

**FCC Test Report
Ten-Tec Model 418
100W RF External Power Amplifier**

**The following sections of CFR Title 47: Telecommunication
apply to the DUT and are included in this report**

Parts 2.815, 2.1033, 2.1046, 2.1053

Parts 97.305, 97.307 (d) (e), 97.313, 97.315, 97.317

**Parts 15.107, 15.109, 15.207 Testing Performed at Global Testing Labs
(See GTL's report beginning on page 12)**

FCC ID: DJ7-418

**Tested By: Lee Jones & Boyd Lichlyter
Test Report: Mike Webber
Date: 2/10/12**

Test Results: The Ten-Tec Model 418 100W RF External Amplifier has been tested and passed and therefore meets the requirements of each FCC section listed above.

TABLE OF CONTENTS

GENERAL INFORMATION	PAGE 3
ATTESTATION STATEMENT	PAGE 3
OTHER INFORMATION	PAGE 4
TEST SETUP & CONDITIONS	PAGE 5
EQUIPMENT LIST	PAGE 5
TEST PROCEDURES	PAGE 5
RF POWER OUTPUT	PAGE 6
STRENGTH SPURIOUS EMISSIONS	PAGE 7
GLOBAL TESTING LABS REPORT (PART 15)	PAGE 12

GENERAL INFORMATION

Device Under Test: 100W HF Linear Power Amplifier

FCC ID: DJ7-418

Model Number: 418

Serial Number: N/A

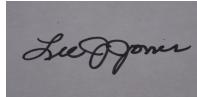
Operating Frequency: 1.8 – 54 MHz (Amateur Bands Only)

Power Source: External DC Power Supply +13.8V @ 17A (typical)

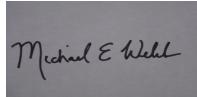
Unit Tested: Prototype

Equipment Type: Fixed

ATTESTATION STATEMENT


The Ten-Tec Model 418 has been tested according to the requirements of CFR Title 47: Telecommunication. The Ten-Tec Model 418 has met these requirements, and the results are documented in this report. The tests were performed according to the measurement procedures also shown in this report.

We attest that the Part 2 and Part 97 tests were completed at:


Ten-Tec, Inc.
1185 Dolly Parton Parkway
Sevierville, TN 37862

Boyd Lichlyter

Lee Jones

Mike Webber

The Part 15 tests were completed at Global Testing Labs. This data is in a separate report appended to the end of this report and contains its own attestations.

OTHER INFORMATION

The amplifier operates only in the amateur radio bands below 30 MHz and also in the 6 meter amateur band (50-54 MHz). The amplifier is NOT capable of operation on any frequency outside of the amateur bands including 26-28 MHz and also will NOT operate above 54 MHz.

The amplifier typically requires 4-6 Watts of drive to obtain full output power depending upon which transmit band it is on.

The gain of the amplifier is less than 15dB on all bands under all conditions.

In *off* or *standby* positions the amplifier does NOT amplify. The exciter energy is simply passed on to the antenna at the same level in which it entered the amplifier. The spurious emissions of the transceiver remain unaffected.

PART 2.815 (b) (1) (2)

The Ten-Tec Model 418 external RF amplifier is not capable of amplification in the frequency band 26-28 MHz and cannot be modified to operate in the 26-28 MHz frequency band. Any attempt to drive the amplifier in the 26-28 MHz frequency band will result in 0 dB gain from input to output of the amplifier.

PART 97.313

The output power will not exceed 115 Watts into 50 Ohm resistive load. Therefore, it is impossible for the output power to reach or exceed the 1500 Watts PEP legal limit.

PART 2.1033 (c) (8)

