

TEST REPORT

Report Number.: 14441108-E6V1

- Applicant : DISH TECHNOLOGIES LLC 90 INVERNESS CIRCLE EAST ENGLEWOOD, CO 80112, UNITED STATES
 - **Model :** D45
 - Brand : DISH
 - FCC ID : DKNU49F
- EUT Description : TV SET TOP BOX
- Test Standard(s) : FCC 47 CFR PART 15 SUBPART C

Date of Issue: 2022-10-03

Prepared by: UL VERIFICATION SERVICES INC. 47173 Benicia Street Fremont, CA 94538 U.S.A. TEL: (510) 319-4000 FAX: (510) 661-0888

REPORT REVISION HISTORY

Page 2 of 43

TEL:(510) 319-4000

TABLE OF CONTENTS

REI	REPORT REVISION HISTORY 2						
TAE	TABLE OF CONTENTS						
1.	ATTESTATION OF TEST RESULTS						
2.	TEST RESULTS SUMMARY7						
3.	TE	ST METHODOLOGY					
4.	FA	CILITIES AND ACCREDITATION					
5.	DE	CISION RULES AND MEASUREMENT UNCERTAINTY					
5	.1.	METROLOGICAL TRACEABILITY 8					
5	.2.	DECISION RULES					
5	.3.	MEASUREMENT UNCERTAINTY 8					
5	.4.	SAMPLE CALCULATION					
6.	EQ	UIPMENT UNDER TEST					
6	.1.	EUT DESCRIPTION					
6	.2.	MAXIMUM OUTPUT POWER					
6	.3.	DESCRIPTION OF AVAILABLE ANTENNAS					
6	.4.	SOFTWARE AND FIRMWARE					
6	.5.	WORST-CASE CONFIGURATION AND MODE					
6	.6.	DESCRIPTION OF TEST SETUP10					
7.	ME	ASUREMENT METHOD13					
8.	TE	ST AND MEASUREMENT EQUIPMENT14					
9.	AN	TENNA PORT TEST RESULTS15					
9	.1.	ON TIME AND DUTY CYCLE15					
9	.2.	6 dB BANDWIDTH					
9	.3.	OUTPUT POWER					
9	.4.	AVERAGE POWER					
9	.5.	POWER SPECTRAL DENSITY					
9	.6.	CONDUCTED SPURIOUS EMISSIONS20					
10.	R	ADIATED TEST RESULTS22					
1	0.1.	LIMITS AND PROCEDURE22					
		Page 3 of 43					

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

12.	SET	UP PHOTOS	42
11.	AC	POWER LINE CONDUCTED EMISSIONS	39
10	.5.	WORST CASE 18-26 GHz	37
10	.4.	WORST CASE BELOW 1 GHz	35
10	.3.	WORST CASE BELOW 30MHz	34
10	.2.	TRANSMITTER ABOVE 1 GHz	24

Page 4 of 43

TEL:(510) 319-4000

1. ATTESTATION OF TEST RESULTS

	5		
C	DATE TESTED:	2022-09-09 to 2022-09-19	
S	SAMPLE RECEIPT DATE:	2022-09-08	
S	SERIAL NUMBER:	CONDUCTED: DKNU49F RADIATED: E4EXUH00459D	
E	BRAND:	DISH	
N	NODEL:	D45	
E	UT DESCRIPTION:	TV SET TOP BOX	
C	COMPANY NAME:	DISH TECHNOLOGIES LLC 90 INVERNESS CIRCLE EAST ENGLEWOOD, CO 80112, UNITED S	TATES

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by A2LA, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Page 5 of 43

TEL:(510) 319-4000

Approved & Released For UL Verification Services Inc. By:

homine de luok

Francisco de Anda Staff Engineer Consumer Technology Division UL Verification Services Inc.

Reviewed By:

Tina Chu Senior Project Engineer Consumer Technology Division UL Verification Services Inc.

Prepared By:

Gerardo Abrego Senior Test Engineer Consumer Technology Division UL Verification Services Inc.

Page 6 of 43

TEL:(510) 319-4000

FAX:(510) 661-0888

2. TEST RESULTS SUMMARY

This report contains data provided by the customer which can impact the validity of results. UL Verification Services Inc. is only responsible for the validity of results after the integration of the data provided by the customer.

