Intertek Testing Services

APPLICATION FOR FCC CERTIFICATION

GVC Corporation

900 MHz Cordless Telephone

Model: CT-900

FCC ID: DK4CT-900

Report # J98036684

Number of Pages: 27

Date of Report: March 5, 1999

This report shall not be reproduced except in full, without written approval of Intertek Testing Services.

This report must not be used to claim product endorsement by NVLAP or any agency of the U.S. Government.

The results contained in this report were derived from measurements performed on the identified test samples. Any implied performance of other samples on this report is dependent on the representative of the samples tested.

FCC Part 15.249 Tx Cert, Ver 5/97

k:\..\fcc\15249.cer

Date of Test: Feb. 10, 1999 & March 1, 2, & 3, 1999

Table of Contents

Sumi	mary of Test Results
Cono	ral Description
1.1	Product Description
1.1	Related Submittal(s) Grants
1.3	Test Methodology
1.4	Test Facility
Syste	em Test Configuration
2.1	Justification
2.2	EUT Exercising Software
2.3	System Test Configuration
	2.3.1 Support Equipment
	2.3.2 Block Diagram of Test Setup
2.4	Equipment Modification
2.5	Additions, deviations and exclusions from standards
Emis	sion Results
3.1	Field Strength Calculation
3.3	Radiated Emission Data
3.5	Conducted Emission Data
Out o	of Band Emission Plot
Ante	nna Requirement
List o	of Exhibits

0.0 **Summary of Test Results**

GVC Corporation - Model No.: CT-900 FCC ID: DK4CT-900

TEST	REFERENCE	RESULTS
Radiated Emission	15.249	Complies
Conducted Emission	15.207	Complies
Antenna Requirement	15.203	Complies

	Mum		
Test Engineer:	Cleveland Kwan	Date:	
Telco Mgr:	 C.K. Li	Date:	

Date of Test: Feb. 10, 1999 & March 1, 2, & 3, 1999

General Description 1.0

1.1 **Product Description**

The GVC Corporation Model No.: CT-900 is a 900 MHz analog cordless telephone.

Please refer to the attached technical description for details.

GVC Corp., 900 MHz Cordless Telephone FCC ID: DK4CT-900 Date of Test: Feb. 10, 1999 & March 1, 2, & 3, 1999

1.2 Related Submittal(s) Grants

This is an Application for Certification of a low power transmitter. One transmitter is included in this Application. This specific report details the emission characteristics of transmitter.

The FCC ID for the receiver assoicated with this transmitter is . The receivers are subject to the notification authorization process. A Notification report has been prepared for the receiver.

1.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.4 (1992). All measurements were performed in Open Area Test Sites. Preliminary scans were performed in the Open Area Test Sites only to determine worst case modes. For each scan, the procedure for maximizing emissions in Appendices D and E were followed. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application.

1.4 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is Site 1. This test facility and site measurement data have been fully placed on file with the FCC and NVLAP accredited.

GVC Corp., 900 MHz Cordless Telephone

Date of Test: Feb. 10, 1999 & March 1, 2, & 3, 1999

FCC ID: DK4CT-900

2.0 **System Test Configuration**

2.1 Justification

For emission testing, the equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). During testing, all cables were manipulated to produce worst case emissions.

For the measurements, the EUT is attached to a cardboard box (if necessary) and placed on the wooden turntable. If the EUT attaches to peripherals, they are connected and operational (as typical as possible). The EUT is wired to transmit full power without modulation.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Detector function is in peak mode. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance.

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance.

2.2 EUT Exercising Software

The EUT exercise program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use.

For emissions testing, the units were setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing.

Date of Test: Feb. 10, 1999 & March 1, 2, & 3, 1999

- **System Test Configuration** 2.3
- 2.3.1 Support Equipment

None, the EUT was tested as a standalone device.

2.3.2 Block Diagram of Test Setup

Not applicable, the EUT was tested as a standalone device.

Date of Test: Feb. 10, 1999 & March 1, 2, & 3, 1999

2.4 **Equipment Modification**

Any modifications installed previous to testing by GVC Corporation will be incorporated in each production model sold/leased in the United States.

No modifications were made to the EUT by Intertek Testing Services.

2.5 Additions, deviations and exclusions from standards

No additions, deviations or exclusion have been made from standard.

GVC Corp., 900 MHz Cordless Telephone

Date of Test: Feb. 10, 1999 & March 1, 2, & 3, 1999

FCC ID: DK4CT-900

3.0 **Emission Results**

AC line conducted emission measurements were performed from 0.45 MH to 30 MHz. Analyzer resolution is 10 kHz or greater.

Radiated emission measurements were performed from 30 MHz to 5000 MHz. Analyzer resolution is 100 kHz or greater for 30 MHz to 1000 MHz, 1 MHz for >1000 MHz.

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included. All measurements were performed with peak detection unless otherwise specified.