Input Power: DC Voltage (13.75 Volts) x DC Current (16 Amps) = 220 Watts

TEST SETUP AND CONDITIONS

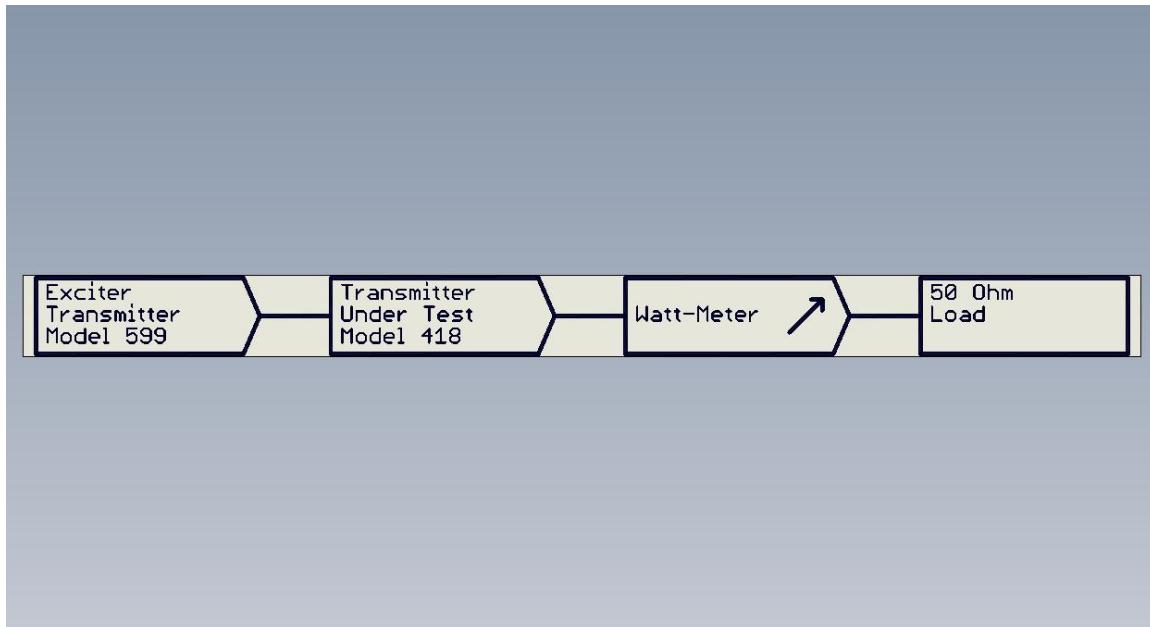
The data collected to verify conformity with Part 2.1046 (a), Part 2.1053, Part 97.307 (d) (e) and Part 97.317 were taken at Ten-Tec, Inc located at 1185 Dolly Parton Parkway, Sevierville, TN 37862.

The temperature was 23°C.

EQUIPMENT LIST

Ten-Tec Model 599 (Exciter)
Bird Thruline Model 43 (Wattmeter)
Bird Termaline (50 Ohm Load)
Anritsu MS2601B (Spectrum Analyzer)

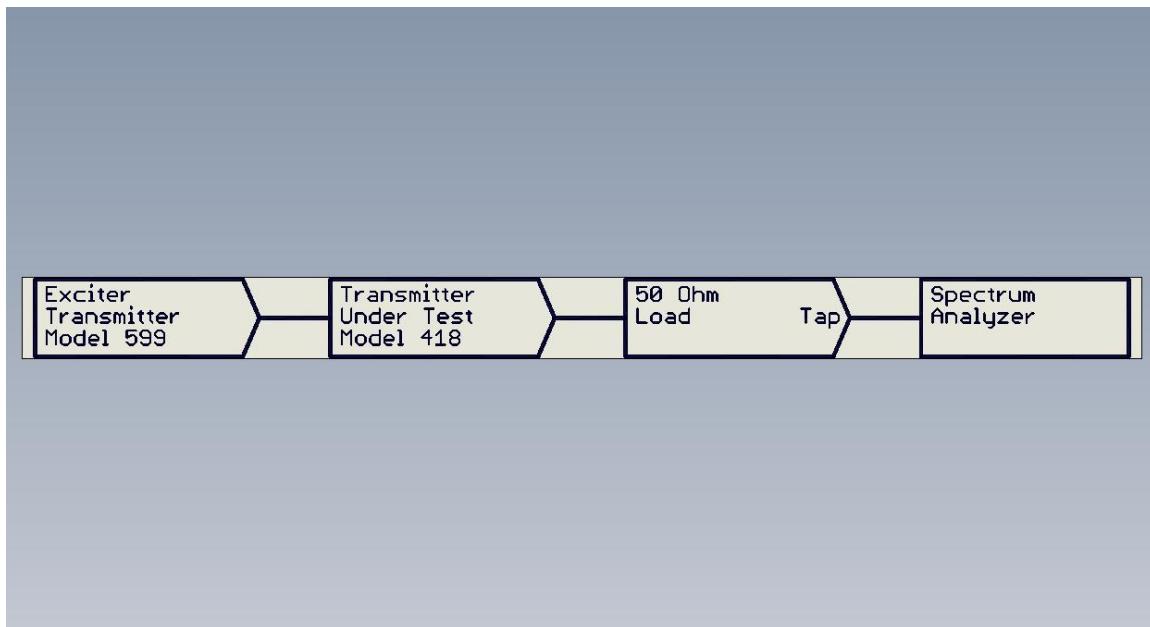
TEST PROCEDURES


The test procedures used to perform measurements on the Model 418 were taken from the following sections of CFR Title 47: Telecommunication.

