



# SMK MANUFACTURING, INC. TEST REPORT

# FOR THE

# 2 WAY IR REMOTE CONTROL, RRC9001-4041E & RRC9001-4001L

# FCC PART 15 SUBPART B SECTIONS 15.107 AND 15.109 CLASS B & ICES-003 ISSUE 4

# TESTING

# DATE OF ISSUE: MAY 29, 2008

#### **PREPARED FOR:**

SMK Manufacturing, Inc. 1055 Tierra Del Rey, Suite H Chula Vista, CA 91910

P.O. No.: 29318 W.O. No.: 87968

# **PREPARED BY:**

Mary Ellen Clayton CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Date of test: May 15, 2008

Report No.: FC08-048

This report contains a total of 18 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.



# TABLE OF CONTENTS

| Administrative Information             | .3  |
|----------------------------------------|-----|
| Approvals                              | .3  |
| Site File Registration Numbers         | .3  |
| Summary of Results                     | .4  |
| Conditions During Testing              | .4  |
| Equipment Under Test (EUT) Description | .4  |
| Equipment Under Test                   | .4  |
| Peripheral Devices                     | .4  |
| Report of Emissions Measurements       | .5  |
| Testing Parameters                     | .5  |
| FCC 15.109 Radiated Emissions          | .7  |
| ICES-003 Radiated Emissions            | .13 |
|                                        |     |



# **ADMINISTRATIVE INFORMATION**

**DATE OF TEST:** May 15, 2008

# DATE OF RECEIPT: May 15, 2008

**REPRESENTATIVE:** Manuch Dizechi

MANUFACTURER: SMK Manufacturing, Inc.

1055 Tierra Del Rey, Suite H Chula Vista, CA 91910 **TEST LOCATION:** CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92823

TEST METHOD: ANSI C63.4 (2003) and ICES-003 Issue 4

**PURPOSE OF TEST:** To perform testing of the 2 Way IR Remote Control, RRC9001-4041E & RRC9001-4001L with the requirements for FCC Part 15 Subpart B Sections 15.107 and 15.109 Class B & ICES-003 devices.

# APPROVALS

**QUALITY ASSURANCE:** 

Steve 7 Bel

Steve Behm, Director of Engineering Services

**TEST PERSONNEL:** 

Septimiu Apahidean, EMC Engineer

# SITE FILE REGISTRATION NUMBERS

| Location | Japan         | Canada    | FCC   |
|----------|---------------|-----------|-------|
| Brea A   | R-301 & C-314 | IC 3172-A | 90473 |



# **SUMMARY OF RESULTS**

| Test                | Specification                                                 | Results |
|---------------------|---------------------------------------------------------------|---------|
|                     |                                                               |         |
| Conducted Emissions | FCC Part 15 Subpart B Section 15.107 Class B ICES-003 Issue 4 | NA      |
|                     |                                                               |         |
| Radiated Emissions  | FCC Part 15 Subpart B Section 15.109 Class B ICES-003 Issur 4 | Pass    |

NA = Not Applicable

# **CONDITIONS DURING TESTING**

No modifications to the EUT were necessary during testing. Conducted emissions not required for this device because it is battery powered.

# EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit.

# EQUIPMENT UNDER TEST

# IR Remote

Manuf:SMK Manufacturing, Inc.Model:RRC9001-4041ESerial:NAFCC ID:NA

#### **IR/FSK Remote**

| Manuf:  | SMK Manufacturing, Inc. |
|---------|-------------------------|
| Model:  | RRC9001-4001L           |
| Serial: | NA                      |
| FCC ID: | NA                      |

# PERIPHERAL DEVICES

The EUT was not tested with peripheral devices.



#### **REPORT OF EMISSIONS MEASUREMENTS**

#### **TESTING PARAMETERS**

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

# **CORRECTION FACTORS**

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in  $dB\mu V/m$ , the spectrum analyzer reading in  $dB\mu V$  was corrected by using the following formula. This reading was then compared to the applicable specification limit.

|   | SAMPLE CALCULA             | ATIONS        |
|---|----------------------------|---------------|
|   | Meter reading              | (dBµV)        |
| + | Antenna Factor             | (dB)          |
| + | Cable Loss                 | (dB)          |
| - | <b>Distance</b> Correction | (dB)          |
| - | Preamplifier Gain          | (dB)          |
| = | Corrected Reading          | $(dB\mu V/m)$ |



# TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. The following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

| MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANG |                     |                  |                   |  |  |  |  |  |  |  |
|-----------------------------------------------------------|---------------------|------------------|-------------------|--|--|--|--|--|--|--|
| TEST                                                      | BEGINNING FREQUENCY | ENDING FREQUENCY | BANDWIDTH SETTING |  |  |  |  |  |  |  |
| RADIATED EMISSIONS                                        | 30 MHz              | 1000 MHz         | 120 kHz           |  |  |  |  |  |  |  |
| RADIATED EMISSIONS                                        | 1000 MHz            | >1 GHz           | 1 MHz             |  |  |  |  |  |  |  |

# SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the highest readings, this is indicated as a "QP" or an "Ave" on the appropriate rows of the data sheets. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

# <u>Peak</u>

In this mode, the spectrum analyzer/receiver readings were recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the measuring device called "peak hold," the measuring device had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

# Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the quasi-peak detector.

# <u>Average</u>

For certain frequencies, average measurements may be made using the spectrum analyzer/receiver. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.