Below is a list of the data provided by the customer:

FCC Clause	Requirement	Result	Comment
Soo Commont	Duty Cycle	Reporting	ANSI C63.10 Section
See Comment		purposes only	11.6.
		Reporting	ANSI C63.10 Section
-	99% OBW	purposes only	6.9.3.
15.247 (a) (2)	6dB BW	Complies	None.
15.247 (b) (3)	Output Power	Complies	None.
See Comment	Average power	Reporting	Per ANSI C63.10,
		purposes only	Section 11.9.2.3.2.
15.247 (e)	PSD	Complies	None.
15.247 (d)	Conducted Spurious Emissions	Complies	None.
15.209, 15.205	Radiated Emissions	Complies	None.
15.207	AC Mains Conducted Emissions	Complies	None.

1. Antenna gain and type (see section 6.3)

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01.

4. FACILITIES AND ACCREDITATION

UL Verification Services Inc. is accredited by A2LA, Certificate Number 0751.05, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

	Address	ISED CABID	ISED Company Number	FCC Registration
\boxtimes	Building 1: 47173 Benicia Street, Fremont, CA 94538	US0104	2324A	550739
	Building 2: 47266 Benicia Street, Fremont, CA 94538	US0104	22541	550739
\boxtimes	Building 4: 47658 Kato Rd, Fremont, CA 94538	US0104	2324B	550739

Page 7 of 43

TEL:(510) 319-4000

5. DECISION RULES AND MEASUREMENT UNCERTAINTY

5.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

5.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

5.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	U _{Lab}
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.78 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.40 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	2.84 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	6.01 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.73 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.51 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.29 dB

Uncertainty figures are valid to a confidence level of 95%.

5.4. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

MAINS CONDUCTED EMISSIONS

Where relevant, the following sample calculation is provided: Final Voltage (dBuV) = Measured Voltage (dBuV) + Cable Loss (dB) + Limiter Factor (dB) + LISN Insertion Loss. 36.5 dBuV + 0 dB +10.1 dB+ 0 dB = 46.6 dBuV

Page 8 of 43

TEL:(510) 319-4000

FAX:(510) 661-0888

6. EQUIPMENT UNDER TEST

6.1. EUT DESCRIPTION

The EUT is a TV Set Top Box with RF4CE Zigbee, BLE (2Mbps), BT and 5GHz 802.11a/n/ac/ax radios.

6.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2425-2475	RF4CE Zigbee	12.27	16.87

6.3. DESCRIPTION OF AVAILABLE ANTENNAS

The antenna gain(s) and type, as provided by the manufacturer, are as follows:

The RF4CE Zigbee radio utilizes a PCB Inverted F antenna, with a maximum gain of 4.1 dBi.

6.4. SOFTWARE AND FIRMWARE

The EUT firmware installed during testing was: Zigbee FW: TL8656_V0008

6.5. WORST-CASE CONFIGURATION AND MODE

Radiated emissions below 1GHz, above 18GHz, and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

Band edge and radiated emissions between 1GHz and 18GHz were performed with the EUT set to transmit at the highest power on low, middle, and high channels.

The EUT is a desktop device, therefore, all final radiated testing was performed with the EUT in X orientation.

This EUT supports BLE/BT + Zigbee + WLAN 5GHz simultaneous transmission, radiated emission test was performed, please refer to report number 14441108-E7 for result.

Data rate provided by manufacturer: 250kbps, O-QPSK modulation.

Page 9 of 43

TEL:(510) 319-4000

FAX:(510) 661-0888

6.6. DESCRIPTION OF TEST SETUP

SUPPORT TEST EQUIPMENT								
Des	cription	Manufacturer	Model	Serial I	Number	FCC ID/ DoC		
AC/DC Adapter(EUT)		NetBit	NBC25A120210VU	222	109	DoC		
Router		D-Link	EBR-2310	F31138	F311388010596			
Rout	er Adapter	D-Link	AF0605	LF4R070	82717180	DoC		
TV	Emulator	DISH	TV Emulator	D52	2-12			
Laptop:	Radiated test	HP	Elitebook 740	N	/A	DoC		
Adapt Rad	AC/DC er(Laptop): liated test	HP	N/A	N	/A	DoC		
Laptop	: conducted test	HP	Elitebook 740	N	/A	DoC		
AC/DC Adapter(Laptop): conducted test		HP	N/A	N/A		DoC		
USB Flash Drive		Sandisk	Cruzer Glide 16GB	SDCZ6	0-016G	DoC		
		I/	O CABLES (CONDUC	TED TEST)				
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks		
1	DC	1	Barrel	Un-shielded	1.5	EUT to AC/DC adapter Mains		
2	Antenna	1	RF	Un-shielded	0.2	To spectrum analyzer		
		I/O CABLES (R.	ADIATED TEST/AC P	OWER LINE E	MISSIONS)			
Cable Port No.		# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks		
1	DC	1	Barrel	Un-shielded	1.5	EUT to AC/DC adapter Mains		
2	HDMI	1	HDMI	shielded	2.5	EUT to Emulator		
3	RJ45	1	RJ45	Un-shielded	More than 3	EUT to Ethernet Router		
4	DC	1	Barrel	Un-shielded	1.8	Ethernet router to AC/DC Adapter		