GVC Corp., 900 MHz Cordless Telephone FCC ID: DK4CT-900 Date of Test: Feb. 10, 1999 & March 1, 2, & 3, 1999

3.1 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

where $FS = Field Strength in dB(\mu V/m)$

 $RA = Receiver Amplitude (including preamplifier) in dB(<math>\mu V$)

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB/m

AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows:-

$$FS = RR + LF$$

where
$$FS = Field Strength in dB(\mu V/m)$$

 $RR = RA - AG in dB(\mu V)$
 $LF = CF + AF in dB$

Assume a receiver reading of 52.0 dB(μ V) is obtained. The antenna factor of 7.4 dB/m and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB(μ V/m). This value in dB μ V/m was converted to its corresponding level in μ V/m.

$RA = 52.0 \text{ dB}(\mu\text{V})$	AF = 7.4 dB/m
$RR = 23.0 \text{ dB}(\mu\text{V})$	CF = 1.6 dB
LF = 9.0 dB	AG = 29.0 dB

FS = RR + LF
FS =
$$23 + 9 = 32 \text{ dB}(\mu\text{V/m})$$

Level in $\mu V/m = Common Antilogarithm \{ [32 dB(\mu V/m)]/20 \} = 39.8 \mu V/m$

GVC Corp., 900 MHz Cordless Telephone

Date of Test: Feb. 10, 1999 & March 1, 2, & 3, 1999

FCC ID: DK4CT-900

3.3 Radiated Emission Data

The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

Results: Passed by 13.4 dB at 35.9 MHz

Note: a) All emissions not reported are at least 20 dB below the limits

Date of Test: Feb. 10, 1999 & March 1, 2, & 3, 1999

ITS Intertek Testing Services

1365 Adams Court, Menlo Park CA 94025

	GVC Analog 900 J98036684 Standby, ba		es phone			Model #: S/N or FCC Engineer: Date of Test:	C.Kwar	led I	Initial(Œ_
Number: Model:	Antenna 1 EMCO 314	Pre-Amp 2 HP8447D	Cable A 13 82_3m	Cable B 0 None	OCF 0 None		Standard Limits_ Test Dis	_	FCC Part 15E 2 3	meters
Frequency MHz	Reading dB(uV)	Det. P/A/Q	Ant. Pol. H/V	Ant. Factor	Pre-Amp	Insert Loss	D. F. dB	Net dB(uV/m)	Limit @3m dB(uV/m)	Margir dB
35.9	38.7	PIAVU P	niv V	8.9	22.3	1.3	0.0	26.6	40.0	-13.4
41.9	30.6	P	v	6.9	22.4	1.3	0.0	16.4	40.0	-23.6
47,8	30,9	p	٧	7.7	22.3	1.3	0.0	17.7	40.0	-22.3
53.7	27.8	р	v	6.0	22.3	1.4	0.0	12.9	40.0	-27.1
65.8	30.8	p	٧	5.4	22.2	1.5	0.0	15.5	40.0	-24.5
71,6 915.1	31,2 21,7	Q D	¥	5.5 21.1	22.3 22.1	1.5 8.3	0.0 0.0	15.9 29.0	40.0 46.0	-24.1 -17.0

Notes: a) P: Peak; A: Average; Q: Quasi Peak; H: Horizontal; V: Vertical; OCF:Other Correction Factor; DF:Distance Factor

k/../measheet/rad_cal

b) Insert. Loss = Cable A + Cable B + OCF.

c) Negative signs (-) in Margin column signify levels below the limits.

d) All other emissions not reported are below the equipment noise floor which is at least 20 dB below the limits.

Date of Test: Feb. 10, 1999 & March 1, 2, & 3, 1999

ITS Intertek Testing Services

1365 Adams Court, Menlo Park CA 94025

			Radiated	Emissio	ns Test	Data				
	GVC Analog 900 J98036684 Standby, ha					Model #: S/N or FCC Engineer: Date of Test	C.Kwar	led	Initial:	CK
Number: Model:	Antenna 1 EMCO 314	Pre-Amp 2 HP8447D	Cable A 13 S2_3m	Cable B 0 None	OCF 0 None		Standard Limits_ Test Dis	-	FCC Part 158 2 3	meters
Frequency		Det.				insert. Loss		Net	Limit @3m	Margin
MHz 35.9 41.9 47.9 53.8 77.7 916.9	dB(uV) 30.6 28.5 27.8 27.9 32.9 23.1	PIA/Q P P P P P	HW V V V V	.dB(1/m) 8.9 6.9 7.7 6.0 5.8 21.1	22.3 22.4 22.3 22.3 22.3 22.3 22.1	1.3 1.3 1.3 1.4 1.5 8.3	0.0 0.0 0.0 0.0 0.0 0.0	18.5 14.3 14.6 13.0 17.9 30.4	40.0 40.0 40.0 40.0 40.0 40.0 46.0	dB -21.5 -25.7 -25.4 -27.0 -22.1 -15.6

Notes:

k/../measheet/rad_cal

a) P: Peak; A: Average; Q: Quasi Peak; H: Horizontal; V: Vertical; OCF:Other Correction Factor; DF:Distance Factor

b) Insert. Loss = Cable A + Cable B + OCF.

c) Negative signs (-) in Margin column signify levels below the limits.

d) All other emissions not reported are below the equipment noise floor which is at least 20 dB below the limits.

