz)	(MHz)	Bandwidth / Fн-F∟ (MHz)
20 MHz-mode	17.9	5290	5310	20 MHz

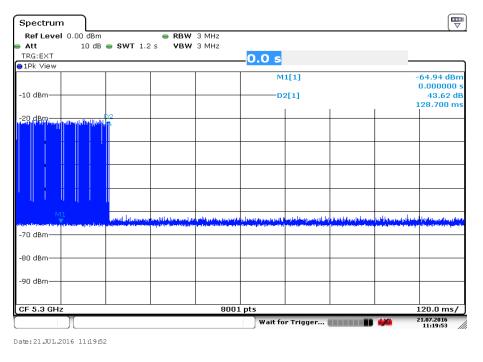
10.5.2 Channel move time / channel closing transmission time

After a radar's presence is detected, all transmissions shall cease on the operating channel within 10 seconds. Transmissions during this period shall consist of normal traffic for a maximum of 200 ms after detection of the radar signal. In addition, intermittent management and control signals can be sent during the remaining time to facilitate vacating the operating channel not exceeding 60ms.

The test is performed during normal operation with the highest bandwidth supported by the DUT.

Channel Closing Time

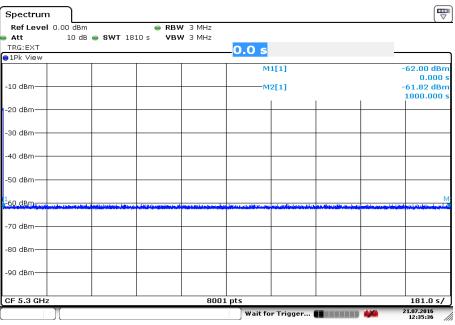
Spectr	um											
Ref Le	evel (0.00 d	Зm	👄 RB1	V 3 MHz							, ,
🛛 Att		10	dB 👄 SWT 12	s VBN	N/ 3 MHz							
TRG:EX						_ 1	0.0	5			_	
🔵 1Pk Vie	зw											
							M	3[1]				-64.35 dBm
-10 dBm												10.00000 s
10 0.0							M	1[1]				-22.02 dBm
+20 dBm	M <u>3</u> _2											0.00000 s
and the second second	TT T											
-30 dBm												
-40 dBm												
-50 dBm												
-60 dBm												MO
-ou ubiii			a a sub <mark>i</mark> nte da parte da fanda a subi	Min Series Lines	اللهمية والشمارة كرديانه وأمسيك	undels.	and a superior of the superior	ورافي ومحدثات	- Alex Birghis	de printe de la	No. of Concession, Name	M3
-70 dBm				-								
-70 ubm												
-80 dBm												
-90 dBm												
CF 5.3	GHZ				8001	nte						1.2 s/
Marker							-					
	Ref	Trc	X-value	1	Y-value	1	Func	tion		Fund	tion Resu	It
M1		1	A value	0.0 s	-22.02 dB	m	- unc			- and		
D2	M1	1	12	4.2 ms	0.92 0							
MЗ		1		10.0 s	-64.35 dB	m						
							Wait fo	r Trigg	er 🔳		494	21.07.2016 11:23:56


Date:21.JUL.2016 11:23:56

Plot 6

Note: With Marker 1 at the end of the radar pulse (t = 0ms) the Channel Closing Time is determined by setting a Delta-Marker to the point where the last transmission occurred. The Channel Closing Time is 124.2 ms.

Channel Closing Transmission Time


Plot 7

Note: With Marker 1 at the end of the radar pulse (t = 0ms) the Channel Closing Time is determined by setting a Delta-Marker to the point where the last transmission occurred. The accumulated transmission time is less than the delta between *Marker 1* and *Marker 2* (128.7ms) hence it is less than 200 ms + 60 ms.

10.5.3 Non-Occupancy Period

A channel that has been flagged as containing a radar system, either by a channel availability check or inservice monitoring, is subject to a non-occupancy period of at least 30 minutes. The non occupancy period starts at the time when the radar system is detected.

Date:21.JUL.2016 12:35:36

10.5.4 In-Service Monitoring / Statistical Performance Check

To determine the ability of the device to detect the radar test waveforms statistical data is gathered.

A detailed and pulse related evaluation of the test results can be found along with the sample parameter data sheets in the Test Report Annex I.