Part 2.1033 (b) (6)
Part 15.31 (a) (3) [see also] Note to paragraph (a) (3)
Part 97

The details of the test setup for each test are described in the sections that follow.

RF POWER OUTPUT


The setup to measure the RF power output was made by connecting the output of a Ten-Tec Model 599 transceiver (the exciter) to the input of the Ten-Tec Model 418 amplifier. A watt-meter was placed in-line between the amplifier and a 50 ohm load. The exciter was tuned to a frequency in the center of each band shown. The amplifier was powered with the voltage and current previously indicated. The input and output power was recorded, and the gain was calculated. The gain does not exceed 15dB and the output power is under 1.5kW PEP into a 50 ohm load.

Part 2.1046 (a), Part 97.317 (a) (2)

Band (Meters)	Input Power (W)	Output Power (W)	Gain
160	3.8	100	14.2
80	4.2	100	13.8
60	4.9	100	13.1
40	6	100	12.2
30	4	100	14
20	4.7	100	13.3
17	4.2	100	13.8
15	4.9	100	13.1
12	4	100	14
10	3.8	100	14.2
6	5	100	13

STRENGTH OF SPURIOUS EMISSIONS

The setup to measure the strength of spurious emissions was made by connecting the output of a Ten-Tec Model 599 transceiver (the exciter) to the input of the Ten-Tec Model 418 amplifier. A 50 ohm load was connected to the amplifier, and a spectrum analyzer was connected to the 50 ohm load. The exciter was tuned to the frequency shown and each harmonic of that frequency up to the tenth was observed on the spectrum analyzer.

Part 2.1053, Part 97.307 (d) (e)

Frequency (MHz)	Harmonic	dB Below Main	>43dB Below
1.9	1.9	0	
1.9	3.8	65	Yes
1.9	5.7	>70	Yes
1.9	7.6	>70	Yes
1.9	9.5	>70	Yes
1.9	11.4	>70	Yes
1.9	13.3	>70	Yes
1.9	15.2	>70	Yes
1.9	17.1	>70	Yes
1.9	19	>70	Yes

Frequency (MHz)	Harmonic	dB Below Main	>43dB Below
3.75	3.75	0	
3.75	7.5	>70	Yes
3.75	11.25	>70	Yes
3.75	15	>70	Yes
3.75	18.75	>70	Yes
3.75	22.5	>70	Yes
3.75	26.25	>70	Yes
3.75	30	>70	Yes
3.75	33.75	>70	Yes
3.75	37.5	>70	Yes

Frequency (MHz)	Harmonic	dB Below Main	>43dB Below
5.357	5.357	0	
5.357	10.714	66	Yes
5.357	16.071	>70	Yes
5.357	21.428	>70	Yes
5.357	26.785	>70	Yes
5.357	32.142	>70	Yes
5.357	37.499	>70	Yes
5.357	42.856	>70	Yes
5.357	48.213	>70	Yes
5.357	53.57	>70	Yes

Frequency (MHz)	Harmonic	dB Below Main	>43dB Below
7.15	7.15	0	
7.15	14.3	62	Yes
7.15	21.45	>70	Yes
7.15	28.6	>70	Yes
7.15	35.75	>70	Yes
7.15	42.9	>70	Yes
7.15	50.05	>70	Yes
7.15	57.2	>70	Yes
7.15	64.35	>70	Yes
7.15	71.5	>70	Yes

Frequency (MHz)	Harmonic	dB Below Main	>43dB Below
10.125	10.125	0	
10.125	20.25	>70	Yes
10.125	30.375	>70	Yes
10.125	40.5	>70	Yes
10.125	50.625	>70	Yes
10.125	60.75	>70	Yes
10.125	70.875	>70	Yes
10.125	81	>70	Yes
10.125	91.125	>70	Yes
10.125	101.25	>70	Yes