Date of Test: Feb. 10, 1999 & March 1, 2, & 3, 1999

ITS Intertek Testing Services

Test Mode: TX@low channel

1365 Adams Court, Menlo Park CA 94025

Radiated Emissions Test Data

Company: GVC 900Mz cordless phone; base unit Project #: J98036684

CT-900 Model #: S/N or FCC not tabeled Engineer: C;Kwan Date of Test: 03/01/99

OCF 1 0 12 Ω Number n Model: EMCO 314 Green_M+L

Standard FCC Part 15.249 Limits_ Test Distance

Frequency Reading	Det.	Ant. Pol.	Ant. Factor	Pre-Amp	Insert. Loss	D. F.	Net	Limit @3m	Margin
MHz dB(uV)	P/A/Q	HN	dB(1/m)	dВ	dB	dB	dB(uV/m)	dB(uV/m)	₫B
902 0 60 5	0	h	23 1	0.0	0.0	0.0	83.6	94.0	-10.4

Notes:

- a) P: Peak; A: Average; Q: Quasi Peak; H: Horizontal; V: Vertical; OCF:Other Correction Factor; DF:Distance Factor
- b) Insert. Loss = Cable A + Cable B + OCF.
- c) Negative signs (-) in Margin column signify levels below the limits.
- d) All other emissions not reported are below the equipment noise floor which is at least 20 dB below the limits.

k/../measheet/rad_cal

Date of Test: Feb. 10, 1999 & March 1, 2, & 3, 1999

ITS Intertek Testing Services

1365 Adams Court, Menlo Park CA 94025

Radiated Emissions Test Data

Company: GVC EUT: 900Mz cordiess phone; base unit.
Project # J98036684 Test Mode: TX@low channel

CT-900 Model #: S/N or FCC not tabeled Engineer: C Kwan Date of Test: 03/02/99

	na Pre-Amp	
Number: 8		
Model: EMCO		

Standard_	FCC Part 15.249
Limits_	12
Test Distance_	3 meters

Frequency	Reading	Det.	Ant. Pol.	Ant Factor	Pre-Amp	insert. Loss	D. F.	Net	Limit @3m	Margin
MHz	dB(uV)	P/A/Q	HA	dB(1/m)	dB	d₿	dB	dB(uV/m)	dB(uV/m)	dΒ
1804.5	34.0	p	٧	24.9	29.3	1.9	0.0	31.5	54.0	-22.5
1804.5	32.4	8	٧		29.3	1.9	0.0	29.9	54.0	-24.1
2706.1	40.5		¥	27.9	28.4	2.3	0.0	42.3	74.0	-31.7
2706.1	40.2		٧		28.4	2.3	0.0	42.0	54.0	-12.0
3608.1	42.7	7	V	31.3	27.8	2.7	0.0	48.9	74.0	-25.2
3608.1	42.1	, i	¥	31.3	27.8	2.7	0.0	48.3	54.0	-5.8
4510.1	28.5	0	V	32.1	27.9	3.2	0.0	35.9	74.0	-38.1
4510.1	27.2	9	٧	32.1	27.9	3.2	0.0	34.6	54.0	-19.4
5412.3	29.9		V	33.1	28.3	3.5	0.0	38.2	74.0	-35.8
5412.3	28.0	8	٧	33.1	28.3	3.5	0.0	36.3	54.0	-17.7
6314.4	29.2		٧		28.0	3.9	0.0	39.5	74.0	-34.5
6314.4	27.2	9	¥	34.4	28.0	3.9	0.0	37.5	54.0	-16.5
7216.4	26.7	500000000000000000000000000000000000000	V		28.0	4.3	0.0	39.3	74.0	-34.7
7216.4	25.0		٧		28.0	4.3	0.0	37.6	54.0	-16.4
8118.8	28.0		¥		27.2	4.8	0.0	42.5	74.0	-31.5
8118.8	28.2		٧		27.2	4.8	0.0	40.7	54.0	-13.3
9020.8	26.3	3013130301444444	¥	80	26.8	4.7	0.0	42.4	74.0	-31.6
9020.8	24.2	á	Ÿ		26.8	4.7	0.0	40.3	54.0	-13.7

Notes:

- a) P. Peak; A: Average; Q: Quasi Peak; H: Horizontal; V: Vertical; OCF:Other Correction Factor; DF:Distance Factor
- b) Insert. Loss = Cable A + Cable B + OCF.
- c) Negative signs (-) in Margin column signify levels below the limits.
- d) All other emissions not reported are below the equipment noise floor which is at least 20 dB below the limits.