Short Pulse Radar Test Waveforms

According the table in section 10.2.310.2.2 the minimum percentage of successful detections for Short Pulse Radar Test Waveforms is 60% out of 30 trails. In addition an aggregate minimum percentage of successful detections across all Short Pulse Radar Types 1-4 is required and calculated as follows:

$$P_{sum} = \frac{P_d 1 + P_d 2 + P_d 3 + P_d 4}{4}$$

where: P_d is the percentage of successful detections for each radar burst P_{sum} is the aggregate percentage of successful detections

The minimum percentage of successful aggregate detections across all Short Pulse Radar Types 1-4 is 80%.

Results 20 MHz-Mode:

Radar Type	Number of Trails	Number of Successful Detections	Percentage of Successful Detections
1	30	28	93.3
2	30	26	86.7
3	30	30	100.0
4	30	26	86.7
Aggregate (Radar Types 1	90.2		

Long Pulse Radar Test

Results 20 MHz-Mode:

Radar Type	Number of Trails	Number of Successful Detections	Percentage of Successful Detections
5	30	24	80.0

Frequency Hopping Radar Test

Results 20 MHz-Mode:

Radar Type	Number of Trails	Number of Successful Detections	Percentage of Successful Detections
6	30	28	93.3

11 **Observations**

No observations except those reported with the single test cases have been made.

Annex A Document history

Version	Applied changes	Date of release
	Initial release	2016-08-02
-A	Editorial changes (FCC ID / IC ID / HVIN / PMN)	2016-11-15

Annex B Further information

<u>Glossary</u>

AVG	-	Average
DUT	-	Device under test
EMC	-	Electromagnetic Compatibility
EN	-	European Standard
EUT	-	Equipment under test
ETSI	-	European Telecommunications Standard Institute
FCC	-	Federal Communication Commission
FCC ID	-	Company Identifier at FCC
HW	-	Hardware
IC	-	Industry Canada
Inv. No.	-	Inventory number
N/A	-	Not applicable
PP	-	Positive peak
QP	-	Quasi peak
S/N	-	Serial number
SW	-	Software
PMN	-	Product marketing name
HMN	-	Host marketing name
HVIN	-	Hardware version identification number
FVIN	-	Firmware version identification number

Annex C Accreditation Certificate

Front side of certificate	Back side of certificate		
DALKS Deutsche Aktroditierungsstelle			
Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH		
Bellehene gemäß § 8 Absatz 1 AkkStelle i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, ILAC und IAF zur gegenseitigen Anerkennung.	Standort Berlin Standort Frankfurt am Main Standort Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesallee 100		
Akkreditierung	10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig		
Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium			
CETECOM ICT Services GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken			
die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen:			
Funk Mobilfunk (GSM / DCS) + OTA Elektromagnetische Verträglichkeit (EMV) Produktischerheit SAR / EMF Umweit Smart Card Technology Bluetooth* Automotive WF-F-Services Kanadische Anforderungen US-Anforderungen Akustik Near Field Communication (NFC)	Die auszugsweise Veröffentlichung der Akkreditierungsuktunde bedarf der vorherigen schriftlichen Zustimmung der Deutsche Akkreditierungsstelle GmbH (DAkS), Ausgenommen davon ist die separate Weiterverbreitung des Deckblates durch die umseitig genannte Konformitätbewertungsstelle in umveränderter Form. Es darf nicht der Anschein erweckt werden, dass sich die Akkreditierung auch auf Bereiche erstreckt, die über den durch die DAkSS bestängten Akkreditierungsbereich hinausgehen. Die Akkreditierung erforigte gemäß des Gesetzes über die Akkreditierung stelle (AkkStelleG) vom 31. Juli 2008 (Bell. 1 5.262) sould eer Verortung (EG) Nr. 765/2008 des Europaistenen Palaments und des Rates vom 9. Juli 2008 über die Vorschriften für die Akkreditierung und Marktüberwachung im Zusammenham mit der Vermanium von Produkter (Alb. 1.21 aus 9. Juli 2008, Sould Die DAkS ist Unterzeichnerin der Mutitateralen Abkommen zur gegenseitigen Anerkennung der Europaen co-operation for Acceditation (Ed), des International Acceditation for und der International Laboratory Acceditation Gooperation (LAC). Die Unterzeichner dieser Abkommen erkennen ihre Akkreditierungen gegenseitig an.		
Registrierungsnummer der Urkunde: D-PL-12076-01-01	EA: www.expensar-accreditation.org LAC: www.lacorg LAC: www.lacorg LAC: www.latnu		
Frankfurt, 04.05.2016 Im Auftrag Dipl-Jrag, (FH) Ralf Egner			
Abbeilungstoitef Seite rissens auf de Richarite			

Note:

The current certificate including annex can be received from CETECOM ICT Services GmbH on request.