Frequency (MHz)	Harmonic	dB Below Main	>43dB Below
14.175	14.175	0	
14.175	28.35	71	Yes
14.175	42.525	>70	Yes
14.175	56.7	>70	Yes
14.175	70.875	>70	Yes
14.175	85.05	>70	Yes
14.175	99.225	>70	Yes
14.175	113.40	>70	Yes
14.175	127.575	>70	Yes
14.175	141.75	>70	Yes

Frequency (MHz)	Harmonic	dB Below Main	>43dB Below
18.118	18.118	0	
18.118	36.236	72	Yes
18.118	54.354	69	Yes
18.118	72.472	>70	Yes
18.118	90.59	>70	Yes
18.118	108.708	>70	Yes
18.118	126.826	>70	Yes
18.118	144.944	>70	Yes
18.118	163.062	>70	Yes
18.118	181.18	>70	Yes

Frequency (MHz)	Harmonic	dB Below Main	>43dB Below
21.225	21.225	0	
21.225	42.45	72	Yes
21.225	63.675	>70	Yes
21.225	84.9	>70	Yes
21.225	106.125	>70	Yes
21.225	127.35	>70	Yes
21.225	148.575	>70	Yes
21.225	169.80	>70	Yes
21.225	191.025	>70	Yes
21.225	212.25	>70	Yes

Frequency (MHz)	Harmonic	dB Below Main	>43dB Below
24.94	24.94	0	
24.94	49.88	71	Yes
24.94	74.82	71	Yes
24.94	99.76	>70	Yes
24.94	124.7	>70	Yes
24.94	149.64	>70	Yes
24.94	174.58	>70	Yes
24.94	199.52	>70	Yes
24.94	224.46	>70	Yes
24.94	249.4	>70	Yes

Frequency (MHz)	Harmonic	dB Below Main	>43dB Below
28.85	28.85	0	
28.85	57.7	72	Yes
28.85	86.55	69	Yes
28.85	115.4	>70	Yes
28.85	144.25	>70	Yes
28.85	173.1	>70	Yes
28.85	201.95	>70	Yes
28.85	230.8	>70	Yes
28.85	259.65	>70	Yes
28.85	288.5	>70	Yes

Frequency (MHz)	Harmonic	dB Below Main	>60dB Below
52	52	0	
52	104	>70	Yes
52	156	>70	Yes
52	208	>70	Yes
52	260	>70	Yes
52	312	>70	Yes
52	364	>70	Yes
52	416	>70	Yes
52	468	>70	Yes
52	520	>70	Yes

The following pages contain the Part 15 test data that were completed at Global Testing Labs. The Model 418 operates from an external DC power supply providing an external 13.8v and therefore is not subject to Part 15.207 Conducted Limits [Power Line Conducted Interference]. See Part 15.207 (c).

However, Global Testing did set up a typical installation with a Ten-Tec Model 963 power supply and tested the whole system with all supporting equipment for compliance under Part 15.107 and Part 15.109. The test setup and results are contained in GTL's report on the following pages.

MEASUREMENT TECHNICAL REPORT FOR:
Ten-Tec, Inc.
1185 Dolly Parton Parkway
Sevierville, TN 37862

MODEL: 418

ADDITIONAL MODELS: None

REPORT NUMBER: G1201013

Report Date: February 1, 2012
Date Test Sample Received: January 30, 2012

This report concerns: ANSI C63.4 (2009)
FCC Method 47 CFR Part 15 subpart B

Test report was prepared by and test performed at:

GLOBAL TESTING LABORATORIES, LLC
3029 East Governor John Sevier Highway
Knoxville, Tennessee 37914-6424

Written By	<i>Cailé Gonzalez</i> Cailé Gonzalez Office Manager	<u>February 1, 2012</u> Date
Reviewed By	<i>Roger Williams</i> Roger Williams Senior Mgr. Engineering	<u>February 1, 2012</u> Date
Approved By	<i>Deborah Walker</i> Deborah Walker CEO/President	<u>February 2, 2012</u> Date

LIST OF EXHIBITS REPORT # G1201013

1. Summary of Results
2. Engineering Statement
3. System Test Configuration
4. Conducted Emissions (FCC Part 15)
5. Radiated Emissions (FCC Part 15)
6. NVLAP Certificate

**SECTION 1
SUMMARY OF RESULTS
REPORT # G1201013**

This Test Report in no way constitutes or implies product certification, approval, or endorsement by NIST or any Government Agency and may not be used to imply such endorsement.


The equipment used in this test provided a Test Uncertainty Ratio better than 4:1. Uncertainties are expressed at approximately 95% confidence level (k=2).