# FCC 15.109 RADIATED EMISSIONS

**Test Setup Photos** 



RCC9001-4041E



RCC9001-4041E





RCC9001-4001L



RCC9001-4001L



# **Test Data Sheets**

| Test Lo                                                                                                     | ocation: C                                                                                                                                                                                                                                                                                            | CKC Laboratories, Inc. •110 N Olinda Place • Brea, CA 92823 • 714-993-6112                                                                                                                                        |                                                                                                                                 |                                                                                                    |                                                                                            |                                                                                                   |                                                                                                                      |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                   |                                                                                         |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Custom<br>Specific<br>Work C<br>Test Ty<br>Equipm<br>Manufa<br>Model:<br>S/N·                               | ner: S<br>cation: F<br>Drder #: 8<br>7pe: N<br>nent: I<br>acturer: S<br>F                                                                                                                                                                                                                             | MK Man<br>CC 15.10<br>7968<br>Maximized<br>R Remote<br>MK Manu<br>RC9001-4                                                                                                                                        | ufacturin<br>9 (2006)<br>1 Emissio<br>9<br>1facturing<br>4001L                                                                  | ng, Inc.<br>Radiated<br>ons<br>g, Inc.                                                             | d Class B                                                                                  | S                                                                                                 | Da<br>Tin<br>Sequence<br>Tested F                                                                                    | ne: 5/15/2<br>ne: 12:44<br>e#: 2<br>3y: Sep A                                                                                            | 2008<br>:02<br>Apahidean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                   |                                                                                         |
| S/N:<br>Test Fauinment:                                                                                     |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                   |                                                                                                                                 |                                                                                                    |                                                                                            |                                                                                                   |                                                                                                                      |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                   |                                                                                         |
| Functio                                                                                                     | n                                                                                                                                                                                                                                                                                                     | S/N                                                                                                                                                                                                               |                                                                                                                                 | C                                                                                                  | alibration                                                                                 | Date                                                                                              | Cal I                                                                                                                | Due Date                                                                                                                                 | As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | set #                                                                                             |                                                                                         |
| Spectru                                                                                                     | ım Analyzer                                                                                                                                                                                                                                                                                           | MY46                                                                                                                                                                                                              | 186290                                                                                                                          | 02                                                                                                 | 2/12/2007                                                                                  | 1                                                                                                 | 02/12                                                                                                                | 2/2009                                                                                                                                   | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 869                                                                                               |                                                                                         |
| Bilog A                                                                                                     | ntenna                                                                                                                                                                                                                                                                                                | 2451                                                                                                                                                                                                              | 100_20                                                                                                                          | 0                                                                                                  | 1/21/2008                                                                                  | R                                                                                                 | $01/2^{-1}$                                                                                                          | 1/2010                                                                                                                                   | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 995                                                                                               |                                                                                         |
| Pre am                                                                                                      | n to SA Cabl                                                                                                                                                                                                                                                                                          | e Cable #                                                                                                                                                                                                         | ¥10                                                                                                                             | 04                                                                                                 | 5/16/2007                                                                                  | ,<br>1                                                                                            | 05/16                                                                                                                | 6/2009                                                                                                                                   | P0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5050                                                                                              |                                                                                         |
| Cable                                                                                                       |                                                                                                                                                                                                                                                                                                       | Cable1                                                                                                                                                                                                            | 5                                                                                                                               | 0.                                                                                                 | 1/05/2007                                                                                  | ,                                                                                                 | 01/04                                                                                                                | 5/2009                                                                                                                                   | PO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5108                                                                                              |                                                                                         |
| Dro Am                                                                                                      |                                                                                                                                                                                                                                                                                                       | 1027 A                                                                                                                                                                                                            | 02548                                                                                                                           | 0                                                                                                  | 1/03/2007<br>6/01/2006                                                                     | :                                                                                                 | 01/0.                                                                                                                | 1/2009                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200                                                                                               |                                                                                         |