Page 10 of 43

TEL:(510) 319-4000

CONDUCTED TEST SETUP DIAGRAM

TEST SETUP

The EUT is connected to support equipment and AC powered. Upon power up the EUT, the Zigbee radio will be exercised. Power cycle to switch the test mode.

Page 11 of 43

TEL:(510) 319-4000

RADIATED TEST/AC POWER LINE EMISSIONS SETUP DIAGRAM

TEST SETUP

The EUT is connected to support equipment and AC powered. Upon power up the EUT, the Zigbee radio will be exercised. Power cycle to switch the test mode.

Page 12 of 43

TEL:(510) 319-4000

7. MEASUREMENT METHOD

On Time and Duty Cycle: ANSI C63.10 Section 11.6.

6 dB BW: ANSI C63.10 Section 11.8.1

Output Power: ANSI C63.10 Section 11.9.1.3 Method PKPM1 Peak-reading power meter

<u>Output Power</u>: ANSI C63.10 Section 11.9.2.3.2Method AVGPM-G (Measurement using a gated RF average-reading power meter)

PSD: ANSI C63.10 Section 11.10.2. Method PKPSD (peak PSD)

Radiated emissions non-restricted frequency bands: ANSI C63.10 Section -11.11

Radiated emissions restricted frequency bands: ANSI C63.10 Section -11.12.1

Conducted emissions in restricted frequency bands: ANSI C63.10 Section -11.12.2

Band-edge: ANSI C63.10 Section 6.10

Radiated Spurious Emissions Below 30MHz: ANSI C63.10-2013 Section 6.4

AC Power Line Conducted Emissions: ANSI C63.10-2013, Section 6.2.

Page 13 of 43

TEL:(510) 319-4000

8. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment were utilized for the tests documented in this report:

TEST EQUIPMENT LIST									
Description	Manufacturer	Model	ID Num	Cal Due	Last Cal				
Loop Antenna 30Hz – 1MHz	Electro - Metrics	EM-6871	219909	2023-05-10	2022-05-10				
Loop Antenna 100KHz-30MHz	Electro - Metrics	EM-6872	219911	2023-05-10	2022-05-10				
Antenna, Broadband Hybrid, 30MHz to 2GHz	Sunol Sciences Corp.	JB3	85150	2023-10-15	2022-10-15				
Amplifier, 10KHz to 1GHz, 32dB	SONOMA INSTRUMENT	310	170648	2023-02-10	2022-02-10				
Antenna Horn 1-18GHz	ETS-Lindgren (Cedar Park, Texas)	3117	80403	2023-06-08	2022-06-08				
RF Filter Box, 1-18GHz	UL-FR1	NA	171389	2023-05-31	2022-05-31				
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	201497	2023-02-18	2022-02-18				
Antenna, Horn 18 to 26.5GHz	ARA	MWH-1826/B	81138	2022-10-13	2021-10-13				
Rf Amplifier, 18-26.5GHz, 60dB gain	AMPLICAL	AMP18G26.5-60	215705	2023-02-26	2022-02-26				
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	201501	2023-02-19	2022-02-19				
Power Sensor, P - series, 50MHz to 18GHz, Wideband	Keysight Technologies Inc	N1921A	90388	2023-01-24	2022-01-24				
Power Meter, P-series single channel	Keysight Technologies Inc	N1911A	90733	2023-01-24	2022-01-24				
Spectrum Analyzer PXA	Agilent Technology	N9030A	80396	2023-02-01	2022-02-01				
	AC L	ine Conducted							
Description	Manufacturer	Model	ID Num	Cal Due	Last Cal				
LISN	Fischer Custom Communications, Inc	FCC-LISN-50/250- 25-2-01-480V	175765	2023-01-26	2022-01-26				
EMI TEST RECEIVER	Rohde & Schwarz	ESR	93091	2023-02-21	2022-02-21				
Transient Limiter	TE	TBFL1	207996	2023-07-15	2022-07-15				
	Test Software List								
Description	Manufacturer	Model		Version					
Radiated Software	UL	UL EMC	Sept 15 2022, 6 2	Dec 28 2015, De 2022, Jul 15, 201	c 29 2015, Jul 4				
Antenna Port Software	UL	UL RF		AP2022.8.16					
AC Line Conducted Software	UL	UL EMC		Feb 17, 2022					