This report covers only the listed Model: 418*, which indicates that the previously mentioned equipment **MEETS** the requirements as set forth by the following standards:

Conducted Emissions (FCC Part 15)
Radiated Emissions (FCC Part 15)

*Final measurements were taken with Ten-Tec Power supply Model 963.

Mass production of final instrument systems utilizing the exact electrical/ mechanical components, lead dress, and RF ground paths as tested by Global Testing Laboratories, LLC will not likely cause harmful interference to any radio communication, radio navigation or safety services. Any deviation in design from the system tested by our facility will require further verification of Compliance by Global Testing Laboratories, LLC. This test report is the confidential property of Ten-Tec, Inc. Extracts from this test report shall not be reproduced except in full without our written approval.

**Cailé Gonzalez
Global Testing Laboratories, LLC**

SECTION 2
ENGINEERING STATEMENT
REPORT # G1201013

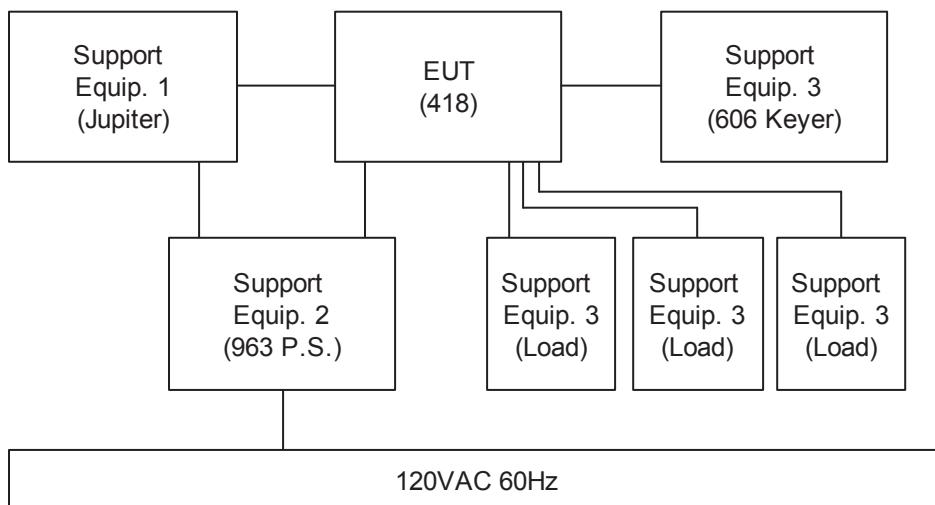
Engineering Statement

All measurement data in this report was taken pursuant to FCC Rules Part 15 by Global Testing Laboratories, LLC located in Knoxville, Tennessee. Although this data is taken under stringent laboratory conditions and to the best of our knowledge, represents accurate data, it must be recognized that emissions from this type of equipment may be greatly affected by the final installation of the equipment. Therefore, Global Testing Laboratories, LLC, while supporting the accuracy of the data in this report, takes no responsibility for use of equipment based on these tests. The manufacturer of this equipment must take full responsibility for any field problems, which may arise, and agrees that Global Testing Laboratories, LLC, in performing its functions in accordance with its objectives and purposes, does not assume or undertake to discharge any responsibility of the manufacturer to any other party or parties.

The testing on the Ten-Tec, Inc Model: 418 was performed from January 30, 2012 through January 31, 2012. The data contained within this technical report was compiled and approved by:

A handwritten signature in black ink, appearing to read "Cailé Gonzalez".

Cailé Gonzalez
Global Testing Laboratories, LLC
3029 East Governor John Sevier Highway
Knoxville, Tennessee 37914-6424


SECTION 3

SYSTEM TEST CONFIGURATION

REPORT # G1201013

The **Ten-Tec, Inc Model: 418** was configured into a simulated installation.

The specific setup for each test performed is described in the following Sections.

SECTION 4
CONDUCTED EMISSIONS
REPORT # G1201013

TEST PROCEDURES: ANSI C63.4 (2009) FCC Method 47 CFR Part 15

ACRONYMS:

(E.M.I.) Electromagnetic Interference
(E.U.T.) Equipment Under Test
(L.I.S.N.) Line Impedance Stabilization Network

CONDUCTED EMISSIONS:

The (2) 50 ohm/50 micro-Henry LISN's were placed next to the EUT. For each test required, the AC power leads were connected to two (2) 50 ohm/50 micro-Henry L.I.S.N.s as described in section 9 Method of measurement of terminal interference voltage of EN 55022. The system was energized and placed into its normal operating mode. The 50-ohm output of the L.I.S.N. was connected to the R&S ESCI Spectrum Analyzer. The EUT was observed from 150 kHz to 30 MHz to identify the frequency of the emission that had the highest amplitude relative to the limit. For each mode of operation and for each current carrying conductor, cable and/or wire manipulation was performed while observing the Spectrum Analyzer. For this series of tests the emission that had the highest amplitude relative to the limit was recorded. The EUT was powered by 120 VAC 60 Hz.