| Ple All                                                                                                     | ip                                                                                                                                                                                                                                                                                                    | 1937A                                                                                                                                                                                                             | 02348                                                                                                                           | 00                                                                                                 | 0/01/2000                                                                                  | )                                                                                                 | 00/0                                                                                                                 | 1/2008                                                                                                                                   | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 309                                                                                               |                                                                                         |
| Equip                                                                                                       | ment Under                                                                                                                                                                                                                                                                                            | $\frac{Test (* = 1)}{2}$                                                                                                                                                                                          | EUT):                                                                                                                           |                                                                                                    |                                                                                            |                                                                                                   | 1                                                                                                                    |                                                                                                                                          | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   |                                                                                         |
| Functio                                                                                                     | n .                                                                                                                                                                                                                                                                                                   | N                                                                                                                                                                                                                 | /lanufactu                                                                                                                      | irer                                                                                               | -                                                                                          | Model #                                                                                           |                                                                                                                      |                                                                                                                                          | S/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                   |                                                                                         |
| IR Rem                                                                                                      | note*                                                                                                                                                                                                                                                                                                 | S                                                                                                                                                                                                                 | MK Man                                                                                                                          | ufacturin                                                                                          | ig, Inc.                                                                                   | RRC900                                                                                            | )1-4001I                                                                                                             | -                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                   |                                                                                         |
| Suppo                                                                                                       | rt Devices:                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                   |                                                                                                                                 |                                                                                                    |                                                                                            |                                                                                                   |                                                                                                                      |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                   |                                                                                         |
| Functio                                                                                                     | n                                                                                                                                                                                                                                                                                                     | N                                                                                                                                                                                                                 | /lanufactu                                                                                                                      | irer                                                                                               |                                                                                            | Model #                                                                                           | -                                                                                                                    |                                                                                                                                          | S/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                   |                                                                                         |
|                                                                                                             |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                   |                                                                                                                                 |                                                                                                    |                                                                                            |                                                                                                   |                                                                                                                      |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                   |                                                                                         |
| Test C                                                                                                      | onditions / N                                                                                                                                                                                                                                                                                         | lotes:                                                                                                                                                                                                            |                                                                                                                                 |                                                                                                    |                                                                                            |                                                                                                   |                                                                                                                      |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                   |                                                                                         |
| Test C<br>The equ<br>The EU<br>Humidi<br>Transa                                                             | <i>Conditions / N</i> uipment unde<br>JT is poweree<br>ity: 44%, Pre<br>ducer Legend                                                                                                                                                                                                                  | <i>lotes:</i><br>er test (EU<br>d from fou<br>ssure: 100<br><i>d:</i>                                                                                                                                             | T) is an i<br>11 AAA b<br>kPa.                                                                                                  | nfrared ratteries.                                                                                 | emote. T<br>New bat                                                                        | teries we                                                                                         | is power<br>re install                                                                                               | ed on and<br>led prior to                                                                                                                | sending a so testing. T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | signal cont<br>Temperatur                                                                         | inuously.<br>re: 23°C,                                                                  |
| Test C<br>The equ<br>The EU<br>Humidi<br>Transa<br>T1=Pre<br>T3=Cab                                         | <i>Conditions / N</i><br>uipment unde<br>JT is powered<br>ity: 44%, Pre<br><i>ducer Legend</i><br>camp 8447D_<br>ble #10 P050                                                                                                                                                                         | <i>Votes:</i><br>er test (EU<br>d from fou<br>ssure: 100<br><i>d:</i><br>AN00309<br>050 0516                                                                                                                      | T) is an i<br>Ir AAA b<br><u>kPa.</u><br>_ 060108<br>09                                                                         | nfrared real real atteries.                                                                        | emote. T<br>New batt                                                                       | teries we<br>T2=Bilo<br>T4=Cab                                                                    | is power<br>re install<br>og-AN01<br>le #15 P                                                                        | ed on and<br>led prior to<br>995 BILO<br>205198 Si                                                                                       | sending a s<br>testing. T<br>G_012110<br>te A. 0105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | signal cont<br>Cemperatur                                                                         | inuously.<br>re: 23°C,                                                                  |
| Test C<br>The equ<br>The EU<br>Humidi<br>Transa<br>T1=Pre<br>T3=Cat                                         | Conditions / N<br>uipment under<br>JT is powered<br>ity: 44%, Pre-<br>ducer Legend<br>camp 8447D_<br>ble #10_P050<br>rement Data:                                                                                                                                                                     | <i>lotes:</i><br>er test (EU<br>d from fou<br>ssure: 100<br><b>1</b> :<br>_AN00309<br>050_0516                                                                                                                    | T) is an i<br>ir AAA b<br>kPa.<br>_ 060108<br>09<br>eading lis                                                                  | nfrared reatteries.                                                                                | emote. T<br>New batt                                                                       | teries we<br>T2=Bilo<br>T4=Cab                                                                    | is power<br>re install<br>og-AN01<br>le #15_P<br>Te                                                                  | ed on and<br>led prior to<br>995 BILO<br>05198_ Si<br>st Distance                                                                        | sending a solution of testing. T<br>G_012110<br>te A, 0105<br>e: 3 Meters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | signal cont<br>l'emperatur<br>09                                                                  | inuously.<br>re: 23°C,                                                                  |