k/../measheet/rad_cal

Date of Test: Feb. 10, 1999 & March 1, 2, & 3, 1999

PIAIQ

dB(uV)

MHz

HN

dB(1/m)

23.1

dB(uV/m) dB(uV/m)

84.1

94.0

dΒ

-9.9

Radiated Emissions Test	Data		iri, Menio Park CA 94023
Company: GVC EUT: 900Mz cordless phone; base unit Project #: J98036684 Test Mode: TX@high channel	Model #: S/N or FCC Engineer: Date of Test:	CT-900 not labeled C.Kwan 03/02/99	Initial (L)
Antenna Pre-Amp Cable A Cable B OCF Number: 1 0 12 0 0 Model: EMCO 314 None Green_M+L None None		Standard_ Limits_ Test Distance_	FCC Part 15.249 12 3 meters

dB

0.0

dB

0.0

dB

0.0

903.8 61.0 p h	
903.8 61.0 p h	
Let M 2000 100 14 20 100 000 000 000 000 000 000 000 000	

a) P: Peak; A: Average; Q: Quasi Peak; H: Horizontal; V: Vertical; OCF:Other Correction Factor; DF:Distance Factor

b) Insert. Loss = Cable A + Cable B + OCF.

c) Negative signs (-) in Margin column signify levels below the limits.

d) All other emissions not reported are below the equipment noise floor which is at least 20 dB below the limits.

Ver4/5/98 k/../measheet/rad_cal

Date of Test: Feb. 10, 1999 & March 1, 2, & 3, 1999

ITS Intertek Testing Services

1365 Adams Court, Menlo Park CA 94025

Radiated Emissions Test Data

Company: GVC 900Mz cordless phone; base unit Project #: J98036684 Test Mode: TX@high channel

CT-900 Model #: S/N or FCC not labeled Engineer: C.Kwan Date of Test: 03/02/99

0.0000000000000000000000000000000000000		
	ntenna Pre-Amp Cable A Cable B OCI	
		.01001111
		100000000
Number	8 8 12 0 0	0.000
B B and a barrier Phil	CO C/4 OB! B-1000 O 14 1 1 1 1	*****
NODE: EN	CO 311 CDI_P1000 Green_M+L None Non	
Transfer of the second		

Standard_	FCC Part 15.249
Limits_	12
Test Distance_	3 meters

Frequency	Reading	Det.	Ant. Pol.	Ant. Factor	Pre-Amp	insert Loss	D.F.	Net	Limit @3m	Margin
MHz	dB(uV)	P/A/Q	HAY	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dΒ
1807.9	34.1	p	V	24.9	29.3	1.9	0.0	31.6	54.0	-22.4
1807.9	33.4	2	¥	24.9	29.3	1.9	0.0	30.9	54.0	-23.1
2711.9	45.6	p	¥	27.9	28.4	2.3	0.0	47.4	74.0	-26.6
2711.9	45.5			27.9	28.4	2.3	0.0	47.3	54.0	-6.7
3615.8	43,9	Þ	¥	31.3	27.8	2.7	0.0	50.1	74.0	-24.0
3615.8	43.6	3		31.3	27.8	2.7	0.0	49.8	54.0	-4.3
4519.7	31.3	p	ν		27.9	3.2	0.0	38.7	74.0	-35.3
4519.7	30.1	a	Y	32.1	27.9	3.2	0.0	37.5	54.0	-16.5
5423.4	30.7	p	h	32.9	28.3	3.5	0.0	38.8	74.0	-35.2
5423.4	23.6		h		28.3	3.5	0.0	31.7	54.0	-22.3
6327.7	31,8	Ð	¥	34.4	28.0	3.9	0.0	42.1	74.0	-31.9
6327.7	30.2	a	٧	34.4	28.0	3.9	0.0	40.5	54.0	-13.5
7231.5	28.5	p	٧	36.3	28.0	4.3	0.0	41.1	74.0	-32.9
7231,5	26.5	8		36.3	28.0	4.3	0.0	39.1	54.0	-14.9
8135.5	29.5	p	٧	36.9	27.2	4.8	0.0	44.0	74.0	-30.0
8135.5	28.7	a	V		27.2	4.8	0.0	43.2	54.0	-10.8
9039.4	25.6	Ð	٧	38.2	26.8	4.7	0.0	41.7	74.0	-32.3
9039.4	24.5	3	¥	38.2	26.8	4.7	0.0	40.6	54.0	-13.4
000000000000000000000000000000000000000										
				11 60 						
		5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<u> </u>						
		3		:						

Notes:

- a) P: Peak; A: Average; Q: Quasi Peak; H: Horizontal; V: Vertical; OCF:Other Correction Factor; DF:Distance Factor
- b) Insert. Loss = Cable A + Cable B + OCF.
- c) Negative signs (-) in Margin column signify levels below the limits.
- d) All other emissions not reported are below the equipment noise floor which is at least 20 dB below the limits.