Based on the preliminary tests, the EUT and the cable and/or wire configuration and mode of operation which produced the highest emission relative to the limit was selected for the final AC power line conducted emissions test. The final test on all current carrying conductors of the power cords that comprise the EUT was performed without variation of the configuration determined during the preliminary tests. The X-Y plots of EMI generated by the E.U.T. were taken.

Calibration: Equipment Used During Testing:

Cal. Date: Cal. Due:

05/10/11	05/10/12	R&S ESCI	s/n: 100389	Spectrum Analyzer
11/30/11	11/30/12	Fisher 50Ω /50µH	s/n: 9705 & 9706	LISN

Software: Rohde & Schwarz EMC32 Ver. 8.52.0

Test Report

Common Information

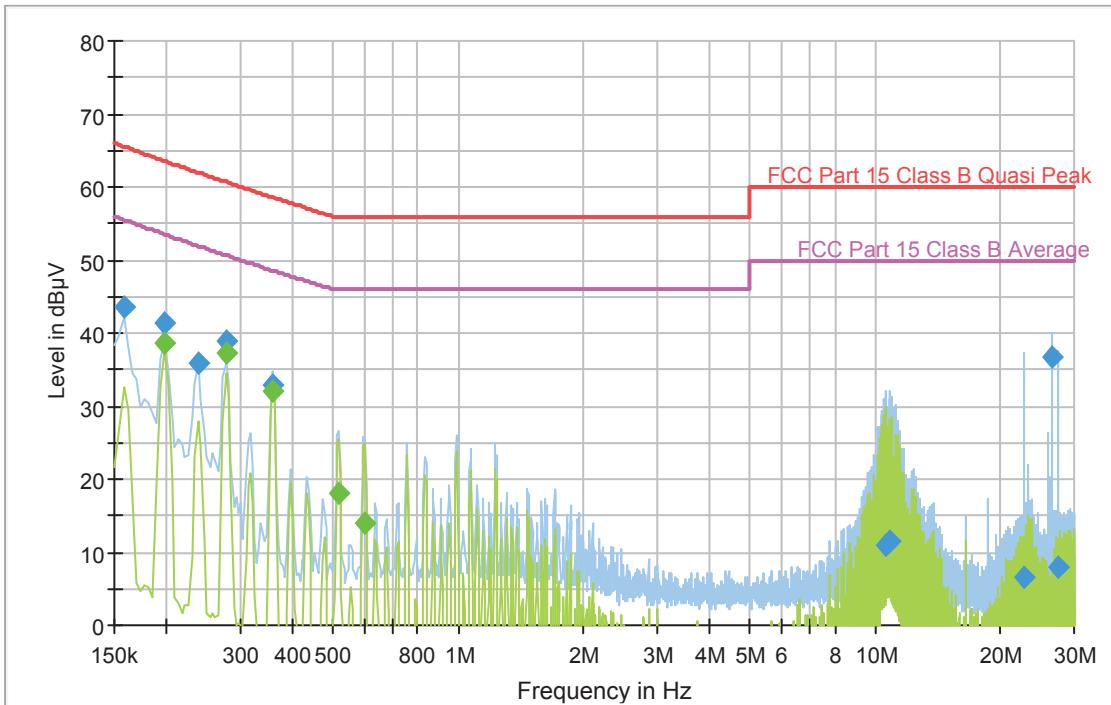
Report Number: G1201013
Date: 1-31-2012
Environment Conditions: 21.5C 24%RH 29.32inHG
Operator Name: Roger Williams
Comment: With TenTec Model 963 Power supply

EUT Information

Manufacturer: TenTec
Model: 418
Comments: Conducted Emission Power
120VAC 60Hz

EMI Auto Test Template: FCC Part 15 Class B

Hardware Setup: Conducted Emissions 150kHz - 30MHz
Measurement Type: 2 Line LISN
Frequency Range: 150 kHz - 30 MHz
Graphics Level Range: 0 dB μ V - 80 dB μ V