| Test C<br>The equ<br>The EU<br>Humidi<br>Transa<br>T1=Pre<br>T3=Cat<br>Measun<br>#                          | Conditions / N<br>uipment under<br>JT is powered<br>ity: 44%, Pre-<br>ducer Legend<br>camp 8447D_<br>ble #10_P050<br>rement Data:<br>Freq                                                                                                                                                             | Votes:<br>er test (EU<br>d from fou<br>ssure: 100<br>d:<br>AN00309<br>0500516<br>R<br>Rdng                                                                                                                        | T) is an i<br>Ir AAA b<br><u>kPa.</u><br><u>060108</u><br>09<br>eading lis<br>T1                                                | nfrared reatteries.                                                                                | emote. T<br>New batt<br>argin.<br>T3                                                       | teries we<br>T2=Bilo<br>T4=Cab                                                                    | is power<br>re install<br>og-AN01<br>le #15_P<br>Te<br>Dist                                                          | ed on and<br>led prior to<br>995 BILO<br>205198_ Si<br>st Distance<br>Corr                                                               | sending a solution of testing. T<br>G_012110<br>tte A, 0105<br>e: 3 Meters<br>Spec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | signal cont<br>Temperatur<br>09<br>Margin                                                         | inuously.<br>re: 23°C,<br>Polar                                                         |
| Test C<br>The equ<br>The EU<br>Humidi<br>Transa<br>T1=Pre<br>T3=Cat<br>Measun<br>#                          | Conditions / N<br>uipment under<br>JT is powered<br>ity: 44%, Pre-<br>ducer Legend<br>camp 8447D_<br>ble #10_P050<br>rement Data:<br>Freq<br>MHz                                                                                                                                                      | Votes:<br>er test (EU<br>d from fou<br>ssure: 100/<br>d:<br>AN00309<br>050_05160<br>Rdng<br>dBµV                                                                                                                  | T) is an i<br>Ir AAA b<br>kPa.<br>_ 060108<br>09<br>eading lis<br>T1<br>dB                                                      | nfrared reatteries.                                                                                | emote. T<br>New batt<br>argin.<br>T3<br>dB                                                 | teries we<br>T2=Bilo<br>T4=Cab                                                                    | is power<br>re install<br>og-AN01<br>le #15_P<br>Te<br>Dist<br>Table                                                 | ed on and<br>led prior to<br>995 BILO<br>205198_ Si<br>st Distance<br>Corr<br>dBµV/m                                                     | sending a solution of testing. T<br>G_012110<br>te A, 0105<br>e: 3 Meters<br>Spec<br>dBµV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | signal cont<br>Temperatur<br>09<br>Margin<br>dB                                                   | inuously.<br>re: 23°C,<br>Polar<br>Ant                                                  |
| Test C<br>The equ<br>The EU<br>Humidi<br>Transo<br>T1=Pre<br>T3=Cal<br>Measun<br>#                          | Conditions / M<br>uipment under<br>JT is powered<br>ity: 44%, Pre-<br>ducer Legend<br>camp 8447D_<br>ble #10_P050<br>rement Data:<br>Freq<br>MHz<br>31.555M                                                                                                                                           | Notes:         er test (EU         d from fou         ssure: 100         d:         AN00309         050_05160         Rdng         dBµV         41.5                                                              | T) is an i<br>rr AAA b<br>kPa.<br>_ 060108<br>09<br>eading lis<br>T1<br>dB<br>-27.8                                             | nfrared reatteries.<br>ted by m<br>T2<br>dB<br>+17.8                                               | emote. T<br>New batt<br>argin.<br>T3<br>dB<br>+0.1                                         | teries we<br>T2=Bilo<br>T4=Cab<br>T4<br>dB<br>+0.9                                                | is power<br>re install<br>og-AN01<br>le #15_P<br>Te<br>Dist<br>Table<br>+0.0                                         | ed on and<br>led prior to<br>995 BILO<br>905198_ Si<br>st Distance<br>Corr<br>dBµV/m<br>32.5                                             | sending a solution of the sending a solution of the sending. The sending of the sender | Signal cont<br>Cemperatur<br>09<br>Margin<br>dB<br>-7.5                                           | inuously.<br>re: 23°C,<br>Polar<br>Ant<br>Vert                                          |
| Test C<br>The equ<br>The EU<br>Humidi<br>Transa<br>T1=Pre<br>T3=Cat<br>Measun<br>#<br>1<br>2                | Conditions / M<br>uipment under<br>JT is poweren<br>ity: 44%, Pre-<br>ducer Legend<br>camp 8447D_<br>ble #10_P05(<br>rement Data:<br>Freq<br>MHz<br>31.555M<br>48.257M                                                                                                                                | <i>Totes:</i><br>er test (EU<br>d from fou<br>ssure: 100<br><i>d</i> :<br>AN00309<br>05005166<br>Rdng<br>dBµV<br>41.5<br>48.7                                                                                     | T) is an is<br>rr AAA b<br>kPa.<br>060108<br>09<br>eading lis<br>T1<br>dB<br>-27.8<br>-27.7                                     | ted by m<br>T2<br>dB<br>+17.8<br>+9.5                                                              | emote. T<br>New batt<br>argin.<br>T3<br>dB<br>+0.1<br>+0.1                                 | T2=Bilo<br>T4=Cab<br>T4<br>dB<br>+0.9<br>+1.2                                                     | is power<br>re install<br>og-AN01<br>le #15_P<br>Te<br>Dist<br>Table<br>+0.0<br>+0.0                                 | ed on and<br>led prior to<br>995 BILO<br>005198_ Si<br>st Distance<br>Corr<br>dBµV/m<br>32.5<br>31.8                                     | sending a so<br>testing. T<br>G_012110<br>te A, 0105<br>e: 3 Meters<br>Spec<br>dBµV/m<br>40.0<br>40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Signal cont<br>Temperatur<br>09<br>Margin<br>dB<br>-7.5<br>-8.2                                   | Polar<br>Ant<br>Vert<br>Vert                                                            |
| Test C<br>The equ<br>The EU<br>Humidi<br>Transa<br>T1=Pre<br>T3=Cal<br>Measur<br>#<br>1<br>2<br>3           | Conditions / M<br>uipment under<br>JT is powerer<br>ity: 44%, Pre<br>ducer Legena<br>camp 8447D_<br>ble #10_P050<br>rement Data:<br>Freq<br>MHz<br>31.555M<br>48.257M<br>167.326M                                                                                                                     | <i>Notes:</i><br>er test (EU<br>d from fou<br>ssure: 100<br><i>1:</i><br>AN00309<br>050_05160<br>ARdng<br>dBμV<br>41.5<br>48.7<br>50.0                                                                            | T) is an in<br>rr AAA b<br>kPa.<br>_ 060108<br>09<br>eading lis<br>T1<br>dB<br>-27.8<br>-27.7<br>-27.7                          | ted by m<br>T2<br>dB<br>+17.8<br>+9.5<br>+10.0                                                     | emote. T<br>New batt<br>argin.<br>T3<br>dB<br>+0.1<br>+0.1<br>+0.3                         | T2=Bilo<br>T4=Cab<br>T4<br>dB<br>+0.9<br>+1.2<br>+2.3                                             | is power<br>re install<br>og-AN01<br>le #15_P<br>Te<br>Dist<br>Table<br>+0.0<br>+0.0                                 | ed on and<br>led prior to<br>995 BILO<br>005198_ Si<br>st Distance<br>Corr<br>dBµV/m<br>32.5<br>31.8<br>34.9                             | sending a so testing. T<br>G_012110<br>te A, 0105<br>e: 3 Meters<br>Spec<br>dBµV/m<br>40.0<br>40.0<br>43.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | signal cont<br>remperatur<br>09<br>Margin<br>dB<br>-7.5<br>-8.2<br>-8.6                           | Polar<br>Ant<br>Vert<br>Vert<br>Vert                                                    |
| Test C<br>The equ<br>The EU<br>Humidi<br>Transo<br>T1=Pre<br>T3=Cal<br>Measun<br>#<br>1<br>2<br>3<br>4      | Conditions / N         uipment under         uipment under         JT is poweren         ity: 44%, Pre-         ducer Legend         camp 8447D_         ble #10_P050         rement Data:         Freq         MHz         31.555M         48.257M         167.326M         40.030M                  | <i>Notes:</i><br>er test (EU<br>d from fou<br>ssure: 100<br><i>A</i> .<br>AN00309<br>50_05160<br>Rdng<br>dBμV<br>41.5<br>48.7<br>50.0<br>43.6                                                                     | T) is an ii<br>nr AAA b<br>kPa.<br>060108<br>09<br>eading lis<br>T1<br>dB<br>-27.8<br>-27.7<br>-27.7<br>-27.8                   | nfrared r<br>atteries.<br>ted by m<br>T2<br>dB<br>+17.8<br>+9.5<br>+10.0<br>+13.9                  | emote. T<br>New batt<br>argin.<br>T3<br>dB<br>+0.1<br>+0.1<br>+0.3<br>+0.1                 | The EUT<br>there is we<br>T2=Bilo<br>T4=Cab<br>T4=Cab<br>T4<br>dB<br>+0.9<br>+1.2<br>+2.3<br>+1.1 | is power<br>re install<br>og-AN01<br>le #15_P<br>Te<br>Dist<br>Table<br>+0.0<br>+0.0<br>+0.0<br>+0.0                 | ed on and<br>led prior to<br>995 BILO<br>005198_Si<br>st Distance<br>Corr<br>dBµV/m<br>32.5<br>31.8<br>34.9<br>30.9                      | sending a so testing. T<br>G_012110<br>te A, 0105<br>e: 3 Meters<br>Spec<br>dBµV/m<br>40.0<br>40.0<br>43.5<br>40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Margin<br>dB<br>-7.5<br>-8.2<br>-8.6<br>-9.1                                                      | inuously.<br>re: 23°C,<br>Polar<br>Ant<br>Vert<br>Vert<br>Vert<br>Vert<br>Vert          |
| Test C<br>The equ<br>The EU<br>Humidi<br>Transa<br>T1=Pre<br>T3=Cat<br>Measur<br>#<br>1<br>2<br>3<br>4      | Conditions / N         uipment under         uipment under         JT is poweren         ity: 44%, Pre-         ducer Legend         camp 8447D_         ble #10_P050         rement Data:         Freq         MHz         31.555M         48.257M         167.326M         40.030M         127.934M | Notes:         Pr test (EU         d from fou         ssure: 100         d:         AN00309         050_0516         ·         Rdng         dBµV         41.5         48.7         50.0         43.6         46.8 | T) is an ii<br>rr AAA b<br>kPa.<br>060108<br>09<br>eading lis<br>T1<br>dB<br>-27.8<br>-27.7<br>-27.7<br>-27.8<br>-27.6          | nfrared r<br>atteries.<br>ted by m<br>T2<br>dB<br>+17.8<br>+9.5<br>+10.0<br>+13.9<br>+11.8         | emote. T<br>New batt<br>argin.<br>T3<br>dB<br>+0.1<br>+0.3<br>+0.1<br>+0.3                 | T2=Bilo<br>T4=Cab<br>T4=Cab<br>T4<br>dB<br>+0.9<br>+1.2<br>+2.3<br>+1.1<br>+2.0                   | is power<br>re install<br>og-AN01<br>le #15_P<br>Te<br>Dist<br>Table<br>+0.0<br>+0.0<br>+0.0<br>+0.0                 | ed on and<br>led prior to<br>995 BILO<br>995 BILO<br>005198_ Si<br>8t Distance<br>Corr<br>dBµV/m<br>32.5<br>31.8<br>34.9<br>30.9<br>33.3 | sending a so testing. T<br>G_012110<br>te A, 0105<br>e: 3 Meters<br>Spec<br>dBµV/m<br>40.0<br>40.0<br>43.5<br>40.0<br>43.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Signal cont<br>Temperatur<br>09<br>Margin<br>dB<br>-7.5<br>-8.2<br>-8.6<br>-9.1<br>-10.2          | inuously.<br>re: 23°C,<br>Polar<br>Ant<br>Vert<br>Vert<br>Vert<br>Vert<br>Vert<br>Horiz |
| Test C<br>The equ<br>The EU<br>Humidi<br>Transa<br>T1=Pre<br>T3=Cat<br>#<br>1<br>1<br>2<br>3<br>4<br>5<br>6 | Conditions / N         uipment under         UT is poweren         ity: 44%, Pre         ducer Legena         eamp 8447D_         ble #10_P050         rement Data:         Freq         MHz         31.555M         48.257M         167.326M         40.030M         127.934M         55.686M        | <i>Totes:</i><br>Pr test (EU<br>d from fou<br>ssure: 100<br><i>I</i> :<br>AN00309<br>050_05166<br>A00<br>A00<br>A00<br>A00<br>A00<br>A00<br>A00<br>A                                                              | T) is an is<br>ar AAA b<br>kPa.<br>060108<br>09<br>eading lis<br>T1<br>dB<br>-27.8<br>-27.7<br>-27.7<br>-27.8<br>-27.6<br>-27.7 | nfrared r<br>atteries.<br>ted by m<br>T2<br>dB<br>+17.8<br>+9.5<br>+10.0<br>+13.9<br>+11.8<br>+7.1 | emote. T<br>New batt<br>argin.<br>T3<br>dB<br>+0.1<br>+0.1<br>+0.3<br>+0.1<br>+0.3<br>+0.1 | T2=Bilo<br>T4=Cab<br>T4=Cab<br>T4<br>dB<br>+0.9<br>+1.2<br>+2.3<br>+1.1<br>+2.0<br>+1.3           | is power<br>re install<br>og-AN01<br>le #15_P<br>Te<br>Dist<br>Table<br>+0.0<br>+0.0<br>+0.0<br>+0.0<br>+0.0<br>+0.0 | ed on and<br>led prior to<br>995 BILO<br>005198_ Si<br>st Distance<br>Corr<br>dBµV/m<br>32.5<br>31.8<br>34.9<br>30.9<br>33.3<br>27.7     | sending a solution $o$ testing. T $G_012110$ te A, 0105       e: 3 Meters       Spec $dB\mu V/m$ 40.0       43.5       40.0       43.5       40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | signal cont<br>remperatur<br>09<br>Margin<br>dB<br>-7.5<br>-8.2<br>-8.6<br>-9.1<br>-10.2<br>-12.3 | inuously.<br>re: 23°C,<br>Polar<br>Ant<br>Vert<br>Vert<br>Vert<br>Vert<br>Horiz<br>Vert |