k/../measheet/rad_cal

Date of Test: Feb. 10, 1999 & March 1, 2, & 3, 1999

ITS Intertek Testing Services

1365 Adams Court, Menlo Park CA 94025

Radiated Emissions Test Data

Company: GVC

900Mz cordless phone; hand unit

Project #: J98036684 Test Mode: TX@low channel

dB(1/m)

dB

CT-900 Model #: S/N or FCC not labeled

Engineer: C.Kwan Date of Test: 03/02/99

dB.

dB

	Antenna P	re-Amp Cable A	Cable B	OCF
		0 12		
Model: E	EMCO 314	None Green_M	+L None	None

Frequency Reading Det. Ant. Pol. Ant. Factor Pre-Amp Insert, Loss

	\	
Standard_	FCC Part 1	5.249
Limits_	12	
Test Distance_	3	meters

dB(uV/m)

94.0

dB

-11.5

Net

dB(uV/m)

MU	HPANA	BIAIO	HV
MHz 926.1	dB(uV) 61.6	P/A/Q p	ri/v
920.1	01.0	p	٧
			105000000000000000000000000000000000000
			San de la Caraca d
			19691 55615-101 1161-1
100000000000000000000000000000000000000	Million behildering	i prilije og prije og je og	terbilebale addression
:::: :::: :::: :::			
	· · · · · · · · · · · · · · · · · · ·		
	11111100010000100000000011100	51.115921,50311.151.150	11941-94
	50 10 10 10 10 10 10 10 10 10 10 10 10 10	3001111013131111111111111	
50.50.50.50.50.50			moitroinnitiment
************	10.001.00001.0001.0001.0001		
		0.00410.000.000411005110.00	
			000000000000000000000000000000000000000
			000000000000000000000000000000000000000
	105011110.0000100001000	00001000100010001000	10.001700207001400077
	- Mercanicolor de contra		20.02.1000.12.01.1.000.1.1
er er en konskriger i gel	. 6 / 61 / 62 / 63 / 63 / 63 / 63 / 63 / 63 / 63		100000000000000000000000000000000000000
	H-98-788 (1986) 18-9		
			110010100011101111111111111
			and comments of the con-
			i con
sistem tiki ilikiki	:::::::::::::::::::::::::::::::::::::::	000000000000000000000000000000000000000	
			histirash miligili.
			10080 (000000000000000000000000000000000

Notes:

- a) P: Peak; A: Average; Q: Quasi Peak; H: Horizontal; V: Vertical; OCF:Other Correction Factor; DF:Distance Factor
- b) Insert. Loss = Cable A + Cable B + OCF.
- c) Negative signs (-) in Margin column signify levels below the limits.
- d) All other emissions not reported are below the equipment noise floor which is at least 20 dB below the limits.

k/../measheet/rad_cal

Date of Test: Feb. 10, 1999 & March 1, 2, & 3, 1999

ITS Intertek Testing Services

1365 Adams Court, Menlo Park CA 94025

Radiated Emissions Test Data

Company: GVC EUT: 900Mz cordless phone; hand unit Project #: J98036684

Test Mode: TX@low channel

Model #: CT-900 S/N or FCC not labeled Engineer: C.Kwan Date of Test: 03/02/99

Antenna Pre-Amp Cable A Cable B OCF
Number: 8 8 12 0 0
Model: EMCO 311 CDI_P1000 Green_M+L. None None

Standard_	FCC Part 15.249
Limits_	12
Test Distance	3 meters

Frequency	Reading	Det.	Ant. Pol.	Ant Factor	Pre-Amp	Insert Loss	D.F.	Net	Limit @3m	Margin
MHz	dB(uV)	PIAIQ	HA	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
1843.8	32.1	Đ	h		29.3	1.9	0.0	29.4	54.0	-24.6
1843.8	30.6	8	ĥ	::	29.3	1.9	0.0	27.9	54.0	-26.1
2778.3	39.6	p	h	dia	28.4	2.3	0.0	41.6	74.0	-32.4
2778.3	37.0	a	h		28.4	2.3	0.0	39.0	54.0	-15.0
	000000000000000000000000000000000000000		h		27.8	2.7	0.0	42.1	74.0	-32.0
3704.2	35.7	P	h	31.5	27.8	2.7	0.0	41.4	54.0	-12.6
3704.2	35.0				28.0	3.2	0.0	35.4	74.0	-38.6
4630.2	28.0	p	ħ		28.0	3.2	0.0	33.6	54.0	-20.4
4630.2	26.2	- 2				3.7	0.0	36.5	74.0	-37.5
5556.2	26.7	P	h		28.3			35.0	54.0	-19.0
5556.2	25.2	a	h		28.3	3.7	0.0		74.0	-34.3
6482.3	29.1	Ð	h	34.7	28.0	3.9	0.0	39.7		-16.3
6482.3	27.1	3	h	34.7	28.0	3.9	0.0	37.7	54.0	-36.0
7408.3	25.9	P	h	35.8	28.0	4.3	0.0	38.0	74.0	
7408.3	25.1	8	ħ	35.8	28.0	4.3	0.0	37.2	54.0	-16.8
8334.3	26.1	Ð	h	37.0	27.2	4.8	0.0	40.7	74.0	-33.3
8334.3	24.3	2	h		27.2	4.8	0.0	38.9	54.0	-15.1
9260.3	26.4	D	h		27.0	4.7	0.0	41.9	74.0	-32.1
9260.3	24.3	8	ĥ	37.8	27.0	4.7	0.0	39.8	54.0	-14.2
				v:						