Preview Measurements:
Scan Test Template: FCC Part 15 Class B

Data Reduction:
Limit Line #1: FCC Part 15 Class B Quasi Peak
Limit Line #2: FCC Part 15 Class B Average
Peak Search: 6 dB , Maximum Results: 10
Subrange Maxima: 10 Subranges , Maxima per Subrange: 1
Maximum Number of Results: 10

Final Measurements:
Template for Single Meas.: FCC Part 15 Class B Final

Report Settings:
Report Template: Conducted Emissions
Create Electronic Report: RTF
Document Name: EMI Report

FCC Part 15 Class B

Final Result 1

Frequency (MHz)	MaxPeak (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)	Comment
0.158000	43.4	2000.0	9.000	GN	N	9.9	22.1	65.5	
0.198000	41.4	2000.0	9.000	GN	N	9.9	22.1	63.5	
0.238000	35.9	2000.0	9.000	GN	L1	9.9	26.1	62.0	
0.278000	38.8	2000.0	9.000	GN	L1	9.9	21.9	60.7	
0.358000	32.8	2000.0	9.000	GN	L1	10.0	25.8	58.6	
10.646000	10.8	2000.0	9.000	GN	L1	10.0	49.2	60.0	
10.806000	11.6	2000.0	9.000	GN	L1	10.0	48.4	60.0	
22.774000	6.5	2000.0	9.000	GN	L1	9.9	53.5	60.0	
26.646000	36.6	2000.0	9.000	GN	L1	9.8	23.4	60.0	
27.598000	8.0	2000.0	9.000	GN	L1	9.8	52.0	60.0	

Final Result 2

Frequency (MHz)	Average (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)	Comment
0.198000	38.6	2000.0	9.000	GN	N	9.9	15.0	53.5	
0.278000	37.2	2000.0	9.000	GN	L1	9.9	13.4	50.6	
0.358000	32.0	2000.0	9.000	GN	L1	10.0	16.5	48.6	
0.518000	18.2	2000.0	9.000	GN	L1	10.0	27.8	46.0	
0.598000	13.9	2000.0	9.000	GN	L1	10.0	32.1	46.0	
10.490000	-1.2	2000.0	9.000	GN	L1	10.0	51.2	50.0	
10.566000	-3.5	2000.0	9.000	GN	L1	10.0	53.5	50.0	
10.646000	-3.6	2000.0	9.000	GN	L1	10.0	53.6	50.0	
10.806000	-3.0	2000.0	9.000	GN	L1	10.0	53.0	50.0	
10.966000	-3.0	2000.0	9.000	GN	L1	10.0	53.0	50.0	

SECTION 5
RADIATED EMISSIONS
REPORT # G1201013

TEST PROCEDURES: ANSI C63.4 (2009) FCC Method 47 CFR Part 15

The EUT was placed in a typical configuration 0.8 meters above a metal turntable mounted level with the metal ground plane. A receiving Biconical antenna was placed 3 meters away from the EUT on a 4-meter fiberglass mast. The receiving antenna was connected to the 50Ω input of the HP 8566A spectrum analyzer. The EUT was powered by 120 Volts 60 Hz and was configured into its normal operational mode.

The 30 to 40 MHZ band was observed on the spectrum analyzer while the EUT power and control leads were adjusted to maximize emissions. The peak frequencies for this band were recorded. This search for emissions continued from 40 MHZ up to 18 GHz. The receiving antennas were varied in height from 1 to 4 meters and the remote turntable was rotated 360 degrees to find the maximum emissions. This test was performed for all modes of operation.

All significant emissions are reported on the attached data report. To verify that the E.M.I. emissions measured were generated by the E.U.T., the system power was interrupted at peak reading while observing the Spectrum Analyzer. Unless otherwise specified, all Radiated Emissions are recorded as "PEAK" spectrum analyzer readings. The Radiated Field Strength was calculated as follows: Maximum Emission Received (dB) + Antenna Factor (dB) + Cable Loss (dB) = Field Strength dB_{UV}/Meter.