| 8  | 112.106M | 40.7 | -27.6 | +11.1 | +0.3 | +1.9 | +0.0 | 26.4 | 43.5 | -17.1 | Vert  |
|----|----------|------|-------|-------|------|------|------|------|------|-------|-------|
| 9  | 167.651M | 41.2 | -27.7 | +9.9  | +0.3 | +2.3 | +0.0 | 26.0 | 43.5 | -17.5 | Horiz |
| 10 | 223.989M | 41.6 | -27.6 | +10.9 | +0.2 | +2.7 | +0.0 | 27.8 | 46.0 | -18.2 | Horiz |
| 11 | 135.964M | 38.6 | -27.6 | +11.8 | +0.3 | +2.1 | +0.0 | 25.2 | 43.5 | -18.3 | Horiz |
| 12 | 223.974M | 38.1 | -27.6 | +10.9 | +0.2 | +2.7 | +0.0 | 24.3 | 46.0 | -21.7 | Vert  |
| 13 | 167.706M | 36.5 | -27.7 | +9.9  | +0.3 | +2.3 | +0.0 | 21.3 | 43.5 | -22.2 | Vert  |



| Customer:         | SMK Manufacturing, II    | nc.              |                |            |  |
|-------------------|--------------------------|------------------|----------------|------------|--|
| Specification:    | FCC 15.109 (2006) Radi   | ated Class B     |                |            |  |
| Work Order #:     | 87968                    |                  | Date: 5/15     | /2008      |  |
| Test Type:        | Maximized Emissions      |                  | Time: 12:3     | 0:50       |  |
| Equipment:        | IR Remote                |                  | Sequence#: 1   |            |  |
| Manufacturer:     | SMK Manufacturing. Inc   |                  | Tested By: Sep | Apahidean  |  |
| Model:            | RRC9001-4041E            |                  |                | - <b>r</b> |  |
| S/N:              |                          |                  |                |            |  |
| Test Equipment•   |                          |                  |                |            |  |
| Function          | S/N                      | Calibration Date | Cal Due Date   | Asset #    |  |
| Spectrum Analyzer | MY46186290               | 02/12/2007       | 02/12/2009     | 02869      |  |
| Bilog Antenna     | 2451                     | 01/21/2008       | 01/21/2010     | 01995      |  |
| Pre amp to SA Cab | le Cable #10             | 05/16/2007       | 05/16/2009     | P05050     |  |
| Cable             | Cable15                  | 01/05/2007       | 01/05/2009     | P05198     |  |
| Pre Amp           | 1937A02548               | 06/01/2006       | 06/01/2008     | 00309      |  |
| Equipment Under   | • <i>Test</i> (* = EUT): |                  |                |            |  |
| Function          | Manufacturer             | Mod              | el #           | S/N        |  |
| IR Remote*        | SMK Manufact             | uring, Inc. RRC  | 9001-4041E     |            |  |
| Support Devices:  |                          |                  |                |            |  |
| Function          | Manufacturer             | Mod              | el #           | S/N        |  |

CKC Laboratories, Inc. •110 N Olinda Place • Brea, CA 92823 • 714-993-6112

#### Test Conditions / Notes:

Test Location:

The equipment under test (EUT) is an infrared remote. The EUT is powered on and sending a signal continuously. The EUT is powered from four AAA batteries. New batteries were installed prior to testing. Temperature: 23°C, Humidity: 44%, Pressure: 100kPa.