Page 14 of 43

TEL:(510) 319-4000

9. ANTENNA PORT TEST RESULTS

9.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
2.4GHz Band						
ZIGBEE	1.00000	1.00000	1.000	100.00	0.00	0.010

Agilent Spectrum Analyzer - AP2022.8.16,16080,Conducted A								
Center F	req 2.450000000	GHz	Trig: Free Run	#Avg Type AvaiHold:	: RMS 1/1	TRACE		Frequency
		PNO: Fast 🔸 IFGain:Low	#Atten: 30 dB	Arghiold.		DET	PNNNNN	
	Dof 20.00 dDm				4	∆Mkr1 9	5.50 µs 050 dB	Auto Tune
	Rei 20.00 abm							
10.0								Center Freq
							142	2.450000000 GHz
0.00 - 14 2-								Start Fred
-10.0								2.450000000 GHz
-20.0								Stop Fred
-30.0								2.450000000 GHz
-40.0								CF Step 8.000000 MHz
-50.0								<u>Auto</u> Mar
-60.0								Freq Offset 0 Hz
-70.0								
Center 2. Res BW 8	450000000 GHz 3 MHz	#VBW	50 MHz		Sweep	Sμ 100.0 μs (1	oan 0 Hz 001 pts)	
MSG					STATUS	5		
			DUTY CYC	E ZIGB	EE			

Page 15 of 43

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

9.2. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

Channel Frequency (MHz)		6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2425	1.386	0.5
Middle	2450	1.422	0.5
High	2475	1.425	0.5

Page 16 of 43

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

9.3. OUTPUT POWER

LIMITS

FCC §15.247 (b) (3)

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The power output was measured on the EUT antenna port using SMA cable with 10dB attenuator connected to a power meter via wideband power sensor. Peak output power was read directly from power meter.

RESULTS

Tested By:	16080 ZS
Date:	2022-09-09

Channel	Frequency	Peak Power Reading	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2425	12.27	30	-17.730
Middle	2450	12.15	30	-17.850
High	2475	12.09	30	-17.910

Page 17 of 43

TEL:(510) 319-4000

9.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The power output was measured on the EUT antenna port using SMA cable with 10dB attenuator connected to a power meter via wideband power sensor. Gated average output power was read directly from power meter.

RESULTS

Tested By:	16080 ZS
Date:	2022-09-09

Channel	Frequency	AV power
	(MHz)	(dBm)
Low	2425	11.89
Middle	2450	11.81
High	2475	11.76

Page 18 of 43

TEL:(510) 319-4000

9.5. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

RESULTS

Channel	Frequency	PSD	Limit	Margin
	(MHz)	(dBm/3kHz)	(dBm/3kHz)	(dB)
Low	2425	-1.37	8	-9.37
Middle	2450	-2.73	8	-10.73
High	2475	-1.56	8	-9.56

Page 19 of 43

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

9.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

Output power was measured based on the use of a peak measurement; therefore, the required attenuation is 20 dBc.

RESULTS

Page 20 of 43

TEL:(510) 319-4000

Page 21 of 43

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

10. RADIATED TEST RESULTS

10.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
0.009-0.490	2400/F(kHz) @ 300 m	-
0.490-1.705	24000/F(kHz) @ 30 m	-
1.705 - 30	30 @ 30m	-
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements in the 30-1000MHz range, 9kHz for peak and/or quasi-peak detection measurements in the 0.15-30MHz range and 200Hz for peak and/or quasi-peak detection measurements in the 9 to 150kHz range. Peak detection is used unless otherwise noted as quasi-peak or average (9-90kHz and 110-490kHz).

For pre-scans above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 30 KHz for peak measurements.

For final measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 3 MHz for peak measurements and as applicable for average measurements.