Calibration:		Equipment Used During Testing:		
Cal. Date:	Cal. Due:			
11/09/10	2/09/12	HP 8566A	s/n: 3486	Spectrum Analyzer
11/10/10	2/09/12	HP 85650A	s/n: 1001	Quasi-Peak Adapter
11/09/10	2/09/12	HP 85685A	s/n: 0627	RF Pre-selector
3/01/11	3/01/12	EM-6912	s/n: 613	Biconical Antenna
3/01/11	3/01/12	EM-6950	s/n: 847	Log-Periodic Antenna

Software EMC Emissions Ver. 1.0 (GTL Developed Software)

SUPPLEMENTAL DATA

REPORT # G1201013

GLOBAL TESTING LABORATORIES, LLC
3029 GOV. JOHN SEVIER HWY.
KNOXVILLE, TENNESSEE 37914
TEL:(865)523-9972 FAX:(865)637-7598

OPEN FIELD RADIATION MEASUREMENT FCC PART 15 CLASS "B" LIMITS

REPORT #: G1201013
MANUFACTURE: TenTec
MODEL #: 418
DATE: 1/31/2012
NOTE: 120vac 60hz

DELTA REFERS TO THE dB DIFFERENCE BETWEEN THE HORIZONTAL OR VERTICAL READING AND THE dB LIMIT AT THAT FREQUENCY.

THE FOLLOWING ARE PEAK READINGS WITH CABLE AND ANTENNA FACTORS INCLUDED EXCEPT AS NOTED BY "QP".

"QP" = QUASI PEAK READING AT THAT FREQUENCY

SPECTRUM ANALYZER SETTINGS: 30MHz - 1GHz
RBW: 100KHz
VBW: 100KHz

TEST DISTANCE BETWEEN DEVICE UNDER TEST AND RECEIVING ANTENNA: 3-METERS

FREQ. (MHz)	HORZ. dBuV/m	VERT. dBuV/m	H DELTA (dBuV)	V DELTA (dBuV)	LIMIT LEVEL	FREQ. STATUS
73.76	21.28	29.73	-18.72	-10.27	40	
110.6	25.1	33.2	-18.4	-10.3	43.5	
146.1	22.24	23.84	-21.26	-19.66	43.5	
258.1	24.52	29.82	-21.48	-16.18	46	
295.5	24.96	35.51	-21.04	-10.49	46	
300.08	26.6	32.6	-19.4	-13.4	46	
304.05	29.3	27.6	-16.7	-18.4	46	
308.02	24.54	28.64	-21.46	-17.36	46	
333.4	23.55	35.85	-22.45	-10.15	46	
356.46	27.14	31.74	-18.86	-14.26	46	
366.7	26.3	28.55	-19.7	-17.45	46	
400.09	29.2	37.55	-16.8	-8.45	46	

SUPPLEMENTAL DATA

REPORT # G1201013

GLOBAL TESTING LABORATORIES, LLC
3029 GOV. JOHN SEVIER HWY.
KNOXVILLE, TENNESSEE 37914
TEL:(865)523-9972 FAX:(865)637-7598

OPEN FIELD RADIATION MEASUREMENT FCC PART 15 CLASS "B" LIMITS

REPORT #: G1201013
MANUFACTURE: TenTec
MODEL #: 418
DATE: 1/31/2012
NOTE: 120vac 60hz

DELTA REFERS TO THE dB DIFFERENCE BETWEEN THE HORIZONTAL OR VERTICAL READING AND THE dB LIMIT AT THAT FREQUENCY.

THE FOLLOWING ARE AVERAGE READINGS WITH CABLE AND ANTENNA FACTORS INCLUDED.

SPECTRUM ANALYZER SETTINGS: 1GHz - 18GHz
RBW: 1MHz
VBW: 1Hz

TEST DISTANCE BETWEEN DEVICE UNDER TEST AND RECEIVING ANTENNA: 3-METERS

FREQ. (MHz)	HORZ. dBuV/m	VERT. dBuV/m	H DELTA (dBuV)	V DELTA (dBuV)	LIMIT LEVEL	FREQ. STATUS
----------------	-----------------	-----------------	-------------------	-------------------	----------------	-----------------

No Points Found

SECTION 6
NVLAP CERTIFICATE
REPORT # G1201013

United States Department of Commerce
National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 200409-0

Global Testing Laboratories, LLC
Knoxville, TN

*is accredited by the National Voluntary Laboratory Accreditation Program for specific services,
listed on the Scope of Accreditation, for:*

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

*This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005.
This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality
management system (refer to joint ISO/ILAC-IAF Communiqué dated January 2009).*

2011-07-01 through 2012-06-30

Effective dates

Sally S. Bruce
For the National Institute of Standards and Technology

NVLAP-01C (REV. 2009-01-28)