#### Transducer Legend:

| T1=Preamp 8447D_AN00309_060108 | T2=Bilog-AN01995 BILOG_012110       |
|--------------------------------|-------------------------------------|
| T3=Cable #10_P05050_ 051609    | T4=Cable #15_P05198_ Site A, 010509 |

| Measu | rement Data: | Reading listed by margin. |       |       |      | Test Distance: 3 Meters |       |             |             |        |       |
|-------|--------------|---------------------------|-------|-------|------|-------------------------|-------|-------------|-------------|--------|-------|
| #     | Freq         | Rdng                      | T1    | T2    | T3   | T4                      | Dist  | Corr        | Spec        | Margin | Polar |
|       | MHz          | dBµV                      | dB    | dB    | dB   | dB                      | Table | $dB\mu V/m$ | $dB\mu V/m$ | dB     | Ant   |
| 1     | 40.110M      | 43.1                      | -27.8 | +13.8 | +0.1 | +1.1                    | +0.0  | 30.3        | 40.0        | -9.7   | Vert  |
|       |              |                           |       |       |      |                         |       |             |             |        |       |
| 2     | 48.042M      | 44.6                      | -27.7 | +9.6  | +0.1 | +1.2                    | +0.0  | 27.8        | 40.0        | -12.2  | Vert  |
|       |              |                           |       |       |      |                         |       |             |             |        |       |
| 3     | 128.254M     | 42.8                      | -27.6 | +11.8 | +0.3 | +2.0                    | +0.0  | 29.3        | 43.5        | -14.2  | Vert  |
|       |              |                           |       |       |      |                         |       |             |             |        |       |
| 4     | 32.060M      | 32.9                      | -27.8 | +17.6 | +0.1 | +0.9                    | +0.0  | 23.7        | 40.0        | -16.3  | Vert  |
|       |              |                           |       |       |      |                         |       |             |             |        |       |
| 5     | 56.241M      | 42.8                      | -27.7 | +7.0  | +0.1 | +1.3                    | +0.0  | 23.5        | 40.0        | -16.5  | Horiz |
|       |              |                           |       |       |      |                         |       |             |             |        |       |
| 6     | 136.204M     | 37.7                      | -27.6 | +11.8 | +0.3 | +2.1                    | +0.0  | 24.3        | 43.5        | -19.2  | Vert  |
| 1     |              |                           |       |       |      |                         |       |             |             |        |       |



| - |    |          |      |       |       |      |      |      |      |      |       |       |
|---|----|----------|------|-------|-------|------|------|------|------|------|-------|-------|
| I | 7  | 112.081M | 38.3 | -27.6 | +11.1 | +0.3 | +1.9 | +0.0 | 24.0 | 43.5 | -19.5 | Horiz |
| I |    |          |      |       |       |      |      |      |      |      |       |       |
|   | 8  | 168.046M | 36.2 | -27.7 | +9.9  | +0.3 | +2.3 | +0.0 | 21.0 | 43.5 | -22.5 | Vert  |
| Ļ |    |          |      |       |       |      |      |      |      |      |       |       |
|   | 9  | 167.901M | 34.9 | -27.7 | +9.9  | +0.3 | +2.3 | +0.0 | 19.7 | 43.5 | -23.8 | Horiz |
| Ļ |    |          |      |       |       |      |      |      |      |      |       |       |
|   | 10 | 223.994M | 35.3 | -27.6 | +10.9 | +0.2 | +2.7 | +0.0 | 21.5 | 46.0 | -24.5 | Vert  |
|   |    |          |      |       |       |      |      |      |      |      |       |       |