The spectrum from 1 GHz to 18 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band. Below 1GHz and above 18GHz emissions, the channel with the highest output power was tested.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 22 of 43

TEL:(510) 319-4000

FAX:(510) 661-0888

For below 30MHz testing, investigation was done on three antenna orientations (parallel, perpendicular, and ground-parallel), parallel and perpendicular are the worst orientations, therefore testing was performed on these two orientations only. Blue color trace on plots: Parallel orientation. Green color trace on plots: Perpendicular orientation.

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

KDB 414788 Open Field Site(OFS) and Chamber Correlation Justification

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

Page 23 of 43

TEL:(510) 319-4000

10.2. TRANSMITTER ABOVE 1 GHz

BANDEDGE (LOW CHANNEL)

HORIZONTAL RESULT

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	Horn Antenna ACF(dB)	Amp/Cbl/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.39	40.37	Pk	32.3	-20.6	52.07	-	-	74	-21.93	101	181	н
2	* 2.341528	42.73	Pk	32	-20.4	54.33	-	-	74	-19.67	101	181	н
3	* 2.39	29.76	RMS	32.3	-20.6	41.46	54	-12.54	-	-	101	181	Н
4	* 2 363333	30.48	RMS	32.2	-20.5	42 18	54	-11 82	-	-	101	181	н

^{* -} indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector RMS - RMS detection

Page 24 of 43

TEL:(510) 319-4000

VERTICAL RESULT

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	Horn Antenna ACF(dB)	Amp/Cbl/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.39	40.06	Pk	32.3	-20.6	51.76	-	-	74	-22.24	91	212	V
2	* 2.375589	42.63	Pk	32.2	-20.5	54.33	-	-	74	-19.67	91	212	V
3	* 2.39	29.17	RMS	32.3	-20.6	40.87	54	-13.13	-	-	91	212	V
4	* 2.372649	30.18	RMS	32.1	-20.5	41.78	54	-12.22	-	-	91	212	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector RMS - RMS detection

Page 25 of 43

TEL:(510) 319-4000

BANDEDGE (HIGH CHANNEL)

HORIZONTAL RESULT

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	Horn Antenna ACF(dB)	Amp/Cbl/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.4835	47.76	Pk	32.6	-21.1	59.26	-	-	74	-14.74	237	140	H
2	* 2.483632	48.35	Pk	32.6	-21.1	59.85	-	-	74	-14.15	237	140	Н
3	* 2.4835	38.8	RMS	32.6	-21.1	50.3	54	-3.7	-	-	237	140	Н
4	* 2.483506	38.81	RMS	32.6	-21.1	50.31	54	-3.69	-	-	237	140	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

RMS - RMS detection

Page 26 of 43

TEL:(510) 319-4000

VERTICAL RESULT

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	Horn Antenna ACF(dB)	Amp/Cbl/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.4835	45.1	Pk	32.6	-21.1	56.6	-	-	74	-17.4	61	105	V
2	* 2.483563	45.92	Pk	32.6	-21.1	57.42	-	-	74	-16.58	61	105	V
3	* 2.4835	35.74	RMS	32.6	-21.1	47.24	54	-6.76	-	-	61	105	V
4	* 2.483506	35.95	RMS	32.6	-21.1	47.45	54	-6.55	-	-	61	105	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector RMS - RMS detection

Page 27 of 43

TEL:(510) 319-4000

HARMONICS AND SPURIOUS EMISSIONS

LOW CHANNEL RESULTS

VERTICAL

Page 28 of 43

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

FCC Part15C 2.4GHz RSE.TST 30915 29 Dec 2015

TEL:(510) 319-4000

FAX:(510) 661-0888

Radiated Emissions

Marker	Frequency (GHz)	Meter Reading	Det	Horn Antenna	Amp/Cbl/P ad (dB)	Corrected Reading	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
		(dBuV)		ACF(dB)		(dBuV/m)							
1	* 1.62478	44.96	PK2	29.1	-21.8	52.26	-	-	74	-21.74	48	180	Н
	* 1.62516	39.14	MAv1	29.1	-21.8	46.44	54	-7.56	-	-	48	180	Н
2	* 1.62553	42.73	PK2	29.1	-21.8	50.03	-	-	74	-23.97	47	203	V
	* 1.62516	34.92	MAv1	29.1	-21.8	42.22	54	-11.78	-	-	47	203	V
3	* 4.848995	48.92	PK2	34.5	-27.8	55.62	-	-	74	-18.38	228	191	Н
	* 4.850929	43.2	MAv1	34.6	-27.9	49.9	54	-4.1	-	-	228	191	Н
4	* 7.276332	42.17	PK2	36	-25.9	52.27	-	-	74	-21.73	267	117	Н
	* 7.276301	34.75	MAv1	36	-25.9	44.85	54	-9.15	-	-	267	117	Н
5	* 4.850995	48.65	PK2	34.6	-27.9	55.35	-	-	74	-18.65	88	104	V
	* 4.850911	42.74	MAv1	34.6	-27.9	49.44	54	-4.56	-	-	88	104	V
6	* 7.276452	44.22	PK2	36	-25.9	54.32	-	-	74	-19.68	57	142	V
	* 7.276464	37.23	MAv1	36	-25.9	47.33	54	-6.67	-	-	57	142	V

 * - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 29 of 43

TEL:(510) 319-4000

MID CHANNEL RESULTS

Page 30 of 43

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

Radiated Emissions

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	Horn Antenna ACF(dB)	Amp/Cbl/P ad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 1.62516	45.03	PK2	29.1	-21.8	52.33	-	-	74	-21.67	46	180	Н
	* 1.62516	38.8	MAv1	29.1	-21.8	46.1	54	-7.9	-	-	46	180	Н
2	* 1.62516	43.02	PK2	29.1	-21.8	50.32	-	-	74	-23.68	128	245	V
	* 1.62516	35.36	MAv1	29.1	-21.8	42.66	54	-11.34	-	-	128	245	V
3	* 4.898999	47.98	PK2	34.6	-28.1	54.48	-	-	74	-19.52	222	109	Н
	* 4.899019	41.82	MAv1	34.6	-28.1	48.32	54	-5.68	-	-	222	109	Н
4	* 7.348615	42.72	PK2	36	-25.6	53.12	-	-	74	-20.88	264	119	Н
	* 7.348451	35.74	MAv1	36	-25.6	46.14	54	-7.86	-	-	264	119	Н
5	* 4.898962	48.25	PK2	34.6	-28.1	54.75	-	-	74	-19.25	86	105	V
	* 4.900756	42.48	MAv1	34.5	-28.1	48.88	54	-5.12	-	-	86	105	V
6	* 7.351457	44.15	PK2	36	-25.6	54.55	-	-	74	-19.45	79	182	V
	* 7.351377	37.46	MAv1	36	-25.6	47.86	54	-6.14	-	-	79	182	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK2 - KDB558074 Method: Maximum Peak MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 31 of 43

TEL:(510) 319-4000

HIGH CHANNEL RESULTS

Page 32 of 43

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

Radiated Emissions

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	Horn Antenna ACF(dB)	Amp/Cbl/P ad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 1.62516	44.23	PK2	29.1	-21.8	51.53	-	-	74	-22.47	45	104	Н
	* 1.62516	38.14	MAv1	29.1	-21.8	45.44	54	-8.56	-	-	45	104	Н
2	* 1.35018	42.04	PK2	28.6	-21.5	49.14	-	-	74	-24.86	127	244	V
	* 1.62516	34.89	MAv1	29.1	-21.8	42.19	54	-11.81	-	-	127	244	V
3	* 4.94899	47.25	PK2	34.5	-28.5	53.25	-	-	74	-20.75	230	102	Н
	* 4.948942	41.21	MAv1	34.5	-28.5	47.21	54	-6.79	-	-	230	102	Н
4	* 7.423557	41.19	PK2	36	-24.8	52.39	-	-	74	-21.61	105	107	Н
	* 7.423653	33.61	MAv1	36	-24.8	44.81	54	-9.19	-	-	105	107	Н
5	* 4.948969	47.18	PK2	34.5	-28.5	53.18	-	-	74	-20.82	85	102	V
	* 4.950998	41.01	MAv1	34.5	-28.5	47.01	54	-6.99	-	-	85	102	V
6	* 7.426429	44.19	PK2	36	-24.8	55.39	-	-	74	-18.61	55	129	V
	* 7.426325	38.18	MAv1	36	-24.8	49.38	54	-4.62	-	-	55	129	V

 * - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 33 of 43

TEL:(510) 319-4000

10.3. WORST CASE BELOW 30MHz

SPURIOUS EMISSIONS BELOW 30 MHz (WORST-CASE CONFIGURATION)