Notes:

- a) P. Peak; A: Average; Q: Quasi Peak; H: Horizontal; V: Vertical; OCF:Other Correction Factor; DF:Distance Factor
- b) Insert. Loss = Cable A + Cable B + OCF.
- c) Negative signs (-) in Margin column signify levels below the limits.
- d) All other emissions not reported are below the equipment noise floor which is at least 20 dB below the limits.

k/../measheet/rad_cal

Date of Test: Feb. 10, 1999 & March 1, 2, & 3, 1999

ITS Intertek Testing Services

1365 Adams Court, Menlo Park CA 94025

			Radiated	Emissio	ns Tesi	Data				
	GVC 900Mz cord J98036684 TX@high ch		r; hand unit			Model #: S/N or FCC Engineer: Date of Test:	C Kwan	led	Initial(Đ.
Number: Model:	Antenna 1 EMCO 314	Pre-Amp 0 None	Cable A 12 Green_M+L	Cable B 0 None	OCF 0 None		Standard Limits_ Test Dist	_	FCC Part 15.2 12 3	249 meters
Frequency MHz	Reading dB(uV)	Det. PIAQ	Ant. Pol. H/V	Ant. Factor dB(1/m)		Insert Loss dB	D. F. dB	Net dB(uV/m)	Limit @3m dB(uV/m)	Margin dB
		P								

Notes:

- a) P: Peak; A: Average; Q: Quasi Peak; H: Horizontal; V: Vertical; OCF:Other Correction Factor; DF:Distance Factor
- b) Insert. Loss = Cable A + Cable B + OCF.
- c) Negative signs (-) in Margin column signify levels below the limits.
- d) All other emissions not reported are below the equipment noise floor which is at least 20 dB below the limits.

k/../measheet/rad cal

Date of Test: Feb. 10, 1999 & March 1, 2, & 3, 1999

ITS Intertek Testing Services

1365 Adams Court, Menlo Park CA 94025

			Radiated	l Emissio	ns Tesi	Data				
Company: EUT: Project #: Test Mode	hand unit	Model #: S/N or FCC Engineer: Date of Test:	C,Kwan		Initial:					
Number: Model:	Antenna 8 EMCO 311	Pre-Amp 8 CDI_P1000	Cable A 12 Green_M+L	Cable B 0 None	OCF 0 None		Standard Limits_ Test Disi	_	FCC Part 15.2 12 3	249 meters
Frequency	Reading	Det.	Ant. Pol.	Ant. Factor	Pre-Amp	Insert, Loss	D.F.	Net	Limit @3m	Margin
MHz	dB(uV)	PIAIQ	HN	dB(1/m)	dB	₫B		dB(uV/m)		d₿
1855.9	34.2	P	٧	24.9	29.3	1.9	0.0	31.7	54.0	-22.3
1855.9	32.0	4	Y	24.9	29.3	1.9	0.0	29.5	54.0	-24.5
2783.8	39.2	P	٧	27.9	28.4	2.3	0.0	41.0	74.0	-33.0
2783.6	38.5	ä	h	28.1	28.4	2.3	0.0	40.5	54.0	-13.5
3711.8	35.4	p.	i h	31.5	27.8	2.7	0.0	41.8	74.0	-32.3
3711.8 4639.8	35.0 26.5	a	h	31.5 32.2	27.8 28.0	2.7 3.2	0.0 0.0	41.4 33.9	54.0 74.0	-12.6 -40.1
4639.8	******************	P	ħ	32.2			0.0	33.9 31.2	74.0 54.0	-40.1 -22.8
5567.8	23.8 26.9	a D	ħ	32.2 34.4	28.0 28.3	3.2 3.7	0.0	31.2 36.7	54.0 74.0	-22.0 -37.3
5567.B	24.4	a	h h	34.4	28.3	3.7	0.0	34.2	74.0 54.0	-37.3 -19.8
6495.7	27.7	D	h	34.7	28.0	3.9	0.0	38.3	74.0	-15.0 -35.7
6495.7	25.1	9	h i	34.7	28.0	3.9	0.0	35.7	54.0	-18.3
7423.7	26.5	D	h	35.8	28.0	4.3	0.0	38.6	74.0	-35.4
7423.7	24.0	ā	h.	35.8	28.0	4.3	0.0	36.1	54.0	-17.9
8351.7	26.7	Ð	h	37.0	27.2	4.8	0.0	41.3	74.0	-32.7
8351.7	24.0	8	h	37.0	27.2	4.8	0.0	38.6	54.0	-15.4
9279.7	27,0	p	h	37.8	27.0	4.7	0.0	42.5	74.0	-31.5
9279.7	24.1	a	h	37.8	27.0	4.7	0.0	39.6	54.0	-14.4