# **ICES-003 RADIATED EMISSIONS**

# **Test Setup Photos**



# RCC9001-4041E



RCC9001-4041E





RCC9001-4001L



RCC9001-4001L



# **Test Data Sheets**

| Test Lo                                                                       | ocation:                                                                             | cation: CKC Laboratories, Inc. •110 N Olinda Place • Brea, CA 92823 • 714-993-6112 |                                                            |                                   |                      |                                                                                          |                        |                            |                               |                           |                       |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------|----------------------|------------------------------------------------------------------------------------------|------------------------|----------------------------|-------------------------------|---------------------------|-----------------------|
| Custom<br>Specific<br>Work C<br>Test Ty<br>Equipn<br>Manufa<br>Model:<br>S/N: | ner:<br>cation:<br>Drder #:<br>pe:<br>nent:<br>acturer:                              | SMK Man<br>ICES-003<br>87968<br>Maximized<br>IR Remote<br>SMK Manu<br>RRC9001-4    | ufacturin<br>-Issue 4 (<br>I Emissio<br>facturing<br>4001L | ng, Inc.<br>CISPR<br>ns<br>, Inc. | 22 B) RA             | ADIATED<br>Date: 5/15/2008<br>Time: 12:44:02<br>Sequence#: 2<br>Tested By: Sep Apahidean |                        |                            |                               |                           |                       |
| Test E                                                                        | quipment:                                                                            | <u> </u>                                                                           |                                                            |                                   |                      |                                                                                          |                        |                            |                               |                           |                       |
| Functio                                                                       | n Angl                                                                               | S/N                                                                                | 196200                                                     | 0                                 | Calibration          | Date                                                                                     | Cal I                  | Due Date                   | As                            | set #                     |                       |
| Spectru<br>Bilog A                                                            | Im Analyzer                                                                          | MY401<br>2451                                                                      | 186290                                                     | 0                                 | 1/21/2008            | 2                                                                                        | 02/1                   | 2/2009                     | 02                            | 809<br>005                |                       |
| Pre am                                                                        | n to SA Cab                                                                          | le Cable #                                                                         | ¥10                                                        | 0                                 | 5/16/2007            | 7                                                                                        | 01/2                   | 6/2009                     | P0                            | 5050                      |                       |
| Cable                                                                         |                                                                                      | Cable1                                                                             | 5                                                          | 0                                 | 1/05/2007            | 7                                                                                        | 01/0                   | 5/2009                     | PO                            | 5198                      |                       |
| Pre Am                                                                        | ıp                                                                                   | 1937A                                                                              | 02548                                                      | 0                                 | 6/01/2006            | 5                                                                                        | 06/0                   | 1/2008                     | 00                            | 309                       |                       |
| Eauin                                                                         | ∙<br>ment IInder                                                                     | $T_{PSt}$ (* = I                                                                   | •( <b>T</b> U <b>T</b>                                     |                                   |                      |                                                                                          |                        |                            |                               |                           |                       |
| Functio                                                                       | on                                                                                   | <u>1057 ( -1</u>                                                                   | Jor 1).<br>Janufactu                                       | rer                               |                      | Model #                                                                                  |                        |                            | S/N                           |                           |                       |
| IR Ren                                                                        | note*                                                                                | S                                                                                  | MK Man                                                     | ufacturi                          | ng, Inc.             | RRC900                                                                                   | )1-4001I               |                            | 2/11                          |                           |                       |
| Suppo                                                                         | rt Devices:                                                                          |                                                                                    |                                                            |                                   | 0                    |                                                                                          |                        |                            |                               |                           |                       |
| Functio                                                                       | on                                                                                   | N                                                                                  | /Ianufactu                                                 | rer                               |                      | Model #                                                                                  | :                      |                            | S/N                           |                           |                       |
| Test C<br>The equ<br>The EU<br>Humidi<br>Transe                               | <i>conditions / I</i><br>uipment und<br>JT is powere<br>ity: 44%, Pre<br>ducer Legen | <b>Votes:</b><br>er test (EU<br>ed from fou<br>essure: 100<br><b>d:</b>            | T) is an i<br>1r AAA b<br>kPa.                             | nfrared 1<br>atteries.            | remote. T<br>New bat | The EUT                                                                                  | is power<br>re install | red on and<br>led prior to | sending a solution testing. T | signal cont<br>'emperatur | inuously.<br>e: 23°C, |
| T1=Pre                                                                        | amp 8447D                                                                            | _AN00309                                                                           | _060108                                                    |                                   |                      | T2=Bilo                                                                                  | g-AN01                 | 995 BILO                   | G_012110                      |                           |                       |
| T3=Cal                                                                        | ble #10_P05                                                                          | 050_0516                                                                           | 09                                                         |                                   |                      | T4=Cab                                                                                   | le #15_F               | P05198_ Si                 | te A, 0105                    | 09                        |                       |
| Measu                                                                         | rement Data                                                                          | : Re                                                                               | eading lis                                                 | ted by n                          | nargin.              |                                                                                          | Te                     | est Distance               | e: 3 Meters                   |                           |                       |
| #                                                                             | Freq                                                                                 | Rdng                                                                               | T1                                                         | T2                                | T3                   | T4                                                                                       | Dist                   | Corr                       | Spec                          | Margin                    | Polar                 |
| 1                                                                             | MHZ                                                                                  | <u>dBμ V</u><br>50.0                                                               | <u>dB</u>                                                  |                                   |                      |                                                                                          |                        | $\frac{dB\mu V/m}{24.0}$   | $\frac{dB\mu V/m}{20.0}$      | <u>dB</u>                 | Ant                   |
| 1                                                                             | 107.320101                                                                           | 50.0                                                                               | -21.1                                                      | +10.0                             | +0.3                 | +2.3                                                                                     | -10.0                  | 24.9                       | 30.0                          | -5.1                      | vert                  |
| 2                                                                             | 127.934M                                                                             | 46.8                                                                               | -27.6                                                      | +11.8                             | +0.3                 | +2.0                                                                                     | -10.0                  | 23.3                       | 30.0                          | -6.7                      | Horiz                 |
| 3                                                                             | 31.555M                                                                              | 41.5                                                                               | -27.8                                                      | +17.8                             | +0.1                 | +0.9                                                                                     | -10.0                  | 22.5                       | 30.0                          | -7.5                      | Vert                  |
| 4                                                                             | 48.257M                                                                              | 48.7                                                                               | -27.7                                                      | +9.5                              | +0.1                 | +1.2                                                                                     | -10.0                  | 21.8                       | 30.0                          | -8.2                      | Vert                  |
| 5                                                                             | 40.030M                                                                              | 43.6                                                                               | -27.8                                                      | +13.9                             | +0.1                 | +1.1                                                                                     | -10.0                  | 20.9                       | 30.0                          | -9.1                      | Vert                  |
| 6                                                                             | 223.989M                                                                             | 41.6                                                                               | -27.6                                                      | +10.9                             | +0.2                 | +2.7                                                                                     | -10.0                  | 17.8                       | 30.0                          | -12.2                     | Horiz                 |



| 7  | 55.686M    | 46.9 | -27.7 | +7.1  | +0.1 | +1.3 | -10.0 | 17.7 | 30.0 | -12.3 | Vert  |
|----|------------|------|-------|-------|------|------|-------|------|------|-------|-------|
| 0  | 1 60 00134 | 10 - |       | 0.0   | 0.0  | • •  | 10.0  | 15.4 | 20.0 | 10.4  |       |
| 8  | 168.031M   | 42.6 | -27.7 | +9.9  | +0.3 | +2.3 | -10.0 | 17.4 | 30.0 | -12.6 | Horiz |
|    |            |      |       |       |      |      |       |      |      |       |       |
| 9  | 112.106M   | 40.7 | -27.6 | +11.1 | +0.3 | +1.9 | -10.0 | 16.4 | 30.0 | -13.6 | Vert  |
|    |            |      |       |       |      |      |       |      |      |       |       |
| 10 | 167.651M   | 41.2 | -27.7 | +9.9  | +0.3 | +2.3 | -10.0 | 16.0 | 30.0 | -14.0 | Horiz |
|    |            |      |       |       |      |      |       |      |      |       |       |
| 11 | 135.964M   | 38.6 | -27.6 | +11.8 | +0.3 | +2.1 | -10.0 | 15.2 | 30.0 | -14.8 | Horiz |
|    |            |      |       |       |      |      |       |      |      |       |       |
| 12 | 223.974M   | 38.1 | -27.6 | +10.9 | +0.2 | +2.7 | -10.0 | 14.3 | 30.0 | -15.7 | Vert  |
|    |            |      |       |       |      |      |       |      |      |       |       |
| 13 | 167.706M   | 36.5 | -27.7 | +9.9  | +0.3 | +2.3 | -10.0 | 11.3 | 30.0 | -18.7 | Vert  |
|    |            |      |       |       |      |      |       |      |      |       |       |