Below 30MHz Data

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna E(ACF)	Amp/Cbl (dB)	Dist Corr 300m	Corrected Reading (dBuVolts)	Peak Limit (dBuV/m)	Margin (dB)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Avg Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)
1	.0222	24.03	Pk	58.8	-31.8	-80	-28.97	60.65	-89.62	40.65	-69.62	-		-	-	0-360
2	.2719	12.22	Pk	56.2	-32	-80	-43.58			-	-	38.92	-82.5	18.92	-62.5	0-360
6	.0221	24.24	Pk	58.8	-31.8	-80	-28.76	60.68	-89.44	40.68	-69.44	-	-	-	-	0-360
7	.2693	14	Pk	56.2	-32	-80	-41.8	-	-	-	-	39.01	-80.81	19.01	-60.81	0-360

Pk - Peak detector

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	Loop Antenna E(ACF)	Amp/Cbl (dB)	Dist Corr 30m (dB) 40Log	Corrected Reading (dBuVolts)	QP Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)
3	.546	18.41	Pk	56.1	-32	-40	2.51	32.86	-30.35	0-360
8	.5491	18	Pk	56.1	-32	-40	2.1	32.81	-30.71	0-360
4	1.54	11.86	Pk	44.1	-32	-40	-16.04	23.88	-39.92	0-360
5	11.05	17.56	Pk	34.6	-31.7	-40	-19.54	29.5	-49.04	0-360
9	1.5258	12.23	Pk	44.2	-32	-40	-15.57	23.96	-39.53	0-360
10	11.1119	16.59	Pk	34.6	-31.7	-40	-20.51	29.5	-50.01	0-360

Pk - Peak detector

Page 34 of 43

TEL:(510) 319-4000

10.4. WORST CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

Page 35 of 43

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

Below 1GHz Data

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	85150 AF (dB/m)	Amp Cbl (dB)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	43.9436	42.06	Pk	17.3	-31.3	28.06	40	-11.94	0-360	398	Н
2	55.8467	46.53	Pk	13.3	-31.2	28.63	40	-11.37	0-360	398	Н
3	107.377	35.36	Qp	18.1	-30.8	22.66	43.52	-20.86	217	297	Н
4	88.4951	49.72	Pk	13.4	-30.9	32.22	43.52	-11.3	0-360	101	V
5	105.67	48.58	Pk	17.7	-30.8	35.48	43.52	-8.04	0-360	101	V
6	874.988	39.68	Pk	27.8	-27.7	39.78	46.02	-6.24	0-360	101	Н
7	875.088	38.65	Pk	27.8	-27.7	38.75	46.02	-7.27	0-360	101	V

Pk - Peak detector

Qp - Quasi-Peak detector

Page 36 of 43

TEL:(510) 319-4000

10.5. WORST CASE 18-26 GHz

SPURIOUS EMISSIONS 18-26 GHz (WORST-CASE CONFIGURATION)

115UL Fremont - Chamber K	2022 Sep 19 10:45:21
	RF Emissions 3 meter
105	Project Number: 14441108
	Config:EUT+Support Equipment
95	Tested by:28199 JM
05	
9 75	
1 5 5	
9 55 Average Limit dBuV/m	
	والمتحدث والمحالم والمحالي والمح
35	
25	
18000 Frequenci	y (MHz) 26500
Ronge (Mtz) RBM/UBN Ref/Attn Det Avg Mode Sweep Pts #Sups/Mode Position If 1:18808-25508 1M(-345)/3M 104/2 PEAK - 34msec(Auto) 18k MiXH 0-3580dags H	ange (MHz) RBW/UBW Ref/Ritin Det Avg Mode Sweep Pts #Swps/Node Position
18-26.5GHz Test 3-meter.TST jv4323 18 May 2822	
HORIZ	ZONTAL
UL Fremont - Chamber K	2022 Sep 19 10:45:21
	RF Emissions 3 meter
105	Client Dish Technologies
05	Mode:Zigbee 18-26.5GHz
	lested by:28199 JM
85	
Peak Limit (dBuV/m)	
<u>9</u> 65	
Average Limit dBuV/m	
g 55	
45	
alistic and a descent and a descent and the state of a second state of a second state of the second state of the	
35	
25	
18000	26599
Frequency	y (MHz)
Nonge (Miz) RBW/UBW Ref/Attn Det Avg Node Sweep Pis #Swps/Node Position R	ange (11112) 1034/1034) Ref/Ritin Bet Ang Made Sweep Pts #Sapp/Mode Position :18988-25588 IM(-3dB)/3M 184/2 PEAK - 34esec(Auto) 18k H9101 8-368degs U
18-26.5GHz Test 3-meter.TST jv4323 18 May 2022	