- a) P: Peak; A: Average; Q: Quasi Peak; H: Horizontal; V: Vertical; OCF:Other Correction Factor; DF:Distance Factor
- b) Insert. Loss = Cable A + Cable B + OCF.
- c) Negative signs (-) in Margin column signify levels below the limits.
- d) All other emissions not reported are below the equipment noise floor which is at least 20 dB below the limits.

k/../measheet/rad_cal

GVC Corp., 900 MHz Cordless Telephone

Date of Test: Feb. 10, 1999 & March 1, 2, & 3, 1999

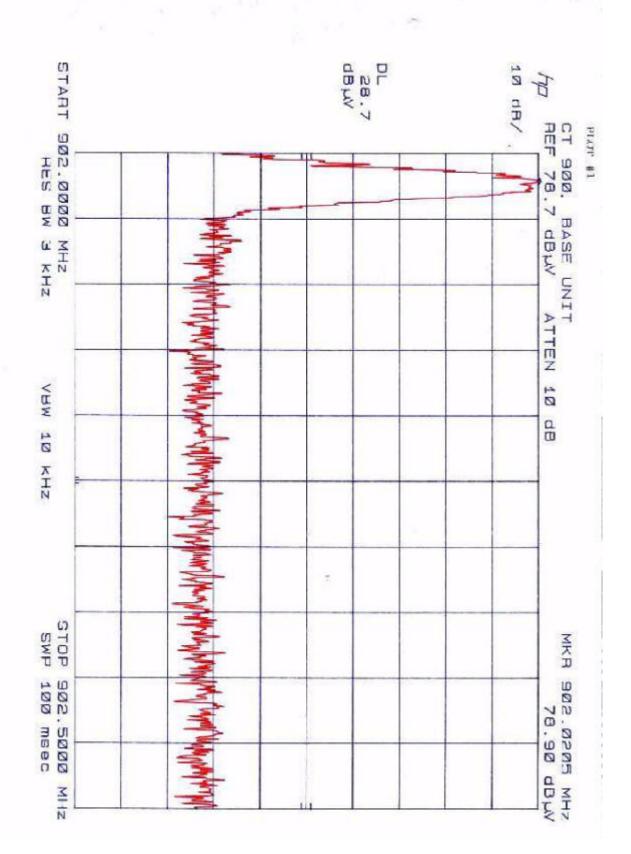
FCC ID: DK4CT-900

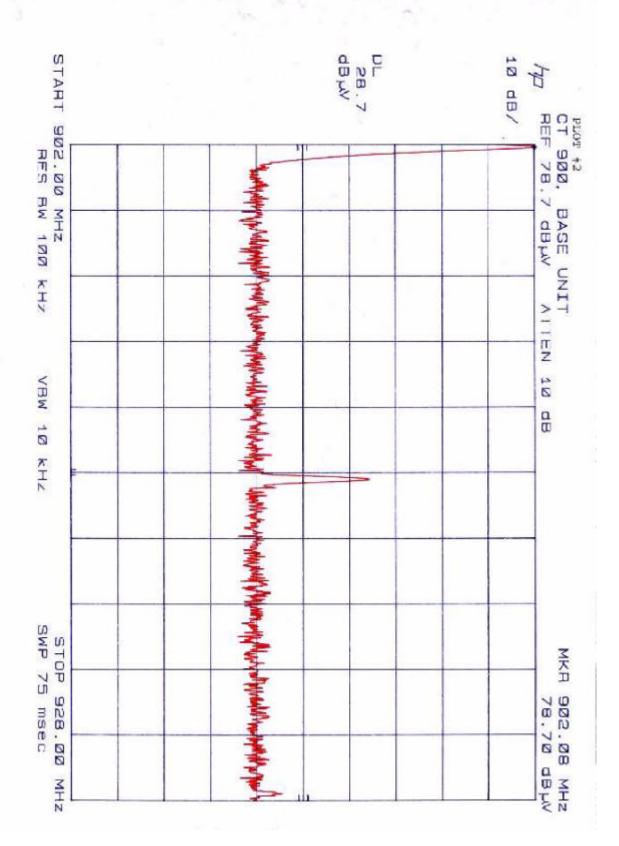
3.5 Conducted Emission Data - See Exhibit 6A