| Test Location:     | CKC Laboratories, Inc. •110 N Olinda Place • Brea, CA 92823 • 714-993-6112 |                    |                     |         |  |  |  |  |  |  |  |  |
|--------------------|----------------------------------------------------------------------------|--------------------|---------------------|---------|--|--|--|--|--|--|--|--|
| Customer:          | SMK Manufacturing, Inc.                                                    |                    |                     |         |  |  |  |  |  |  |  |  |
| Specification: 1   | ICES-003 -Issue 4 (CISPR 22 B) RADIATED                                    |                    |                     |         |  |  |  |  |  |  |  |  |
| Work Order #:      | 87968                                                                      |                    | Date: 5/15/2008     |         |  |  |  |  |  |  |  |  |
| Test Type: 1       | Maximized Emissions                                                        |                    | Time: 12:30:50      |         |  |  |  |  |  |  |  |  |
| Equipment: 1       | IR Remote                                                                  |                    | Sequence#: 1        |         |  |  |  |  |  |  |  |  |
| Manufacturer:      | SMK Manufacturing, Inc.                                                    |                    | Tested By: Sep Apal | nidean  |  |  |  |  |  |  |  |  |
| Model:             | RRC9001-4041E                                                              |                    |                     |         |  |  |  |  |  |  |  |  |
| S/N:               |                                                                            |                    |                     |         |  |  |  |  |  |  |  |  |
| Test Equipment:    |                                                                            |                    |                     |         |  |  |  |  |  |  |  |  |
| Function           | S/N                                                                        | Calibration Date   | Cal Due Date        | Asset # |  |  |  |  |  |  |  |  |
| Spectrum Analyzer  | MY46186290                                                                 | 02/12/2007         | 02/12/2009          | 02869   |  |  |  |  |  |  |  |  |
| Bilog Antenna      | 2451                                                                       | 01/21/2008         | 01/21/2010          | 01995   |  |  |  |  |  |  |  |  |
| Pre amp to SA Cabl | le Cable #10                                                               | 05/16/2007         | 05/16/2009          | P05050  |  |  |  |  |  |  |  |  |
| Cable              | Cable15                                                                    | 01/05/2007         | 01/05/2009          | P05198  |  |  |  |  |  |  |  |  |
| Pre Amp            | 1937A02548                                                                 | 06/01/2006         | 06/01/2008          | 00309   |  |  |  |  |  |  |  |  |
| Equipment Under    | <i>Test</i> (* = EUT):                                                     |                    |                     |         |  |  |  |  |  |  |  |  |
| Function           | Manufacturer                                                               | Model #            | S                   | /N      |  |  |  |  |  |  |  |  |
| IR Remote*         | SMK Manufact                                                               | uring, Inc. RRC900 | )1-4041E            |         |  |  |  |  |  |  |  |  |
| Support Devices:   |                                                                            |                    |                     |         |  |  |  |  |  |  |  |  |

# FunctionManufacturerModel #S/N

# Test Conditions / Notes:

The equipment under test (EUT) is an infrared remote. The EUT is powered on and sending a signal continuously. The EUT is powered from four AAA batteries. New batteries were installed prior to testing. Temperature: 23°C, Humidity: 44%, Pressure: 100kPa.

#### Transducer Legend:

| T1=Preamp 8447D_AN00309_060108 | T2=Bilog-AN01995 BILOG_012110       |
|--------------------------------|-------------------------------------|
| T3=Cable #10_P05050_ 051609    | T4=Cable #15_P05198_ Site A, 010509 |

| Measurement Data: Reading listed l |          |      | ted by ma | I by margin. Test Distance: 3 Meters |      |      |       |             |             |        |       |
|------------------------------------|----------|------|-----------|--------------------------------------|------|------|-------|-------------|-------------|--------|-------|
| #                                  | Freq     | Rdng | T1        | T2                                   | T3   | T4   | Dist  | Corr        | Spec        | Margin | Polar |
|                                    | MHz      | dBµV | dB        | dB                                   | dB   | dB   | Table | $dB\mu V/m$ | $dB\mu V/m$ | dB     | Ant   |
| 1                                  | 40.110M  | 43.1 | -27.8     | +13.8                                | +0.1 | +1.1 | -10.0 | 20.3        | 30.0        | -9.7   | Vert  |
|                                    |          |      |           |                                      |      |      |       |             |             |        |       |
| 2                                  | 128.254M | 42.8 | -27.6     | +11.8                                | +0.3 | +2.0 | -10.0 | 19.3        | 30.0        | -10.7  | Vert  |
|                                    |          |      |           |                                      |      |      |       |             |             |        |       |
| 3                                  | 48.042M  | 44.6 | -27.7     | +9.6                                 | +0.1 | +1.2 | -10.0 | 17.8        | 30.0        | -12.2  | Vert  |
|                                    |          |      |           |                                      |      |      |       |             |             |        |       |
| 4                                  | 136.204M | 37.7 | -27.6     | +11.8                                | +0.3 | +2.1 | -10.0 | 14.3        | 30.0        | -15.7  | Vert  |
|                                    |          |      |           |                                      |      |      |       |             |             |        |       |
| 5                                  | 112.081M | 38.3 | -27.6     | +11.1                                | +0.3 | +1.9 | -10.0 | 14.0        | 30.0        | -16.0  | Horiz |
|                                    |          |      |           |                                      |      |      |       |             |             |        |       |
| 6                                  | 32.060M  | 32.9 | -27.8     | +17.6                                | +0.1 | +0.9 | -10.0 | 13.7        | 30.0        | -16.3  | Vert  |
|                                    |          |      |           |                                      |      |      |       |             |             |        |       |



| 7  | 56.241M  | 42.8 | -27.7 | +7.0  | +0.1 | +1.3 -10.0 | 13.5 | 30.0 | -16.5 | Horiz |
|----|----------|------|-------|-------|------|------------|------|------|-------|-------|
| 8  | 223.994M | 35.3 | -27.6 | +10.9 | +0.2 | +2.7 -10.0 | 11.5 | 30.0 | -18.5 | Vert  |
| 9  | 168.046M | 36.2 | -27.7 | +9.9  | +0.3 | +2.3 -10.0 | 11.0 | 30.0 | -19.0 | Vert  |
| 10 | 167.901M | 34.9 | -27.7 | +9.9  | +0.3 | +2.3 -10.0 | 9.7  | 30.0 | -20.3 | Horiz |