Page 37 of 43

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

18 – 26GHz DATA

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	81138 AF (dB/m)	215705 amp/cbl (dB)	Cables (dB)	Corrected Reading (dBuVolts)	Peak Limit (dBuV/m)	PK Margin (dB)	Average Limit dBuV/m	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 20000.805	53.74	Pk	32.8	-60.6	18.4	44.34	74	-29.66	54	-9.66	0-360	199	Н
2	* 19999.86	53.1	Pk	32.8	-60.6	18.4	43.7	74	-30.3	54	-10.3	0-360	200	V

 * - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band Pk - Peak detector

Page 38 of 43

TEL:(510) 319-4000

11. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

Frequency of Emission (MHz)	Conducted Limit (dBµV)						
Frequency of Emission (MHZ)	Quasi-peak	Average					
0.15-0.5	66 to 56 *	56 to 46 *					
0.5-5	56	46					
5-30	60	50					

*Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.10.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

Page 39 of 43

TEL:(510) 319-4000

LINE 1 RESULTS

Range	1: Line-L	1 .15 - 30	OMHz								
Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	175765 LISN L1	C1&C3 cable path loss	207996 Limiter with short cabl	Corrected Reading dBuV	FCC Part 15 Class B QP	QP Margin (dB)	FCC Part 15 Class B Avg	Av(CISPR)M argin (dB)
2	.168	30.67	Ca	.1	0	9.4	40.17	-	-	55.06	-14.89
4	.4448	29.9	Ca	0	.1	9.3	39.3	-	-	46.97	-7.67
6	1.1828	19.91	Ca	0	.1	9.3	29.31	-	-	46	-16.69
8	5.541	14.26	Ca	0	.1	9.3	23.66	-	-	50	-26.34
10	9.7013	14.25	Ca	.1	.2	9.3	23.85	-	-	50	-26.15
12	29.0873	2.89	Ca	.2	.3	9.4	12.79	-	-	50	-37.21
1	.168	39.21	Qp	.1	0	9.4	48.71	65.06	-16.35	-	-
3	.4448	35.33	Qp	0	.1	9.3	44.73	56.97	-12.24	-	-
5	1.1828	24.31	Qp	0	.1	9.3	33.71	56	-22.29	-	-
7	5.5658	19.85	Qp	0	.1	9.3	29.25	60	-30.75	-	-
9	9.7013	20.07	Qp	.1	.2	9.3	29.67	60	-30.33	-	-
11	29.0895	8.95	Qp	.2	.3	9.4	18.85	60	-41.15	-	-

Qp - Quasi-Peak detector

Ca - CISPR average detection

Page 40 of 43

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

LINE 2 RESULTS

Range	2: Line-L	2 .15 - 30	OMHz								
Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	175765 LISN L2	C2&C3 cable path loss	207996 Limiter with short cabl	Corrected Reading dBuV	FCC Part 15 Class B QP	QP Margin (dB)	FCC Part 15 Class B Avg	Av(CISPR)M argin (dB)
14	.168	29.24	Ca	.1	0	9.4	38.74	-	-	55.06	-16.32
16	.4448	28.95	Ca	0	.1	9.3	38.35	-	-	46.97	-8.62
18	1.1828	15.87	Ca	0	.1	9.3	25.27	-	-	46	-20.73
20	5.541	9.99	Ca	0	.1	9.3	19.39	-	-	50	-30.61
22	15.7538	10.37	Ca	.1	.2	9.3	19.97	-	-	50	-30.03
24	29.643	37	Ca	.2	.3	9.4	9.53	-	-	50	-40.47
13	.168	39.73	Qp	.1	0	9.4	49.23	65.06	-15.83	-	-
15	.4448	34.13	Qp	0	.1	9.3	43.53	56.97	-13.44	-	-
17	1.1828	20.69	Qp	0	.1	9.3	30.09	56	-25.91	-	-
19	5.541	15.56	Qp	0	.1	9.3	24.96	60	-35.04	-	-
21	15.729	16	Qp	.1	.2	9.3	25.6	60	-34.4	-	-
23	29.616	5.87	Qp	.2	.3	9.4	15.77	60	-44.23	-	-

Qp - Quasi-Peak detector

Ca - CISPR average detection

Page 41 of 43

UL VERIFICATION SERVICES INC. 47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888