The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

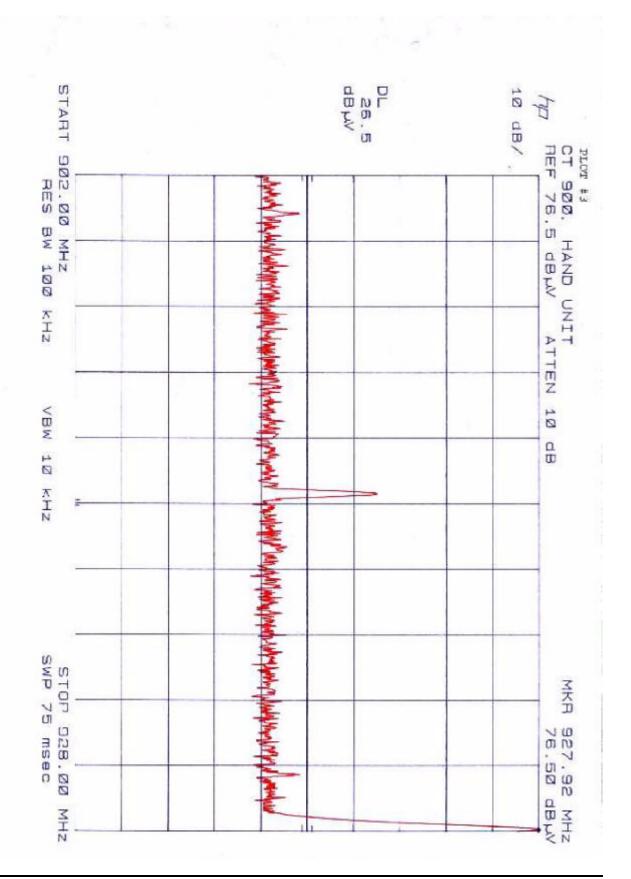
Results: Passed by 12.8 dB at 3.274MHz

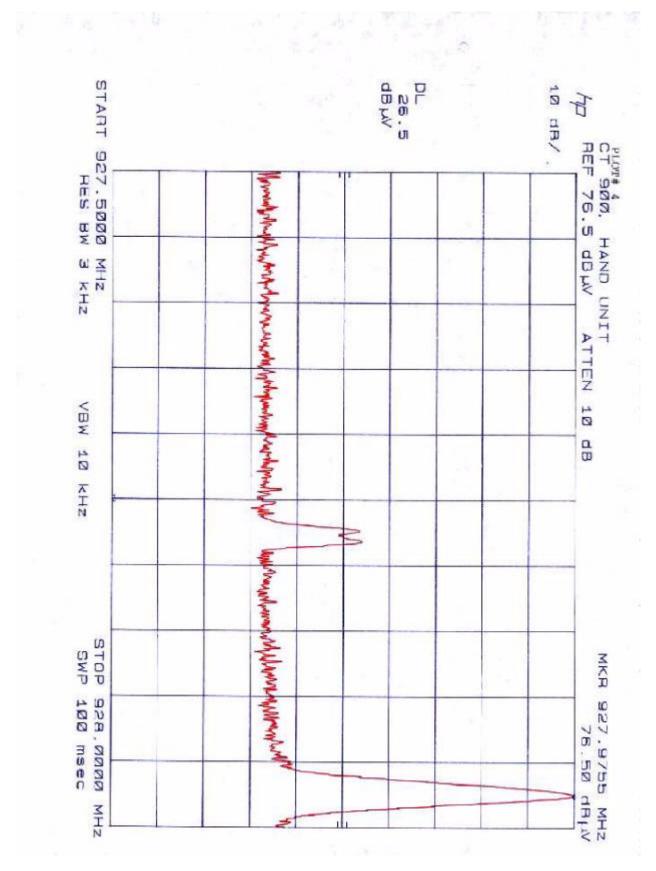
Note: a) A complete scan from 0.45 - 30 MHz was made.


Date of Test: Feb. 10, 1999 & March 1, 2, & 3, 1999


FCC ID: DK4CT-900

Out of Band Emission Plot 4.0


The following plots show the relative spurious emission level of the transmitter.


Plot #	Description
1	Base unit, low channel, 902 MHz to 902.5 MHz
2	Base unit, high channel, 902 MHz to 928 MHz
3	Hand unit, low channel, 902 MHz to 928 MHz
4	Hand unit, high channel, 927.5 MHz to 928 MHz

Date of Test: Feb. 10, 1999 & March 1, 2, & 3, 1999

Antenna Requirement 5.0

U	The transmitter uses a permanently connected antenna.
	The antenna is affixed to the EUT using a unique connector which allows for replacement of a broken antenna, but does NOT use a standard antenna jack or electrical connector.
	The EUT requires professional installation. Please refer to the attached documentation for details).

Date of Test: Feb. 10, 1999 & March 1, 2, & 3, 1999

FCC ID: DK4CT-900

List of Exhibits 6.0

ID Label Format Exhibit 1

Exhibit 2 **ID Label Location**

Equipment Photographs Exhibit 3

Block Diagram Exhibit 4

Exhibit 5 **Circuit Diagram**

Exhibit 6 **This Test Report**

Exhibit 6a **Line Conducted Data**

Exhibit 7 **Test Setup Photos**

Exhibit 8 **Instruction Manual**